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Abstract
Laplacian Eigenmaps Manifold Learning and Anomaly Detection

Methods for Spectral Images

Marcela Munoz Reales

Supervising Professor: Dr. William Basener

Spectral images provide a large amount of spectral information about a scene,

but sometimes when studying images, we are interested in specific components.

It is a difficult problem to separate the relevant information or what we call in-

teresting from the background of a spectral image, even moreso if our target

objects are unknown. Anomaly detection is a process by whichalgorithms are

designed to separate the anomalous (different) points fromthe background of

an image. The data is complex and lives in a high dimension, manifold learn-

ing algorithms are used to analyze data that lives in a high dimensional space,

but that can be represented as a lower dimensional manifold embedded in the

high dimensional space. Laplacian Eigenmaps is a manifold learning algorithm

that applies spectral graph theory methods to perform a non-linear dimension-

ality reduction that preserves local neighborhood information. We present an
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approach to reduce the dimension of the data and separate anomalous pixels in

spectral images using Laplacian Eigenmaps.
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Chapter 1

Introduction

Spectral images are digital images that contain measurements of wavelengths

of light so that a spectrum is provided for each pixel insteadof the usual red,

green and blue. They contain complex high dimensional data that is difficult to

study in its original form. Imaging processing methods are used in the study

of the information provided by spectral images. The three most important uses

of image processing are clustering and classification, anomaly detection, and

target detection. We are interested in the problem of anomaly detection.

There are several mathematical tools that can be used to extract information

from spectral data. Statistical models using principal component analysis (PCA)

and Reed-Xiaoli anomaly detector can be applied to analyze the background in-

formation and create a ranking of anomalous pixels in spectral images. PCA is a

dimensionality reduction algorithm that finds a lower dimension representation
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by embedding the data into a linear subspace. RX (Reed-Xiaoli anomaly de-

tector) is the most popular anomaly detection algorithm, ituses the covariance

matrix and the distance to the mean to locate anomalies. Spectral graph theory

methods can be used to study spectra variations, and detect anomalies; images

can be modeled as sets of connected components where pixels are vertices with

edges connecting them under specific conditions. TAD (Topological Anomaly

Detection algorithm) creates a graph using the pixel’s spectra as vertices that

are connected if they are spectrally similar.

Manifold learning algorithms are used to analyze data that lives in a high

dimensional space, but that can be represented as a lower dimensional manifold

embedded in the high dimensional space. Laplacian Eigenmaps is a manifold

learning algorithm that uses spectral graph theory concepts to represent spectral

data as a graph, using the pixels’ spectra as vertices that are connected if their

spectra are similar; one can construct a Laplacian matrix from the degree of the

vertices and perform an eigen-decomposition to aid in the search for pixels that

have anomalous spectra.

We present an approach that uses a Laplacian Eigenmaps algorithm for anomaly

detection in spectral images.
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Chapter 2

Imaging Processing

Remote sensing tools were designed to capture information about objects with-

out coming into direct contact with them. Remote sensing instruments can be

used in many applications such as to help in the study of crops, characterization

of soils, and mineral exploration [1].

Multi-spectral images are a type of image used in remote sensing. They can

provide information undetectable by the human eye, capturing images in four

or more wavelengths of light, and stored in a file with one bandfor each wave-

length. As remote sensing progressed, hyperspectral imagery was introduced.

Hyperspectral images have many narrow bands that provide data from across

the electromagnetic spectrum. Each pixel of the image contains many spectral

bands that allow material identification.

Materials have a reflectance spectrum that characterizes them; this is called

the spectral signature. In an ideal world the spectral signature of materials
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would remain unchanged under changing circumstances. But in reality, the re-

flectance spectrum of most materials exhibits variability caused by errors in the

sensor, atmospheric and environmental changes, and variation in the amount

of light absorbed or reflected by the material [2]. It is also worth noting that

man-made material show less spectral variability than objects of the natural en-

vironment such as grass, soil, etc.

Figure 2.1: Data cube structure. The figure shows the spectral cube for an image (middle), a
view as a set of spectra per each pixel (left), or as a single image for each single spectral channel
(right)[1]

Spectral data generated by spectral imagery contains three-dimensional spatial-

spatial-spectral measurements, which can be visualized with what is called the

spectral cube [1]. Thex andy (spatial) dimensions of the data cube for each

pixel are the two-dimensional image that the human eye can see, thez dimen-

sion contains spectral information captured by the few hundred bands of the

hyperspectral imaging sensor. Therefore the most important and dependable



5

information comes from the spectral data.

The three most important uses of image processing are:

unmixing/clustering/classification, anomaly detection,and target detection. Spec-

tral unmixing and classification algorithms seek to separate each pixel’s spec-

trum by identifying the endmember spectra for the image and their proportion

in the pixel [3]. Anomaly detection aims to separate the anomalous points from

the background of an image. Target detection is similar to anomaly detection

but with the difference that the objects of interest have known characteristics.

Two desirable characteristics of target and anomaly detection algorithms, other

than being computationally efficient, are high probabilityof detection and, low

probability of false alarm (low false-alarm-rate).

The first approach of many imaging process algorithms is dimension reduc-

tion. The objective of dimension reduction is to represent the signal in a mini-

mal way that saves the necessary information to perform a successful unmixing

process in a lower dimensional space [3].



6

2.1 Classification

Classification is the process of identifying the largest components of the image,

and organizing the pixels according to the endmember component they belong

to.

The spectrum of a mixed pixel contains a mixture of materials, either as a

result of low spatial resolution, or a pixel that is composedof a homogeneous

mixture of materials. Spectral unmixing yields the endmembers and the pro-

portion of each in the pixel, this can be used for clustering and classification.

Endmembers are natural or man-made materials that are part of the image, for

example, grass, water, or different types of concrete [3]. The largest endmember

components of the image can be classified, since they are partof the majority

of pixels, and interpretation of the scene can be done by analyzing the clusters

they form.
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2.2 Anomaly Detection

Anomaly detection is the process of identifying pixels in animage whose spec-

tra is very dissimilar from the spectra of the background of the image. Anomaly

detection algorithms look for a small number of objects in a scene, for this rea-

son, classification methods are not typically used, becausemost of the time the

image provides little information about objects of interest or they are not clearly

resolved [1]. In other words, large components of the image are only used in

anomaly detection algorithms as a point of reference to identify anomalous pix-

els.

Anomaly Detection can be more effective when comparing a pixel in an im-

age to its immediate vicinity. One of the most important usesis to recognize

man-made structures or objects from natural surroundings,a car or a house in

the middle of the forest. It can also be used to increase the probability of detec-

tion and area covered for search and rescue operations at sea[1].
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2.3 Target Detection

Target detection is the process of identifying pixels in an image whose spectra

matches a known target spectrum or nature. General applications try to identify

small groups of objects with known shape or spectrum in an image. Target de-

tection is widely used for agricultural applications to look for crop infestation.

It can also be used in conjunction with anomaly detection, this is done, by ex-

tracting a set of materials that are anomalous or different,and then verify if the

materials match a specific target [2].
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Chapter 3

Graph Theory

Definitions from [4].

Definition 1. A simplegraphG is a finite nonempty set of objects calledvertices
denoted byV (G), together with a set of unordered pairs of distinct verticesof
G callededges denoted byE(G).

Definition 2. Thedegreeof a vertexv in a graphG is the number of edges of
G incident withv, denoted bydv.

Definition 3. A graphG is connected if and only if there exists a path between
every pair of verticesu andv in G. Otherwise the graph is disconnected.

Definition 4. A componentof a graph Gis a subgraph induced by the vertices
of G.

3.1 Example

Consider the following graphG define by vertex and edge sets

V (G) = {a, b, c, d, e, f, g} and E(G) = {(a, b), (b, c), (b, d), (c, d), (e, f), (e, g)}
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G:

a b

c

d

e f

g

G is disconnected with 2 components.

We can list the degree values for the vertices ofG in a degree table as follows,

Vertex a b c d e f g

Degree 1 3 2 2 2 1 1
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Chapter 4

Algorithms for Anomaly Detection

4.1 PCA

Principal Component Analysis (PCA) is a linear dimensionality reduction method;

its approach is to embed high dimensional data into a linear subspace while pre-

serving the most variance in the data possible. It does an orthogonal linear trans-

formation in which the variance of the data is maximal. PCA provides a linear

mapping onto thed principal eigenvectors of the covariance matrix, which is

solved by thed principal eigenvaluesλ. The low dimensional representation is

obtained by mapping the eigenvaluesλ onto the linear mapping [5].
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4.2 RX

TheReed-Xiaoli anomaly detectorcommonly known as RX or RXD is a popu-

lar anomaly detection algorithm. It searches for objects inthe minor eigenval-

ues. Using every pixel of the image, the meanµ and the covariance matrixΓ are

computed, and the Mahalanobis distance from the mean to eachpixel are used

to detect anomalies. For a test pixelx using the RX algorithm we get:

RX(x) = (x− µ)Γ−1(x− µ)

Which is equal to the number of standard deviations away fromthe mean of the

data as a multivariate normal distribution [6]

Local RX anomaly detection algorithm compares anomalous pixels to their

immediate vicinity’s background rather than the entire image. This is achieved

by a dual window with a smaller window within a larger outer one, and com-

puting the mean and covariance using the pixels in the largerwindow, the pixels

in the smaller one are not included in the computation [6].

In Envi, the ENVI RX Anomaly Detection Tool uses the RX algorithm to find

anomalies in spectral images. It outputs a grayscale image where the anomalous
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pixels are brighter than the background pixels.

4.3 TAD

Messinger, Basener and Ientilucci proposed an anomaly detection algorithm for

spectral imagery called Topological Anomaly Detection (TAD). Their approach

is to treat the spectral data in their k-dimensional space; without doing a dimen-

sion reduction. The topology of the data is analyzed and points are separated

into background and anomalies. TAD usescombinatorial topologywhich refers

to studying the structure of the non-parametric space wherethe objects of inter-

est live using combinatorial methods.

The algorithm creates a graph using a subset of the image’s pixels spectra

with data pointsx1, x2, ..., xn from the spectral image as the vertices, adding

an edge fromxi to xj if pixel xi is spectrally similar toxj. A subset is used

for computational efficiency. The large component of the graph is assumed to

be the background, and smaller components that contain small percentages of

the pixels in the image are ranked according to their distance to the background

cluster, and are declared anomalies [6].
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Compared to other statistical methods, TAD has the advantage that measure-

ments are taken by calculating the distances between neighboring data points,

instead of the distance to the mean of the total data, which aids in the successful

detection of more anomalous points.



15

Chapter 5

Manifold Learning Algorithms

Complex data sets are hard to study in their original form. Manifold Learn-

ing algorithms were developed to analyze data that lives in ahigh dimensional

space, with the belief that the data can be represented in a lower dimensional

manifold of dimensionalityd, embedded in a high dimensional space of dimen-

sionalityD, such thatd < D [7]

.

Definitions from [7]

Definition 5. A homeomorphismis a continuous function whose inverse is also
a continuous function.

Definition 6. A d-dimensional manifold Mis a set that is locally homeomorphic
with R

d. For eachx ∈ M , there is an open neighborhood aroundx, Nx, and
a homeomorphismf : Nx → R

d. The neighborhoods are denotedcoordinate
patches, and the map is denoted acoordinate chart. The image of the coordinate
charts is called theparameter space.

Definition 7. A manifold is considered asmooth (differentiable) manifold, if
each coordinate chart (map) is differentiable with a differentiable inverse.
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An embedding of a manifold M intoRd is a smooth (differentiable) homeo-

morphism from M into another space that is a subset ofR
d.
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5.1 Isomap

Isometric feature mapping (Isomap) [7] is a well-known manifold learning al-

gorithm. Its approach is to find the geodesic distances between neighboring data

points using shortest-path distances. Then it uses the Multidimensional Scaling

(MDS) method, which given a matrix of dissimilarityD ∈ R
n×nconstructs a

set of points such that their Euclidean distances match the ones inD, to find

points in a low-dimensional Euclidean space that match the nearest neighbors

geodesic distances found in the first step.

Isomap is a good method to study large data sets, since it gives an estimate

of the dimensionality of the underlying manifold.

5.2 Locally Linear Embedding

LLE [7] is another manifold learning algorithm that was introduced around the

same time as Isomap. The scheme of LLE is to think about a manifold as a col-

lection of coordinate patches that overlap. With a manifoldthat is sufficiently

smooth, these patches, and the chart from the manifold toR
d will be roughly
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linear. By finding the linear patches and describing their geometry, one can find

a mapping toRd that preserves their geometry and is almost linear.

5.3 Laplacian Eigenmaps

Laplacian Eigenmaps [7] is a manifold learning algorithm that makes use of

spectral graph theory to represent the data as a graph, with nodes connected

by edges if they are near or of similar nature. It uses an approximation to the

manifold structure by the adjacency matrix computed from the data points and

their distances in the manifold. A weighted Laplacian matrix is created from the

adjacency matrix, with weights given by the heat kernel of the Laplace Beltrami

operator in the heat equation. By doing an eigenvalue decomposition, one can

obtain a vast amount of information about the underlying structure, including

geometric characterization of the data.

Belkin and Niyogi showed than in some instances, the resultsobtained by

the Laplacian Eigenmaps algorithm are equivalent to those obtained by the LLE

algorithm [8].
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Chapter 6

Images

The images we used were taken with a WorldView-2 satellite. WorldView-2

is the first high-resolution 8-band multispectral commercial satellite. It also

contains a high-resolution panchromatic band. The first four primary bands are

blue, green, red, and near-infrared bands. The additional bands are red edge for

better accuracy on vegetation, coastal band for water colorstudies, yellow band,

and an additional longer wavelength near infrared band. It operates at an altitude

of 770 Km, with a 46 cm panchromatic resolution and 1.84 mt multispectral

resolution. Figure 6.1 shows the spectral responses of the bands [9].
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Figure 6.1: Spectral response of WorldView2 panchromatic and multispectral imager
[9]

Figure 6.2: World View 2 Image
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Chapter 7

Laplacian Eigenmaps

Laplacian Eigenmapsis a dimension reduction algorithm similar toPCA, but

using graph theory methods instead of statistics.

A spectral image is composed of pixels withn spectral bands. We can take

each pixel and treat it as a point in a n-dimensional space, wheren is the number

of bands. We believe that much of the data of interest lives ina lower dimension,

and this the motivation to useLaplacian Eigenmaps.

In their 2002 paper Belkin and Niyogi proposed an approach toobtain and

represent low dimensional data embedded in a high dimensional space. Their

method uses the relationship of the graph Laplacian, the Laplace Beltrami op-

erator on the manifold, and the connections to the heat equation [8]. The advan-

tage of this algorithm is that it is computationally efficient and utilizes neigh-

borhood information, which makes it a good candidate to assist in the problem

of anomaly detection for spectral imaging, since we can exploit the fact that
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pixel’s spectrum is similar in the background, and hope thatanomalous pixels

would stick far out.

The algorithm applied to spectral imagery data computes a low-dimensional

representation of the image data in which the distances between a pixel and its

k nearest neighbors (in spectral space) are minimized. It is possible to construct

a graph from an image by using pixels as vertices, and adding an edge between

two pixelsi andj if their spectra are similar, in such a way that there exist an

edge(i, j) in the graph if the Euclidean distance from the spectrum ofi to the

spectrum ofj is less than a defined thresholdt.

We then create a Laplacian matrix from the degree of the vertices in the

graph, and use the eigenvalues and corresponding eigenvectors of the Laplacian

matrix to represent the image in a lower dimensional space. This can be used to

search for anomalies in the network, since the spectrum of ananomalous pixel

should be significantly different from that of its neighbors.

There is an idea derived from perturbation theory [10], thatsuggests that in

the optimal case the first (smallest) eigenvectors of the Laplacian are indicator

vectors, so that the entry is zero if the vertex is not in the group. In real-life

applications, eigenvectors are more resistant to normal fluctuations in the data,
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and reflect minimal changes that help to separate the graph into different com-

ponents. This idea could be of assistance in the analyzes of results for Laplacian

Eigenmaps.
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7.1 Definitions

Definition 8. The identity matrixI onn vertices is defined by:

I(i, j) =

{

1 if i = j,
0 otherwise.

Definition 9. The degree matrixD is a diagonal matrix with the(j, j)th entry
having valuedj.

Definition 10. Theadjacency matrixW for a given graphG is defined by:

W (i, j) =

{

1 if i andj are adjacent,
0 otherwise.

Definition 11. TheLaplacianmatrixL for a simple graphG is defined by:

L = D −W

Definitions from [11]:

Definition 12. Thenormalized Laplacianof G is defined by the matrix

L(i, j) =















1 if i = j anddv 6= 0,
−1√
didi

if i andj are adjacent,

0 otherwise.

given by
L = D−1/2LD−1/2

Which is equivalent to [10]

L = I −D−1/2WD−1/2

The decision of using the normalized Laplacian is in part intuitive and in
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part motivated by several sources such as ([11, 12]) that agree that through

empirical studies the normalized Laplacian best capture the underlying graph’s

spectral geometry, and because it contains information about a random walk

used in stochastic processes.

The use of the normalized Laplacian was intuitive as well because for highly

connected nodes,

L(u, v) = −1
√

didj

is very small, whereas for poorly connected nodes it is considerably larger.

Since the objective is to identify anomalous pixels whose spectra is very dif-

ferent from the rest of the pixels in the image, when doing theeigenvalue de-

composition the results obtained for the anomalies that we want to detect stick

out from the rest.

7.2 Properties of the Laplacian

The matrixL as defined in 7.1 has the following properties from [10]:

1. L is a real symmetric matrix
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2. ∀f ∈ RNfTLf = 1

2

∑

i,j Wi,j(fi − fj)
2

3. L is a positive-semidefinite matrix

4. All eigenvalues ofL are positive and real. This results from property 3.

5. An eigenvalue that is equal to 0 indicates that the graph isconnected. The

number of connected components of the graph is equal to the number of

eigenvalues that are equal to 0.

These properties are equivalent forL,

Property 1,L is symmetric becauseL is symmetric. Multiplying both sides by

the same diagonal matrix results in a symmetric matrix, thereforeD−1/2LD−1/2

is symmetric.

Property 2 is as follows:

∀f ∈ RNfTLf =
1

2

∑

i,j

Wi,j

(

fi√
di

− fj
√

dj

)2
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Proof

1

2

∑

i,j

Wi,j

(

fi
di

− fj
√

dj

)2

=
1

2

∑

i,j

Wi,j

(

f 2
i

di
− 2

fi√
di

fj
√

dj
+

f 2
j

dj

)

(7.1)

=
∑

i

f 2

i −
∑

i,j

Wi,j(
fi√
di

fj
√

dj
) (7.2)

= fTf − fTD−1/2WD−1/2f (7.3)

= fT
(

I −D−1/2WD−1/2
)

f (7.4)

= fTLf (7.5)

2

Property 3,L is positive-semidefinite, such that∀x ∈ RNxTLx ≥ 0. Fol-

lows from Property 2.

Property 4 follows fromL being positive-semidefinite. Refer to [10] for a proof

of Property 5.
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7.3 Algorithm

1. Read in the image file

LetX be an×b array that contains the spectra of then pixels in the image,

whereb is the number of bands in the image.

2. Distance matrix

Compute the Euclidean distances. LetS be the distance matrix ofG where

the i, jth entry corresponds to the Euclidean distance from the spectra of

pixel i to the spectra of pixelj.

3. Construct the graph

Define a thresholdt such thatt ∈ R+. Let G be graph with vertex set

V (X) = x1, x2, ..., xn, together with edge setE(X) and ifi andj ∈ V (X),

then(i, j) is an edge inG if and only if S(i, j) ≤ t.

4. Adjacency matrix

Create an adjacency matrixW fromG.

5. Compute the normalized Laplacian

There is a nice way of calculating theLaplacianL(u, v) of a simple graph
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G [11], first consider the matrixL of the form,

L(i, j) =































dj if i = j,

−1 if i andj are adjacent,

0 otherwise.

Compute the degrees of the vertices fromW .

The LaplacianL is of the form defined by 7.1. It can be computed as

follows:

L = D−1/2LD−1/2

6. Spectrum of the graph

Perform an eigen-decomposition onL, to obtain eigenvalues0 ≤ λ1, λ2, ..., λn,

this is the spectrum of graphG(X), and corresponding eigenvectorsφ1, φ2, ..., φn.

Let A be an × n square matrix whose columns correspond to the eigen-

vectorsφ1, φ2, ..., φn. And, let Λ be the diagonal matrix with diagonal

elementsλ1, λ2, ..., λn. A can be factored as,

A = Φ× Λ× Φ−1
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7. Output results to an Envi image For each pixel

[i, j, x]

where(i, j) are the location coordinates, andx = φx is the eigenvector

corresponding to that pixel in the following way, for each elementAi,j of

matrixA,

Ai,j → [
i− i (mod m)

m
, i (mod m), j]

Where [
i− i (mod m)

m
, i (mod m)] are the location coordinates of the

pixel in the image, andj is the eigenvector.
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7.4 Output

If the graphG generated by Laplacian Eigenmaps from imageP is connected,

λ1 = 0 (smallest eigenvalue), and when it is notλ1 > 0. The closerλ1 is to

zero, the stronger connected is the big component of the underlying graph. The

first (smallest) eigenvalues and eigenvectors aid in clustering and classification

of the data, speciallyλ1 and associated eigenvectorφ1 are linked to the main

clusters of the data, and are also associated with the optimal cut of the graph,

also identified as the optimal cluster[13]. The second eigenvalueλ2 quantifies

how well connectedG is [12].

The most relevant information about the structure and connections of the

underlying graph is provided by the first or leading eigenvectors and corre-

sponding eigenvalues. Since these eigenvectors are more resistant to normal

fluctuations in the data (such as shades and small changes in the coloration of

the same component), yet they reflect minimal changes that are important when

the aim is to separate the graph into different components [10]. On the other

hand, eigenvalues are affected by all changes, including those that are irrelevant

[10]. For this reason, and given that our objective is to find anomalous pixels;
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we use the information contained in the eigenvectors ofG, and the correspond-

ing eigenvalues for indexing in ascending order.

The output of our Laplacian Eigenmaps algorithm for imageP with n pix-

els, is an Envi image of the same size onn bands that represent the eigenvectors

φ1, φ2, , φn corresponding to the eigenvaluesλ1, λ2, , λn ordered from smallest

to largest. In other words, the spectrum for each pixel is theeigenvector corre-

sponding to that pixel.

Pixels have different shades of gray on the single band Envi grayscale pro-

jections of the results of Laplacian Eigenmaps, together with the spectrum of

many spectral bands. The values of each spectrum on the output of the program

are the components of the eigenvectors in the n-dimensionalspace.
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7.5 Social Network with Anomaly example

We can construct a random social network onn vertices with one anomalous

vertex, and apply Laplacian Eigenmaps algorithm.

We create a simple random networkR with 100 people,n = 100, randomly

connected and let one vertex be an anomalous person.

LetR be a simple graph with vertex set

V (R) = [0, 1, 2, ..., 99]

The vertices represent the people in our social network.

Generate2× n edges and connect vertices at random. Resulting in edge set

E(R) that represents the connections among the people in the network.

To create an anomaly we first need to define what an anomaly is inour social

network. An anomaly is an individual that has an abnormal number of connec-

tions to other individuals in the network. We take the last vertex and randomly

connect it ton/2 vertices inR. The anomaly in this case is an individual that is

substantially more connected than the rest of the vertices.
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7.5.1 Results

We find the Laplacian of the graphR as defined in Section 7.1. Following the

algorithm in Section 7.3 from step 4 through step 6, we obtained the following

results 7.1, refer to the appendix PRO GraphSpectracircle for code.

Figure 7.1: Social Network with anomaly results

The figure on the left shows the points forming a circle, with the anomalous

individual shown in red. The figure on the right is the projection of the indi-

viduals onto the plane formed by two eigenvectors, in this caseφ1 andφ2, the

x axis ranges frommin[φ1] to max[φ1], and they axis ranges frommin[φ2]

to max[φ2]. Each node corresponds to an individual, placed according to the
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coordinates of the eigenvector projected on the 2-dimensional space formed by

φ1 andφ2, nodes for individualsi andj are connected if their corresponding

entry in the adjacency matrixW is 1.

A(i, j) = 1

The anomalous individual sticks out from the rest as expected, having a signifi-

cantly larger number of links to other vertices, and taking values for the first two

eigenvectors that are distant from the rest of the pixels. Whereas the majority

of the pixels are located close to each other in the projection onto the first two

eigenvectors.
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Chapter 8

Laplacian Eigenmaps for Anomaly Detec-
tion in Spectral Images Experiments

For our Laplacian Eigenmaps experiments, we generated several images with

known anomalies. To produce the test images with anomalies,we took some

chips of different sizes from the WorldView-2 image 6.2, andreplaced selected

pixels on the images with anomalous pixels. An anomalous pixel is defined as

pixel that comes from a material that does not belong in the test image, and

therefore has a very distinct spectral profile.

We ran the program for the test images and the test images withanomalies.

The thresholdt is set, so after calculating all the Euclidean distances from pixel

i to pixel j in the image, and ranking the distances from smallest to largest, our

algorithm uses the distances that are equal or smaller than the threshold. This

means that many times when the spectrum of anomalous pixels is significantly
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different from the spectra of the rest of the pixels in the image (Euclidean dis-

tance from pixeli to pixelj ≥ t) no edges are drawn. For this reason sometimes

we obtain isolated vertices in the graph representation of images, when their

spectra is very disparate, and correspond to anomalous pixels. If an anomalous

object is large and comprises a few pixels in the image, or when working with

larger images it is possible to obtain a separate small component on the graph

that is highly connected within itself.
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8.1 Example: Simple Chip, Simple Chip with Anomaly

• Simple chip:

Is a 10x10 chip of vegetation that is part of WorldView-2 image 6.2 shown

in 8 bands, and that exhibits a similar spectral profile for all its pixels.

Figure 8.1: Simple Chip and spectral profile for two pixels

Image 8.1 shows Simple Chip and the spectra of two pixels, note that the

pixels have very similar spectral profiles.

• Simple Chip with Anomaly:

To add an anomaly we started with the Simple Chip of vegetation 8.1, and

replaced the top right corner pixel of the image with a pixel from a differ-

ent image with a very different spectral profile 8.2.
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Figure 8.2: Simple Chip with Anomaly and spectral profile foranomalous pixel

Image 8.2 shows Simple Chip with an Anomaly and the spectral profile

of the anomalous pixel, observe how the spectral profile is very different,

with less blue (band 2), and more than double green (band 3), compared to

the spectral profile of the background pixels in Figure 8.1.

8.1.1 Results

For this example, the thresholdt is set at 50 percent.

Graph 8.3 shows a plot of the spectrum (eigenvalues) of Simple Chip (in

blue) versus the spectrum of Simple Chip with Anomaly (in red), there is not

much variation on most of the eigenvalues, the major difference is that Simple

Chip with Anomaly has one eigenvalue equal to 1.00, and Simple Chip does

not.
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Figure 8.3: Spectrum of the graph for the Simple Chip 8.1, andSimple Chip with Anomaly 8.2

Figure 8.4 shows the projections for the output of the program for Simple

Chip. Left, spectra of the pixels on spectral bands 1(blue) and 4 (red) with pix-

els i andj connected if their corresponding entry in the adjacency matrix A is

1. The projection of the spectra of the pixels on spectral bands 1 and 4 for Sim-

ple Chip shows all the points located close together and connected. Right, the

projection of the pixels onto the plane formed by the first twoeigenvectorsφ1

andφ2 (IDL starts counting from 0, that is why in the graph we see eigenvectors

0 and 1. In reality we are referring to the first two eigenvectorsφ1 andφ2). The

x axis ranges frommin[φ1] to max[φ1], and they axis ranges frommin[φ2]
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to max[φ2]. Each node corresponds to a pixel, placed according to the coordi-

nates of the eigenvector projected on the 2-dimensional space formed byφ1 and

φ2, with pixelsi andj connected if their corresponding entry in the adjacency

matrixW is 1.

Figure 8.4: Left, projection of the spectra of the pixels on spectral bands 1 (blue) and 4 (red).
Right, projection onto eigenvectors 0 and 1 of the Laplacianfor Simple Chip 8.1

Similarly, Figure 8.5 shows the projections for the output of the algorithm

for Simple Chip.The projection the spectra of the pixels on spectral bands 1 and

4 for Simple Chip with Anomaly shows the anomalous vertex is isolated and

far from the rest of the vertices that are close together and connected. Right,

the projection of the pixels onto the plane formed by first twoeigenvectorsφ1
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andφ2, observe how adding a single anomaly alters the projectionsfrom Simple

Chip 8.4 to Simple Chip with Anomaly 8.5.

Figure 8.5: Left, projection of the spectra of the pixels on spectral bands 1 (blue) and 4 (red).
Right, projection onto eigenvectors 0 and 1 of the Laplacianfor Simple Chip with Anomaly 8.2

The grayscale projection results for Simple Chip eigenvector 1 are shown on

Figure 8.6 on the images to the left, the Eigenvector Profilesfor two pixels are

shown to the right.

The grayscale projection results for Simple Chip with Anomaly eigenvector

1 are shown on Figure 8.7 on the images to the left,the anomalous pixel shows

in white, the Eigenvector Profiles for the anomaly and the pixel next to it are

shown to the right, the anomaly has a zero value for all bands except for a spike

to 1 in band 33, in comparison, the other pixel takes on valuesdifferent that zero
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Figure 8.6: Left, grayscale projection results for Simple Chip eigenvector 1. Right, Eigenvector
Profiles for two pixels

for all bands.

For this example, Laplacian Eigenmaps shows promising results, it helps to

identify the anomalous pixel. It is interesting that the Eigenvector Profile for

the background pixels takes on values different than zero for most bands (eigen-

vectors) and oscillating within the values 0.3 to -0.3, whereas the Eigenvector

Profile for the anomalous has a zero value for all bands exceptfor a single spike

to 1. This is consistent with the idea mentioned earlier about eigenvectors being

indicator vectors, the anomaly is in one eigenvector only, and is not part of the

main component obtained.



44

Figure 8.7: Left, grayscale projection results for Simple Chip with Anomaly eigenvector 1.
Right, Eigenvector Profiles for the anomaly and the pixel next to it
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8.2 Simple Chip with 3 Anomalies

For this experiment, we started with Simple Chip of vegetation 8.1 used in the

previous section, and replaced three pixels in different parts of the image with

pixels from a different image with a very different spectralprofile.

Figure 8.8: Simple Chip with 3 Anomalies

8.2.1 Results

For this example, the thresholdt is set at 50 percent.

Graph 8.9 shows a plot of the spectrum of Simple Chip with 1 Anomaly 8.2

(in blue) vs. Spectrum of Simple Chip with 3 Anomalies (in red). There is not

much variation between the two plots, except that there are three eigenvalues

equal to 1.

Figure 8.10 shows the projections for the output of the algorithm for Simple
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Figure 8.9: Spectrum of Simple Chip with 1 anomaly vs. Spectrum of Simple Chip with 3
Anomalies

Chip with 3 Anomalies. The spectra of the pixels on spectral bands 1 and 4

(left), and the projection onto the plane formed by the first two eigenvectors,

the anomalous pixels are stacked together on 0 for both eigenvectors.

The grayscale projection results for Simple Chip with 3 Anomalies eigenvec-

tor 1 are shown on Figure 8.11 on the image to the left, the Eigenvector Profile

for a background pixel is shown to the right.

The grayscale projection results for Simple Chip with 3 Anomalies eigen-

vector 1 are shown on Figure 8.12 on the images to the left, theanomalous



47

Figure 8.10: Left, projection of the spectra of the pixels onspectral bands 1 (blue) and 4 (red).
Right,projection onto eigenvectors 0 and 1 of the Laplacianfor Simple Chip with 3 Anomalies
8.8

Figure 8.11: Left, grayscale projection results for SimpleChip with 3 Anomalies eigenvector
1. Right, Eigenvector Profile for background pixel

pixels are highlighted, and their Eigenvector Profiles are shown to the left of

every image. Again we see the same behavior as Simple Chip with Anomaly,

the Eigenvector Profiles for the anomalies have a zero value for all bands except

for a spike to 1 in band 23 for the first anomaly(top left), a spike to -1 in band
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22 for the second anomaly (top right), and a spike to 1 in band 24 for the third

anomaly (bottom left). These spikes might be useful in identifying anomalous

pixels, anomalies seem consistent here.

Figure 8.12: Left, grayscale projection results for SimpleChip with Anomaly eigenvector 1.
Right, Eigenvector Profiles for the anomaly and the pixel next to it
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8.3 Laplacian Anomaly Image

The Laplacian Anomaly Image is a 50x50 complex chip that is part of WorldView-

2 image 6.2. It contains an assortment of materials with different spectral com-

position, such as some vegetation, the ceiling of a building, a road, three cars,

among others. Shown on 8.14.

Figure 8.13: WorldView-2 image, Laplacian Anomaly Image 50x50 Chip location shown on
red box
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Figure 8.14: Laplacian Anomaly Image- 50x50 Chip

8.3.1 Results

The thresholdt is set at 30 percent for this experiment.

Figure 8.15 shows the projections for the output of the algorithm for Lapla-

cian Anomaly Image. To the left, the projection of the spectra of the pixels on

spectral bands 1 and 4. Right, the projection of the pixels onto the plane formed

by the first two eigenvectorsφ1 andφ2.

Figure 8.16 shows the grayscale projection results for Laplacian Anomaly

Image eigenvector 1 (left), and Eigenvector Profiles for three background pixels

(right). The Eigenvector Profile for these three pixels of different components
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Figure 8.15: Left, projection of the spectra of the pixels onspectral bands 1 (blue) and 4 (red).
Right,projection onto eigenvectors 0 and 1 of the Laplacianfor Laplacian Anomaly Image 8.14

of the image shows a lot of variation mainly within values 0.05 and -0.05, and

has values different than zero for almost every single band.

In comparison, figure 8.17 shows the grayscale projection results for Laplacian

Anomaly Image eigenvector 1 (left), and Eigenvector Profiles for the anomalous

or different pixels (right). The spikes or maximum values for the Eigenvector

Profile of anomalies are larger than the values for the background pixels. The

Eigenvector Profiles for those pixels that stick out and thatseem to be cars

parked on the road outside the building, have a zero value forthe majority bands,

with some spikes to 0.4 and -0.6.
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Figure 8.16: Left, grayscale projection results for Laplacian Anomaly Image eigenvector 1.
Right, Eigenvector Profile for 3 background pixels

The results of the program visualized in three dimensions for bands (eigen-

vectors) 1, 2, 3 are shown in 8.18 (left), most of the points are close together

with the exception of a few points that are far away from the rest, we selected

these points and created a new class that is shown in red. The image on the right,

shows the grayscale projection for eigenvector 1, the pixels in red correspond to

the selected class, and the most dissimilar pixels in the 8.14 image.
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Figure 8.17: Left, grayscale projection results for Laplacian Anomaly Image eigenvector 1.
Right, Eigenvector Profiles for the anomalous (different) pixels

The Laplacian Eigenmaps program successfully identified the anomalous

pixels in the image, as pixels that are far apart from the restof the pixels, and

that form a small cluster of their own.
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Figure 8.18: n-d visualizer for bands 1,2,3, and a selected class (red) that includes the most
distant points (left). Projection of the results on Gray Scale results for band 2(right)
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Chapter 9

Conclusions

The Laplacian Eigenmaps program successfully identified anomalous pixels in

the experiments performed. By using the information provided by the first

eigenvectors of the Laplacian matrix of the graph constructed from the image,

we were able to find information that could not be easily visualized with the

original data provided by the spectral image.

The anomalies are visually apparent without a great amount of effort on the

Envi projections of the results of the program. And their Eigenvector Profiles

consistently show a similar behavior with zero for most bands and big spikes

in the bands where the anomalous spectrum is present. It is still a question

why these spikes on the spectra of the anomalies happen, but the anomalies

seem show this behavior time and again. We believe it is related to the idea

of eigenvectors being indicator vectors, and point out anomalies that are not

present in the major clusters of the data, but form highly connected clusters of



56

their own.
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Chapter 10

Future Work

At the moment we are working with 50x50 chips of big images, wewould like

to create a procedure to divide the image into multiple tilesand expand our

program to iteratively separate major components of the graph from different or

anomalous components . The next step would be to make Laplacian Eigenmaps

into an anomaly detection algorithm.

The Laplacian Eigenmaps algorithm provides an enormous amount of infor-

mation about the graph used to represent the data that could have other uses in

imaging processing, and not just related to anomaly detection.

Our current algorithm creates a simple graph with no weighted edges, it

would be interesting to assign weights to edges according tohow similar the

spectra of the pixels is. This will give us more insight on thestructure of the

graph; since it would exploit the heat kernel and aid to find a geometric charac-

terization of the graph, by computing the geodesic and Euclidean distances of
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the vertices in the manifold vector space, i.e. shortest path between each pair

of vertices in the manifold, which can be used to determine and encapsulate

the structure of the manifoldM . This could be useful for classification and

clustering of the data[14].
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Appendix A

PRO GraphSpectracircle

sample_graph=2

if sample_graph eq 2 then begin ; random graph with anomaly

seed=systime(1)

n_vertices = 100;list of vertices

V = indgen(n_vertices)

deg = intarr(n_vertices)

print, ’vertices: ’

print, V

n_edges=n_vertices * 2; list of edges

E = floor((n_vertices-1) * (randomn(seed,2,n_edges,uniform=1)))

print, ’E:’

print, E

for i=0,(n_vertices/2-2) do begin

E = transpose([transpose(E),transpose([n_vertices-1,i * 2])])

endfor

edge_list = E

size_E = size(E)

n_edges = size_E[2]

print, ’edges: ’

print, E

endif

;Compute degrees of edges and create matrices L and T

;Actually, we comute Tsqrt=Tˆ(-1/2) which is used to comput e

;the Laplacian. Also, we compute L and T at the same to

;avoid looping though vertices multiple times.
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L = intarr(n_vertices,n_vertices)

Tsqrt = fltarr(n_vertices,n_vertices)

for i=0,n_edges-1 do begin

if (E[0,i] NE E[1,i]) then begin

L[E[0,i],E[1,i]] = -1

L[E[1,i],E[0,i]] = -1

endif

deg(E[0,i]) = deg(E[0,i])+1

deg(E[1,i]) = deg(E[1,i])+1

endfor

for i=0,n_vertices-1 do begin

L[i,i]=deg[i]

Tsqrt[i,i]= 1/sqrt(deg[i])

endfor

print, ’Graph L:’

print, L

print, ’Graph Tˆ(-1/2):’

print, Tsqrt

; Compute the Laplacian

Lap=Tsqrt#L#Tsqrt

print, ’Laplacian:’

print, Lap

; Compute the eigenvalues and eigenvectors of the Laplacian

A = Lap

TRIRED, A, D, E

; Compute the eigenvalues (returned in vector D) and

; the eigenvectors (returned in the rows of the array A):

TRIQL, D, E, A

; Print eigenvalues and eigenvectors

;print, ’

;print, ’Eigenvalues: ’

;print, D

;print, ’ ’

;print, ’Eigenvectors: (rows of the following array) ’

;print, A



61

;print, A[ * ,0]

if sample_graph eq 3 then begin; for random graph with one ano maly

!P.MULTI = [0, 1,3]

window, 0, xsize=400, ysize=600

D_idx = sort(D)

x_range=[min(A[ * ,D_idx[0]]),max(A[ * ,D_idx[0]])]

x_range=[x_range[0]-(x_range[1]-x_range[0])/10,x_ra nge[1]+

(x_range[1]-x_range[0])/10]

y_range=[min(A[ * ,D_idx[1]]),max(A[ * ,D_idx[1]])]

y_range=[y_range[0]-(y_range[1]-y_range[0])/10,y_ra nge[1]+

(y_range[1]-y_range[0])/10]

plot, A[0:1,D_idx[0]], A[0:1,D_idx[1]], psym=4, symsize =0.5, $

xrange=x_range, yrange=y_range, background=!P.COLOR,

color=0, $; set up color and title for plot

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’Laplacian Top Eigenvector Projection’, $

xtitle=’First Eigenvector’, $

ytitle=’Second Eigenvector’

for edge=0,n_edges-1 do begin

nodes = [edge_list[0,edge],edge_list[1,edge]]

print, nodes

oplot, A[nodes,D_idx[0]], A[nodes,D_idx[1]], $

psym=0, symsize=0.5, $

thick=2, color=’FF00FF’x

endfor

oplot, A[(n_vertices-2):(n_vertices-1),D_idx[0]], A[( n_vertices-2):

(n_vertices-1),D_idx[1]], psym=4, symsize=0.5, $

thick=2, color=’0000FF’x

oplot, A[0:(n_vertices-2),D_idx[0]], A[0:(n_vertices- 2),D_idx[1]],

psym=4, symsize=0.5, $

thick=2, color=0

plot, A[ * ,D_idx[0]], $

background=!P.COLOR, color=0, $

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’First Eigenvector’

plot, A[ * ,D_idx[1]], $
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background=!P.COLOR, color=0, $

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’Second Eigenvector’

window, 1, xsize=400, ysize=600

e1 = n_vertices-2

e2 = n_vertices-3

D_idx = sort(D)

x_range=[min(A[ * ,D_idx[0]]),max(A[ * ,D_idx[0]])]

x_range=[x_range[0]-(x_range[1]-x_range[0])/10,x_ra nge[1]+

(x_range[1]-x_range[0])/10]

y_range=[min(A[ * ,D_idx[1]]),max(A[ * ,D_idx[1]])]

y_range=[y_range[0]-(y_range[1]-y_range[0])/10,y_ra nge[1]+

(y_range[1]-y_range[0])/10]

plot, A[0:1,D_idx[e1]], A[0:1,D_idx[e2]], psym=4, symsi ze=0.5, $

xrange=x_range, yrange=y_range, background=!P.COLOR,

color=0, $; set up color and title for plot

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’Laplacian Top Eigenvector Projection’, $

xtitle=’First Eigenvector’, $

ytitle=’Second Eigenvector’

for edge=0,n_edges-1 do begin

nodes = [edge_list[0,edge],edge_list[1,edge]]

print, nodes

oplot, A[nodes,D_idx[e1]], A[nodes,D_idx[e2]], $

psym=0, symsize=0.5, $

thick=2, color=’FF00FF’x

endfor

oplot, A[(n_vertices-2):(n_vertices-1),D_idx[e1]], A[ (n_vertices-2):

(n_vertices-1),D_idx[e2]], psym=4, symsize=0.5, $

thick=2, color=’0000FF’x

oplot, A[0:(n_vertices-2),D_idx[e1]], A[0:(n_vertices -2),

D_idx[e2]], psym=4, symsize=0.5, $

thick=2, color=0

plot, A[ * ,D_idx[e1]], $

background=!P.COLOR, color=0, $

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$
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title=’First Eigenvector’

plot, A[ * ,D_idx[e2]], $

background=!P.COLOR, color=0, $

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’Second Eigenvector’

endif

if sample_graph eq 2 then begin; for random graph with one ano maly

!P.MULTI = [0, 2, 1]

window, 0, xsize=1200, ysize=600

D_idx = sort(D)

x_range=[-1.2,1.2]

y_range=[-1.2,1.2]

x_coords=cos(indgen(n_vertices) * 2* 3.141597/n_vertices)

y_coords=sin(indgen(n_vertices) * 2* 3.141597/n_vertices)

plot, x_coords[0:1], y_coords[0:1], psym=4, symsize=0.5 , $

xrange=x_range, yrange=y_range, background=’FFFFFF’x,

color=0, $; set up color and title for plot

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’Projection Onto Circle’

for edge=0,n_edges-1 do begin

nodes = [edge_list[0,edge],edge_list[1,edge]]

print, nodes

oplot, x_coords[nodes], y_coords[nodes], $

psym=0, symsize=0.5, $

thick=2, color=’FF00FF’x

endfor

oplot, x_coords[(n_vertices-2):(n_vertices-1)], y_coo rds[(n_vertices-2):

(n_vertices-1)], psym=4, symsize=0.5, $

thick=2, color=’0000FF’x

oplot, x_coords[0:(n_vertices-2)], y_coords[0:(n_vert ices-2)],

psym=4, symsize=0.5, $

thick=2, color=0

D_idx = sort(D)

x_range=[min(A[ * ,D_idx[0]]),max(A[ * ,D_idx[0]])]
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x_range=[x_range[0]-(x_range[1]-x_range[0])/10,x_ra nge[1]+

(x_range[1]-x_range[0])/10]

y_range=[min(A[ * ,D_idx[1]]),max(A[ * ,D_idx[1]])]

y_range=[y_range[0]-(y_range[1]-y_range[0])/10,y_ra nge[1]+

(y_range[1]-y_range[0])/10]

plot, A[0:1,D_idx[0]], A[0:1,D_idx[1]], psym=4, symsize =0.5, $

xrange=x_range, yrange=y_range, background=!P.COLOR,

color=0, $; set up color and title for plot

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’Laplacian Top Eigenvector Projection’, $

xtitle=’First Eigenvector’, $

ytitle=’Second Eigenvector’

for edge=0,n_edges-1 do begin

nodes = [edge_list[0,edge],edge_list[1,edge]]

print, nodes

oplot, A[nodes,D_idx[0]], A[nodes,D_idx[1]], $

psym=0, symsize=0.5, $

thick=2, color=’FF00FF’x

endfor

oplot, A[(n_vertices-2):(n_vertices-1),D_idx[0]], A[( n_vertices-2):

(n_vertices-1),D_idx[1]], psym=4, symsize=0.5, $

thick=2, color=’0000FF’x

oplot, A[0:(n_vertices-2),D_idx[0]], A[0:(n_vertices- 2),

D_idx[1]], psym=4, symsize=0.5, $

thick=2, color=0

endif

end
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Appendix A

laplacianprojection.pro

pro Laplacian_Projection_define_buttons, buttonInfo

compile_opt STRICTARR

;compile_opt idl2

envi_define_menu_button, buttonInfo,

value=’Laplacian Projection’, $

position=’first’, ref_value=’User Functions’,

uvalue=’none’, $

event_pro=’Laplacian_Projection’

end

PRO Laplacian_Projection_doit, fid, dims, plot_distance s,

plot_eigenvalues

; read in the image

ENVI_FILE_QUERY, fid, fname=fname, nb=nb

; get information from image on the number of bands

rows = dims[4]-dims[3]+1

cols = dims[2]-dims[1]+1

bands = nb

Im = fltarr(cols,rows,bands)

; sets up array to hold the image

for band=0,nb-1 do begin

Im[ * , * ,band] = ENVI_GET_DATA(fid=fid, dims=dims,

pos=band)

endfor
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!P.MULTI = 0 ; 1 plot per window

; X is an array that has the spectra of the pixels

as columns

; So the spectra of pixel i is X[i, * ]

X = double(reform(Im, rows * cols,bands))

; List of vertices and vertex information

n_vertices = rows * cols

V = indgen(n_vertices)

deg = intarr(n_vertices)

;print, ’vertices: ’

;print, V

; Compute the distance matrix D.

; D[i,j] is the distance from the spectra of pixel i

to the spectra of pixel j

Dist = fltarr(n_vertices,n_vertices)

for i=0,n_vertices-1 do begin

for j=0,n_vertices-1 do begin

Dist[i,j]=norm(X[i, * ]-X[j, * ])

endfor

endfor

; Sort the distances to find a good threshold

threshold_percent= 0.3

S = sort(Dist)

Dist_list = Dist[S]

threshold = Dist_list[floor(n_elements(Dist_list) *
threshold_percent)]

threshold_line = fltarr(n_elements(Dist_list))

threshold_line[ * ] = threshold

; Create the adjacency matrix from the threshold.

Id = fltarr(n_vertices,n_vertices)
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for i=0,n_vertices-1 do begin

Id(i,i) = 1

endfor

Adj = (Dist LE threshold)

; Plot the distances.

if (plot_distances eq 1) then begin

window, 0

plot, Dist_list, background=!P.COLOR, color=0

oplot, threshold_line, color=’0000A0’x

endif

; Compute the degrees of the vertices.

deg = fix(total(Adj,1))

;print, ’deg’

;print, deg

; Compute degrees of edges and create matrices L and T

; Actually, we comute Tsqrt=Tˆ(-1/2) which is used to comput e

; the Laplacian. Also, we compute L and T at the same to

; avoid looping though vertices multiple times.

L = intarr(n_vertices,n_vertices)

Tsqrt = fltarr(n_vertices,n_vertices)

I= Identity(n_vertices)

L = I-Adj

;print,’I’

;print, I

;print,’Adj’

;print, Adj

;print,’L’

;print,L

for i=0,n_vertices-1 do begin

L[i,i]=deg[i]

Tsqrt[i,i]= -1/sqrt(deg[i])

endfor

;print, ’Graph L:’

;print, L
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;print, ’Graph Tˆ(-1/2):’

;print, Tsqrt

; Compute the Laplacian

Lap=Tsqrt#L#Tsqrt

; print, ’Laplacian:’

; print, Lap

; Compute the eigenvalues and eigenvectors of the Laplacian

A = Lap

TRIRED, A, D, E

; Compute the eigenvalues (returned in vector D) and

; the eigenvectors (returned in the rows of the array A):

TRIQL, D, E, A

; Print eigenvalues and eigenvectors

;print, ’

;print, ’Eigenvalues: ’

;print, D

;print, ’ ’

;print, ’Eigenvectors: (rows of the following array) ’

;print, A

;print, A[ * ,0]

;sort the eigenvectors and eigenvales

eigen_order = sort(D)

D = D[eigen_order]

print, D

print, ’ ’

A_temp = A

for i = 0,n_vertices-1 do begin

A[ * ,i]=A_temp[ * ,eigen_order[i]]

endfor

plot_graph = 1

if plot_graph eq 1 then begin

first_band = 1
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second_band = 4

first_eigenvector = 1

second_eigenvector = 2

!P.MULTI = [0,2,1]

window, 1, xsize=1200, ysize=600

; plotting nodes on two bands of the image

x_range=[0,max(X[ * ,first_band])]

y_range=[0,max(X[ * ,second_band])]

plot, X[ * ,first_band], X[ * ,second_band], psym=4,

symsize=0.5, $

xrange=x_range, yrange=y_range, background=!P.COLOR,

color=0, $

; set up color and title for plot

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’Projection onto two spectral bands’, $

xtitle=’Band ’+strtrim(first_band,2), $

ytitle=’Band ’+strtrim(second_band,2)

for i=0,n_vertices-1 do begin

for j=0,n_vertices-1 do begin

if (Adj[i,j] eq 1) then begin

nodes = [i,j]

oplot, X[nodes,first_band], X[nodes,second_band], $

psym=0, symsize=0.5, $

thick=2, color=’FF00FF’x

endif

endfor

endfor

oplot, X[ * ,first_band], X[ * ,second_band], psym=4,

symsize=0.5, color=0

;plotting nodes on the Eigenvectors

D_idx = sort(D)

x_range=[min(A[ * ,D_idx[first_eigenvector]]),max(A[ * ,

D_idx[first_eigenvector]])]

y_range=[min(A[ * ,D_idx[second_eigenvector]]),max(A[ * ,

D_idx[second_eigenvector]])]
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plot, A[ * ,D_idx[first_eigenvector]], A[ * ,D_idx[second_eigenvector]],

psym=4, symsize=0.5, $

xrange=x_range, yrange=y_range, background=!P.COLOR, c olor=0,$;

set up color and title for plot

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title=’Projection onto two eigenvectors’, $

xtitle=’eigenvector ’+strtrim(first_eigenvector,2), $

ytitle=’eigenvector ’+strtrim(second_eigenvector,2)

for i=0,n_vertices-1 do begin

for j=0,n_vertices-1 do begin

if (Adj[i,j] eq 1) then begin

nodes = [i,j

oplot, A[nodes,D_idx[first_eigenvector]], A[nodes,D_i dx

[second_eigenvector]], $

psym=0, symsize=0.5, $

thick=2, color=’FF00FF’x

endif

endfor

endfor

oplot, A[ * ,D_idx[first_eigenvector]], A[ * ,D_idx[second_eigenvector]],

psym=4,

symsize=0.5, color=0

endif

; put image into memory

out_image = reform(A,cols,rows,rows * cols)

envi_enter_data, out_image

!P.MULTI = 0 ; 1 plot per window

end

pro Laplacian_Projection, ev

compile_opt STRICTARR

; compile_opt idl2

; Select input file and get relevant stats

envi_select, fid=fid, dims=dims, pos=pos, title=
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’Select Input File for Laplacian Projection’

if (fid[0] eq -1) then return

base = widget_auto_base(title=’Laplacian Projection

Paramters’)

s1 = widget_base(base, /column, /frame)

s2 = widget_base(s1, /row)

param6 = widget_menu(s2, /auto, /exclusive,

prompt=’Plot Distances: ’, list=[’No’, ’Yes’], default_p tr=1,

uvalue=’plot_distances’)

s2 = widget_base(s1, /row)

param6 = widget_menu(s2, /auto, /exclusive, prompt=

’Plot Eigenvaluess: ’, list=[’No’, ’Yes’], default_ptr=1 ,

uvalue=’plot_eigenvalues’)

res = auto_wid_mng(base)

if (res.accept eq 0) then return

plot_distances = res.plot_distances

plot_eigenvalues = res.plot_eigenvalues

Laplacian_Projection_doit, fid, dims, plot_distances,

plot_eigenvalues

end
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