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Abstract—Gaussian Mixture Models (GMMs) are among the most statistically mature methods for clustering. Each cluster is

represented by a Gaussian distribution. The clustering process thereby turns to estimate the parameters of the Gaussian mixture,

usually by the Expectation-Maximization algorithm. In this paper, we consider the case where the probability distribution that generates

the data is supported on a submanifold of the ambient space. It is natural to assume that if two points are close in the intrinsic geometry

of the probability distribution, then their conditional probability distributions are similar. Specifically, we introduce a regularized

probabilistic model based on manifold structure for data clustering, called Laplacian regularized Gaussian Mixture Model (LapGMM).

The data manifold is modeled by a nearest neighbor graph, and the graph structure is incorporated in the maximum likelihood objective

function. As a result, the obtained conditional probability distribution varies smoothly along the geodesics of the data manifold.

Experimental results on real data sets demonstrate the effectiveness of the proposed approach.

Index Terms—Gaussian mixture model, clustering, graph laplacian, manifold structure.

Ç

1 INTRODUCTION

THE goal of data clustering is to group a collection of
objects into subsets such that those within each cluster

are more closely related to one another than objects
assigned to different clusters. Data clustering is a common
technique for exploratory data analysis, which is used in
many fields, including data mining, machine learning,
pattern recognition, and information retrieval. It has
received enormous attention in recent years [2], [4], [9],
[10], [15], [19], [20], [28], [29], [46].

The clustering algorithms can be roughly categorized into
similarity-based and model-based. Similarity-based cluster-
ing algorithms require no assumption on probability
structure of the data. It only requires a similarity function
defined on the data pairs. The typical similarity-based
algorithms include K-means [24] and spectral clustering
[39], [42], [10], [47]. K-means produces a cluster set that
minimizes the sum of squared errors between the data
points and the cluster centers. The spectral clustering
usually clusters the data points using the top eigenvectors
of graph Laplacian [18], which is defined on the affinity matrix
of data points. From the graph partitioning perspective,
spectral clustering tries to find the best cut of the graph so
that the predefined criterion function can be optimized.
Many criterion functions, such as ratio cut [16], average
association [42], normalized cut [42], and min-max cut have

been proposed along with the corresponding eigen-problem
for finding their optimal solutions. Spectral clustering has
achieved great success in many real world applications, such
as image segmentation [42], Web image clustering [11],
community mining [1], and bioinformatics [25].

Besides spectral clustering, matrix factorization-based
approaches for data clustering have been proposed re-
cently. Out of them, Nonnegative Matrix Factorization
(NMF) is the most popular one [30], [47], [31]. NMF aims
to find two nonnegative matrices whose product provides a
good approximation to the original matrix. The nonnegative
constraints lead to a parts-based representation because
they allow only additive, not subtractive, combinations.
This way, NMF models each cluster as a linear combination
of the data points, and each data point as a linear
combination of the clusters.

Unlike similarity-based clustering which generates hard
partition of data, model-based clustering can generate soft
partition which is sometimes more flexible. Model-based
methods use mixture distributions to fit the data and the
conditional probabilities of data points are naturally used to
assign probabilistic labels. One of the most widely used
mixture models for clustering is Gaussian Mixture Model
[7]. Each Gaussian density is called a component of the
mixture and has its own mean and covariance. In many
applications, their parameters are determined by maximum
likelihood, typically using the Expectation-Maximization
algorithm [21].

Recently, various researchers (see [43], [40], [5], [41], [6])
have considered the case when the data is drawn from
sampling a probability distribution that has support on or
near to a submanifold of the ambient space. Here, a d-
dimensional submanifold of a euclidean space IRn is a
subset Md � IRn which locally looks like a flat d-dimen-
sional euclidean space [32]. For example, a sphere is a two-
dimensional submanifold of IR3. In order to detect the
underlying manifold structure, many manifold learning
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algorithms have been proposed, such as Locally Linear
Embedding [40], [35], Isomap [43], and Laplacian eigenmap
[5]. The basic idea of LLE is that the data points might
reside on a nonlinear submanifold, but it might be reason-
able to assume that each local neighborhood is linear. Thus,
we can characterize the local geometry of these patches by
linear coefficients that reconstruct each data point from its
neighbors. Laplacian eigenmap is based on spectral graph
theory [18]. It finds a nonlinear mapping by discretely
approximating the eigenfunctions of the Laplace-Beltrami
operator on the manifold. This way, the obtained mapping
preserves the local structure. Isomap aims at finding a
euclidean embedding such that euclidean distances in IRn

can provide a good approximation to the geodesic distances
on the manifold. A geodesic is a generalization of the notion
of a “straight line” to “curved spaces.” It is defined to be the
shortest path between points on the space. On the sphere,
the geodesics are great circles (like the equator). Isomap is a
global method which attempts to preserve geometry at all
scales, mapping nearby points on the manifold to nearby
points in low-dimensional space, and faraway points to
faraway points. Most of the current manifold learning
techniques focus on dimensionality reduction [43], [40], [5],
[48], and semisupervised learning [6]. It has been shown
that learning performance can be significantly enhanced if
the geometrical structure is exploited.

In this paper, we propose a novel model-based algorithm
for data clustering, called Laplacian regularized Gaussian
Mixture Model (LapGMM), which explicitly considers the
manifold structure. Following the intuition that naturally
occurring data may reside on or close to a submanifold of the
ambient space, we aim to fit a probabilistic model while
respecting the manifold structure. Specifically, if two data
points are sufficiently close on the manifold, then they are
likely to be generated by sampling the same Gaussian
component. In real world applications, the data manifold is
usually unknown. Therefore, we construct a nearest neigh-
bor graph to discretely model the manifold structure. Using
graph Laplacian [18], the manifold structure can be incorpo-
rated in the log-likelihood function of the standard GMM as
a regularization term. This way, we smooth the conditional
probability density functions along the geodesics on the
manifold, where nearby data points have similar conditional
probability density functions. Laplacian regularization has
also been incorporated into topic models to analyze text
documents [12], [13], [37]. It would be important to note that
our proposed algorithm is essentially different from these
approaches in that LapGMM aims at estimating the
Gaussian mixture density function that generates the data.

It is worthwhile to highlight several aspects of the
proposed approach here:

1. While the standard GMM fits the data in euclidean
space, our algorithm exploits the intrinsic geometry
of the probability distribution that generates the data
and incorporates it as an additional regularization
term. Hence, our algorithm is particularly applicable
when the data is sampled from a submanifold which
is embedded in high-dimensional ambient space.

2. Our algorithm constructs a nearest neighbor graph
to model the manifold structure. The weight matrix

of the graph is highly sparse. Therefore, the
computation of conditional probabilities is very
efficient. By preserving the graph structure, our
algorithm can have more discriminating power than
the standard GMM algorithm.

3. The proposed framework is a general one that can
leverage the power of both the mixture model and
the graph Laplacian regularization. Besides graph
Laplacian, there are other smoothing operators
which can be used to smooth the conditional
probability density function, such as iterated Lapla-
cian, heat semigroup, and Hessian [6].

The rest of the paper is organized as follows: Section 2
gives a brief description of the related work. In Section 3, we
introduce our proposed Laplacian regularized Gaussian
Mixture Model for data clustering. The experimental results
are shown in Section 4. Finally, we provide some conclud-
ing remarks and suggestions for future work in Section 5.

2 RELATED WORK

In this section, we provide a brief description of the related
work.

2.1 Gaussian Mixture Model

From a model-based perspective, each cluster can be
mathematically represented by a parametric distribution.
The entire data set is, therefore, modeled by a mixture of
these distributions. The most widely used model in practice
is the mixture of Gaussians:

P ðxj�Þ ¼
X

K

i¼1

�ipiðxj�iÞ;

where the parameters are � ¼ ð�1; . . . ; �K ; �1; . . . ; �KÞ such
that

PK
i¼1 �i ¼ 1 and each pi is a Gaussian density function

parameterized by �i. In other words, we assume that we
have K component densities mixed together with K mixing
coefficients �i.

Let X ¼ ðx1; . . . ;xmÞ be a set of data points. We wish to
find � such that pðXj�Þ is a maximum. This is known as the
Maximum Likelihood(ML) estimate for �. In order to
estimate �, it is typical to introduce the log likelihood
function defined as follows:

Lð�Þ ¼ logP ðXj�Þ ¼ log
Y

m

i¼1

P ðxij�Þ

¼
X

m

i¼1

log
X

K

j¼1

�jpjðxij�jÞ

 !

which is difficult to optimize because it contains the log of the
sum.Tosimplify the likelihoodexpression, let yi 2 f1; . . . ; Kg
denote which Gaussian xi is from and Y ¼ ðy1; . . . ; ymÞ. If we
know the value of Y, the likelihood becomes

Lð�Þ ¼ logP ðX ;Yj�Þ ¼ log
Y

m

i¼1

P ðxi; yij�Þ

¼
X

m

i¼1

logP ðxijyiÞP ðyiÞ ¼
X

m

i¼1

logð�yipyiðxij�yiÞÞ
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which can be optimized using a variety of techniques, such
as Expectation-Maximization algorithm.

Comparison of the K-means algorithm with the EM
algorithm for Gaussian mixtures shows that there is a close
similarity [7]. Whereas the K-means algorithm performs a
hard assignment of data points to clusters, in which each
data point is associated uniquely with one cluster, the EM
algorithm makes a soft assignment based on the posterior
probabilities. In fact, we can derive the K-means algorithm
as a particular limit of EM for Gaussian mixtures. For
details, please see [7].

2.2 Nonnegative Matrix Factorization

NMF is a matrix factorization algorithm that has achieved
great success in data clustering [47]. Given a nonnegative
data matrix X ¼ ½x1; . . . ;xn� 2 IRm�n, and each column of X
is a sample vector. NMF aims to find two nonnegative
matrices U ¼ ½uik� 2 IRm�t and V ¼ ½vjk� 2 IRn�t which mini-
mize the following objective function:

O ¼ kX � UV Tk2; ð1Þ

where k � k denotes the matrix Frobenius norm.
In reality, we have t� m and t� n. Thus, NMF

essentially try to find a compressed approximation of the
original data matrix, X � UV T . We can view this approx-
imation column by column as

xj �
X

t

k¼1

ukvjk; ð2Þ

where uk is the kth column vector of U . Thus, each data
vector xj is approximated by a linear combination of the
columns of U , weighted by the components of V . Therefore,
U can be regarded as containing a basis that is optimized for
the linear approximation of the data in X. Let zTj denote the
jth row of V , zj ¼ ½vj1; . . . ; vjk�

t. zj can be regarded as the
new representation of each data point in the new basis U .
Since relatively few basis vectors are used to represent
many data vectors, good approximation can only be
achieved if the basis vectors discover structure that is latent
in the data [31]. The nonnegative constraints on U and V

only allow addictive combinations among different basis.
This is the most significant difference between NMF and
other matrix factorization methods, e.g., Singular Value
Decomposition (SVD). Unlike SVD, no subtractions can
occur in NMF. For this reason, it is believed that NMF can
learn a parts-based representation [30]. The advantages of
this parts-based representation has been observed in many
real world problems such as face analysis [33], document
clustering [47] and DNA gene expression analysis [8]. For
more detailed analysis of NMF and its various extensions,
please see [17], [22], [23], [26], [34].

3 LAPLACIAN REGULARIZED GMM

In this section, we introduce our LapGMM algorithm,
which learns a Gaussian mixture model by exploiting the
intrinsic geometry of the probability distribution that
generates the data points. Since our approach is fundamen-
tally based on differential geometry, we begin with a brief
description of the basic geometrical concepts.

3.1 Riemannian Manifolds

Manifolds are generalizations of curves and surfaces to
arbitrarily many dimensions. In the simplest terms, these
are spaces that locally look like some euclidean space IRd,
and on which one can do calculus. The most familiar
examples, aside from euclidean spaces themselves, are
smooth plane curves such as circles and parabolas, and
smooth surfaces such as spheres, tori, paraboloids, ellip-
soids, and hyperboloids. When the manifold is embedded
in a high-dimensional euclidean space IRn, we also call it
submanifold of IRn and this euclidean space is called
ambient space. The formal definition of submanifolds is as
follows:

Definition of submanifolds. Let M be a subset of IRn such
that for every point x 2 M there exists a neighborhood Ux of x
in IRn and d continuously differentiable functions �k : U ! IR

where the differentials of �k are linearly independent, such that

M\ U ¼ fx 2 U j �kðxÞ ¼ 0; 1 	 k 	 dg:

ThenM is called a submanifold of IRn of dimension d.

In order to calculate the distance between two points on
the manifold M, we need to equip it with a Riemannian
metric g which is a function that assigns for each point x 2
M a positive definite inner product on the tangent space
TxM. Once the Riemannian metric is defined, one is
allowed to measure the lengths of the tangent vectors
v 2 TxM:

kvk2 ¼ hv;vi ¼
X

ij

gijv
ivj:

Since g is positive definite, kvk is nonnegative. For every
smooth curve r : ½a; b� ! M, we have tangent vectors

r0ðtÞ ¼
dr

dt
2 TrðtÞM:

We can then define the length of r from a to b:

lengthðrÞ ¼

Z b

a

k
dr

dt
kdt ¼

Z b

a

kr0ðtÞkdt:

A manifold equipped with Riemannian metric is called
Riemannian manifold. The geodesics are defined as follows:

Definition of geodesics. Geodesics are the shortest path
between points on the manifold.

To distinguish between the submanifold and the ambient
euclidean space, we usually use intrinsic geometry to denote
the geometrical properties of the submanifold in question.

3.2 Gaussian Mixture Model with Manifold
Regularization

As we have previously described, naturally occurring data
may be generated by structured systems with possibly
much fewer degrees of freedom than what the ambient
dimension would suggest. Thus, we consider the case when
the data lives on or close to a submanifold of the ambient
space. In this section, we show how geometric knowledge
of the probability distribution may be incorporated in
learning a Gaussian mixture model.
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Recall the standard framework of learning fromexamples.
There is a probability distribution P on X � IR according to
which examples are generated for function learning. For
clustering problem, examples are simply x 2 X drawn
according to the marginal distribution PX of P . Previous
studies have shown that there may be connection between
the marginal and conditional distributions [6]. Specifically, if
two points x1;x2 2 X are close in the intrinsic geometry of
PX, then the conditional probabilitiesPðyjx1Þ andPðyjx2Þ are
similar, where y 2 f1; . . . ; Kg is the class label. In other
words, the conditional probability distribution Pðyj�Þ varies
smoothly along the geodesics in the intrinsic geometry ofPX.
This is usually referred to as manifold assumption [6], which
plays an essential role in developing various kinds of
algorithms including dimensionality reduction [5] and
semisupervised learning algorithms [6], [49]. We utilize
these geometric intuitions to extend an established frame-
work for learning a Gaussian mixture model.

Suppose there are K components. Let fkðxÞ ¼ P ðy ¼
kjxÞ ¼

:
P ðkjxÞ be the conditional Probability Distribution

Function, k ¼ 1; . . . ; K. We use kfkkM to measure the
smoothness of fk. When we consider the case that the
support of PX is a compact submanifoldM� IRd, a natural
choice for kfkkM is

Z

x2M

krMfkk
2
dPXðxÞ ð3Þ

which is equivalent to

Z

x2M

LðfkÞfkdPXðxÞ; ð4Þ

where rM is the gradient of fk along the manifold and the
integral is taken over the distribution PX. L is the Laplace-
Beltrami operator on the manifold, that is, Lf ¼ �divrðfÞ.
By minimizing kfkk

2
M, we can obtain a sufficiently smooth

conditional probability distribution function.
In reality, however, the data manifold is usually

unknown. Thus, kfkk
2
M cannot be computed. In order to

model the geometrical structure of M, we construct a
nearest neighbor graph G. For each data point xi, we find its
p nearest neighbors and put an edge between xi and its
neighbors. The p nearest neighbor is defined as follows:

Definition of p nearest neighbors. Given m data points
fx1; . . . ;xmg � IRn. For any point xi, sort the rest m� 1

points according to their euclidean distances to xi, in
ascending order. The top-p ranked points are called the p

nearest neighbors of xi.

There are many choices to define the weight matrix S on the
graph. Three of the most commonly used are as follows:

1. 0-1 weighting. Sij ¼ 1 if and only if nodes i and j are
connected by an edge. This is the simplest weighting
method and is very easy to compute.

2. Heat kernel weighting. If nodes i and j are
connected, put

Sij ¼ e�
kxi�xjk

2

t
:

Heat kernel has an intrinsic connection to the
Laplace Beltrami operator on differentiable functions
on a manifold [5].

3. Dot-product weighting. If nodes i and j are
connected, put

Sij ¼ x
T
i xj:

Note that, if x is normalized to 1, the dot product of
two vectors is equivalent to the cosine similarity of
the two vectors.

Define L ¼ D� S, where D is a diagonal matrix whose
entries are column (or row, since S is symmetric) sums of S,
that is, Dii ¼

P

j Sij. L is called graph Laplacian [18]. By
spectral graph theory [18], [5], kfkk

2
M can be discretely

approximated as follows:

Rk ¼
1

2

X

m

i;j¼1

�

P ðkjxiÞ � P ðkjxjÞ
�2
Sij

¼
X

m

i¼1

P ðkjxiÞ
2
Dii �

X

m

i;j¼1

P ðkjxiÞP ðkjxjÞSij

¼ f
T
kDfk � f

T
k Sfk

¼ f
T
kLfk;

ð5Þ

where

fk ¼
�

fkðx1Þ; . . . ; fkðxmÞ
�T
¼
�

P ðkjx1Þ; . . . ; P ðkjxmÞ
�T
:

By minimizing Rk, we get a conditional distribution fk
which is sufficiently smooth on the data manifold.
Specifically, the objective function (5) with our choice of
Sij incurs a heavy penalty if neighboring points xi and xj

have very different conditional probability distributions.
Therefore, minimizing Rk is an attempt to ensure that if xi

and xj are “close,”then fkðxiÞ and fkðxjÞ are close as well. It
is worth emphasizing that the Laplacian of a graph is
analogous to the Laplace-Beltrami operator on manifolds.

Now we can define the regularized log-likelihood
function as follows:

Lð�Þ ¼ logP ðXj�Þ � �
X

K

k¼1

Rk

¼
X

m

i¼1

log

 

X

K

j¼1

�jpjðxij�jÞ

!

� �
X

K

k¼1

Rk;

ð6Þ

where � is the regularization parameter which controls the
smoothness of fkðk ¼ 1; . . . ; KÞ.

Similar to the standard Gaussian mixture model, the
above objective function is very difficult to optimize. There-
fore, we introduce latent variables Y ¼ ðy1; . . . ; ymÞ. We shall
call fX ;Yg the complete data set, and we refer to the actual
observeddataX as incomplete. The Laplacian regularized log-
likelihood function for the complete data set takes the form:

Lð�Þ ¼ logP ðX ;Yj�Þ � �
X

K

k¼1

Rk

¼
X

m

i¼1

log
�

�yipyiðxij�yiÞ
�

� �
X

K

k¼1

Rk:

ð7Þ

3.3 Model Fitting Using Generalized EM

The EM algorithm is used for finding maximum likelihood
parameter estimates when there is missing or incomplete
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data. In our case, the missing data is the Gaussian cluster to
which the data points belong. We estimate values to fill in
for the missing data (the E-step), compute the maximum-
likelihood parameter estimates using this data (the M-step),
and repeat until a suitable stopping criterion is reached. The
optimization scheme described here is fundamentally
motivated from our previous work [12], [13], [37].

3.3.1 E-Step

The EM algorithm first evaluates the posterior probabilities
using the current parameter values �n�1

i and �n�1i

(i ¼ 1; . . . ; K):

P ðkjxi;�
n�1Þ ¼

�n�1
k pk

�

xij�
n�1
k

�

PK
j¼1 �

n�1
j pj

�

xij�
n�1
j

� ; ð8Þ

where �n�1
i are the mixing coefficients and �n�1i denotes the

mean and covariance for the ith component. We then find
the expected value of the complete-data log likelihood
logP ðX ;Yj�Þ with respect to the unknown data Y given the
observed data X and the current parameter estimates. That
is, we define:

Qð�;�n�1Þ ¼ E
�

logP ðX ;Yj�ÞjX ;�n�1
�

: ð9Þ

With simple derivations, (9) can be rewritten as follows:

Qð�;�n�1Þ ¼
X

K

j¼1

X

m

i¼1

logð�jÞpðjjxi;�
n�1Þ

þ
X

K

j¼1

X

m

i¼1

log
�

pjðxij�jÞ
�

pðjjxi;�
n�1Þ:

ð10Þ

Incorporating the Laplacian regularization term Ri into
the above expression, thus the regularized expected com-
plete data log-likelihood for LapGMM is as follows:

Qð�;�n�1Þ

¼ Qð�;�n�1Þ � �
X

K

k¼1

Rk

¼
X

K

j¼1

X

m

i¼1

logð�jÞpðjjxi;�
n�1Þ

þ
X

K

j¼1

X

m

i¼1

logðpjðxij�jÞ
�

pðjjxi;�
n�1Þ

� �
X

K

k¼1

X

m

i;j¼1

ðP ðkjxi;�Þ � P ðkjxj;�ÞÞ
2
Sij:

ð11Þ

3.3.2 M-Step

In M-step, we need to solve the maximization problem (11).
However, there is no closed form solution for (11). In the
following, we discuss how to apply the generalized EM
algorithm (GEM, [38]) to maximize the regularized log-
likelihood function of LapGMM. The major difference
between GEM and traditional EM is in M-step. Instead of
finding the globally optimal solutions for � which
maximize (11), if suffices for GEM to find a “better” �.
Let �n�1 denote the parameters of previous iteration and �n

the current parameters. The convergence of the GEM

algorithm only requires that Qð�nÞ 
 Qð�n�1Þ. For Gaus-
sian distribution, the parameter �i ¼ ð�i;�iÞ, where �i is the
mean and �i is the covariance matrix.

Our basic idea is to maximize Qð�;�n�1Þ and minimize
PK

k¼1Rk separately in hope of finding an improvement of
the current Q. Notice that the regularization term only
involves posterior probabilities P ðkjxiÞ. We initialize
P ðkjxiÞ to the value of previous iteration, that is,
P ðkjxi;�

n�1Þ, and try to decrease
PK

k¼1Rk, which can be
done by applying Newton-Raphson method. As stated in
Section 3.1, Rk can be rewritten as f

T
kLfk, where fk ¼

ðP ðkjx1Þ; . . . ; P ðkjxmÞÞ
T and L is a constant matrix depend-

ing on the data.
Given a function fðxÞ and the initial value xt, the

Newton-Raphson updating formula to decrease (or in-
crease) fðxÞ is as follows:

xtþ1 ¼ xt � �
f 0ðxÞ

f 00ðxÞ
;

where 0 	 � 	 1 is the step parameter. By taking the first
and second derivatives of fTkLf with respect to P ðkjxiÞ (the
i-th element of fk), we get the following updating scheme
for P ðkjxiÞ:

P ðkjxiÞ  ð1� �ÞP ðkjxiÞ þ �

Pm
j¼1 SijP ðkjxjÞ
Pm

j¼1 Sij

; i ¼ 1; . . . ;m:

ð12Þ

It is easy to show that the graph Laplacian L is positive
semidefinite, so each updating step will decrease Rk.
Moreover, the weight matrix S is highly sparse, so the
updating of P ðkjxiÞ is very efficient.

After the conditional probability function is smoothed,
we can maximize the log-likelihood function Qð�;�n�1Þ of
the standard GMM and get the following updating scheme
for Gaussian parameters:

�i ¼
1

m

X

m

j¼1

pðijxjÞ; ð13Þ

��i ¼

Pm
j¼1 xjpðijxjÞ
Pm

j¼1 pðijxjÞ
; ð14Þ

�i ¼

Pm
j¼1 pðijxjÞðxj � �iÞðxj � ��iÞ

T

Pm
j¼1 pðijxjÞ

: ð15Þ

In general, the GEM algorithm takes many more
iterations to reach convergence compared with the K-
means algorithm, and each cycle requires significantly more
computation. It is, therefore, common to run the K-means
algorithm in order to find a suitable initiation for our
algorithm that is subsequently adapted using GEM. The use
of K-means for initialization is mostly due to its efficiency.
Comparing to random initialization, K-means can ob-
viously obtain better result and therefore speedup the
convergence. We may also consider other clustering
algorithms such as spectral clustering and NMF for
initialization. However, these algorithms are themselves
computationally expensive and thus not appropriate for
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initialization. As suggested in [7], K-means can usually

speedup up the convergence of the EM algorithm. The

covariance matrices can conveniently be initialized to the

sample covariances of the clusters found by the K-means

algorithm, and the mixing coefficients can be set to the

fractions of data points assigned to the respective clusters.

We summarize our LapGMM algorithm in Table 1.
It would be important to note that our proposed

algorithm shares some common properties with recently

developed regularized clustering techniques, such as Clus-

tering with Local and Global Regularization (CLGR, [45]). The

CLGR algorithm not only enforces the global smoothness of

the learned function, but also minimizes the label predica-

tion error at each local neighborhood. The local and global

information is then unified through a regularization frame-

work to learn a lower dimensional representation space in

which either K-means or discretization techniques can be
applied for label assignment. The major difference between
CLGR and our proposed LapGMM algorithm is that CLGR
is similarity-based whereas LapGMM is model-based.

3.4 Computational Complexity

In this section, we provide a computational complexity
analysis of GMM and LapGMM. Suppose we have m

samples in k clusters and each sample has n dimensions. In
the E-step of GMM (8), we need to compute the determinant
of the covariance matrix which needs Oðn3Þ operations.
Thus, the E-step of GMM costs Oðkmn3Þ. In M-step, the (13),
(14), and (15) cost OðkmÞ, OðkmÞ, and OðkmnÞ operations,
respectively. Suppose GMM converges after t iterations, the
computational complexity of GMM is Oðtkmn3Þ.

It is easy to see that the additional computation of
LapGMM is the posterior probabilities smoothing step in
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TABLE 1
The LapGMM Algorithm



(12). Since the matrix S is the weight matrix of a p-nearest
neighbor graph, each row of S has approximately p nonzero
elements. It is clear that (12) needs Oðkpm2Þ operations.
Finally, the computational complexity of LapGMM is
Oðtkmðn3 þ pmÞÞ.

For high-dimensional data (n is large), the n3 part will
dominate the computation. In this case, one can use some
dimensionality reduction algorithms (e.g., PCA) to reduce
the dimension first.

4 EXPERIMENTAL RESULTS

In this section, several experiments were performed to show
the effectiveness of our proposed algorithm. We begin with
a simple synthetic example to give some intuition about
how LapGMM works.

4.1 A Synthetic Example

Let us consider a toy problem to explain our motivation. We

are given a set of points constructed in two moons pattern,

as shown in Fig. 1a. Clearly, there are two natural clusters,

that is, the upper moon and the lower moon. Fig. 1b shows

the clustering results obtained by the standard GMM. The

two moons are mixed together. Fig. 1c shows the clustering

results obtained by LapGMM. As can be seen, LapGMM

yields the ideal clustering results such that the two moons

are well separated. This is because LapGMM respects the

local geometrical structure of the data space by incorporat-

ing a Laplacian smoothing regularizer. Therefore, nearby

data points are grouped into the same cluster.

4.2 Data Preparation

Three real world data sets were used in our experiments.

The first one is USPS handwritten digits data set,1 which

contains 9,298 images of handwritten digits. The digits 0 to

9 have 1,553, 1,269, 929, 824, 852, 716, 834, 792, 708, and 821

samples, respectively. The USPS digits data were gathered

at the Center of Excellence in Document Analysis and

Recognition (CEDAR) at SUNY Buffalo, as part of a project

sponsored by the US postal Service. For more details about

this data set, please see [27]. The size of each image is 16�

16 pixels, with 256 gray levels per pixel. Thus, each image is

represented by a 256-dimensional vector.

The second one is COIL20 image library2 from Columbia.

It contains 20 objects. The images of each objects were taken

5 degrees apart as the object is rotated on a turntable and

each object has 72 images. The size of each image is 32� 32

pixels, with 256 gray levels per pixel. Thus, each image is

represented by a 1,024-dimensional vector. Some sample

images from these two data sets are shown in Figs. 2 and 3.
The third one is the TDT2 document corpus.3 It consists of

data collected during the first half of 1998 and taken from six

sources, including two newswires (APW and NYT), two

radio programs (VOAandPRI), and two television programs

(CNN and ABC). It consists of 11,201 on-topic documents

which are classified into 96 semantic categories. In this

experiment, those documents appearing in two or more

categories are removed, and the largest 30 categories are

kept, thus leaving us with 10,021 documents in total. The

number of distinct words contained in these documents is

36,771. Therefore, each document is represented as a 36,771-

dimensional vector. For both GMM and LapGMM, we need

to estimate the covariance matrix which is of size 36;771 �

36;771. However, it is practically impossible to estimate such

a large matrix. On the other hand, the number of dimensions

is larger than the number of data points, which suggests that

the features (words) are linearly dependent. Therefore, we

first apply PCA to reduce the dimension to 500.

4.3 Evaluation Metric

The clustering result is evaluated by comparing the

obtained label of each data point with that provided by

the ground truth. Two metrics, the accuracy (AC) and the

normalized mutual information metric (MI) are used to

measure the clustering performance [47]. Given a point xi,

let ri and si be the obtained cluster label and the label

provided by the ground truth, respectively. The AC is

defined as follows:

AC ¼

Pm
i¼1 �ðsi;mapðriÞÞ

m
;

where m is the total number of samples and �ðx; yÞ is the
delta function that equals one if x ¼ y and equals zero
otherwise, and map(ri) is the permutation mapping func-
tion that maps each cluster label ri to the equivalent label
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Fig. 1. Clustering on the two moons pattern. (a) Toy data set. (b) Clustering results given by GMM. (c) Clustering results given by LapGMM.

1. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
multiclass.html#usps

2. http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
3. http://www.nist.gov/speech/tests/tdt/tdt98/index.htm.



from the data set. The best mapping can be found by using

the Kuhn-Munkres algorithm [36].
Let C denote the set of clusters obtained from the ground

truth and C0 obtained from our algorithm. Their mutual

information metric MIðC;C0Þ is defined as follows:

MIðC;C0Þ ¼
X

ci2C;c0
j
2C0

pðci; c
0
jÞ � log2

pðci; c
0
jÞ

pðciÞ � pðc0jÞ
;

where pðciÞ and pðc0jÞ are the probabilities that a sample point

arbitrarily selected from the data point belongs to the clusters

ci and c0j, respectively, and pðci; c
0
jÞ is the joint probability that

the arbitrarily selected data point belongs to the clusters ci as

well as c0j at the same time. In our experiments, we use the

normalized mutual information MI as follows:

MIðC;C0Þ ¼
MIðC;C0Þ

maxðHðCÞ; HðC0ÞÞ
;

where HðCÞ and HðC0Þ are the entropies of C and C0,

respectively. It is easy to check thatMIðC;C0Þ ranges from 0

to 1. MI ¼ 1 if the two sets of clusters are identical, and

MI ¼ 0 if the two sets are independent.

4.4 Clustering Results

To demonstrate how our algorithm improves the perfor-

mance of data clustering, we compared the following five

methods:

. Our proposed Laplacian regularized Gaussian Mix-
ture Model.

. K-means.

. Principal Component Analysis (PCA)+K-means.

. Nonnegative Matrix Factorization-based clustering
[47].

. Gaussian Mixture Model (GMM).

K-means and PCAþK-means are considered as baseline
methods. Both of them can be implemented very efficiently.
GMM is the most related algorithm to our proposed
method. NMF is the state-of-the-art technique for data
clustering. On the other hand, GMM is a similarity-based
technique, whereas NMF is a similarity-based technique for
clustering. For PCAþK-means, we need to specify the
dimensionality of the reduced subspace. In our experi-
ments, we kept 98 percent information according to the
eigenvalues. There are two important parameters in our
algorithm, that is, number of nearest neighbors p and
regularization parameter �. We empirically set them to 8
and 103, respectively. In the next section, we will discuss the
effect on clustering performance with different values of p
and �. For the nearest neighbor graph in our algorithm, we
use the 0-1 weighting scheme for the sake of simplicity.

Tables 2, 3, and 4 show the experimental results using
the USPS, COIL20, and TDT2 data sets, respectively. The
evaluations were conducted with different numbers of
clusters (k). For USPS and COIL20, k ranges from 2 to 10.
For TDT2, k ranges from 5 to 30. For each given cluster
number k, 30 test runs were conducted on different
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Fig. 3. Sample images from the COIL20 data set.Fig. 2. Sample images from the USPS handwritten digits data set.

TABLE 2
Clustering Performance on USPS
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TABLE 3
Clustering Performance on COIL20

TABLE 4
Clustering Performance on TDT2

Fig. 4. (a) Accuracy. (b) Normalized mutual information versus the number of clusters on USPS data set.

Fig. 5. (a) Accuracy. (b) Normalized mutual information versus the number of clusters on COIL20 data set.



randomly chosen clusters, and the final performance scores
were computed by averaging the scores from the 30 tests.
For each test, the K-means was applied 10 times with
different start points and the best result in terms of the
objective function of K-means was recorded.

As can be seen, our proposed LapGMMperforms the best
on all the three data sets. On the USPS and COIL20 data sets,
PCAþK-means performs the second best, and NMF per-
forms the worst. On TDT2, NMF performs the second best,
and GMM performs the worst. On the USPS data set, the

average accuracy (normalized mutual information) for
LapGMM, K-means, PCAþK-means, NMF, and GMM are
88.6 (85.1 percent), 78.4 (68.5 percent), 78.8 (68.5 percent),
74.7 (63.0 percent), and 77.1 percent (70.7 percent), respec-
tively. Our algorithm has gained 12.4 percent relative
improvement in accuracy and 24.2 percent relative improve-
ment in normalized mutual information over PCAþK-
means. For all the cases (K ¼ 2; . . . ; 10), our algorithm
consistently outperforms the other four algorithms. On the
COIL20 data set, the average accuracy (normalized mutual
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Fig. 6. (a) Accuracy. (b) Normalized mutual information versus the number of clusters on TDT2 data set.

Fig. 7. The performance of LapGMM versus parameter �. LapGMM is very stable with respect to the parameter �. It achieves consistently good
performance with the � varying from 500 to 105. (a) USPS. (b) USPS. (c) COIL20. (d) COIL20. (e) TDT2. (f) TDT2.



information) for LapGMM, K-means, PCAþK-means,
NMF, and GMM are 79.7 (79.1 percent), 76.2 (72.3 percent),
77.9 (73.4 percent), 73.7 (68.4 percent), and 74.4 percent
(71.2 percent), respectively. On TDT2, the average accuracy
(normalized mutual information) for LapGMM, K-means,
PCAþK-means, NMF, and GMM are 82.4 (82.0 percent),
64.5 (72.5 percent), 66.4 (73.4 percent), 69.4 (72.9 percent),
and 63.2 percent (72.3 percent), respectively. Comparing to
the second best algorithm NMF, our LapGMM algorithm
has achieved 18.7 and 12.5 percent relative improvement in
accuracy and normalized mutual information. Figs. 4, 5, and
6 show the plots of clustering performance versus the
number of clusters.

These experiments reveal a number of interesting points:

1. On all the three data sets, LapGMM outperforms the
other four algorithms. As the number of clusters
increases, the clustering performance for all the
methods decreases.

2. LapGMM performs especially good on the USPS and
TDT2 data sets. This is probably because that both
USPS and TDT2 data sets contain much more
samples than COIL20. Therefore, the constructed
affinity graph on USPS and TDT2 data sets can better
capture the intrinsic manifold structure.

3. Comparing to the standard GMM method, the
LapGMM method encodes more discriminating
information by smoothing the conditional probability
density functions. In fact, if there is a reason to believe

that Euclidean distances (kxi � xjk) are meaningful
only if they are small (local), then our algorithm fits a
probabilistic model that respects such a belief.

4.5 Model Selection

Model selection is a crucial problem in most of the learning
problems. In some situations, the learning performance may
drastically vary with different choices of the parameters,
and we have to apply some model selection methods [44]
for estimating the generalization error. In this section, we
evaluate the performance of our algorithm with different
values of the parameters.

Our LapGMM algorithm has two essential parameters:
the number of nearest neighbors p and the regularization
parameter �. p defines the “locality” of the data manifold
and � controls the smoothness of the conditional probability
distributions. Figs. 7 and 8 show the performance of
LapGMM as a function of the parameters � and p,
respectively. As can be seen, the performance of LapGMM
is very stable with respect to both of the two parameters. It
achieves consistently good performance with the � varying
from 500 to 105 and p varying from 5 to 13. Thus, the
selection of parameters is not a very crucial problem in the
LapGMM algorithm.

5 CONCLUSIONS AND FUTURE WORK

We have introduced a novel algorithm, called Laplacian
regularized Gaussian Mixture Model, for data clustering. It
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Fig. 8. The performance of LapGMM versus parameter p. LapGMM achieves consistently good performance with the parameter p varying from 5 to
13. (a) USPS. (b) USPS. (c) COIL20. (d) COIL20. (e) TDT2. (f) TDT2.



is based on data-dependent geometric regularization which

incorporates the local manifold structure in the log-like-

lihood function of the standard Gaussian mixture model.

We construct a sparse nearest neighbor graph to detect the

underlying nonlinear manifold structure and use the graph

Laplacian to smooth the conditional probability density

function along the geodesics in the intrinsic geometry of the

marginal distribution. Experimental results on USPS hand-

written digits data set, COIL20 image library, and TDT2

document corpus show the effectiveness of our method.
Several questions remain to be investigated in our future

work.

1. Central to the algorithm is a graph structure that is
inferred on the data points. Recently there have been
a lot of interest in exploring different ways of
constructing a graph to model the intrinsic geome-
trical and discriminative structure in the data [14],
[3]. There is no reason to believe that the nearest
neighbor graph is the only or the most natural choice.
Also, as we described above, graph Laplacian is not
the only choice of smoothing operators. A systematic
investigation of the use of different graph-based
smoothing operators needs to be carried out.

2. Our approach utilizes the local metric structure of
the manifold to improve data clustering. We have
not given any consideration to other topological
invariants of the manifold that may be potentially
estimated from data. For example, it remains unclear
how to reliably estimate the number of connected
components (or, clusters).

3. There are several parameters in our algorithm, e.g.,
number of nearest neighbors and the regularization
parameter. Although our empirical evaluation
shows that our algorithm is not sensitive to the
parameters, it remains unclear how to do model
selection in a principled manner. The major diffi-
culty of model selection for clustering is due to the
lack of label information.
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