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Abstract—A novel OCC method for human action recognition
namely the Laplacian One Class Extreme Learning Machines
is presented. The proposed method exploits local geometric data
information within the OC-ELM optimization process. It is shown
that emphasizing on preserving the local geometry of the data
leads to a regularized solution, which models the target class more
efficiently than the standard OC-ELM algorithm. The proposed
method is extended to operate in feature spaces determined by
the network hidden layer outputs, as well as in ELM spaces
of arbitrary dimensions. Its superior performance against other
OCC options is consistent among five publicly available human
action recognition datasets.

I. INTRODUCTION

Human action recognition is a widely studied classification

problem, due to its importance in media industry applications,

such as semantic video annotation, human-computer interac-

tion, movie (post-)production. As a classification problem,

human action recognition presents challenges related to large

within-class variance, due to the fact that the one action can be

executed in a different manner by all subjects. Furthermore, the

same action can be depicted by consecutive dissimilar frames,

or captured from diverse viewing angles. Up-to-date, state of

the art performance can be obtained by employing information

extracted by multiple local video descriptors, classified with

strong multi-class classification machines [1]–[6], or learned

via deep neural network architectures [7], [8]. However,

in specific industrial application scenarios (e.g., recognizing

walking crowd scenes, hand-waving, lead-actor running), the

discrimination of multiple actions with a complicated machine

may not be as important as recognizing a single action. In

order to determine whether the action of interest is present

in the scene or not, binary classification machines can be

considered as well. This scenario can be addressed as a One

Class Classification (OCC) problem.

Perhaps the most widely adopted OCC method is the One-

Class Support Vector Machines (OC-SVM) [9], which gener-

ates a hyperplane that separates the target class from the origin

with the maximum possible margin. Another approach is the

Support Vector Data Description (SVDD) [10], which encloses

the target class with a the smallest possible hypersphere. Both

OC-SVM and SVDD perform optimally by employing data

mappings inherently obtained by using a kernel function, e.g.,

the Radial Basis Function (RBF) kernel. When the RBF kernel

is employed, it has been found that both OC-SVM and SVDD

provide equivalent solutions [10]. Additionally, OCC methods

based on the Kernel Principal Component Analysis (KPCA)

have also been proposed [11], [12], by calculating a proximity

measure relative to the reconstruction error of a test sample.

Recently, a single-hidden layer neural network-based method

trained by using a variant of Extreme Learning Machines

has been recently proposed [13], namely the One Class

Extreme Learning Machines (OC-ELM), having comparable

performance to other state of the art OCC methods.

As have been shown in the multi-class classification case,

increased performance can be obtained when manifold regu-

larization practices are employed in a classifier optimization

process [14]–[16]. In the OCC case, the corresponding ideas

have been employed in order to extend the OC-SVM and

SVDD in the context of semi-supervised learning, by em-

ploying local geometric data relationships encoded in Near-

est Neighbourhood (kNN) type graphs in the OC-SVM and

SVDD optimization processes, have been proposed in [17]

and [18], respectively. Since we emphasize in human action

recognition applications, we consider employing the principles

of manifold regularization in the context of OC-ELM, in view

of the fact that Extreme Learning Machines have been found

to provide superior performance against other approaches [4].

In this paper, a novel OCC method for human action

recognition namely the Laplacian One Class Extreme Learning

Machines is presented. The proposed method exploits local

geometric data information within the OC-ELM optimization

process. It is shown that emphasizing on preserving the local

geometry of the data leads to a regularized solution, which

models the target class more efficiently than the standard OC-

ELM algorithm. The proposed method is extended to operate

in feature spaces determined by the network hidden layer

outputs, as well as in ELM spaces of arbitrary dimensions.

The performance of the proposed method is evaluated against

other OCC options in five publicly available human action

recognition datasets. Experimental results confirm the superi-

ority of the proposed method.

The remainder of the paper is structured as follows. In

Section II, we briefly overview the standard OC-ELM. In

Section III, we describe in detail the proposed Laplacian

One Class Extreme Learning Machines classifier, where its

kernel extension is described in Section IV. The conducted

experiments are described in Section V. Finally, conclusions

are drawn in Section VI.



II. ONE CLASS EXTREME LEARNING MACHINES

Let a set of D-dimensional vectors xi ∈ R
D, i = 1, . . . , N

be the training set, formed by N training samples belonging

to the target class. We employ them in order in order to train a

Single-hidden Layer Feed-forward Neural network, consisting

of D input, L hidden and 1 output neuron, using the OC-ELM

algorithm [13]. That is, the network input weights and bias

values are randomly assigned, and the network output weights

are analytically calculated. The training data are mapped from

the input space to the ELM-space by an activation function

Φ : RD 7→ R
L. The network output weight vector w ∈ R

L can

be obtained by solving the following soft-margin optimization

problem:

min
w,ξ

1

2
‖w‖2

2
+

c

2

N
∑

i=1

ξ2i , (1)

s. t. wTφi = 1− ξi, i = 1, ..., N, (2)

where 1 is the network target value for the training class (e.g.,

ti = 1), φi ∈ R
L is the i-th training sample representation in

the ELM space, corresponding to each training sample xi, ξi
are the slack variables and c > 0 is a parameter allowing some

training error in order to avoid overfitting. This optimization

problem can be solved by obtaining the saddle points of the

equivalent Lagrangian function:

L =
1

2
‖w‖2 +

c

2

N
∑

i=1

ξ2i −
N
∑

i=1

αi(w
Tφi − 1 + ξi), (3)

where αi are the Lagrange multipliers corresponding to the

constraints in (2). By setting the partial derivatives of the

Lagrangian with respect to w, ξi and λi equal to zero, two

solutions for determining the network output weights can be

obtained:

w =

(

ΦΦ
T +

1

c
IL

)−1

Φ1, (4)

and

w = Φ

(

Φ
T
Φ+

1

c
IN

)−1

1 = Φ

(

K +
1

c
IN

)−1

1, (5)

where IL and IN are identity matrices of sizes L × L and

N × N , respectively, 1 is a vector of ones corresponding

to the training data labels, Φ ∈ R
L×N is the matrix that

contains the training data representations in the ELM space,

and K ∈ R
N×N is the so-called ELM kernel matrix, which

expresses data similarity in the ELM space. In the case where

the training data representations are calculated explicitly, both

solutions can be adopted. The solution in (4) is preferred when

L < N , or otherwise, (5) can be adopted. It has been shown

that almost any non-linear piecewise continuous activation

function Φ(·) can be used for the calculation of the network

hidden layer outputs, e.g., the sigmoid, polynomial, Radial

Basis Function (RBF), RBF-χ2, Fourier series, etc [19]–[21].

After the calculation of the network output weight w, the

network response for a given test sample xt ∈ R
D is given

by:

ot = wTφt. (6)

and xt is classified to the target class if it satisfies the

following proximity measure:

(ot − 1)2 ≤ ǫ, (7)

where ǫ ≥ 0 is a threshold that can be determined by using

the network responses for the training data (i.e., a value of

ǫ = 0.05ō was used in all our experiments, where ō is the mean

network response for the training data). When L is of infinite

dimensions (e.g., RBF was employed as network activation

function), we can employ the implicit representation of w,

i.e., w = Φα, which can be found by setting the derivative

of the Lagrangian function with respect to w equal to zero,
ϑL
ϑw

= 0. Thus (6) takes the following form:

ot = wTφt = αTkt, (8)

where kt = Φ
Tφt, is a R

N vector containing the similarities

of the test sample xt with the training data.

III. LAPLACIAN ONE CLASS EXTREME LEARNING

MACHINES

In this Section, we describe in detail the proposed Lapla-

cian One-Class Extreme Learning Machines (L-OC-ELM)

algorithm. The data relationships can be encoded with an

undirected weighted graph, such that G = {V, E ,A}, where

the vertex set V = {xi}
N
1

can be formed either from the

training data in the input space, or V = {φi}
N
1

can be

formed from the training data representations in the ELM

space, with the latter having the advantage of describing non-

linear relationships between the training data, E contains the

connections between the graph vertices and A ∈ R
N×N is the

graph weigh matrix. In order to employ the graph weights for

manifold regularization [14], the following function needs to

be minimized:

1

2

∑

i,j

‖φi − φj‖
2Aij = Φ(D −A)ΦT = ΦLΦ

T , (9)

where D ∈ R
N×N is the degree matrix, having its diagonal

elements Dii =
∑N

j Aij, i = 1, . . . , N or zeros otherwise,

and L = D −A is the graph Laplacian matrix.

We would like to initiate the graph weights so that they

express local geometric data relationships, by employing the

following function:

Aij =

{

exp
(

− ||φi−φj ||
2

2

2σ2

)

, if φj ∈ Ni

0, otherwise.

}

, (10)

where Ni denotes whether φj belongs to the neighborhood of

φi. In our experiments, we constructed k−Nearest Neighbor-

hood graphs using k = 5, 10, 15 neighbors.

In order to minimize training error and respect local ge-

ometric data relationships at the same time, we propose the

following optimization problem:

min
w,ξ

1

2
wT

ΦLΦ
Tw +

c

2

N
∑

i=1

ξ2i , (11)

s. t. wTφi = 1− ξi, i = 1, ..., N. (12)



The proposed optimization problem can be solved by finding

the saddle points of the Lagrangian:

L =
1

2
wT

ΦLΦ
Tw+

c

2

N
∑

i=1

ξ2i −
N
∑

i=1

αi(w
Tφi−1+ξi), (13)

By setting the partial derivatives of L with respect to w, ξ

and αi, equal to zero, we obtain:

ϑL

ϑw
= 0 ⇒ ΦLΦ

Tw = Φα, (14)

ϑL

ϑξi
= 0 ⇒ ξ =

1

c
α, (15)

ϑL

ϑαi

= 0 ⇒ Φ
Tw = 1− ξ, (16)

where 1 is a vector of ones, corresponding to the training data

labels. By substituting (15) in (16), and multiplying both sides

with Φ, we obtain:

ΦΦ
Tw +

1

c
Φa = Φ1. (17)

Afterwards, by replacing (14) in (17), we obtain the following

solution for the network output weights:

w =

(

ΦΦ
T +

1

c
ΦLΦ

T

)−1

Φ1. (18)

In the case where L > N , we might address singularity issues.

Thus, we adopt a regularized solution, adding a small value

to the diagonal elements of the expression to be inverted as

follows:

w =

(

ΦΦ
T +

1

c
ΦLΦ

T +
r

c
IL

)−1

Φ1, (19)

where IL is an identity matrix of appropriate dimensions and

the parameter r > 0 can be set to a small value (e.g., r =
10−3), increasing the rank of the expression. Finally, we can

decide whether a test sample xi belongs to the target class or

not by employing the same proximity measure as defined in

equations (7).

IV. KERNEL LAPLACIAN ONE CLASS EXTREME

LEARNING MACHINES

In the previous section, we described the proposed L-

OC-ELM classifier, when the explicit data representations

in the ELM space R
L are available. However, in multiclass

classification problems, ELM exploiting kernel formulations

have been found to outperform ELM networks exploiting

random hidden layer parameters [20], [21]. For example, in

the RBF kernel case, the network output weights would be of

infinite dimensions, thus needs to be implicitly expressed by

exploiting the Representer Theorem, as a linear combination

of the training data representations in the ELM space and a

reconstruction vector i.e.:

w = Φβ, (20)

where β is a R
N vector containing the reconstruction weights

of w with respect to Φ. Since L ≫ N in the kernel space,

we adopt a regularized version of the proposed optimization

problem defined in (11), i.e., using ΦLΦ
T + rIN instead of

ΦLΦ
T , where r > 0 is a parameter set to a small value and

IN is a N ×N identity matrix. By replacing (20) in proposed

optimization problem (11), the Lagrangian function defined in

(13) takes the following form:

L =
1

2
βT (KLK + rK)β+

c

2

N
∑

i=1

ξ2i−
N
∑

i=1

αi(β
Tki−1+ξi),

(21)

where ki = Φ
Tφi contains the similarities of the i−th training

sample with the rest of the training data and K ∈ R
N×N is

the ELM kernel matrix. By setting the partial derivatives of L
equal to zero, with respect to β, ξi and ai, we obtain:

ϑL

ϑβ
= 0 ⇒ (LK + rIN )β = α, (22)

ϑL

ϑξi
= 0 ⇒ ξ =

1

c
α, (23)

ϑL

ϑαi

= 0 ⇒ Kβ = 1− ξ. (24)

By replacing (23) in (24), and (24) in (22), we obtain the

following solution for the reconstruction vector β:

β =
(

K +LK +
r

c
IN

)−1

1. (25)

In the test phase, the network output for a test vector xt, is

given by:

ot = βTkt, (26)

where kt contains the similarities of the test sample xt with

the training data in the ELM space. Finally, xt is classified to

the target class, using (7).

V. EXPERIMENTS

In this section, we present the experiments conducted in

order to evaluate the performance of the proposed L-OC-

ELM classifier in Human Action Recognition problems. Along

with the proposed method, we have also trained the OC-ELM

[13] algorithm, as well as the OC-SVM algorithm [9], the

Kernel PCA for novelty detection [11] (KPCS) and Kernel

Null Space Methods for Novelty Detection [12] (KNFST). For

the proposed method and OC-ELM, we examined different

values of c = 10n, n = −6, . . . , 6. For OC-SVM, we have

employed a ν−SVM implementation, where have set ν equal

to ν = {0.01, 0.1, . . . , 0.9}. For KPCS and KNFST, we have

set the corresponding reconstruction error parameters equal to

ν, keeping an energy of p = {0.90, 0.95, 0.98}. The optimal

parameter settings for each method were determined with a

5−fold cross validation procedure.

For our experiments, we have employed the the IMPART

Multi-modal/Multi-view Dataset [22], the i3DPost multi-view

action database [23], the Olympic Sports dataset [24], the

Hollywood2 [25] and the Hollywood3D [26] publicly available

datasets. Example frames of the employed datasets can be

seen in Figures 1, 2, 3, 4 and 5. In the IMPART and

i3DPost datasets, we have employed a 3-fold cross validation



TABLE I
AVERAGE G-MEANS RATES IN HUMAN ACTION RECOGNITION DATASETS

IMPART i3DPost Olympic Sports Hollywood2 Hollywood3D

OC-SVM [9] 61.45 74.53 60.72 58.54 55.90
KPCS [11] 43.97 78.30 51.98 55.99 28.98
KNFST [12] 69.61 77.47 57.71 53.87 55.28
OC-ELM [13] 67.23 83.77 62.04 55.74 56.74

L-OC-ELM 70.52 86.31 65.01 57.42 58.02

procedure, where we have split the datasets in 3 sets, mutually

exclusive. In the Olympic Sports, Hollywood2 and Hollywood

3D datasets, we employed the standard train and test videos,

as given by the dataset providers.

Fig. 1. Example frames from the IMPART dataset

Fig. 2. Example frames from the i3DPost dataset

Fig. 3. Example frames for the Olympic Sports dataset

In order to obtain vectorial video representations for each

video segment depicting one activity, we have employed

the dense trajectory-based video description [1]. This video

description calculates five descriptor types, namely the His-

togram of Oriented Gradients (HOG), Histogram of Optical

Fig. 4. Example frames for the Hollywood2 dataset

Fig. 5. Example frames for the Hollywood3D dataset

Flow (HOF), Motion Boundary Histogram along direction

x (MBHx), Motion Boundary Histogram along direction y

(MBHy) and the normalized trajectory coordinates (Traj), on

the trajectories of densely-sampled video frame interest points

that are tracked for a number of consecutive video frames

(7 frames are used in our experiments). The five descriptors

are calculated on the trajectory of each video frame interest

point. We haved employed these video segment descriptions

in order to obtain five video segment representations by

using the Bag-of-Words model [2]. Thus, by following this

process, each video segment was represented by 5 vectors, i.e.

x
d
i , d = 1, . . . , 5. In order to fuse the information described in

different video representations, we have combined the video

segment representations with kernel methods, as in [1]. That

is, we have employed the RBF kernel function, combining

different descriptor types using a multi-channel approach [27]:

k(Xi,Xj) = exp

(

−
1

d

∑

d

‖xd
i − x

d
j‖

2

2

2σ2

d

)

, (27)

where σd is a parameter scaling the Euclidean distance be-

tween x
d
i and x

d
j . In our experiments, we set the value

of σd proportional to the mean Euclidean distance between

the x
d
i , i = 1, . . . , N (i.e., γ = aσd, where a =

0.01, 0.1, 1, 10, 100), which is the natural scaling factor for the



Euclidean distances for each descriptor type on each dataset.

After calculating the kernel matrices for the training and test

samples, we employed them in each classification problem.

In order to rate the performance of each method, we

have employed the g−mean metric, which is the geometric

mean of the precision and recall, which is suitable for binary

classification settings. For each class, we have determined the

best g-mean metric for each trained class. Finally, for each

dataset, we report the average g-mean metrics obtained for all

classes in each dataset. The performance of each method is

depicted in Table I.

As can be seen, the proposed method outperformed the

OC-ELM in all cases. That is, the Laplacian graph settings

provided additional information in the classifier, allowing to

determine more precise output weights. Moreover, the pro-

posed method outperformed other OCC options in most of

the cases.

VI. CONCLUSION

A novel OCC method for human action recognition namely

the Laplacian One Class Extreme Learning Machines was

presented. Improved performance over other OCC options was

obtained by exploiting information regarding the local geomet-

ric data relationships, encoded in graph structures. Exploiting

graph settings in the OC-ELM optimization problem leads to

a regularized solution, which models the target class more

efficiently than the standard OC-ELM. Since Laplacian type

graphs have been exploited for semi-supervised classification,

the proposed method could be extended to work in semi-

supervised classification settings.
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