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Abstract

Laplacian Eigenmaps Manifold Learning and Anomaly Detecton
Methods for Spectral Images

Marcela Munoz Reales

Supervising Professor: Dr. William Basener

Spectral images provide a large amount of spectral infaonatbout a scene,
but sometimes when studying images, we are interested aifigpggmponents.
It is a difficult problem to separate the relevant informatar what we call in-
teresting from the background of a spectral image, even soiiéour target
objects are unknown. Anomaly detection is a process by waligbrithms are
designed to separate the anomalous (different) points fh@background of
an image. The data is complex and lives in a high dimensiomjfoid learn-
ing algorithms are used to analyze data that lives in a higtedsional space,
but that can be represented as a lower dimensional manifoledded in the
high dimensional space. Laplacian Eigenmaps is a maniéaldhing algorithm
that applies spectral graph theory methods to perform ainear dimension-

ality reduction that preserves local neighborhood infdroma We present an



approach to reduce the dimension of the data and separateadns pixels in

spectral images using Laplacian Eigenmaps.
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Chapter 1

Introduction

Spectral images are digital images that contain measuitsmoémvavelengths
of light so that a spectrum is provided for each pixel insteathe usual red,
green and blue. They contain complex high dimensional daticid difficult to
study in its original form. Imaging processing methods aseduin the study
of the information provided by spectral images. The threstrmoportant uses
of image processing are clustering and classification, ahoretection, and
target detection. We are interested in the problem of anpadwetkction.

There are several mathematical tools that can be used &xextformation
from spectral data. Statistical models using principal ponent analysis (PCA)
and Reed-Xiaoli anomaly detector can be applied to anahgbackground in-
formation and create a ranking of anomalous pixels in speatiages. PCAis a

dimensionality reduction algorithm that finds a lower dirsien representation



by embedding the data into a linear subspace. RX (Reed+iXaaoimaly de-
tector) is the most popular anomaly detection algorithmasés the covariance
matrix and the distance to the mean to locate anomalies.ti@pgcaph theory
methods can be used to study spectra variations, and det@tiadies; images
can be modeled as sets of connected components where peksraces with
edges connecting them under specific conditions. TAD (Tagiodl Anomaly
Detection algorithm) creates a graph using the pixel’s speas vertices that
are connected if they are spectrally similar.

Manifold learning algorithms are used to analyze data tlvaslin a high
dimensional space, but that can be represented as a lowensiomal manifold
embedded in the high dimensional space. Laplacian Eigesimsagp manifold
learning algorithm that uses spectral graph theory cosdeptpresent spectral
data as a graph, using the pixels’ spectra as vertices thaioamnected if their
spectra are similar; one can construct a Laplacian matrix fhe degree of the
vertices and perform an eigen-decomposition to aid in theckefor pixels that
have anomalous spectra.

We present an approach that uses a Laplacian Eigenmapstaigtor anomaly

detection in spectral images.



Chapter 2

Imaging Processing

Remote sensing tools were designed to capture informationtabjects with-
out coming into direct contact with them. Remote sensingumsents can be
used in many applications such as to help in the study of cab@sacterization
of soils, and mineral exploration [1].
Multi-spectral images are a type of image used in remoteisgnd hey can
provide information undetectable by the human eye, capgurmages in four
or more wavelengths of light, and stored in a file with one biameéach wave-
length. As remote sensing progressed, hyperspectral ipagges introduced.
Hyperspectral images have many narrow bands that providefdan across
the electromagnetic spectrum. Each pixel of the image amtaany spectral
bands that allow material identification.

Materials have a reflectance spectrum that characteriees, ttnis is called

the spectral signature. In an ideal world the spectral sigraof materials



would remain unchanged under changing circumstances.nBeslity, the re-
flectance spectrum of most materials exhibits variabilaysed by errors in the
sensor, atmospheric and environmental changes, andivariatthe amount
of light absorbed or reflected by the material [2]. It is alsorth noting that
man-made material show less spectral variability thanatbjef the natural en-

vironment such as grass, soil, etc.

Image ata
single wavelength

Spectrafora
single pixel

T AL s

Reflectance
Spatial dimension

Wavelength Spatial dimension o

Figure 2.1: Data cube structure. The figure shows the spettb@ for an image (middle), a
view as a set of spectra per each pixel (left), or as a singhg@fior each single spectral channel

(right)[1]

Spectral data generated by spectral imagery contains thmeensional spatial-
spatial-spectral measurements, which can be visualizédw¥iat is called the
spectral cube [1]. The andy (spatial) dimensions of the data cube for each
pixel are the two-dimensional image that the human eye cantsez dimen-
sion contains spectral information captured by the few heaidands of the

hyperspectral imaging sensor. Therefore the most impo&aad dependable



information comes from the spectral data.

The three most important uses of image processing are:
unmixing/clustering/classification, anomaly detectimmd target detection. Spec-
tral unmixing and classification algorithms seek to segaeaich pixel's spec-
trum by identifying the endmember spectra for the image aed proportion
in the pixel [3]. Anomaly detection aims to separate the aamlonrs points from
the background of an image. Target detection is similar tmrealy detection
but with the difference that the objects of interest havevkmgaharacteristics.
Two desirable characteristics of target and anomaly deteatgorithms, other
than being computationally efficient, are high probabitifydetection and, low
probability of false alarm (low false-alarm-rate).

The first approach of many imaging process algorithms is dgia reduc-
tion. The objective of dimension reduction is to represhetgignal in a mini-
mal way that saves the necessary information to performeessétul unmixing

process in a lower dimensional space [3].



2.1 Classification

Classification is the process of identifying the largest ponents of the image,
and organizing the pixels according to the endmember cosmidhey belong
to.

The spectrum of a mixed pixel contains a mixture of materiaither as a
result of low spatial resolution, or a pixel that is composéd homogeneous
mixture of materials. Spectral unmixing yields the endmermland the pro-
portion of each in the pixel, this can be used for clustering elassification.
Endmembers are natural or man-made materials that arefgag onage, for
example, grass, water, or different types of concrete [Bg [argest endmember
components of the image can be classified, since they arefidu® majority
of pixels, and interpretation of the scene can be done byaingl the clusters

they form.



2.2 Anomaly Detection

Anomaly detection is the process of identifying pixels in@age whose spec-
trais very dissimilar from the spectra of the backgroundefitnage. Anomaly
detection algorithms look for a small number of objects icen®, for this rea-
son, classification methods are not typically used, becanose of the time the
image provides little information about objects of inteér@sthey are not clearly
resolved [1]. In other words, large components of the imageoaly used in
anomaly detection algorithms as a point of reference tatifyjegmomalous pix-
els.

Anomaly Detection can be more effective when comparing alpixan im-
age to its immediate vicinity. One of the most important use® recognize
man-made structures or objects from natural surroundengsy or a house in
the middle of the forest. It can also be used to increase thiggility of detec-

tion and area covered for search and rescue operations [dfl sea



2.3 Target Detection

Target detection is the process of identifying pixels inmage whose spectra
matches a known target spectrum or nature. General apphedty to identify
small groups of objects with known shape or spectrum in amg@ndarget de-
tection is widely used for agricultural applications to kdor crop infestation.
It can also be used in conjunction with anomaly detectiois, ifidone, by ex-
tracting a set of materials that are anomalous or diffesemd,then verify if the

materials match a specific target [2].



Chapter 3

Graph Theory

Definitions from [4].

Definition 1. A simplegraphd is a finite nonempty set of objects called-tices
denoted by (), together with a set of unordered pairs of distinct vertioes
G callededges denoted byF (G).

Definition 2. The degreeof a vertexv in a graphG is the number of edges of
G incident withv, denoted byi,.

Definition 3. A graphG is connected if and only if there exists a path between
every pair of vertices andv in GG. Otherwise the graph is disconnected.

Definition 4. A componenbf agraph Gis a subgraph induced by the vertices
of G.

3.1 Example

Consider the following grapty define by vertex and edge sets

V(G) ={a,b,c;dye, f,g}  and  E(G) = {(a,b), (b, ¢), (b, d), (c,d), (e, f), (e, 9)}



10

G is disconnected with 2 components.

We can list the degree values for the vertices/oh a degree table as follows,

Vertex a b C d e f g

Degree 1 3 2 2 2 1 1
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Chapter 4

Algorithms for Anomaly Detection

4.1 PCA

Principal Component Analysis (PCA) is a linear dimensigpaéduction method,;
its approach is to embed high dimensional data into a lingasace while pre-
serving the most variance in the data possible. It does aongonhal linear trans-
formation in which the variance of the data is maximal. PCévites a linear
mapping onto thel principal eigenvectors of the covariance matrix, which is
solved by thel principal eigenvalues. The low dimensional representation is

obtained by mapping the eigenvaluesnto the linear mapping [5].
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42 RX

TheReed-Xiaoli anomaly detectoommonly known as RX or RXD is a popu-
lar anomaly detection algorithm. It searches for objectheminor eigenval-
ues. Using every pixel of the image, the meaand the covariance matrixare
computed, and the Mahalanobis distance from the mean topeeelhare used

to detect anomalies. For a test pixelising the RX algorithm we get:

RX(x) = (z — )T~ (z — p)

Which is equal to the number of standard deviations away tremmean of the
data as a multivariate normal distribution [6]

Local RX anomaly detection algorithm compares anomaloxsigio their
immediate vicinity’s background rather than the entiregeaThis is achieved
by a dual window with a smaller window within a larger outerepand com-
puting the mean and covariance using the pixels in the lavgetow, the pixels
in the smaller one are not included in the computation [6].

In Envi, the ENVI RX Anomaly Detection Tool uses the RX algbm to find

anomalies in spectral images. It outputs a grayscale imageanthe anomalous
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pixels are brighter than the background pixels.

4.3 TAD

Messinger, Basener and lentilucci proposed an anomalgtitatealgorithm for
spectral imagery called Topological Anomaly Detection D)ATheir approach
IS to treat the spectral data in their k-dimensional spad&pwt doing a dimen-
sion reduction. The topology of the data is analyzed andtp@re separated
into background and anomalies. TAD usesnbinatorial topologyvhich refers
to studying the structure of the non-parametric space wiherebjects of inter-
est live using combinatorial methods.

The algorithm creates a graph using a subset of the imagedspectra
with data pointsry, 2o, ..., z,, from the spectral image as the vertices, adding
an edge frome; to z; if pixel z; is spectrally similar tor;. A subset is used
for computational efficiency. The large component of thepgres assumed to
be the background, and smaller components that contairl peraentages of
the pixels in the image are ranked according to their digamt¢he background

cluster, and are declared anomalies [6].
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Compared to other statistical methods, TAD has the advarited measure-
ments are taken by calculating the distances between rwiglgidata points,
instead of the distance to the mean of the total data, whahiaithe successful

detection of more anomalous points.
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Chapter 5

Manifold Learning Algorithms

Complex data sets are hard to study in their original form.nifédd Learn-
ing algorithms were developed to analyze data that liveshigh dimensional
space, with the belief that the data can be represented wex ldimensional
manifold of dimensionality/, embedded in a high dimensional space of dimen-

sionality D, such thatl < D [7]

Definitions from [7]

Definition 5. A homeomorphisns a continuous function whose inverse is also
a continuous function.

Definition 6. A d-dimensional manifold Nk a set that is locally homeomorphic
with R?. For eachr € M, there is an open neighborhood aroundV,, and

a homeomorphisnf : N, — R? The neighborhoods are denoteabrdinate
patchesand the map is denotedtaordinate chart The image of the coordinate
charts is called thparameter space

Definition 7. A manifold is considered amooth (differentiable) manifoldf
each coordinate chart (map) is differentiable with a défgrable inverse.
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An embedding of a manifold M int&? is a smooth (differentiable) homeo-

morphism from M into another space that is a subs@‘f
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5.1 Isomap

Isometric feature mapping (Isomap) [7] is a well-known nfialali learning al-
gorithm. Its approach is to find the geodesic distances letweighboring data
points using shortest-path distances. Then it uses thad#aénsional Scaling
(MDS) method, which given a matrix of dissimilarity € R"*"constructs a
set of points such that their Euclidean distances match riles o D, to find
points in a low-dimensional Euclidean space that match dsast neighbors
geodesic distances found in the first step.

Isomap is a good method to study large data sets, since & givestimate

of the dimensionality of the underlying manifold.

5.2 Locally Linear Embedding

LLE [7] is another manifold learning algorithm that was oduced around the
same time as Isomap. The scheme of LLE is to think about a widrat a col-
lection of coordinate patches that overlap. With a manitblt is sufficiently

smooth, these patches, and the chart from the manifoR¥ twill be roughly



18

linear. By finding the linear patches and describing theangetry, one can find

a mapping tdR? that preserves their geometry and is almost linear.

5.3 Laplacian Eigenmaps

Laplacian Eigenmaps [7] is a manifold learning algorithrattimakes use of
spectral graph theory to represent the data as a graph, witesnconnected
by edges if they are near or of similar nature. It uses an apation to the
manifold structure by the adjacency matrix computed froendhta points and
their distances in the manifold. A weighted Laplacian nxatricreated from the
adjacency matrix, with weights given by the heat kernel efithplace Beltrami
operator in the heat equation. By doing an eigenvalue deositign, one can
obtain a vast amount of information about the underlyingatrre, including
geometric characterization of the data.

Belkin and Niyogi showed than in some instances, the resbitsined by
the Laplacian Eigenmaps algorithm are equivalent to thbssmed by the LLE

algorithm [8].
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Chapter 6

Images

The images we used were taken with a WorldView-2 satelliterldView-2
Is the first high-resolution 8-band multispectral commarsiatellite. It also
contains a high-resolution panchromatic band. The firgt formary bands are
blue, green, red, and near-infrared bands. The additiGraddare red edge for
better accuracy on vegetation, coastal band for water stlioiies, yellow band,
and an additional longer wavelength near infrared bangdtates at an altitude
of 770 Km, with a 46 cm panchromatic resolution and 1.84 mttispectral

resolution. Figure 6.1 shows the spectral responses ofathédy9].
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Chapter 7

Laplacian Eigenmaps

Laplacian Eigenmapg a dimension reduction algorithm similar RICA but
using graph theory methods instead of statistics.

A spectral image is composed of pixels wittspectral bands. We can take
each pixel and treat it as a point in a n-dimensional spacetravhs the number
of bands. We believe that much of the data of interest livedwver dimension,
and this the motivation to udeaplacian Eigenmaps

In their 2002 paper Belkin and Niyogi proposed an approaatbtain and
represent low dimensional data embedded in a high dimealssgpace. Their
method uses the relationship of the graph Laplacian, théaca@Beltrami op-
erator on the manifold, and the connections to the heat mouU&{. The advan-
tage of this algorithm is that it is computationally efficieand utilizes neigh-
borhood information, which makes it a good candidate tosagsithe problem

of anomaly detection for spectral imaging, since we cana@kfe fact that
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pixel’'s spectrum is similar in the background, and hope #mtmalous pixels
would stick far out.

The algorithm applied to spectral imagery data computewalimensional
representation of the image data in which the distancesdast\a pixel and its
k nearest neighbors (in spectral space) are minimized. dssiple to construct
a graph from an image by using pixels as vertices, and addirglge between
two pixels: and; if their spectra are similar, in such a way that there exist an
edge(i, j) in the graph if the Euclidean distance from the spectrumtofthe
spectrum ofj is less than a defined threshaeld

We then create a Laplacian matrix from the degree of theoestin the
graph, and use the eigenvalues and corresponding eigervvetthe Laplacian
matrix to represent the image in a lower dimensional spabes. dan be used to
search for anomalies in the network, since the spectrum ahamalous pixel
should be significantly different from that of its neighbors

There is an idea derived from perturbation theory [10], thaggests that in
the optimal case the first (smallest) eigenvectors of thddcagmn are indicator
vectors, so that the entry is zero if the vertex is not in theugr In real-life

applications, eigenvectors are more resistant to normelftions in the data,
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and reflect minimal changes that help to separate the graplliifierent com-
ponents. Thisidea could be of assistance in the analyzeswolts for Laplacian

Eigenmaps.
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7.1 Definitions

Definition 8. Theidentity matrix/ onn vertices is defined by:

16.5) = { 1 ifi=j,

0 otherwise.

Definition 9. The degree matrixX) is a diagonal matrix with théj, j)th entry
having valuei;.

Definition 10. Theadjacency matriXlV for a given graplt: is defined by:

1 if ¢ andj are adjacent,
0 otherwise.

Wi, j) = {
Definition 11. ThelLaplacianmatrix L for a simple graplt- is defined by:

L=D-W

Definitions from [11]:

Definition 12. Thenormalized Laplaciamf G is defined by the matrix

1 if : = 5 andd, # 0,
L(i,]) = ZZ'd' if i and; are adjacent,
0 otherwise.

given by
L=D'2Lp71/?

Which is equivalent to [10]

L—=1—DV2Wwp-1/2

The decision of using the normalized Laplacian is in panitivie and in
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part motivated by several sources such as ([11, 12]) thaeatirat through
empirical studies the normalized Laplacian best captwgaitiderlying graph’s
spectral geometry, and because it contains informatiomtaibadandom walk
used in stochastic processes.

The use of the normalized Laplacian was intuitive as welblbise for highly

connected nodes,

is very small, whereas for poorly connected nodes it is cmrably larger.
Since the objective is to identify anomalous pixels whosecsp is very dif-
ferent from the rest of the pixels in the image, when doingdigenvalue de-
composition the results obtained for the anomalies that euet w0 detect stick

out from the rest.

7.2 Properties of the Laplacian

The matrixL as defined in 7.1 has the following properties from [10]:

1. L is areal symmetric matrix
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2.Vf e RN fTLf = %Z” Wi (fi — fi)?
3. L is a positive-semidefinite matrix
4. All eigenvalues of_. are positive and real. This results from property 3.

5. An eigenvalue that is equal to O indicates that the grapbnsected. The
number of connected components of the graph is equal to tb&uof

eigenvalues that are equal to 0.

These properties are equivalent foyr

Property 1,£ is symmetric becausk is symmetric. Multiplying both sides by
the same diagonal matrix results in a symmetric matrix gfoee D—1/2L D~1/2

IS symmetric.

Property 2 is as follows:

2
Nerpp 1 (i 5
VfiER fﬁf—2§m VVM(\/CTZ' \/CTJ)
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Proof

2
1 fi i}y _ 1 2y fi  f
s (5-5) - gm(d;%f £)as
- 2 fi i 7.2
> S w2

_ fo . fTD 1/2WD 1/2f (73)
= JT (1= D PwDT) g (7.4)
= f1Lf (7.5)

Property 3,C is positive-semidefinite, such thet € RNz Lz > 0. Fol-
lows from Property 2.
Property 4 follows fromC being positive-semidefinite. Refer to [10] for a proof

of Property 5.
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7.3 Algorithm

1. Read in the image file
Let X be an x b array that contains the spectra of thpixels in the image,

whereb is the number of bands in the image.

2. Distance matrix
Compute the Euclidean distances. l5dte the distance matrix @ where
the ¢, jth entry corresponds to the Euclidean distance from thetispet

pixel i to the spectra of pixel.

3. Construct the graph
Define a threshold such thatt € R*. Let G be graph with vertex set
V(X) = x1, 29, ..., T, together with edge sét(.X) and ifi andj € V' (X),

then(i, j) is an edge irGG if and only if S(i, j) < t.

4. Adjacency matrix

Create an adjacency matfiX from G.

5. Compute the normalized Laplacian

There is a nice way of calculating the@placian£(u, v) of a simple graph
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G [11], first consider the matriX. of the form,

p

4, ifi=j,
L(i,j) =4 —1 if i and;j are adjacent,

0 otherwise.

\

Compute the degrees of the vertices frdm

The Laplacianl is of the form defined by 7.1. It can be computed as

follows:

L=DYLD'?

. Spectrum of the graph

Perform an eigen-decomposition gnto obtain eigenvalugs < A\, Ao, ..., Ay,
this is the spectrum of gragh( X ), and corresponding eigenvectaxs ¢s, ..., ¢,,.
Let A be an x n square matrix whose columns correspond to the eigen-
vectorsoq, ¢o, ..., ¢,. And, let A be the diagonal matrix with diagonal

elements\;, \o, ..., \,. A can be factored as,

A=Ddx Ax ot
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7. Output results to an Envi image For each pixel

(¢, ]

where (i, j) are the location coordinates, amd= ¢, is the eigenvector
corresponding to that pixel in the following way, for eackraknt4,; ; of

matrix A,

Ay — [t modm) o m), ]
m

i —1 (mod m)

Where | .4 (mod m)] are the location coordinates of the

m

pixel in the image, and is the eigenvector.
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7.4 Output

If the graphG generated by Laplacian Eigenmaps from im&yes connected,
A1 = 0 (smallest eigenvalue), and when it is ngt > 0. The closer)\; is to
zero, the stronger connected is the big component of theriymaegraph. The
first (smallest) eigenvalues and eigenvectors aid in alugteind classification
of the data, specially; and associated eigenvector are linked to the main
clusters of the data, and are also associated with the dptumaf the graph,
also identified as the optimal cluster[13]. The second eiglele )\, quantifies
how well connected:- is [12].

The most relevant information about the structure and cctiores of the
underlying graph is provided by the first or leading eigetwecand corre-
sponding eigenvalues. Since these eigenvectors are msistarg to normal
fluctuations in the data (such as shades and small changes aoloration of
the same component), yet they reflect minimal changes taatgrortant when
the aim is to separate the graph into different componetits [On the other
hand, eigenvalues are affected by all changes, includmggtthat are irrelevant

[10]. For this reason, and given that our objective is to findraalous pixels;



32

we use the information contained in the eigenvectors adnd the correspond-
ing eigenvalues for indexing in ascending order.

The output of our Laplacian Eigenmaps algorithm for ima&gevith n pix-
els, is an Enviimage of the same sizerobands that represent the eigenvectors
o1, 02, , O, cOrresponding to the eigenvalugs Ao, , A, ordered from smallest
to largest. In other words, the spectrum for each pixel issigenvector corre-
sponding to that pixel.

Pixels have different shades of gray on the single band Emyisgale pro-
jections of the results of Laplacian Eigenmaps, togethén tie spectrum of
many spectral bands. The values of each spectrum on thetaitje program

are the components of the eigenvectors in the n-dimensspagie.



33

7.5 Social Network with Anomaly example

We can construct a random social networkromertices with one anomalous
vertex, and apply Laplacian Eigenmaps algorithm.

We create a simple random netwakkwith 100 peoplen = 100, randomly
connected and let one vertex be an anomalous person.

Let R be a simple graph with vertex set

V(R) = [0,1,2, .., 99)

The vertices represent the people in our social network.

Generate x n edges and connect vertices at random. Resulting in edge set
FE(R) that represents the connections among the people in thernetw

To create an anomaly we first need to define what an anomalpigisocial
network. An anomaly is an individual that has an abnormal Imemof connec-
tions to other individuals in the network. We take the lastes)eand randomly
connect it ton /2 vertices ink. The anomaly in this case is an individual that is

substantially more connected than the rest of the vertices.
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7.5.1 Results

We find the Laplacian of the graph as defined in Section 7.1. Following the
algorithm in Section 7.3 from step 4 through step 6, we oletitne following

results 7.1, refer to the appendix PRO GraphSpectraciocledde.

Profection Gmio Sirce — Loplacion Top Elgeavecior Projection

[+

Trowed Dyennchor
2
B

Anomalous individual Anomalous individual
not very apparent easy to find

Figure 7.1: Social Network with anomaly results

The figure on the left shows the points forming a circle, wite anomalous
individual shown in red. The figure on the right is the pragactof the indi-
viduals onto the plane formed by two eigenvectors, in thiega and¢,, the
x axis ranges frommnin|¢,| to mazx|p], and they axis ranges fromnin|eos]

to max[¢2]. Each node corresponds to an individual, placed accordiriget
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coordinates of the eigenvector projected on the 2-dimeasgpace formed by
¢1 and ¢, nodes for individualg and j are connected if their corresponding

entry in the adjacency matriX’ is 1.

A(i, ) =1

The anomalous individual sticks out from the rest as exjgettaving a signifi-
cantly larger number of links to other vertices, and takialyes for the first two
eigenvectors that are distant from the rest of the pixelseMfs the majority
of the pixels are located close to each other in the projedido the first two

eigenvectors.
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Chapter 8

Laplacian Eigenmaps for Anomaly Detec-
tion in Spectral Images Experiments

For our Laplacian Eigenmaps experiments, we generatedateneages with
known anomalies. To produce the test images with anomaliespok some
chips of different sizes from the WorldView-2 image 6.2, aagdlaced selected
pixels on the images with anomalous pixels. An anomalousl pgxdefined as
pixel that comes from a material that does not belong in teeiteage, and
therefore has a very distinct spectral profile.

We ran the program for the test images and the test imagesawitimalies.
The threshold is set, so after calculating all the Euclidean distancea® fpoxel
i to pixel j in the image, and ranking the distances from smallest t@srgur
algorithm uses the distances that are equal or smaller beathteshold. This

means that many times when the spectrum of anomalous psxsignificantly
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different from the spectra of the rest of the pixels in thegméEuclidean dis-
tance from pixet to pixel ; > t) no edges are drawn. For this reason sometimes
we obtain isolated vertices in the graph representatiomaiges, when their
spectra is very disparate, and correspond to anomalouks pikan anomalous
object is large and comprises a few pixels in the image, omwingrking with
larger images it is possible to obtain a separate small caemgoon the graph

that is highly connected within itself.
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8.1 Example: Simple Chip, Simple Chip with Anomaly

e Simple chip:

Is a 10x10 chip of vegetation that is part of WorldView-2 irea&§)2 shown

in 8 bands, and that exhibits a similar spectral profile foitabixels.

Figure 8.1: Simple Chip and spectral profile for two pixels

Image 8.1 shows Simple Chip and the spectra of two pixel® thatt the

pixels have very similar spectral profiles.

e Simple Chip with Anomaly:

To add an anomaly we started with the Simple Chip of vegetaid, and
replaced the top right corner pixel of the image with a pixehi a differ-

ent image with a very different spectral profile 8.2.
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Figure 8.2: Simple Chip with Anomaly and spectral profile dmomalous pixel

Image 8.2 shows Simple Chip with an Anomaly and the specti&lle
of the anomalous pixel, observe how the spectral profile g ddferent,
with less blue (band 2), and more than double green (ban@8jpared to

the spectral profile of the background pixels in Figure 8.1.

8.1.1 Results

For this example, the threshalds set at 50 percent.

Graph 8.3 shows a plot of the spectrum (eigenvalues) of ®ir@blip (in
blue) versus the spectrum of Simple Chip with Anomaly (in)redere is not
much variation on most of the eigenvalues, the major diffeeas that Simple
Chip with Anomaly has one eigenvalue equal to 1.00, and Sirgtlip does

not.
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Figure 8.3: Spectrum of the graph for the Simple Chip 8.1,%intple Chip with Anomaly 8.2

Figure 8.4 shows the projections for the output of the pnogfar Simple

Chip. Left, spectra of the pixels on spectral bands 1(blad)4(red) with pix-

elsi andj connected if their corresponding entry in the adjacencyimat is

1. The projection of the spectra of the pixels on spectratibdnand 4 for Sim-

ple Chip shows all the points located close together andexded. Right, the

projection of the pixels onto the plane formed by the first eigenvectors,

andg (IDL starts counting from 0, that is why in the graph we seepigctors

0 and 1. In reality we are referring to the first two eigenvextg and¢,). The

x axis ranges fromnin[¢;] to max[¢;], and they axis ranges fromnin|g,]
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to maz|¢p,]. Each node corresponds to a pixel, placed according to theelieo
nates of the eigenvector projected on the 2-dimensionaksipamed by, and
¢2, With pixelsi andj connected if their corresponding entry in the adjacency

matrix W is 1.

sg—— Projection oflp wo spacimibotds Prejarian sals Fan sgarmesion

[ R

iy D

Figure 8.4: Left, projection of the spectra of the pixels pedral bands 1 (blue) and 4 (red).
Right, projection onto eigenvectors 0 and 1 of the Laplatissimple Chip 8.1

Similarly, Figure 8.5 shows the projections for the outputh® algorithm
for Simple Chip.The projection the spectra of the pixels jpactral bands 1 and
4 for Simple Chip with Anomaly shows the anomalous vertexs@dted and
far from the rest of the vertices that are close together amth@cted. Right,

the projection of the pixels onto the plane formed by first eugenvectors),
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andg,, observe how adding a single anomaly alters the projections Simple

Chip 8.4 to Simple Chip with Anomaly 8.5.

Anomalous
pixel

B 1

/

Figure 8.5: Left, projection of the spectra of the pixels pedral bands 1 (blue) and 4 (red).
Right, projection onto eigenvectors 0 and 1 of the Laplataisimple Chip with Anomaly 8.2

T e 5] = i [T Y W

The grayscale projection results for Simple Chip eigeraetiare shown on
Figure 8.6 on the images to the left, the Eigenvector Profilesvo pixels are
shown to the right.

The grayscale projection results for Simple Chip with Angneagenvector
1 are shown on Figure 8.7 on the images to the left,the anam@ixel shows
In white, the Eigenvector Profiles for the anomaly and thelpinext to it are
shown to the right, the anomaly has a zero value for all banckse for a spike

to 1 in band 33, in comparison, the other pixel takes on valifesyent that zero
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Figure 8.6: Left, grayscale projection results for Simplepgleigenvector 1. Right, Eigenvector
Profiles for two pixels

for all bands.

For this example, Laplacian Eigenmaps shows promisingltegsti helps to
identify the anomalous pixel. It is interesting that the dfigector Profile for
the background pixels takes on values different than zenm@st bands (eigen-
vectors) and oscillating within the values 0.3 to -0.3, veasrthe Eigenvector
Profile for the anomalous has a zero value for all bands exoeptsingle spike
to 1. This is consistent with the idea mentioned earlier ab@envectors being
indicator vectors, the anomaly is in one eigenvector omlyg, ia not part of the

main component obtained.
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anomalous pixel

background pixel

Figure 8.7: Left, grayscale projection results for SimplapgCwith Anomaly eigenvector 1.
Right, Eigenvector Profiles for the anomaly and the pixek text
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8.2 Simple Chip with 3 Anomalies

For this experiment, we started with Simple Chip of vegeta8.1 used in the
previous section, and replaced three pixels in differenispat the image with

pixels from a different image with a very different specpeadfile.

We replaced three pixels
in different parts of the
image with pixels from a
different image with a
very different spectral
profile

Figure 8.8: Simple Chip with 3 Anomalies

8.2.1 Results

For this example, the threshalds set at 50 percent.

Graph 8.9 shows a plot of the spectrum of Simple Chip with 1rAaly 8.2
(in blue) vs. Spectrum of Simple Chip with 3 Anomalies (inkedhere is not
much variation between the two plots, except that therelameteigenvalues
equal to 1.

Figure 8.10 shows the projections for the output of the dllgr for Simple
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Figure 8.9: Spectrum of Simple Chip with 1 anomaly vs. Spaeotof Simple Chip with 3
Anomalies

Chip with 3 Anomalies. The spectra of the pixels on specteaids 1 and 4
(left), and the projection onto the plane formed by the fwat eigenvectors,
the anomalous pixels are stacked together on O for botheegtors.

The grayscale projection results for Simple Chip with 3 Aaties eigenvec-
tor 1 are shown on Figure 8.11 on the image to the left, thertvgeor Profile
for a background pixel is shown to the right.

The grayscale projection results for Simple Chip with 3 Adies eigen-

vector 1 are shown on Figure 8.12 on the images to the leftattmenalous
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Figure 8.10: Left, projection of the spectra of the pixelsspectral bands 1 (blue) and 4 (red).
Right,projection onto eigenvectors 0 and 1 of the LaplatarSimple Chip with 3 Anomalies
8.8

| L]

Laplacian Spectral Frofile
ofa background pixel

Figure 8.11: Left, grayscale projection results for Sim@lap with 3 Anomalies eigenvector
1. Right, Eigenvector Profile for background pixel

pixels are highlighted, and their Eigenvector Profiles dm@as to the left of
every image. Again we see the same behavior as Simple ChipAmibmaly,
the Eigenvector Profiles for the anomalies have a zero vahadlfbands except

for a spike to 1 in band 23 for the first anomaly(top left), &spb -1 in band
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22 for the second anomaly (top right), and a spike to 1 in bahtib2the third
anomaly (bottom left). These spikes might be useful in idgng anomalous

pixels, anomalies seem consistent here.

Laplacian Spectral
Profile ofthe
anomalous pixel

Figure 8.12: Left, grayscale projection results for Sim@kap with Anomaly eigenvector 1.
Right, Eigenvector Profiles for the anomaly and the pixek tex



49

8.3 Laplacian Anomaly Image

The Laplacian Anomaly Image is a 50x50 complex chip that isgfaNorldView-
2 image 6.2. It contains an assortment of materials witteceffit spectral com-
position, such as some vegetation, the ceiling of a buildingpad, three cars,

among others. Shown on 8.14.

Laplacian

Anomaly Image
(5ox50 chip)

Figure 8.13: WorldView-2 image, Laplacian Anomaly Image50 Chip location shown on
red box
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Figure 8.14: Laplacian Anomaly Image- 50x50 Chip

8.3.1 Results

The threshold is set at 30 percent for this experiment.

Figure 8.15 shows the projections for the output of the dllgr for Lapla-
cian Anomaly Image. To the left, the projection of the spectthe pixels on
spectral bands 1 and 4. Right, the projection of the pixels thre plane formed
by the first two eigenvectors, ando,.

Figure 8.16 shows the grayscale projection results ford@ah Anomaly
Image eigenvector 1 (left), and Eigenvector Profiles foe¢hvackground pixels

(right). The Eigenvector Profile for these three pixels dfedent components
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ro|met rpact
e mcticn onte iwo specira ] s

Figure 8.15: Left, projection of the spectra of the pixelsspectral bands 1 (blue) and 4 (red).
Right,projection onto eigenvectors 0 and 1 of the Laplatiahaplacian Anomaly Image 8.14

of the image shows a lot of variation mainly within values®ahd -0.05, and
has values different than zero for almost every single band.

In comparison, figure 8.17 shows the grayscale projectisult®for Laplacian

Anomaly Image eigenvector 1 (left), and Eigenvector Prefite the anomalous
or different pixels (right). The spikes or maximum values tfte Eigenvector
Profile of anomalies are larger than the values for the backygt pixels. The

Eigenvector Profiles for those pixels that stick out and sSedm to be cars
parked on the road outside the building, have a zero valuléanajority bands,

with some spikes to 0.4 and -0.6.
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Figure 8.16: Left, grayscale projection results for LaacAnomaly Image eigenvector 1.
Right, Eigenvector Profile for 3 background pixels

The results of the program visualized in three dimension®&mds (eigen-
vectors) 1, 2, 3 are shown in 8.18 (left), most of the poiness@ose together
with the exception of a few points that are far away from tret,reve selected
these points and created a new class that is shown in redmBEgeion the right,
shows the grayscale projection for eigenvector 1, the pixeded correspond to

the selected class, and the most dissimilar pixels in théigaage.
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Figure 8.17: Left, grayscale projection results for LaacAnomaly Image eigenvector 1.
Right, Eigenvector Profiles for the anomalous (differemmtg|s

The Laplacian Eigenmaps program successfully identifiedahomalous
pixels in the image, as pixels that are far apart from theot#te pixels, and

that form a small cluster of their own.
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n-d visualizer for bands 1,2, and 3

Figure 8.18: n-d visualizer for bands 1,2,3, and a seled&ss(red) that includes the most
distant points (left). Projection of the results on Grayl8casults for band 2(right)
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Chapter 9

Conclusions

The Laplacian Eigenmaps program successfully identifieareous pixels in
the experiments performed. By using the information predidy the first
eigenvectors of the Laplacian matrix of the graph consédiftom the image,
we were able to find information that could not be easily vigzea with the
original data provided by the spectral image.

The anomalies are visually apparent without a great amdugftat on the
Envi projections of the results of the program. And theirdfigector Profiles
consistently show a similar behavior with zero for most Isaadd big spikes
in the bands where the anomalous spectrum is present. lilia sjuestion
why these spikes on the spectra of the anomalies happenhdéw@nobmalies
seem show this behavior time and again. We believe it ise@lad the idea
of eigenvectors being indicator vectors, and point out aad@® that are not

present in the major clusters of the data, but form highlynewted clusters of



their own.
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Chapter 10

Future Work

At the moment we are working with 50x50 chips of big imageswuoeaild like
to create a procedure to divide the image into multiple tded expand our
program to iteratively separate major components of thelgfi@m different or
anomalous components . The next step would be to make Lapl&tgenmaps
into an anomaly detection algorithm.

The Laplacian Eigenmaps algorithm provides an enormousiat@d infor-
mation about the graph used to represent the data that cawddther uses in
Imaging processing, and not just related to anomaly detecti

Our current algorithm creates a simple graph with no weijlgdges, it
would be interesting to assign weights to edges accordirgwo similar the
spectra of the pixels is. This will give us more insight on geicture of the
graph; since it would exploit the heat kernel and aid to fin@argetric charac-

terization of the graph, by computing the geodesic and Heah distances of
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the vertices in the manifold vector space, i.e. shortest patween each pair
of vertices in the manifold, which can be used to determind emcapsulate
the structure of the manifold/. This could be useful for classification and

clustering of the data[14].



Appendix A

PRO GraphSpectracircle

sample_graph=2

if sample_graph eq 2 then begin ; random graph with anomaly

seed=systime(1)
n_vertices = 100;list of vertices
V = indgen(n_vertices)
deg = intarr(n_vertices)
print, 'vertices: ’
print, V
n_edges=n_vertices  *2; list of edges

E = floor((n_vertices-1) * (randomn(seed,2,n_edges,uniform=1)))

print, 'E!’
print, E
for i=0,(n_vertices/2-2) do begin
E = transpose([transpose(E),transpose([n_vertices-1,i
endfor
edge list = E
size_ E = size(E)
n_edges = size E[2]
print, 'edges: ’
print, E
endif

;Compute degrees of edges and create matrices L and T
;Actually, we comute Tsqgrt=T"(-1/2) which is used to comput
;the Laplacian. Also, we compute L and T at the same to
;avoid looping though vertices multiple times.
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L = intarr(n_vertices,n_vertices)
Tsqrt = fltarr(n_vertices,n_vertices)
for i=0,n_edges-1 do begin
if (E[0,i] NE E[1,i]) then begin
L[E[O,i],E[1,i]] = -1
L[E[1,i],E[O,i]] = -1
endif
deg(E[0,i]) = deg(E[O,i)+1
deg(E[1,]]) = deg(E[1,i)+1
endfor
for i=0,n_vertices-1 do begin
L[i,i]=deg[i]
Tsqrt[i,i]= 1/sqrt(deg]i])
endfor
print, 'Graph L’
print, L
print, 'Graph T°(-1/2)’
print, Tsqrt

; Compute the Laplacian
Lap=Tsqrt#L#Tsqrt

print, 'Laplacian:’

print, Lap

; Compute the eigenvalues and eigenvectors of the Laplacian
A = Lap

TRIRED, A, D, E

; Compute the eigenvalues (returned in vector D) and

; the eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A

; Print eigenvalues and eigenvectors

;print, '

;print, 'Eigenvalues:
;print, D

;print, "’

;print, 'Eigenvectors: (rows of the following array) '
;print, A
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;print, Al *,0]

if sample_graph eq 3 then begin; for random graph with one ano maly
IP.MULTI = [0, 1,3]
window, 0, xsize=400, ysize=600
D_idx = sort(D)

x_range=[min(A[  *,D_idx[0]]),max(A[ * D _idx[0]D]
x_range=[x_range[0]-(x_range[1]-x_range[0])/10,x_ra nge[l]+
(x_range[1]-x_range[0])/10]

y_range=[min(A[  *,D_idx[1]]),max(A[ * D _idx[1]]D]
y_range=[y_range[0]-(y_range[1]-y_range[0])/10,y_ra nge[1]+
(y_range[1]-y_range[0])/10]

plot, A[0:1,D_idx[0]], A[0:1,D_idx[1]], psym=4, symsize =0.5, $

Xrange=x_range, yrange=y_range, background=!P.COLOR,
color=0, $; set up color and title for plot
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$
titte="Laplacian Top Eigenvector Projection’, $
xtitle="First Eigenvector’, $
ytitle="Second Eigenvector’
for edge=0,n_edges-1 do begin
nodes = [edge_list[0,edge],edge_list[1,edge]]
print, nodes
oplot, A[nodes,D idx[0]], A[nodes,D_idx[1]], $
psym=0, symsize=0.5, $
thick=2, color="FFOOFFx
endfor
oplot, A[(n_vertices-2):(n_vertices-1),D _idx[0]], A[( n_vertices-2):
(n_vertices-1),D_idx[1]], psym=4, symsize=0.5, $
thick=2, color="0000FF’x
oplot, A[0:(n_vertices-2),D _idx[0]], AJ[O0:(n_vertices- 2),D_idx[1]],
psym=4, symsize=0.5, $
thick=2, color=0

plot, A[ *,D_idx[0]], $
background=!P.COLOR, color=0, $
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$
titte="First Eigenvector’

plot, A[ *,D _idx[1]], $
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background=!P.COLOR, color=0, $
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,%
title="Second Eigenvector’

window, 1, xsize=400, ysize=600
el = n_vertices-2

e2 = n_vertices-3

D_idx = sort(D)

x_range=[min(A[  *,D_idx[0]]),max(A[ * D _idx[0]D]
X_range=[x_range[0]-(x_range[1]-x_range[0])/10,x_ra nge[1]+

(x_range[1]-x_range[0])/10]
y_range=[min(A[  *,D_idx[1]]),max(A[ * D _idx[1]])]

y_range=[y_range[0]-(y_range[1]-y_range[0])/10,y _ra nge[1]+
(y_range[1]-y_range[0])/10]
plot, A[0:1,D _idx[el]], A[0:1,D_idx[e2]], psym=4, symsi ze=0.5, $

Xrange=x_range, yrange=y_range, background=!P.COLOR,
color=0, $; set up color and title for plot
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,%
titte="Laplacian Top Eigenvector Projection’, $
xtitle="First Eigenvector’, $
ytitle="Second Eigenvector’
for edge=0,n_edges-1 do begin
nodes = [edge_list[0,edge],edge_list[1,edge]]
print, nodes
oplot, A[nodes,D idx[el]], A[nodes,D_idx[e2]], $
psym=0, symsize=0.5, $
thick=2, color="FFOOFFx
endfor

oplot, A[(n_vertices-2):(n_vertices-1),D_idx[e1]], A[ (n_vertices-2):

(n_vertices-1),D_idx[e2]], psym=4, symsize=0.5, $
thick=2, color="0000FF’x
oplot, A[0:(n_vertices-2),D_idx[el]], A[O:(n_vertices -2),
D_idx[e2]], psym=4, symsize=0.5, $
thick=2, color=0
plot, Al *,D _idx[el]], $
background=!P.COLOR, color=0, $
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,%
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title="First Eigenvector’
plot, A *,D idx[e2]], $
background=!P.COLOR, color=0, $
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$
title="Second Eigenvector’

endif

sample_graph eq 2 then begin; for random graph with one ano
IP.MULTI = [0, 2, 1]
window, 0, xsize=1200, ysize=600

D_idx = sort(D)
Xx_range=[-1.2,1.2]
y_range=[-1.2,1.2]
x_coords=cos(indgen(n_vertices) * 2% 3.141597/n_vertices)
y_coords=sin(indgen(n_vertices) * 2% 3.141597/n_vertices)
plot, x_coords[0:1], y_coords[0:1], psym=4, symsize=0.5
xrange=x_range, yrange=y_range, background="FFFFFF’X,
color=0, $; set up color and title for plot
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$
title="Projection Onto Circle’
for edge=0,n_edges-1 do begin
nodes = [edge_list[0,edge],edge_list[1,edge]]
print, nodes
oplot, x_coords[nodes], y_coords[nodes], $
psym=0, symsize=0.5, $
thick=2, color="FFOOFFx
endfor
oplot, x_coords[(n_vertices-2):(n_vertices-1)], y_coo
(n_vertices-1)], psym=4, symsize=0.5, $
thick=2, color="0000FF’x
oplot, x_coords[0:(n_vertices-2)], y_coords[0:(n_vert
psym=4, symsize=0.5, $
thick=2, color=0

D_idx = sort(D)
x_range=[min(A[  *,D_idx[0]]),max(A[ * D _idx[0]D]
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rds[(n_vertices-2):

ices-2)],



x_range=[x_range[0]-(x_range[1]-x_range[0])/10,x_ra
(x_range[1]-x_range[0])/10]

y_range=[min(A[  *,D_idx[1]]),max(A[ * D _idx[1]D]

y_range=[y_range[0]-(y_range[1]-y_range[0])/10,y_ra
(y_range[1]-y_range[0])/10]

plot, A[0:1,D _idx[0]], A[0:1,D_idx[1]], psym=4, symsize

Xrange=x_range, yrange=y_range, background=!P.COLOR,

color=0, $; set up color and title for plot
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$
title="Laplacian Top Eigenvector Projection’, $
xtitle="First Eigenvector’, $

ytitle="Second Eigenvector’

for edge=0,n_edges-1 do begin

nodes = [edge_list[0,edge],edge_list[1,edge]]
print, nodes
oplot, A[nodes,D _idx[0]], A[nodes,D_idx[1]], $
psym=0, symsize=0.5, $
thick=2, color="FFO0FF’x
endfor
oplot, A[(n_vertices-2):(n_vertices-1),D_idx[0]], A[(
(n_vertices-1),D_idx[1]], psym=4, symsize=0.5, $
thick=2, color="0000FF’x
oplot, A[0:(n_vertices-2),D _idx[0]], AJ[O:(n_vertices-
D_idx[1]], psym=4, symsize=0.5, $
thick=2, color=0

endif

end

nge[1]+

nge[1]+

=05, $

n_vertices-2):

2),
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Appendix A

laplacianprojection.pro

pro Laplacian_Projection_define_buttons, buttoninfo
compile_opt STRICTARR

;compile_opt idl2
envi_define_menu_button, buttoninfo,
value="Laplacian Projection’, $
position="first’, ref_value="User Functions’,
uvalue='none’, $
event_pro='Laplacian_Projection’
end

PRO Laplacian_Projection_doit, fid, dims, plot_distance
plot_eigenvalues

; read in the image

ENVI_FILE_QUERY, fid, fname=fname, nb=nb

; get information from image on the number of bands

rows = dims[4]-dims[3]+1

cols = dims[2]-dims[1]+1

bands = nb

Im = fltarr(cols,rows,bands)

; sets up array to hold the image

for band=0,nb-1 do begin
Im[ =, » band] = ENVI_GET_DATA(fid=fid, dims=dims,
pos=band)

endfor
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IP.MULTI = 0 ; 1 plot per window

; X is an array that has the spectra of the pixels
as columns

; So the spectra of pixel i is X]i, * |

X = double(reform(lIm, rows * cols,bands))

; List of vertices and vertex information
n_vertices = rows  *cols

V = indgen(n_vertices)

deg = intarr(n_vertices)

;print, ’vertices: ’
;print, V

; Compute the distance matrix D.
; DIi,j] is the distance from the spectra of pixel i
to the spectra of pixel j
Dist = fltarr(n_vertices,n_vertices)
for i=0,n_vertices-1 do begin

for j=0,n_vertices-1 do begin

Dist[i,j]=norm(X][i, *]-X[j, *])

endfor

endfor

; Sort the distances to find a good threshold
threshold_percent= 0.3

S = sort(Dist)

Dist_list = Dist[S]

threshold = Dist_list[floor(n_elements(Dist_list)
threshold_percent)]

threshold_line = fltarr(n_elements(Dist_list))
threshold_line[ *] = threshold

; Create the adjacency matrix from the threshold.
Id = fltarr(n_vertices,n_vertices)
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for i=0,n_vertices-1 do begin
ld(i,i) = 1

endfor

Adj = (Dist LE threshold)

: Plot the distances.

if (plot_distances eq 1) then begin
window, 0O
plot, Dist_list, background=!P.COLOR, color=0
oplot, threshold_line, color="0000A0’x

endif

; Compute the degrees of the vertices.
deg = fix(total(Adj,1))

;print, 'deg’

;print, deg

; Compute degrees of edges and create matrices L and T

; Actually, we comute Tsqrt=T"(-1/2) which is used to comput
; the Laplacian. Also, we compute L and T at the same to
; avoid looping though vertices multiple times.

L = intarr(n_vertices,n_vertices)

Tsqrt = fltarr(n_vertices,n_vertices)

I= ldentity(n_vertices)

L = I-Adj

;print,’I’

;print, |

;print,’Adj’

;print, Adj

;print,’L’

;print,L

for i=0,n_vertices-1 do begin
L[i,i]=deg]i]
Tsqrt[i,i]= -1/sqrt(deg]i])
endfor
;print, 'Graph L
;print, L
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;print, 'Graph T°(-1/2)"
;print, Tsqrt

; Compute the Laplacian
Lap=Tsqrt#L#Tsqrt

; print, 'Laplacian:’

; print, Lap

; Compute the eigenvalues and eigenvectors of the Laplacian
A = Lap
TRIRED, A, D, E

; Compute the eigenvalues (returned in vector D) and

; the eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A

; Print eigenvalues and eigenvectors

print,

;print, 'Eigenvalues: ’
;print, D

;print,
;print, 'Eigenvectors: (rows of the following array) '
;print, A

;print, A[ *,0]

;sort the eigenvectors and eigenvales
eigen_order = sort(D)

D = Dleigen_order]

print, D

print, '’

A temp = A

for i = 0,n_vertices-1 do begin
Al *,i]=A_temp[ =*,eigen_order]i]]
endfor

plot_graph = 1
if plot_graph eq 1 then begin
first band = 1
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second_band = 4
first_eigenvector = 1
second_eigenvector = 2

IP.MULTI = [0,2,1]

window, 1, xsize=1200, ysize=600

; plotting nodes on two bands of the image
x_range=[0,max(X[ =+, first_band])]
y_range=[0,max(X[ *,second_band])]
plot, X[ =+ first band], X] * second_band], psym=4,
symsize=0.5, $

Xrange=x_range, yrange=y_range, background=!P.COLOR,
color=0, $

; set up color and title for plot
thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$
titte="Projection onto two spectral bands’, $
xtitte="Band '+strtrim(first_band,2), $
ytitle="Band ’'+strtrim(second_band,2)
for i=0,n_vertices-1 do begin
for j=0,n_vertices-1 do begin
if (Adj[i,j] eq 1) then begin
nodes = [i,j]
oplot, X[nodes,first_band], X[nodes,second_band], $
psym=0, symsize=0.5, $
thick=2, color="FFOOFF’x
endif
endfor
endfor
oplot, X[ =*,first_band], X] * second_band], psym=4,
symsize=0.5, color=0

;plotting nodes on the Eigenvectors

D_idx = sort(D)

x_range=[min(A[  *,D_idx[first_eigenvector]]),max(A[
D_idx[first_eigenvector]])]

y_range=[min(A[  *,D_idx[second_eigenvector]]),max(A[
D_idx[second_eigenvector]])]
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plot, Al +,D_idx[first_eigenvector]], A[ * D _idx[second_eigenvector]],
psym=4, symsize=0.5, $

xrange=x_range, yrange=y_range, background=!P.COLOR, c olor=0,%;

set up color and title for plot

thick=2, ymargin=[5,5], charsize=0.5, ticklen=0,$

title="Projection onto two eigenvectors’, $

xtitle="eigenvector '+strtrim(first_eigenvector,2), $

ytitle="eigenvector ’'+strtrim(second_eigenvector,2)

for i=0,n_vertices-1 do begin
for j=0,n_vertices-1 do begin
if (Adj[i,j] eq 1) then begin
nodes = [i,j
oplot, A[nodes,D_idx[first_eigenvector]], A[nodes,D i dx
[second_eigenvector]], $
psym=0, symsize=0.5, $
thick=2, color="FFOOFF’x
endif
endfor
endfor
oplot, A[ =*,D_idx][first_eigenvector]], A[ * ,D_idx[second_eigenvector]],
psym=4,
symsize=0.5, color=0
endif

; put image into memory
out_image = reform(A,cols,rows,rows * COIS)
envi_enter_data, out_image

IP.MULTI = 0 ; 1 plot per window
end

pro Laplacian_Projection, ev
compile_opt STRICTARR
; compile_opt idl2

; Select input file and get relevant stats
envi_select, fid=fid, dims=dims, pos=pos, title=



'Select Input File for Laplacian Projection’

if (fid[0] eq -1) then return

base = widget_auto_base(title="Laplacian Projection

Paramters’)

sl = widget_base(base, /column, /frame)

s2 = widget_base(sl, /row)

param6 = widget_menu(s2, /auto, /exclusive,
prompt="Plot Distances: ’, list=['No’, 'Yes’], default_p
uvalue="plot_distances’)

s2 = widget_base(sl, /row)

param6 = widget_menu(s2, /auto, /exclusive, prompt=
'Plot Eigenvaluess: ', list=['No’, 'Yes’], default_ptr=1
uvalue="plot_eigenvalues’)

res = auto_wid_mng(base)

if (res.accept eq 0) then return

plot_distances = res.plot_distances

plot_eigenvalues = res.plot_eigenvalues

Laplacian_Projection_doit, fid, dims, plot_distances,
plot_eigenvalues

end

tr
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