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Abstract

Large-scale time-evolving networks have been generated by many natural and technologi-
cal applications, posing challenges for computation and modeling. Thus, it is of theoretical
and practical significance to probe mathematical tools tailored for evolving networks. In this
paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index
and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear alge-
bra techniques, we established general upper and lower bounds for these graph-spectrum-
based invariants through a couple of intuitive graph-theoretic measures, including the num-
ber of vertices or edges. Synthetic random evolving small-world networks are employed to
show the relevance of the proposed dynamic Estrada indices. It is found that neither the
static snapshot graphs nor the aggregated graph can approximate the evolving graph itself,
indicating the fundamental difference between the static and dynamic Estrada indices.

Introduction

With the development of modern digital technologies, time-dependent complex networks arise
naturally in a variety of areas from peer-to-peer telecommunication to online human social be-
havior to neuroscience. The edges in these networks, which represent the interactions between
elements of the systems, change over time, posing new challenges for modeling and computa-
tion [1, 2]. Basically, the time ordering of the networks (or graphs) induces an asymmetry in
terms of information communication, even though each static snapshot network is symmetric,
i.e., undirected [3]. For example, if # communicates with v, and then later v communicates
with w, the information from u can reach w but not vice versa.

The Estrada index as a graph-spectrum-based invariant, on the other hand, was put forward
by Estrada [4], initially for static graphs. Since its invention in 2000, the Estrada index has
found a range of applications in chemistry and physics, including the degree of folding of long-
chain polymeric molecules (especially proteins) [4, 5], extended atomic branching [6], and vi-
brations in complex networks [7-10], etc. The Estrada index of a graph G with n vertices is de-
fined as [11]
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where 41, A5, - - -, A, are the eigenvalues of the adjacency matrix of G. Numerous mathematical
results for the Estrada index have been obtained, especially the upper and lower bounds. For
these results, we refer the reader to an updated review [12] and the references therein. From
the combinatorial construction, it is easy to see that EE(G) counts the weighted sum of closed
walks of all lengths in G. The Estrada index—viewed as a redundancy measure of alternative
paths—is shown to be instrumental in gauging robustness of networks [9, 13-17].

However, all the above mentioned works on the Estrada index are only confined to static
graphs, which is a drawback from the perspective of network science [2]. Very recently, the Es-
trada index of time-dependent networks is introduced in [18] based on a natural definition of a
walk on an evolving graph, namely, a time-ordered sequence of graphs over a fixed vertex set.
Given an evolving graph, this dynamic Estrada index respects the time-dependency and gener-
alizes the (static) Estrada index, conveniently summarizing those networks. Some basic proper-
ties and lower and upper bounds for the dynamic Estrada index are also developed in [18].

In the present paper, we go deeper in this direction and consider the dynamic Laplacian Es-
trada index and the dynamic normalized Laplacian Estrada index. In addition to the spectrum
of adjacency matrix, the spectral theory of (normalized) Laplacian matrix is another well devel-
oped part in algebraic graph theory [19, 20]. We show that it is possible to define dynamic
(normalized) Laplacian Estrada index in full analogy with dynamic Estrada index [18]. In fact,
the static Laplacian Estrada and normalized Laplacian Estrada indices have already been pro-
posed in [21] and [22], respectively. As such, our work can be viewed as an extension from stat-
ic case to dynamic case. The gap between them, nevertheless, is non-trivial as described at
the outset.

After giving the two dynamic indices and some basic properties, we establish refined upper
and lower bounds for them, respectively. All these bounds are presented in terms of the several
simplest graph-theoretic parameters, such as the numbers of vertices (or nodes) and edges, and
the maximum and minimum degrees, offering both conceptual and computational advantages.
Moreover, the similarity and difference between dynamic Estrada index and dynamic (normal-
ized) Laplacian Estrada index are explored. In some cases, the dynamic (normalized) Laplacian
Estrada index behaves better than its counterpart due to the nice properties of Laplacian spec-
trum [20].

Next, we use synthetic examples (random evolving small-world networks) to validate the
relevance of our proposed various dynamic Estrada indices. Simulation results highlight the
fundamental difference between the static and dynamic Estrada indices—in general, neither
the static snapshot graphs nor the aggregated/summarized graph approximates the evolving
graph itself.

We mention here that there is an increasing interest in studying evolving graphs in recent
few years. The most conceptually relevant works are [3, 23-25], where static Katz-like centrali-
ties and network communicability are accommodated to address the time-evolving scenarios.
A continuous-time dynamical systems view of node centrality in evolving networks is provided
in [26]. However, these works are mostly concerned about algorithmic aspects, such as compu-
tational cost, efficiency and storage. We also note that the evolving networks have found a
place in the analysis of coevolutionary games and more broadly, the emergence of cooperation
in complex adaptive systems [27-29].

Results
Concepts of dynamic Estrada indices

We first review the dynamic Estrada index [18] and then introduce the related concepts of dy-
namic (normalized) Laplacian Estrada indices with some general properties.
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Let G be a simple graph with n vertices. Denote by A = A(G) the adjacency matrix of G, and
A1(A), 22(A), - - -, 2,(A) the eigenvalues of A. Since A is a real symmetric matrix, we assume
that the eigenvalues are labeled in a non-increasing manner as 1;(A) > 4,(A) > - - - > 4,,(A).

Let tr(-) represent the trace of a matrix. For k=0, 1, - - -, define M, (A) = 37| 2f(A) the kth
spectral moment of the adjacency matrix. It follows from (1) that the Estrada index of G can be

written as

= M(4) (A
ER(@) = 3o = 3o Soul) sy @
i=1 k=0 k=0
where the power-series expansion of matrix exponential e* is employed:

AQ Ak 0quk
eA:I+A+§+"'+H+"':HE (3)

with I being the n-dimensional identity matrix. An extension to weighted graphs can be found
in [30].

Suppose we have an evolving graph, namely, a time-ordered sequence of simple graphs Gy,
G,, - - -, Gy over a fixed set V of n vertices, at the time points 1, 2, - - -, N. Let A; = A(G,) be the
adjacency matrix for the snapshot graph G, for t =1, 2, - - -, N. Let m, denote the number of
edges of G;and A,(A;) > A,(A,) > - -+ > 1,(A,) the eigenvalues of A,.

Definition 1. [18] The Estrada index of an evolving graph Gy, Gy, - - -, Gy is defined as

EE(G17G27”'7GN):tr(eAleAz"'eAN)' (4)

The following concept of dynamic walk in an evolving graph is introduced in [3].

Definition 2. A dynamic walk of length k from vertex v; € V to vertex v, € V consists of a
sequence of edges {vy, v}, {2, v3}, - - -, {Vk Vi11} and a non-decreasing sequence of time points
1<t <t <--- <t < Nsuch that the (v;, viyq) element of A, (A;),, yis1 #0for 1 <i <k

In the light of (3), the product of matrix exponentials e*1 e*> - - - * is equal to the summa-
tion of all products of the form

1 s :
mA?AZf“'AZ* :mAzllA?ZZ ...AZ:7
where £, <t; <--- <t areall the distinct values in the time sequence t; <t, < --- < f;, and
the multiplicity of ¢, is &; namely, 6; = X4, Mp 1 <i<rNote that the matrix product A, A,
-+ Ay has (v, v,) element that counts the number of dynamic walks of length k from v, to v,
on which the ith step of the walk takes place at time t;, 1 < i < k. Thus, by setting

=30, = Z}';l 1;, we observe that the dynamic Estrada index (4) is a weighted sum of the
numbers of closed dynamic walks of all lengths, where the number of walks of length € (with J;
edges followed at time ¢,, 1 < i <) is penalized by a factor ,hlm,l—”k,, naturally extending the
(static) Estrada index (2).

Dynamic Laplacian Estrada index. Given a simple n-vertex graph G, its degree matrix D
(G) is defined as a diagonal matrix with degrees of the corresponding vertices of G on the main
diagonal and zero elsewhere. The Laplacian matrix of G is L = L(G) = D(G) — A(G). We as-
sume that A;(L) > A,(L) > --- > A,(L) = 0 are the Laplacian eigenvalues of G [20].

The Laplacian analogue of the Estrada index is defined in [21] as

LEE(G) = iew' (5)
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An essentially equivalent definition can be found in [31]. We refer the reader to [32-34] for re-
cent results of LEE(G) and its variants. For k=0, 1, - - -, define M, (L) = 3" 2'(L) the kth
spectral moment of the Laplacian matrix. Then, the expression (5), in parallel with (2), implies
that

" XM (L) SNtr(LF
LEE(G) = ;e*f“) = ;;{E )_ 3 <k! )_ tr(e"),

which elicits the following dynamic Laplacian Estrada index:
Definition 3. The Laplacian Estrada index of an evolving graph Gy, G,, - - -, Gy is defined as
LEE(GUG%"')GN) :tr(eLleL2 eLN)a (6)
where L, = L(G,),t=1,2,---, N.
For two simple graphs G and H over the same vertex set V, we define their weighted union
as an edge-weighted graph G LI H with adjacency matrix (A(G U H)),, , = 2 if {u, v} appears in

both G and H, and (A(G U H)),, , = 1 if {u, v} appears in just one of G and H. For an integer
N>0,let GN:=GULG--- UG for short. Some elementary mathematical properties of the dy-
———————

N multiples
namic Laplacian Estrada index can be drawn straightforwardly:

1° Denote by Sy be the symmetric group of order N. It follows from the cyclic property of
trace, that, for N < 3,

LEE(G,, G,, -+, Gy) = LEE(G,,), G0, *, G,w))s 0 € Sy,
and that, for general N,
LEE(G,,G,,---,Gy) = LEE(Gy,G,,---,Gy_,) = --- = LEE(G,, G,,- - -, G,).
This invariance under cyclic permutation also holds for the dynamic Estrada index [18].

2° Asadirect consequence of (6), if Gy = K, the (edgeless) complement of complete graph
K, then

LEE(G,,G,, - -,Gy) = LEE(G,,G,, -+, Gy_,)-

The same also holds for the dynamic Estrada index [18].
3° Suppose that G; = G, = - - - = Gy. Then

LEE(G,,G,,---,Gy) = LEE(G).

Similarly, we have EE(G1, Gy, -+, GN) = EE(G&N))
4° If G, = G, = - - - = Gy s an r-regular bipartite graph. Then

LEE(G,,G,,---,Gy) = eV - EE(G")).
The property 4° can be seen as follows.
LEE(G,,G,,--+,Gy) = tr(eNT4)) = eNir(e M)
= eVir(eM) = eV - EE(GIV),
where in the second last equality we used the fact that the eigenvalues of A, are symmetric

around zero [20]. Note that the static case N = 1 corresponds to [21, Prop. 6(d)] or [31,
Lem. 4].
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Dynamic normalized Laplacian Estrada index. The normalized Laplacian matrix £ = £

(G) is defined as [19]
1, i=j, degg(v) # 0;
1 . . . .
(£).. =14 , 17 j,v, is adjacent to v;;
N deg ;(v;)deg G(Vj)
0, otherwise,

where degg(v;) is the degree of vertex v; in G. If there is no isolated vertex in G, we have £(G) =
D Y2(G)L(G)D™V*(G). Assume that 1,(L) > A,(£) > - - - > 1,(L£) = 0 are the normalized
Laplacian eigenvalues of G.

The normalized Laplacian Estrada index is put forward in [35] as

LEE(G) = Zﬂ:e’v‘(“. (7)

See also [22] for an essentially equivalent definition. LEE(G) has been addressed for a class of
tree-like fractals [36]. Following the same reasoning in (2), we obtain LEE(G) = tr(e©). In anal-
ogy to (4) and (6), we have the following

Definition 4. The normalized Laplacian Estrada index of an evolving graph G;, G, - - -, Gy
is defined as

LEE(G,,G,,-+,Gy) = tr(ef1e - -+ ), (8)

where £, = L(G),t=1,2,---,N.
The following basic properties of the dynamic normalized Laplacian Estrada index can be
easily deduced.

5° For N < 3,
LEE(G,,G,,---,Gy) = LEE(G, ), Gy~ Gyy)s 0 € Sy

and, for general N,

LEE(G,,G,,-+,Gy) = LEE(Gy,G,,++,Gy_,) = --- = LEE(G,,G,, -+, G)).

6° IfGy =K,
LEE(G,,G,,--+,Gy) = LEE(G,,G,, -+,Gy_,).
7° Suppose that G; = G, = - - - = Gy. Then
LEE(GU Gza Y GN) = ZeNZl(£|)7
i=1

whereas EEE(G%N)) = LEE(Gq).
8° If G, = G, =- - - = Gyis an r-regular bipartite graph (r > 1). Then

‘CEE(GU G27 T GN) <e- EEl/r(Gl’ GZ’ T GN) = eNEEl/T(G(lN))'
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To see 8°, we have

LEE(G,,G,, --,Gy) = tr(e¥) = ZeN(vfii(Al))/r = eNZ<67NZi(A1))1/r
i=1 i=1

" 1/r
< eN (ZeNz,(Al))
i=1

= Murlr(eM) = & - BBV (GIY),

where the equality is attained if and only if 1,(£;) = - - - =4,(£,) = 0. This condition is equiva-

lentto G, = K, or G, = K, UK, _,, which contradicts the assumption. Theorem 3.4 in [35] can
be reproduced by setting N = 1.

Bounds for dynamic Laplacian Estrada index

Proposition 1. Let G, Gy, - - -, Gy be an evolving graph over a set V of size n. Then

() LEE(G:, G- Gx) < (1L LEE(G) " < 450, LEE@GY)
The equalities are attained if and only if G, = G, = - - - = Gy

(ii) max{LEE(G,), LEE(G,)} < LEE(G,, G,) < min{e"‘"" LEE(G,), ¢"* LEE(G,)}.
The equalities are attained if and only if G; = K, or Gy = K,,.

Proof. (i) Since the matrices {e" }} | are positive definite, it follows from the extended Bell-
man inequality ([37, p. 481] or [38]) that

LEE(G,,G,,---,G,) = tr(eed - - e)

N UN N
< (Htr(em“)> = (HLEE(G§N>)>

The last inequality follows from the arithmetic-geometric means inequality. Both equalities are
attained ifand only if G; = G, = - - - = G
(ii) Note that

1/N

1 1
LEE(G,,G,) = tr(ele™) = tr (eELleLzeéLl)

Therefore, LEE(G), G,) > € tr(e"” = LEE(G,) since A,(L;) = 0, and LEE(Gy, G,) < e )tr
(e"?) = e ) LEE(G,). Since A,(L,) = 0 for all i is equivalent to G, = K, the above two equali-
ties hold if and only if G, = K. The desired result then follows from the property 1°.

Remark. By counting the number of closed walks, it is shown in [18, Prop. 1] that

EE(G1> Gy, ooy GN) > iEE(Gi)' (9)

However, this does not hold for LEE even in the case of N = 2. To see this, we take G, = K.
Then,
LEE(G,,G,) = LEE(G,) < LEE(G,) + LEE(G,).

Recall that m, is the number of edges in G, t=1,2,-- -, N.
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Proposition 2. The Laplacian Estrada index of an evolving graph Gy, Gy, - - -, Gy over a set of
n vertices with N = 2 is bounded by

1N i(m, - m,) 1, .,
3 Z—&—n(n— l)e » < LEE(G,G,) <n-— 1—|—§(e'm1 + '),

The equality on the left-hand side is attained if and only if G, = G, = K ; and the equality on
the right-hand side is attained if and only if G, = G, = K, or G, = G, = K, UK _,.
Proof. Lower bound. Based on the well-known Golden-Thompson inequality (see e.g. [38])

we obtain

LEE(G“ Gg) = tr(eLleLZ) > tr(eLﬁLQ).

Therefore,

LEF(G,,G,)

v

" 2
<Zez,(L1+LZ)>

= (10)
_ ZEZ/I(LHrLZ) +2 Z e‘ Li+Ly) /'(L1+L2).

1<i<j<n
Using Proposition 1 (i), we obtain

n

1< it o
(LEE(G) + LEE(GY)) = 5 (@) 4 i)

N~

LEE(G,,G,) <

i

=1
ieZ/‘,,-(L(G,ucz ZZ (2,(L G uG )
i=1

IN

k=0 i=1

n+ 4(m, + m,) +ZZ @4 GUG))),

k=2 i=1

where the second inequality comes from the interlacing theorem in which the equality holds if
and only if G, = G, = K. Note that L; + L, = L(G, LI G,). Then,

n n oo 1 k
;eu[(qng) _ ZZ (2/%(L(Gli!|—| G,)))

i=1 k=0

= n+4(m, +m,) + izn: (QJV"(L(GIL!U G2)) (11)

k=2 i=1
n+ 4(m, + m,) + LEE(G,,G,) —n — 4(m, + m,)
— LEE(G,,G,).

On the other hand, the arithmetic-geometric means inequality yields

) Z ghitlitla) gfilli+la) > n(n—1) ( H 2Hi(L(GIUG,)) (G1UG2))>n(nl)

1<i<j<n 1<i<j<n
n—1 2
n(n—1)
4(m, + m,)
=nn—1e » . (12)
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Combining (10) with (11) and (12), we have

4(m, + m,)

LEE*(G,,G,) > LEE(G,,G,) + n(n — 1)e

4(my+mg)

Since (LEE(G,,G,) — 1)’ > 1+ n(n—1)e = = > 0, we arrive at

1 1 4(m, + m,)
LEE(GI,G) 5—1—\/14-1’1(1’1—1)6 n .
The equality is attained if and only if G, = G, = K,
Upper bound. Since (¢ — ¢")* is a positive semi-definite matrix, we obtain
2LEE(G,,G,) = 2tr(ele™)

S ( 2L|) +tr( 2L2)

ZZ 2) z”:i: (24,(L

i=1 k=0 i=1 k=0

_ n+zi%<m>+2iﬂf<u)+iiw7fm
+n+ 2i’1i(L2) + Qi}“’?(]ﬂ) + iiw

= 2n+4m, +4m, + 2(Zg(G,) + 2m,) + 2(Zg(G,) + 2m,)
00 1 n 00 1 n )
G 2L + 35D L)

where Zg(G):=Y""_, deg’,(v,) is called the first Zagreb index of graph G [39].
Note that 37 (24,(L,))" < (X1, 24(L,))) =K, or G, = K, UK, _,. Hence,

9LEE(G,,G,) < 2n+ 8m, +8m,+2Zg(G,) + 2Zg(G,)

k
o0 1 n o]
+Zﬁ <Z;2)L,.( ) ; i (2;2/1 )
= 2n+ 8ml + 8m, + QZg(Gl) 274(G,)
+; E (4m1)k + ; E (4m2)k

= 2n+4m, +4m, + '™ + €' — 8m} — 8m; — 2
+2(28(G,) + 28(Gy))-

For t = 1, 2, denote by n, the number of non-isolated vertices in G,. We have
7g(G) < (n,—1) Zdegc (2m, — 1)2m,

with equality if and only if G, = K, or G, = K, UK,_,. Consequently,

2LEE(G,,G,) < 2n + 4™ 4 ¢t — 2,
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which yields the desired upper bound, in which equality is attained if and only if G; = G, = K|,
orG, =G,=K,UK,_,.

The previously communicated bounds for EE(G;, G,) in [18, Prop. 4] can not be attained.
Here, we get tight bounds for LEE(G;, G,) thanks to the nice properties of Laplacian eigenval-
ues. We mention that a version of the thermodynamic inequality might also be used here [40,
Lem. 1]. Let 6(G) and A(G) be the minimum and maximum degrees of graph G, respectively.
We in the following establish new tight bounds with the help of the minimum and
maximum degrees.

Proposition 3. The Laplacian Estrada index of an evolving graph G, Gy, - - -, Gy over a set V
of n vertices with N = 2 is bounded by

1y \/111 +n(n— 1)64(%:%) + M +2n0,,A,, — 4(m, 4+ m,) (0., + A,,)
< LEE(G,,G,)
<n-1+ % (e + ") +2m, (1 4+ 8(G,) + A(G))) + 2m,(1 + &(G,) + A(G,))
—4dm? — 4m; — né(G,))A(G,) — nd(G,)A(G,),

where 81, = 6(G, U Gy) and A, = A(G; U Gy). The equalities are attained if and only if
G, =G,=K,.

Proof. Lower bound. As in the proof of Proposition 2, we have (10) and (12). In the follow-
ing, we aim to obtain a new estimate involving d;, and A;, for the first term on the right-hand
side of (10).

We have

I 3 pleau GRLA i
i=1 i

= n+4(m, +m,) +2Z L(G,UG,)) + Zi(%f@(qu@)))k

<4 k!
i=1 o k=3 i=1 ) (14)
= n+8(m +m,) +22g(G, UG,) + ZZ (24(L(G, U G,)))

8(m, + m2)2 + ii (24,(L(G, U G2)>>k

n

Vv

n+8(m, +m,) +

since

s > " Al +m)’
m, +m
8(G,UG,) degcluc2 = ( deg g6, (v > :#

veV veV

by the Cauchy-Schwarz inequality. The equality holds if and only if G; U G, is regular.
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By using Proposition 1 (i), as in the proof of Proposition 2, we obtain

LEE(G, G) < ZZ (22,(L G |_|G)))

k=0 i=1

= n+8(m, +m,) +2Z¢g(G, UG,) +ZZ . L

IN

n+8(m, +m,) +4(m, +m,)(5,, +A,,) —2nd,,A,

+ZZ (2A,(L G |_|G))) |

k=3 i=1

where the last inequality follows from the fact
Zg(Gl U G2) < 2(”’1 + mQ)(512 + Al?) - ”512A12

with equality attained if and only if G, LI G, is a regular graph. Indeed, this can be seen by ex-
panding the expression %, ¢ v(degg, 1| 62(v) — 612)(degg, L G2(V) — Arz), which is clearly non-
positive.

Combining (10) with (12), (14) and (15), we obtain

8(m, + mz)Z
n

LEE*(G,,G,) > n+8(m +m,) + + (LEE(G,,G,) —n — 8(m, + m,)
4(m, +m,)
- 4(m1 + mz)(512 + A]z) + 2”’512A12) + ”(” - 1)6
8(m, + m,)’
= M + LEE(GU Gz) - 4(m1 + m2)(512 + Al?)

4(m, + my,)

+2n0,A +n(n—1)e n

Therefore,

1\’ 8(m, + m,)’
(LEE(GI? Gz) - 5) > % - 4(m1 + m2)(512 + Au)
4(m, +m2) (16)

+2n0,A,, + +n(n—1)e

4
> 0,

where the last inequality follows from the following three basic estimates:

Al + m) 4(m, + m,)

e n >1+ , A, <n—1, and 2nd,A,, > 4(m;, +m,)0,,.

n

The desired lower bound then readily follows from (16).
Upper bound. As commented above, for t = 1, 2, we have

Zg(Gt) < th(é(Gt) + A(Gt)> - I’lé(Gt)A(G[),

PLOS ONE | DOI:10.1371/journal.pone.0123426 March 30, 2015 10/20
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with equality attained if and only if G, is a regular graph. Owing to (13), we obtain
2LEE(G,,G,) < 2n+4m, +4m, + "™ + "™ — 8m? — 8m3 — 2

+2(28(G,) + 28(G,))

2n + 4m, + 4m, + '™ + &' — 8m?} — 8m; — 2

+4m, (0(G,) + A(G,)) — 2n6(G,)A(G,)

+4m,(0(G,) + A(G,)) — 2n6(G,)A(G,),

IN

which concludes the proof.
Remark. The bounds established in Proposition 2 and Proposition 3 are incomparable in
general. In fact, for the lower bound, we note that

8(m, + m2)2

n <A4(m, +my)A,,, but 2nd,A, > 4(m, + m,)d,,;

for the upper bound, we note that
2m, < (2m,), but 2m(5(G)+A(G)) = nd(GIA(G), t=1,2,

We mention here that in the case of N = 1, some researchers bound the Laplacian Estrada
index by using some more complicated graph-theoretic parameters, including graph Laplacian
energy [31], namely, ¥;/A,(L)|, and the first Zagreb index [41]. For more results on the graph
energy, see e.g. [42-45]. The first Zagreb index was generalized to the zeroth-order general
Randic index by Bollobas and Erdos [46], which was also useful in chemistry [47, 48]. In con-
trast, we only employ some of the most plain quantities to estimate the dynamic Laplacian Es-
trada index since (i) they are relatively easily accessible for real-life complex networks of
interest to us, and (ii) our motivation comes from the potential application in gauging robust-
ness for large-scale networks [9, 13, 16], where computational complexity matters.

Bounds for dynamic normalized Laplacian Estrada index

The following proposition can be proved similarly as Proposition 1. Hence, we only state the
result and omit its proof.
Proposition 4. Let Gy, Gy, - - -, Gy be an evolving graph over a set V of size n. Then

1/N
() LEE(GY, Gy, Gy) < (IT, () T < 4300 (%),
The equalities are attained if and only if G, =G, = - - = G-
(i) max{LEE(G,), LEE(G,)} < LEE(Gy, G,) < min{e"“ ) LEE(G,), €"“;)) LEE(G,)}.
The equalities are attained if and only if G; = K,, or G = K,,.
Remark. The inequality (9) does not hold for LEE either (even in the case of N = 2). To see

this, we take G, = K,,. Then,
LEE(G,,G,) = LEE(G,) < LEE(G,) + LEE(G,).

Proposition 5. The normalized Laplacian Estrada index of an evolving graph Gy, Gy, - - -, Gy
over a set of n (n > 2) vertices with each snapshot graph being connected and N = 2 is bounded

by
2¢°
et +1

2n
(1 + nenl) < LEE(G,,G,) < é(n—1+ ™).

PLOS ONE | DOI:10.1371/journal.pone.0123426 March 30, 2015 11/20
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Proof. Lower bound. From the well-known Neumann inequality, we obtain

LEE(G,,G,) = tr(eﬁle'cz) > Zez,‘(ﬁﬁezn,,ﬂ(cz)'

i=1

An elementary result of the normalized Laplacian eigenvalues [19] indicates that 1 < ML) <
and1< ML 2) < ¢ forall 1 <i< n. Hence, applying an inverse of the Holder inequality
(see [37, p. 18] or [49]) gives

1
LEE(G,,G,) ) (Ze% (£1) ) (Zwm))% (17)
i=1

By the arithmetic-geometric means inequality, we obtain

n n—1
Zeu,-(cl) = 14 262/1,-(51)
i=1 i=1
et o
2 14+ e?/ll(ﬂl) + (I’l _ 2) (He%i(ﬁl)) n—2 (18)

i=2
= 1+eH@) 4 (n— Q)eW,
where in the last equality we used the equation Z, . 2,(L,) = nsince G is connected [19].
Deﬁne a function f(x):=1 + 2¢* + (n — 2)e S Tt is easy to check that f'(x) = 4e* —
257 > 0ifx > 2”2:42)1“2 Since /,(£,) > = > %for all n > 2 [19], it follows from
(18) that

2n

Zez” 0 > f2,(L,) > f( ! >:1+ne”*1. (19)

n—1

Likewise, we have

n 2n
Zeui(ﬁ?) > 14 ne" L. (20)

i=1

Combining these with (17) gives the desired lower bound

2¢? 2n
LEE(G,,G) 2 o= (14 ne" ).

Moreover, note that if the equalities in (19) and (20) are attained, then n = 2, namely, G, =
G, =K,.But LEE(K,,K,) =¢' +1 > 220:2¢) ' \which means that the equality can not hold.

e+l
Upper bound. Again from the Neumann inequality, we arrive at
LEE(G,,G,) = tr(e“e™)

n
< Ze;ﬂ'([’l)
i=1

() ()

where the last inequality follows from the Cauchy-Schwarz inequality.

(21)

IN
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Define the Randi¢ index of a connected graph GasR_,(G) = >, . djacemdeggl (u)deg,' (v).
It is elementary that ", 22(£(G)) = n + 2R_,(G); see e.g. [50]. We have

n n
262/1,-(L1) _ 62262(&(&)*1)
i=1 i=1

2K2,(L,) — 1
 ofneyoynle)
i=1 k=1
k
= ¢ n—l—zk'ZM —1|
- 22
00 2k n E ( )
< é|n+ ZF <ZM;‘(‘C1) - 1|2>2
k=1 ‘ i=1
k
, 00 2k )
= &|n+> (2R ,(G)
“— k!
= (n —1 + e( (Gl))
Since G is connected, we have [50]
n n
< < -—.
R.,(G) < 25(G,) = 2 (23)

Thus, (22) leads to the following estimation

Ze”‘f(ﬂl) <é(n—1+e.

i=1

Combining this and an analogous estimation for £, yields the desired upper bound by using
(21).

Finally, we note that the equalities in (23) hold if and only if G, is a 1-regular graph, namely,
G, =K, UK, ---UK,. But the first inequality in (22) is not tight for such choice of G;. There-
fore, the equality in the upper bound can not be attained.

Remark. Recall that 5(G,) is the minimum degree of G,. The above proof actually gives a
strong upper bound:

2, [ 2, e
LEE(G,,G,) < é*- \/n — 14 V@), \/n —1+e Vo), (24)

Proposition 6. The normalized Laplacian Estrada index of an evolving graph Gy, Gy, - - -, Gy
over a set of n (n > 2) vertices with each snapshot graph being connected and N = 2 is bounded

PLOS ONE | DOI:10.1371/journal.pone.0123426 March 30, 2015 13/20



" ®
@ ’ PLOS ‘ ONE Laplacian Estrada Indices of Evolving Graphs

5 [T
LEE(G,,G,) < & (|é+e?+n+l+eVo@ o [ [
4(G))
9. | 7
: 62+e*2+n+1+e\/76‘2)_2 .
\/ \/ 6(G,)

Proof. As in the proof of Proposition 5, we have inequality (21).
Now that G, is connected, we know that 1,,(£,) =0,2,(£;) <2,and > .| 4,(L,) = n[19].
Therefore,

Ze%i(ﬁl) — eQZeQ(ii(fl)*l
i=1 i=1

n—1
S e? 62+e—2+ ez<;‘i<£l)_1)
n—1 oo k
24 (L
< ( SR ')
i=2 k=2 . (25)
: ) ) 00 2k n—1 . 5
< ez(ez+e—z+n+2+;ﬁ<2|ii(£l)—l|z>
eQ<

00 2k E
2 pelbn+24 ZF(2R1(G1))2>
—
= ¢ (62 +e?+nt14VEaG) 9 2R71(G1)).

Define a function f(x) = ¢* — x, which is non-decreasing on [0, +00). Thus, (23) and (25) in-

dicate that
Zeﬂ"(‘cl)<e2 CrelyntlreVi@ o [
i=1 - 5(G1)

An analogous estimate for G, also holds. Combining these with (21) yields the desired
upper bound.

Finally, note that the second equality is attained in (25) if and only if 4,(L,) = 0, which is
equivalent to G, = K. However, this contradicts the assumption that G, is connected. There-

fore, the equality in the upper bound can not be attained. The proof is complete.
Remark. It is direct to check that if

and 2+e24+e?2<?2

24+ +e?<?2 ,
o(Gy) 4(G,)

the above upper bound is better than that in (24).

Similarly as commented at the end of the above section, for the static case of N = 1, some
bounds for the normalized Laplacian Estrada index are reported in the literature by involving
more complicated graph-theoretic parameters, including normalized Laplacian energy [22],
and the Randic index [35, 51], which are a bit cumbersome when large-scale network applica-
tions are taken into account.
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Numerical study

We consider a random evolving network Gy, G, (see Fig. 1), which is introduced in a seminal
paper by Watts and Strogatz [52]. This network is often called WS small-world model, which
enables the exploration of intermediate settings between purely local and purely global mixing.
As demonstrated in [52], when the rewiring probability is taken around 0.01 (as we considered
here), the model is highly clustered, like regular lattices, yet has small characteristic path
lengths, like random graphs. This qualitative phenomenon is prevalent in a range of networks
arising in nature and technology [53].

Fig. 2 shows the variations of the (dynamic) Estrada indices with the network size n. The re-
sults gathered in Fig. 2 allow us to draw several interesting comments. First, as expected from
the mathematical result [18, Prop. 4], the numerical values of EE(G;, G,) lie between our gener-
al upper and lower bounds (remarkably much closer to one than the other; see the main panel).
Second, both the Estrada index and the dynamic Estrada index grow gradually as the network
size increases. Third, the Estrada indices EE(G,) and EE(G; U G,) are close to each other. How-
ever, both of them are significantly smaller than the dynamic Estrada index EE(G;, G,), under-
scoring the relevance of dynamic Estrada index—neither the static snapshot graph nor the
aggregated graph constitutes a reasonable approximation to the evolving graph itself.

In Fig. 3 and Fig. 4, we display the variations of the (dynamic) Laplacian Estrada indices and
the (dynamic) normalized Laplacian Estrada indices, respectively, with the network size. Anal-
ogous observations can be drawn. For example, the behavior of LEE(G, G,) (and LEE(G;, G>))
differentiates from that of LEE(G,) (and LEE(G,)) or LEE(G, U G,) (and LEE(G, U G,)) dra-
matically. Moreover, when comparing Fig. 2 with Fig. 3 and Fig. 4, we see that the difference

G a;

Fig 1. lllustration of an evolving small-world graph G, G.. G is a ring lattice over a vertex set V of size n. It is a 4-regular graph, where each vertex is
connected to its 4 nearest neighbors. G is obtained by rewiring each edge—i.e., choosing a vertex v € V and an incident edge, reconnecting the edge to a
vertex that is not a neighbor of v—with probability p = 0.01 uniformly at random. In the simulations below, we take n € [100, 1000].

doi:10.1371/journal.pone.0123426.g001
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Fig 2. Logarithm of the dynamic Estrada index In(EE(G1, G>)) as a function of network size n. Main
panel: numerical results (red circles) and theoretical bounds (upper and lower bars) given by [18, Prop. 4].
Each data point is obtained for one network sample. Inset: simulation results for EE(G4, G) (dotted line), EE
(G1 U Gy) (dashed line), and EE(G) (solid line) via an ensemble averaging of 100 independent random
network samples.

doi:10.1371/journal.pone.0123426.9002

between dynamic and static cases turns out to be much more prominent in the Laplacian ma-
trix and normalized Laplacian matrix settings than the adjacency matrix setting. For example,
when the network size is taken as n = 1000, the difference |[EE(G,, G,) — EE(G, U Gy)| =

4 x 10’; but |LEE(G,, G,) — LEE(G, U G,)| = 7 x 10° and | LEE(G,, G,) — LEE(G, U G,)| =~
1.4 x 10%,

Two remarks are in order. First, the theoretical upper and lower bounds for all the three dy-
namic Estrada indices shown in Figs. 2, 3, and 4 are fairly far apart, due to the fact that our
bounds are general and valid for all graphs. This is similar to the situation of static graph case,
see [12]. Thus, it would be interesting to identify the specific locations of concrete graphs (such
as the WS small-world model studied here) in the spectrum. Second, extensive simulations
have been performed for some different values of rewiring probability p and ring lattice degree
k, all yielding quantitatively similar phenomena.

PLOS ONE | DOI:10.1371/journal.pone.0123426 March 30, 2015 16/20



@ PLOS | one

Laplacian Estrada Indices of Evolving Graphs

11000 . ; . i :
x 10° © Numerical value
10000 LEE(G») .
1.8 — - ~LEE(GLUG) |
90001 . || LEE(G),G)) i
D1 g ]
8000+ s ]
__ 7000¢F T R
GI
~ 6000 -
&
& 5000F 4
S -
= 4000+  Theoretical bound _ i
3000 / \ T i
2000 F B
1000+ i
0 l -~ = < & L ~br D
0 200 400 600 800 1000 1200

T

Fig 3. Logarithm of the dynamic Laplacian Estrada index In(LEE(G,, G.)) as a function of network size
n. Main panel: numerical results (red circles) and theoretical bounds (upper and lower bars) given by
Proposition 2. Each data point is obtained for one network sample. Inset: simulation results for LEE(G4, Go)
(dotted line), LEE(G+ U Gy) (dashed line), and LEE(G>) (solid line) via an ensemble averaging of 100
independent random network samples.

doi:10.1371/journal.pone.0123426.9003

Conclusion

A combined theoretical and computational analysis of the dynamic Estrada indices for evolving
graphs has been performed. Following the dynamic Estrada index [18], (i) we investigated the
dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index, whose
mathematical properties such as the upper and lower bounds are established in general settings;
(ii) the relations between bounds of these three dynamic Estrada indices are explored; (iii) the
remarkable difference between static and dynamic indices are appreciated through numerical
simulations for evolving random small-world networks.

The emergence of vast time-dependent networks in a range of fields demands the transition
of analytic techniques from static graphs to evolving graphs. Many of these methods were re-
viewed in the surveys [2, 10]. We expect that the results developed in this paper can be used to
evaluate various aspects of structure (in terms of graph spectra) and performance (such as ro-
bustness) of evolving networks. Some recent works relevant to the topic of Estrada index can
be found in, e.g., [54-58].
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Fig 4. Logarithm of the dynamic normalized Laplacian Estrada index In(LEE(G;, G,)) as a function of
network size n. Main panel: numerical results (red circles) and theoretical bounds (upper and lower bars)
given by Proposition 5. Each data point is obtained for one network sample. Inset: simulation results for LEE

(G4, Go) (dotted line), LEE(G1 U Gy) (dashed line), and LEE(G>) (solid line) via an ensemble averaging of 100
independent random network samples.

doi:10.1371/journal.pone.0123426.9004
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