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Abstract. Integrals are considered which can be transformed into the Laplace integral

r(\)

where / is holomorphic, z is a large parameter, p. = A/z is a uniformity parameter, /j. > 0.
A uniform asymptotic expansion is given with error bounds for the remainders. Applica-
tions are given for special functions, with a detailed analysis for a ratio of gamma
functions. Further applications are mentioned for Bessel functions and parabolic cylinder
functions. Analogue results are given for loop integrals in the complex plane.

1. Introduction. We consider Laplace integrals of the form

1 /♦CO

Fx(z) = f(A)/o ' e~Z'f^dt (L1)

where/ is holomorphic in a domain Q that contains the non-negative reals in its interior; A
and z are real or complex variables for which Fx{z) is properly defined. We are interested
in the asymptotic expansion of Fx(z) for z —> oo, which is uniformly valid with respect to
the parameter /x := A/z. This is earlier considered in Temme (1983).

The present paper gives results for integrals with the same asymptotic phenomena and
for which a non-trivial transformation is required to bring these integrals into the standard
form (1.1). After this transformation the function / of (1.1) usually depends on /i. In view
of this aspect we generalize the previous paper.

* Received November 9, 1983.
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This generalization is understood and motivated by considering the following integrals:

X[x(x + l)]X~1<ix, Modified Bessel function,/A)

fJQ

fJo

fJC\

;[.x(je + 1)"] X 1 dx, Whittaker function,

1 dx, Parabolic cylinder function,

'[1 - e~x]x~ldx, Beta function.

(1.2)

The nature of the asymptotic expansion of these integrals for z -» oo with ju. = A/z as a
uniformity parameter in [0, oo) is the same as that of (1.1). However, due to the
transformation of these integrals into (1.1), the theory of our earlier paper needs
modifications.

To describe the method for (1.1) we use positive A and z. The function /is expanded at
t = n, at which point txe~ZI is maximal. We write

OO

/(') = L as(n)(t - n)s (1.3)
5 = 0

which is substituted in (1.1) to give the expansion
oo

Fx(z)~ z~x£as(ii)Ps(\)z-s, z-* oo, (1.4)
5 = 0

where PS(X) are polynomials. The first few are P0(X) = 1, ^(A) = 0, /\(A) = A, -P3(A) =
2A, P4(X) = 3A(A + 2). In our earlier paper we discussed the asymptotic nature of (1.4)
and we constructed error bounds. The error bounds in the present paper are new and may
be more realistic.

The integrals in (1.2) can be written in the form

aq(x)X~le~:p(x)h{x) dx (1.5)JCo
and in fact this type of integral is the starting point of the present investigations. Remark
that for the examples of (1.2) p and q are positive increasing functions. Hence one of them
can be taken as a new variable of integration.

In Sec. 2 we transform (1.5) into (1.1), with / depending on ju. The necessary
modifications of earlier results is given in Sec. 3. The remaining sections contain
applications for the special functions in (1.2), with in Sec. 4 a detailed analysis for the Beta
integral. These results are also important for a future paper on the incomplete Beta
function.

The applications considered here do not give essentially new expansions for the Beta
function, parabolic cylinder function and modified Bessel function. For the last case the
expansion is, in some sense, equivalent to that given by Olver (1974, Ch. 10) with as
starting point the differential equation for the Bessel function. There is a different role for
the parameters, however. In Olver's approach the Bessel function K^vz) is considered for
v —» oo, and uniformity with respect to z. Here we write ATJltz(z) with z —» oo and ju as a
uniformity parameter. Both expansions can be transformed into each other.
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Olver developed fundamental methods for obtaining rigorous and realistic error bounds
for uniform asymptotic expansions. In almost all cases the starting point is a differential
equation. It is important to develop a theory for integrals. Interesting results in this field
are obtained and reviewed by Wong (1980).

Terminology. We call a variable fixed when it is independent of z and /u. The argument
or phase of a complex number z is denoted by ph z.

2. Transformation to standard form. We consider the transformation of (1.5) into (1.1).
We suppose temporarily that A and z are positive. As a preparatory step we takep(x) = x,
since the conditions on p and q in the general case (1.5) make it possible to consider either
p or q as a new variable of integration. In fact we consider

1 f°° , \-1
Y{\)J0 ^(*) e~*xh(x)dx. (2.1)

2.1. Main assumptions. The assumptions are:
(2.2.a) 12 is a connected domain of the complex x-plane with

inf \x — <o| = d,
x>0

we 3 £2

where d is a fixed positive number;
(2.2.b) q and h are holomorphic in £2, they are not depending on A and z; q(0) = 0, other

possible zeros of q are outside £2; q is real and increasing on [0, oo); by redefining A and h
we take q'{0) = 1;

(2.2.c) (2.1) should converge for sufficiently large z and all A > 0;
(2.2.d) the function x - juln^(jc) is convex on (0, oo) and its unique simple positive

saddle-point x0(ju), /j. > 0, is an increasing function on (0, oo),

lim x0(/i) = 0, lim x0([i) = oo;
H~*0+ n~+cc

possible other saddle-points are outside £2.
Remark 2.1. The saddle-point x0(ja) is found by solving the equation

q(x) = fiq'(x), n = A/z. (2.3)
In (2.2.d) we assume that the logarithmic derivative of q is a decreasing function on (0, oo)
with limiting values 4- oo (at 0+) and 0 (at + oo).

2.2. The transformation. The integral (2.1) is transformed in the standard form (1.1) by
the mapping x -» t(x) defined by

x — ju.In q(x) = t — /xln t + A(fi), (2-4)

where A(/i) is a function to be determined. We observe that the right-hand side has a
saddle-point at / = ju and that

dx q(x)(t - ft)
dt '[?(*) -

The prime in q'(x) denotes a derivative with respect to jc.

(2.5)
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We see that dx/dt is finite and non-zero for each x e [0, oo), except possibly when
x = 0, x = x0 or t = 0, t = fi. Therefore, we require for the mapping x —> t(x) the
correspondences

x = 0 <-* / = 0, x = x0(ju) <-> f = jx, x =+oo <-»?=+oo, (2-6)

with the expectation that with these relations dx/dt will be finite and non-zero at t = 0,
t = ix also. A(fi) is determined by substituting / = ju in (2.4), from which we obtain

^(m) = *o - /*ln?(*0) - M + ft In/*. (2.7)

The analytical aspects of the transformations (2.4) are discussed below. First we consider
the result, which reads

-zA(n) Jr°o .
tx~le~2,f{t)dt, (2.8)

nI'U) >„

frr"'' < /'% r <2-9>q(x) dt q(x) - nq (x)

2.3. The regularity of the transformation. In Sec. 3 it is assumed that / is holomorphic as
a function of t in a /x-dependent domain fi, of the complex ?-plane and that it is a regular
function of jli, /x ̂  0. In this section we establish that this is the case when q(x) and h(x)
satisfy the conditions given in 2.1.

We shall need to know the behaviour of x0 as ju -* 0. The conditions on q allow us to
write

q(x) = x + q2x2 + q3x3 + ■ ■ ■ (2.10)

and this expansion has a fixed positive radius of convergence. From the implicit function
theorem for analytic functions it follows that the solution of (2.3) is an analytic function
of /! and that for small ];u| the series

*0(/0 = ju + x2[i2 + x3fi3 + • ■ • (2.11)

has a positive radius of convergence. The first coefficients are x2 = q2, = 2q3.
The function A(ju) defined in (2.7) has the expansion

At) = -^2/*2 - <73M3 + " •' • (2.12)

It is easily shown that A is analytic at /x = 0 and hence the series has a positive radius of
convergence.

A complication in the proof of the regularity of the mapping (2.4) is that the
saddle-points of the functions in (2.4) at x = x0, t = n tend to 0 when /x -» 0. In the limit
jx = 0 both saddle-points vanish and the mapping reduces to the identity. Moreover, the
(removable) logarithmic singularities of the functions in (2.4) disappear in the limit n = 0.
These phenomena make the mapping for small values of ju and jc (or t) quite complicated.

To prove the regularity of the mapping (2.4) we introduce a function t(x) by writing

t = /»
x 0

+ (x - x0)-, (2.13)
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This matches the points (x = 0, t = 0) and also (x = x0, t = /i). Moreover, it gives the
proper linear relation between x and t for small jx and jc. Note that n/x0 is finite and
regular at ju = 0 (see (2.11)).

Substituting (2.13) in (2.4), we try to solve for t. We show that t can be expanded in
powers of x (when |x| is small) with coefficients regular in ju. The substitution yields

x(l — jw/x0) — juln[g(x)/x] = xt(x — x0) — ju.ln(ju/x0) + A(/j.)

— juln[l + x0t(x — x0)/iit].
By expanding the last log-term we can write this as

<f'(x) xoT y ^ r < \ ' Is-2 n z'-,7  — L —"—[x0r(x - x0)/n\ = 0, (2.14)
(x-x0) M s = 2 s

with

</>(x) = x(l - n/x0) - /iln - A(n) + fi\n(n/x0).

From (2.3) and (2.7) it follows that 4>(x0) = <f>'(xo) = 0- Hence <f>(x)/(x - x0)2 is
analytic at x = x0, uniformly in n (fi small). Note that /j./x0 ~ 1, <>(0) = 0(ju,2), fi -> 0.
Also, the series in (2.14) represents an analytic function for small values of ft, r and x.
When ju. = 0, the mapping (2.4) reduces to x = t. Hence t of (2.13) has to vanish in the
limit ju = 0.

Now we are ready to apply the following implicit function theorem (Chow & Hale
(1982, p. 36)).
Theorem 2.1. Consider the equation F(w, z) = 0, where F: C X C2 -» C is analytic in a
neighborhood of (0,0) and F(0,0) = 0, Z)h F(0, 0) =£ 0. Then there exists e > 0 such that
for every z, \z\ < e, the equation F(w, z) = 0 has a unique solution w(z) which is analytic
in a neighborhood of zero.

We take w = r, z = (x, ju) and we denote the left-hand side of (2.14) by F(w, z). It
follows that t, and hence t, is analytic in jc and ju for small values of these variables, and
that the mapping (2.4) is uniformly one-to-one for small values of x and ju. It also follows
that x is an analytic function of (t, /j.) in a neighborhood of (0,0). For the remaining
values of /t and x the regularity is much easier to prove.

The first term in the expansion

■*(') = Ci (fi)t + c2(fx)t2 + ■■■

follows from (2.4) and (2.10), giving
JC

cJfi) = lim — = lim exp
(->0 t ,-o

' ~ A(n) = exp [~A(n)/n],M
which limit is indeed analytic in /i at fi = 0.

Remark that the implicit function theorem can be applied also for z = (x - x0, n),
since <j>"(x0) = 0(/i), fi -> 0. The limiting value of dt/dx at x = x0 follows from an
application of l'Hopital's rule on the right-hand side of (2.5). The result is (by using (2.3))

dt_
dx

= +{1 - V2q"(x0)/q(x0)}l/2 (2.15)
= ■*0
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where the sign of the square root is +, since we assume that t is an increasing function of
a:. The assumption in (2.2.d) that x0 is a simple saddle-point implies that this expression
does not vanish. For small values of ju, the expansions (2.10), (2.11) give

dt_
dx = \ - q2fi +

where the series has a positive radius of convergence.
The main result of this section is that the function / of (2.8) is analytic in t and /x, where

t and ju range in connected domains containing the positive reals in their interior. Here
and in the following sections we consider applications with complex analytic functions.
However, the regularity of the mapping can be proved also for real functions h(x) and
q(x) belonging to continuity classes C*[0, oo).

3. Asymptotic expansion. In this section we reconsider the asymptotic expansion of (1.1)
as given in Temme (1983); z is the large parameter, ju:= \/z is the uniformity parameter,
H > 0. The conditions on / are now more general than in the earlier analysis.

3.1. Assumptions on f. We suppose that / is holomorphic in a connected ^-dependent
domain J2( of the complex r-plane, with the condition (2.2.a) with x replaced by t. Let R^
denote the radius of convergence of (1.3). Then we suppose moreover that

R~l = C([l + ft]"), n>0, (k fixed, k ^ 1/2). (3.1)

We assume that /has the following growth condition in 0,: there is a real fixed number
p such that

sup (i +Mr/v(oi (3-2)
2,

is bounded for all finite values of ju, /x > 0.
Remark 3.1. For k < 1/2 the singularities of / are too close to the saddle-point t = ju.

This case will be excluded here.
Remark 3.2. The conditions on the location of the singularities of / and (3.2) are quite

natural for the examples in (1.2), when transformed into the standard form.
3.2. Asymptotic scale. The coefficients as([i) of (1.3) can be written as

= 2tt7 ldt' (3'3)

where Cr is a circle with centre ja and radius r( 1 + /i)"; r may depend on ju, but it should be
uniformly bounded from zero and it should be small enough to keep Cr inside £2(. Using
(3.2) we obtain the bound

where

|flj0i)|<r-'A/r0i)(l+/ir" (3-4)

= [l + M + r(l + V-)"]" sup (1 +|r|) P\f(t)\. (3.5)
reC,u[ 0, oo)



LAPLACE TYPE INTEGRALS 109

For later purposes, describes also the growth of |/(/)| on [0, oo). We introduce
the sequence {^rj by defining

is = is(z,^) = Mr(fi)(l + /0~"*~'(1 + X)s/2, 5 = 0,1,2,.... (3.6)

Theorem 3.1. {\ps} is an asymptotic sequence as z —> oo, uniformly in ju. > 0.

Proof, + = (1 + A)1/2(l + m)"2"1 < z~1/2 when jn ̂  0 and z > 1. □
Remark 3.3. The value of k is important here, the value 1 /2 being critical:
(i) The theorem is not true when k < 1/2.
(ii) When k > 1/2, {i/'j} is also an asymptotic sequence as ju -» oo, uniformly with

respect to z > z0 > 0 (z0 fixed).
(iii) When k = 1/2, we have tps = Mr(/j.)zs/2xs, with xs = [(1 + Mz)/(z + MZ)F/2 < 1

(s > 1). {Xi} is not an asymptotic sequence as ju -» oo.
3.3. Asymptotic nature of the expansion (1.4). The expansion (1.4) is written as

OO

zXF\{z) ~ L as(n)Ps(X)z~s; {^(z,fi)} asz-co, (3.7)
s-0

where for the notation we refer to Olver (1974, p. 25) or to Erdelyi & Wyman (1963). The
functions Ps(A) are polynomials in A defined as

1 /*°°
^(A) = Y(\) J0 x le*(x - A)1***, 5 = 0,1,2,•••, (3.8)

of which the first few are given after (1.4). They follow the recursion i>J + 1(A) = s,[Ps(A) +
AP,_X(A)],5 >1. In the proof of the following theorem we also use

1 /-OO s
^(A) = f{X) J0 X e~X\x ~ X\ dx> s>0- (3-9)

By applying Laplace's method it is found that

^s(A) ~ 77_1/2(2A)s/2r( —x—-), A-oo. (3.10)
2

To prove (3.7), we need a representation of the remainder. Let us write (1.3) in the form

/(')= L os(n){t - vY +(' - n)"R„(t,n). (3.11)
5 = 0

Then we obtain for (1.4)

Fx(z) z
n- 1

E as(ii)Ps(X)z~s + z-"En(z, X)
5 = 0

(3-12)

where the remainder En is defined by

7^ /-OO ,

z~"En(z> A) = Y(\) f0 ' - fO'XC'./O dt. (3.13)

Theorem 3.2. The expansion (3.7) is a uniform asymptotic expansion for z -> oo, the
uniformity holding with respect to /x e [0, oo).



110 N. M. TEMME

Remark 3.4. According to the definition of generalized (uniform) asymptotic expansion,
we have to prove

z~nEn(z,n)= 0[t„{z,n)], n = (3.14)

as z —> oo, uniformly in ju > 0.
3.4. Proof of Theorem 3.2. The interval of integration in (3.13) is split up as follows

[0,oo) = A„u[l,(+)uA + , (3.15)

where

A_= [0, f_], A + = [t + , oo), t±= p ± ^(1 + ju)\ 0 <rl<r, rx fixed,(3.16)

with r as in (3.3). When t_ happens to be negative we replace it by 0. For (e[(_,/+) we
can write with Cr as in (3.3)

= 1 vT) ydT- (3-17)
Jcr (t — t)(r — /x)

For t e Cr we have |t — f| > (r — rx)(l + /n)". Thus we obtain as in (3.4)

. . .. Mr(ju)(l + ju)""
K('.m) • (3.18)

r (r — rx)

Hence the integral over [/_, t + ) in (3.13) gives a contribution which is bounded by

zx Mr(n)(l + n)' dt
r(A) r" l{r - rY) (3.19)

= Mr(M)(l + M)""<z-''JPn(X)0(l), z-oo,

uniformly in jii > 0. Using (3.10), we conclude that

z~"En(z,\) = I-+ /+ + 0[+n(z,p)], (3.20)

z -* oo, uniformly in ju > 0, where /± are the contributions to (3.13) due to t e A ±.
For these ^-values ^„(?, ju) is written as

(t - nYRn{t,li) =/(/) - £ ^(mH* - V-Y-
s~ 0

The proof is finished when we have shown that

r(\) IA tX~le~"8U) dt = °[in] asz-^oo, (3.21)

uniformly in ju > 0, where g(t) is |/(/)| or |aJ(/i)(r - ju)5| (0 < s < n — 1). In fact we will
prove more than in (3.21), namely that the integrals in (3.21), and hence I±, are
asymptotically equal to 0 with respect to the scale {ips}.

To give an estimate for I +, it is important to do so for the function

*(0 = f(XyzVe_z'' f>°-
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For each ju > 0 it attains its maximum value in A_, A+ at the endpoints t_, t+. So we
proceed with $(?±).

Lemma 3.1. We have the following bound

$(' + ) < [X/(2ff)]1/2exp[-p±z(l + n)a±(K)]

where p +> p0> 0 (p0 fixed) and a+(/c) = min(K, 2k - 1), a_(«) = 2k - 1.

Proof. It easily follows that $(/+) < [A/(2w )]1/2exp[ — z</>+(/i)], where we used 1/T(X)
< [\/(277)]1/2ex\~A and where

<Mm) = ̂ (l + m)"

Using

j _ !"(! +y) rl(l + m)k
y =

_ ln(l + y) y/2
y " 1 +y

(y> o)

we have

l/2/*2(l + h)2k> I 777 ^ •
M + '"ill + M

When k > 1, we use ju + rx(l + ju)K < (/-j + l)(ju + 1)K, from which we obtain

9 + W 2(r1 + 1)

When 1/2 < k < 1, we use ju + r:(l + ju)" < (r1 + 1)(1 + /u,), resulting into

r2( 1 + m)2""1<Mm) > 2(ri + 1)

This proves the lemma for <J>(r+).
For 4>(r_) we take p_ = + oo for the ju-values that make t_ negative, and we continue

with t_> 0. We have $(/_) < [A/(2w)]1/2 exp[-z<f>_(ju,)], where

<M/0 = -p[y + ln(l-y)], y = — ^ ^ ,
r

with the condition t_> 0, or ju > /^(l + ix)K, which for y implies 0 < y < 1. Expanding
ln(l — y) we obtain

<Mn) > l/2r2(l + h)2k/h > l/2r12(l + \xfK \

This proves the lemma. □
The bounds for the integrals in (3.21) are essentially given in the following lemma.

Lemma 3.2. Consider the following integrals

G±(a,q)= ( \t - a\qtx~le~zldt,
J \
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where (a, q) = (ft, s) or ( — 1, p). Then we have the bounds

G ±(a, q) < r1"1$(r±)|r±- a|"(l + fi)"[z-a]_1, z > a.

Here a is a fixed real number, which is given below.

Proof. When /_= 0, the A_ integral vanishes, together with $(?„). So we can proceed
with t_> 0. We compute a real number a which satisfies

|(/ - a)/(t±- <x)\q < [(t/t±ylle'-'^]a, t G A±.

Taking logarithms we write this as <0, re A ±, where

t — a '
<j>(t) = In

t a
+ iio\n{t/t±) - a(t - t±).

The derivative <t>'(t) is non-negative (non-positive) on A _(A+) when <j>'(t _) > 0 (<#>'(/+) « 0).
This yields for a the inequality

qt-
a >

|/+- a|(r±- n)
All combinations of +, a = ft, a = — 1 show that the right-hand side is a bounded
function of/x(/x>0, /2) and we take a as the supremum of this function (and of the
four combinations). With this bound for |f - a\q we obtain for G ±

G + (a,q) <|?± — a|,(J>(/±) f tlT{t)~ "dt,

where T(t) = (t/t +)*1 exp(r ±— t). Taking x = -In T(t) as a new variable of integration,
we have

dxQ CG+(a,q) <|t + - a| <P(t±) / e
JC\

-(z-o)x _

0 |r - ft I
Replacing |/ — ju|_1 by the larger quantity 11 ±— ft|_1 = rf1(l + fx)-* we arrive at the
desired results. □

Now we are ready to establish the final result for I + of (3.20).

Lemma 3.3.

I±~ 0; {ts(z, ft)} as z -» oo,

uniformly with respect to ft > 0.

Proof. We consider the integrals in (3.21) for the following cases
(i) g(t) = |/(0I- Using (3.5) we obtain the bound

Mr(ft)[l + ft + r(l +/x)K]-;'G±(-l,/>).

The results of Lemma 3.1 and Lemma 3.2 show that this is o[\pm], m — 0,1,..., as
z —» oo, uniformly in ft > 0.

(ii) g(t) = |as(ft)(r - n)s\. We now have the bound

+ m) G ±(h, s), s = 0,1.
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Again it easily follows that this is o[\pm].
This proves the lemma and Theorem 3.2. □
Remark 3.5. When k > 1/2, 3>(f+) is exponentially small as z -» oo, uniformly in

[i ^ 0. When k = 1/2, this is not true. Then the factor (1 + ju)" in the bound for
G +(a, q) in Lemma 3.2 is needed to absorb A1/2 which occurs in the bound of $(/ +) in
Lemma 3.1. See also Remark 3.3 for the peculiar case k = 1/2.

3.5. Error bounds. Using (3.10), (3.19) and the smallness of I + (see (3.20)) it follows
from the proof of Theorem 3.2 that (3.13) satisfies

|z""£„(z,A)|< m„+n(z,vL), n = 0,1,- • •, (3.22)

where mn are fixed and approximately equal to tt 1/221/2'T(l/2 + n/2)r This gives
an error bound for (3.12).

A more rigorous approach is based on computing the maximal value of R„(t, /x) in
(3.13). When an(fi) # 0 and an+m(fi) ^ Owe define

* * t \ - I ̂ n (^^) I / o n \= sup  — — — ; (3.23)
t>o |a„(/i)|+ 6m\an + m{[i)(t - fx) |

m = max(0, — [n — />]), where [■] is the entier-function, 8m = 1 (m ^ 1), 90 = 0. This
choice of m is based on (3.2) and it makes the function at the right-hand side of (3.23) a
bounded function of t on [0, oo). With this definition we obtain

\E„(z)\^ MnM{\an(n)\Pn(\) + 0m\an + m(n)\Pn + m(\)z-m}. (3.24)

The value of M„(/x) may be determined by t-values far from the point t = [i. In these
cases the bound in (3.24) grossly overestimates the actual error. Therefore it is preferable
to seek a majorant that concentrates upon values near t = ji. Modifying Olver's method
for Laplace integrals (see Olver (1974, p. 89)) we introduce a number an such that

\Rn(t, (i)I < MMjiOI^/urV-"] (0 < t < oo). (3.25)
M is an arbitrary factor exceeding unity.

The best value of an is given by

°n = suPX„('- /*) (3.26)
r >0

where

(. x \n\R„(t,n)/(Man(n))\
X«\'' f*) . , / , \t ~ H ~ Mln( r//x)

For small 11 — ju| we have

-In M + ^(t - n) + 0(t - fi)2
 ; -r   ~3 ■ (3.28)

(t - p) + 0(t - n)
and it follows that an is finite. It depends on /x. In place of (3.24) we derive for z > an

l£„U)l < M\an(n) 1(1 - an/z)~"\Pn(X - pan)Qn, ^ ^

Qn = (1 - °n/Z)~X[(A - MojA]M°"r(A - /Xa„)/r(X).
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In applications on is small. When z — an and A = fiz are large the factor Qn is close to
unity, which follows from the Stirling approximation for the gamma functions. In fact we
have

Qn = (1 - °JZ\ 1/2T*(ii(z - a„))/T*(/iz), (3.30)
where

r*(z) = (z/2ir)1/2ezz~zT(z). (3.31)

Example 3.1. With f(t) = 1/(1 + t), (1.1) reduces to the exponential integral. In this
case R„(t, n)/an(n) = (1 + ju)/( 1 + /). Hence (3.23) gives M„(/x) = 1 + fi. For large n
this factor is unacceptable large for the bound (3.24). The function x„(', j") of (3.27) is
positive on (0, T) with T = (1 + \i)/M — 1. Numerical calculations give with M = 1.1
the following table for an. Note that x„ and an do not depend on n, in this example. We
also give the values of Qn of (3.30) when z = 5.

Table 1. a„ and Q„ of (3.29),/(r) = 1/(1 + t), M = 1.1, z = 5.

Qn
0.5
1.0
2.5
5.0
7.5

10.0
15.0

0.912
1.207
1.078
0.755
0.570
0.456
0.325

1.114
1.155
1.132
1.086
1.063
1.050
1.035

25
50

100
500

1000
5000

10000

0.206
0.108
0.055
0.012
0.006
0.002
0.001

Qn
1.022
1.011
1.006
1.002
1.001
1.000
1.000

Remark 3.6. The exponential integral is considered in our previous paper, sections 3.5
and 6.1. The error bounds of the present section are new and are not given there.

Remark 3.7. Error analysis based on (3.17) (by deforming Cr into a contour around the
positive r-axis) gave rather poor numerical results, compared with (3.24) and (3.29).

To evaluate the bounds in (3.24) and (3.29) it is convenient to have expressions for
P„(X) defined in (3.9). Recall that for n even P„(\) = the polynomial (3.8). In
general we have

Pn(A) = A"«![w„+(-l)%„]/r(X);
m„, vn both satisfy the recursion n\wn = (n — l)wn_j + wn_2 with initial values u0 =
T(A, A), v0 = y(A, A), ul = -vx = e~xAx_1. It follows that Px{A) = 2e"xAVr(A),

*3 = K +(* + l)wi]/(3A2),

w5 = [(6 4- 5A)w0 + (6 + 11A + 2A2)»f1]/(30A4)

where ws is us or vs. Using the above initial values for us and vs, P3 and Ps easily follow. We
have

^3(X) = rll)[2(x + 1)e_XxX"1 + 2r^A'- r(A^-
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For integer values of a, the incomplete gamma function T(a, z) is an elementary function:
n Zm

T{n + 1, z) = n\e~z £ —.
m = 0

3.6. A related expansion. In Sec. 5 of Temme (1983) a related expansion for (1.1) is
obtained by partial integration. For this expansion the sequence {fs(t)} is used, which is
defined by/0(?) =/(*),

£ j. ^ fs (0 /s ( M ) r\ i \
fs+M = tjt yzTp ' 5 = 0,1,2, (3.32)

Then the expansion reads
' n-\

z ZfsMz-s + z-"E:(z, A)
s = 0

\

(3.33)

7 r°° ,
E"*(z'X) = r(Ijl ' e~Z'f"(')dt- (3-34-)

The coefficients fs(ju) can be expressed in terms of as(n). We have

/o(m) = /i(m) =
/2(f0 = m[3m^4(m) + 2a3(M)], (3.35)

/3(m) = M [15^2<26(m) + 20 m«5(m) + 6o4(m)]-
An interesting point is that in (3.33) the parameters z and p. are separated from each other,
whereas in (3.7) the parameter A = /xz explicitly occurs.

From (3.32) it follows that fs is holomorphic in S2„ as is/itself. By induction it follows

/,(/!) = (1+^)?s_2iX(m)0(1), ju>0, (3.36)
cf. (3.5), where q = max(ic, 1). When k ^ 1/2, {fs(n)z~s} is an asymptotic scale for
z -» oo uniformly with respect to ju > 0. When k > 1/2 the same is true for p. -* oo,
uniformly with respect to z, z > z0 > 0; z0 fixed.

An error bound easily follows from (3.34). Let contain a sector containing the
positive real /-axis in its interior. From (3.2) and Temme (1983, section 2) it follows that

sup(i + 01_/U(0l
t>0

is bounded for fixed finite values of jn, ju > 0. For those n for which /„(jli) + 0, we
introduce a number a* such that

\fn(t)\< M*\fn(ii)\[(t/n)~'"e'~11] (0 < t < oo), (3.37)
where M* is a fixed arbitrary factor exceeding unity (cf. (3.25)). Then E*(z, A) of (3.27) is
bounded by

|£;(z,A)|« A^l/,0010,, (3.38)
where Qn is given in (3.29) (replace an by a*).

The best value of a* is given by

1. (3.39)
,>o t-fi-filn (t/ix)
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Example 3.2. With f(t) = 1/(1 + t), we have

/2(0//2(m) = [(/* + M - 2)]/[m(m - 2)(/ 4- l)3], jn # 2,ju # 0.

Take M* = 2. For the ju-values of Table 1, ju = 2.5 gives a positive a2*-value. For the
remaining ju-values we can take o* = 0.

3.7. Expansions for loop integrals. In Temme (1983) loop integrals of the form

Ga(z) = 2777' ̂ )e"rX~1/(0 dt (3.40)
ZlTI

were considered. The asymptotic expansion is in this case
00

~ L z ^ oo, (3.41)
s = 0

with as and Ps as in (1.4). This result remains valid when / depends on /u with the
assumptions of section 3.1. The domain of holomorphy of/(f) may be different of course.
Again, the expansion holds uniformly with respect to /x:= X/z in [0, oo). The asymptotic
scale is as in (3.6), (3.7). Error bounds may be constructed as in section 3.3. A suitable
contour is for that purpose

L = { / = pe'e\p(4>) = [i<j>/sin(t>, —m < < 77•}, (3-42)

the path of steepest descent for the integral in (3.40).
3.8. Extension to complex parameters. In Sec. 2.2 we considered the regularity of the

transformation x -> t(x) with emphasis on nonnegative /x-values. It is possible to repeat
the analysis for complex ^-values; the essential step, Theorem 2.1, is not restricted to real
values. It follows that we can assume that /of (1.1) is a holomorphic function of t and n in
a domain £2, X £2^ c C2. Both domains satisfy (2.2.a) with x replaced by t, ju, and
for some d.

Complex values of ju = X/z occur when A and or z are complex. Let 8 = ph z, v = ph X,
X = ph ju, with v = 6 + x- For the convergence of (1.1) at / = 0 we need — 1/277 < v <
1/277. The convergence at t = oo is determined by 6. Suppose we can rotate the path of
integration of (1.1), or deform it at oo, such that the upper limit is at ooe'y, — a < y P
where a and (5 are positive numbers. Then the range for 0 is — 1/277 — /? < 9 < \/2n + a.
Given 0 in this range and fixing y e (- a, /?) we can try to deform the path of integration
of (1.1) into a contour P so that it has the following properties:

(i) 0 £ P, (t £ P, cce,y e P;
(ii) P lies in £2,;
(iii) Re e'ff[<p(t) - <f>(n)] is positive on P, except at / = /x, and is bounded away from

zero as t -* 0 or oo along P; here <f>(t) = t - juln t.
Let v e ( — 1/277, 1/277) and D(v, 6) c 12^ be the subset of the points ju for which a

path P can be constructed having the above three properties. Then for fixed values of
jit e D(v, 0) a theorem of Olver (1974, p. 127) can be used to prove that (1.4) is valid for
these values of z and jli. A uniform version of this requires extra conditions, for instance
on the location of the singularities of /.
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4. A ratio of gamma functions. The expansion of this section is related to
00

r*(z) ~ £ ckz~k, z -* oo, \ph z\ < it, (4.1)
k = 0

c0 = 1, cx = 1/12, c2 = 1/288, c3 = —139/51840; T*(z) is defined in (3.31). By dividing
this expansion by a similar one with z replaced by z(l + ju) we obtain (with A = juz)

00

r*(z)/r*(z + A) ~ E dk(ii)z~k z -» 00, (4.2)
k = o

d0(fi) = 1, d^fx) = /n/[12(l + /j,)], d2(n) = M2/[288(1 + /x)2]. It is expected that this
expansion holds uniformly with respect to jli ̂  0. In this section we give an expansion for
T(z)/r(z + A) which is related to the above expansion. Starting point is the Beta integral
and bounds for the remainder follow from the previous section. The formal above method
will not give this information. However, (4.2) can be obtained by the methods of Sec. 3.4,
with (4.7) as starting point.

Another known expansion is

r(z)/r(z + x) - ,-»{i - + + ...} (4J)

(z —> oo) as given in Olver (1974, p. 118) and in Luke (1969, Vol. I), where more
expansions of this kind can be found. All these results lack uniformity with respect to
unbounded A-domains; (4.3) can be used when A < < z1/2.

4.1. Uniform asymptotic expansion. A simple transformation in the Beta integral gives

F\(z) = r(z)/r(z + A) = ^y/o°°( 1 - e-')x~le-"dx (4.4)

which is of the form (2.1); q is an entire function and the conditions in (2.2) are readily
verified. The saddle-point of (2.2.d) is

*o = ln(! + 1"), M = V-z, (4-5)
and the transformation (2.4) reads

x — ju,ln(l — e x) = t — jixln t + A(fj,),

A(n) = (1 + /x)ln(l + fi) - /i. (4.6)

The transformed version of (4.4) is
-ZA(n) QQ

fx(z) = wi t e~z,f(t) dt, (4.7)

f(t) = (/ - M)/[l -(1 + M)g-'] = r-^7
The first few coefficients of (1.3) are given by

flo(fO = (1 + /*)1/2> «i(m) = [m - 1 + ao(/0]/(3/0' c2(ii) = l/[l2a0(/i)],

a3(p) = [8jn3 + 12ju2 - 12/i - 8 + (8 + 8ju- 15fi2)ao(/i)]/[540(l + n)p3], (4.8)

«4(m) = [^a2(n)/U - 4(1 + /i)a3(ju)]/[6ju(l + /x)].
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A possible starting point for the computations is the differential equation (obtained from
the second line in (2.9))

Ml + m) ̂  = [(1 + m)' + t2]/ + (m - 1 )t/2 -

with t = t — jti. For /x = 0 the function f(t) reduces to t/( 1 — e~'). Hence, the limiting
value as(0) satisfies as(0) = (-l)*Bs/.s!, 5 = 0,1,2,• • •, where Bs are the Bernoulli num-
bers.

The normalized expansion (1.4) reads (cf. (4.2))

r*(z)/r*(z + \)~ t -
, = o ao(M)

1 +
12z(z + A) (4.9)

Information on error bounds is given in section 4.3.
4.2. The logarithmic mapping (4.6). The singular points of the mapping are the points in

the x-plane

= 27rim, xn = ln(l 4- /x) + luin, m, n e Z\{0}. (4.10)

At the function ln(l - e~x) is singular and corresponding r-values are at infinity in the
right half-plane (when /x > 0). For ju. = 0 the points are regular.

The points xn are the zeros of dt/dx. Note that x0 = ln(l + /x) is a regular point.
Corresponding values /„(/x) := t(xn) are defined by the equation

tn — /xIn tn = ju — ju.ln ju + lirin, n6Z\{0}. (4.11)

We consider solutions with \ph tn\ < v. For ju -» 0+ the points tn(n) approach 277in. In
the limit /x = 0 these points are regular.

Writing t = fis, s = pe'e, ja > 0, p > 0, — 77 < 8 < tt, we obtain from (4.11) the set of
equations

'pcosfl - 1 - lnp = 0
p sin 6 — 8 = u, <0 = 2-nn/fx.

Let w > 0. When 0 < p < 1 and 8 > 0, then p sin 8 < 8 and hence the second equation
cannot be satisfied. It follows that p should be larger than unity, to have roots of (4.12) in
the half-plane Im / > 0. A more detailed analysis shows that the solutions of (4.12)
(w > 0) in the half-plane Im t < 0 belong to a different branch of the many-valued
function which is implicitly defined by (4.11).

To obtain the asymptotic behaviour of tn for large p. we introduce sn = tjn. Then for sn
(4.11) reads

sn — 1 — In sn = Inni/fi.

Hence, for large ju, s„ —> 1 and it easily follows

?«(/0 ~ M + (4777h^)1/2, (4.13)

where z'1/2 = e"'/4. The other sign of the square root gives an estimate for a solution
belonging to the above mentioned different branch.

It follows that the number k introduced in Sec. 3, see for instance (3.1), equals 1/2,
which is already predicted by the ratios a2/al, al/a(j of the coefficients in (4.8). For r in
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(3.4) and (3.17) we take a positive decreasing function r(j"0, with r(0) < 2it, r(oo) <
(27t)1/2, (only t ±1 are relevant for the singularities of /). The set { /,(/a )|ju > 0} in the
complex /-plane is drawn in Fig. 4.1. It cuts the imaginary /-axis at 2mi. The set
{*-i(m)Im > 0} is obtained by reflexion, since ^(ju) = The parametric equation
of the curve is given in (4.11) with n = 1. The curves for /„(/x), n > 2, are located above he
curve for

The domain fi, of holomorphy of / can be taken ju-independent by using for Re / > 0
the curves for t ±1(n) (see Fig. 4.1) as its boundary with arbitrary extension into Re t < 0,
where / has no singularities. For the real variable case this domain suffices. A more
general /^-dependent domain S2, comprises several Riemann sheets, with branch points
t + n(n) defined in (4.11).

The analytical aspects of the conformal mapping x -> t(x) are well understood when
we consider the image of the strip in the complex A-plane

S = { x = u + iv\u e R, |i>| < 2tt }.

The boundary points £ ± x = ± 2vi of S (see (4.10)) are mapped into infinity, the boundary
points x ±1 = ln(l + fi) + 2iri are mapped into /±1(ju). In Fig. 4.2 we give the image of a
finite part of S. A local analysis at C and D shows that in the /-plane the vertical distance
between C and D is approximately /iw (when C and D are close to 2mi in the x-plane). At
/j(/n),/has an algebraic singularity,

f(t)=o[(t-t1(n)) 1/2],

Re tj On)

Fig. 4.1. Singular point tl (fi). fi > 0

Fig. 4.2. The logarithmic mapping (4.6)
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4.3. Error bounds. We apply the method of section 3.5 leading to (3.24). It appeared that
in this case the bounds M„(ju) are slowly varying functions of n; we checked the cases
n = 2,3. In (3.23) m = 0 for these values, since p = 1 (cf. (3.2) and (4.7)). Numerical
values of Mn(n) are given in Table 4.1. We also give the ratio

8n = En/En, n - 2,3,

where En is the error defined in (3.12) and En is the a priori computed bound in the
right-hand side of (3.24). Since M„(jti) is rather close to unity, an approach as leading to
(3.29) is not considered here.

Table 4.1. Bounds M„ and ratios 8„; z = 10.

1
5

10

M2(p) 82

1.015 1.014
1.081 1.078
1.125 1.121

M3(M) 83

1.325 9.48
1.129 12.8
1.040 14.2

Observe that S3 is much larger then 52. An explanation is found in the occurrence of
Pn(X) in (3.24). For even n we have Pn(X) = P„(X). For odd n, Pn(X) may be much larger
than P„(X), and this may overestimate the bound En considerably.

Application of the method leading to (3.38) with n — 1, z = 10 gives Table 4.2; of is
defined in (3.39) and = E*/E*, where £f is the exact error in (3.33) and E* the bound
in (3.38).

1
5
10

Table 4.2. Parameters a* of (3.39) and ratios S*\ z = 10

M* = 1.1
E*

0.0042
0.0070
0.0076

CT

5.375
1.697
1.240

8*
1.250
1.204
1.172

M* = 1.5
5*

0.999
0.269
0.170

1.581
1.515
1.508

Observe that in this example the ratios 5* are rather close to M*. Larger z-values will
make Qn of (3.38) closer to unity and hence they will make M* and 5* more equal.

The case n = 1 in this example gives an error bound for the expansion (4.2), taking only
the term c/0(/i) = 1.

4.4. Representation as a loop integral. The expansion (4.1) has the interesting property
that the reciprocal function has the expansion with coefficients ( —1 )kck. This gives for
r*(2 + A)/T*(z) the expansion (4.2) with coefficients A similar operation is
also possible for (4.4) by using

(«4)
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G\(z) = r/1tX)2 ■ /<0 >e''* * ^ d1, ^4-15^
I + U lllTl J 

X = jx/z. This representation is of the form (3.40) and it can be obtained from Luke (1969,
Vol. I, p. 34). Using the transformation (4.6) we obtain

r(l + \)ezAM f(o+)_
(1 + yu. )2 iri

with f(t) given by (4.7). A suitable contour for integration is given by (3.42). Observe that
L is the path of steepest ascent for (1.1) and that (0, oo) is the path of steepest ascent for
(4.15). This makes the expansions of (1.1) and (4.15) quite symmetric. We have (cf. (4.9)
and (3.41))

r*(A + z)/T*(z) ~ £ (-1 Y^\ps(-X)z-% (4.16)
5 = 0 ao(M

where the first as([i) are given in (4.8). This expansion is valid for z -* oo, uniformly with
respect to /x = A/z, jii e [0, oo).

4.5. Extension to complex parameters. We expect that the expansions (4.9) and (4.16) are
valid for complex \u, and z values in the range phz e ( — it, it), ph( 1 + ju) e (-tt,tt). For
jn = — 1 the mapping (4.6) is not defined; x0 becomes - oo in that event. For all
remaining complex /^-values the mapping and the coefficients a jji) are defined properly.
A more detailed analysis is needed to trace the singularities of f(t) and the path of
integration for complex values of ju. These technical aspects are not considered in this
paper.

5. Modified Bessel function K„(z). We give a brief description how the methods of Sees.
2 and 3 can be used to derive an expansion for Kp(z) as z -» oo, which is uniformly valid
in v. The starting point is

771/2( Z/2)"£

r(f +1/2) J0
The saddle-points of exp( — zjc)[jc(jc + 2)]* are

Xq — ey — \, xx = -1 - e~y (5.2)
where sinhy = ju, ja = X/z, X = v + 1/2; we suppose z > 0, X > 0. The mapping (2.4) is

x — juln[x(x + 2)] — t — fxln t + A
A = coshy — (y + ln2)sinhy — 1.

With

/(>) - (< - ri/l*1 + 2*0 - - 2„] - f, (5.4)
we obtain for (5.1) the standard form (1.1) with

F\(z) = 7T-W{z/iy'e«A + "Kr{z). (5.5)

The first few coefficients of (1.3) are found to be

"oil*) = [2(1 + exp(2y))] ~1/2,

= l^h^tCOShY ~ 2e2yaoM- ^ ^

KXz)= "rfv + lA) L + i)Y-1/2dx. (5.1)

(5.3)
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The function t(x), which is defined by (5.3), is singular at the negative saddle-point Xj
and at x = — 2. The latter is mapped into oo and it has no influence upon the asymptotic
expansion. The point xl is more interesting. The corresponding point tl in the ?-plane,
giving a singularity for/(/), satisfies the equation

— jiiln t1 = ju.[l + 2(y — cothy) — In jn + i-n] (5.7)

where phxx = +77; the two signs give conjugate pairs of solutions. For ju = 0 we have
tx= xx= — 2 (the mapping (5.3) reduces to the identity and 11 is no longer a singular
point). By writing t1 = nsv (5.7) reads when /i#0:

jj — In jj — 1 = 2(y — cothy) + i-n.

Hence, for y -» 00 we have = (2y ± iir)( 1 + o(l)), t1 ~ /i[21n(2/x) + im], ju -» + 00. It
follows that k of (3.1), (3.4) and (3.6) satisfies k = 1.

The expansion for KJz) reads
OO

K,(z) ~ (2Tr/z)1/2e-^y-y^y) ^ ^(M)/»j(X)z"J, (5.8)
j = 0

z -» 00, uniformly with respect to /x, ju > 0. Since k is greater than 1/2 it is also an
expansion for v -» 00, uniformly in z > z0 > 0 (see Remark 3.3). Inspection of coeffi-
cients as(ju.) shows that it is allowed to take z0 = 0. The above expansion is related to the
expansion given by Olver (1974, Ch. 10.7).

Loop integrals are also available; for instance for the /-function we have

7r1/2(z/2)V7„(z) = ^ /<0 ezx[x(x + 2)}~X~ldx,
Lit 1 J-oo

v = X 4- 1/2, which can be transformed by using (5.3) into the standard form (3.40).

6. Parabolic cylinder functions. The methods of Sees. 2 and 3 can be applied to the
parabolic cylinder function with integral representation

7VP ~ r CO ^
D^(z)= [ e~* (*+1'2* >x-ldx (6.1)

r(r) j0

z > 0, v > 0. With 1u = v/z2, the saddle-points are x0 = sinh2 y, xl = -cosh2y, where
H = 1/4 sinh2 2 y. The expansion obtained in this way is not essentially new compared
with known expansions for parabolic cylinder functions. A corresponding loop integral is
also available; it represents the above function for negative values of its argument. The
representation is

_ — i* 1/4z2 , ■
D_v_x{-z)=   ( "cez2{x+l/2x2)x-v~1 dx, (6.2)

/V2w •'-/oo

where the path cuts the real axis at a positive x-value.
For both functions (6.1) and (6.2) we can obtain related expansions valid for z -» 00

holding uniformly in fx = v/z 2, ju > 0.
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