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Abstract: The Hunga Tonga–Hunga Ha’apai (Tonga) injected only small amount of SO2 into the
stratosphere, while our analyses of the Microwave Limb Sounder (MLS) measurements show that a
massive amount of water vapor was directly injected into the stratosphere by the Tonga eruption,
which is probably due to its submarine volcanic activity. The Tonga eruption injected a total amount
of 139 ± 8 Tg of water vapor into the stratosphere and resulted in an increase of 8.9 ± 0.5% in the
global stratospheric water vapor. Analyses also show that the uppermost altitude impacted by Tonga
reached the 1 hPa level (~47.6 km). Additionally, the maximum hydration region for increased water
vapor is at 38–17 hPa (~22.2–27 km), where the water vapor mixing ratio increased by 6–8 ppmv
during the three months after the Tonga eruption. The enhanced stratospheric water vapor has great
potential to influence the global radiation budget as well as ozone loss.

Keywords: stratospheric water vapor; Tonga; volcanic injected hydration

1. Introduction

Stratospheric water vapor plays an important role in chemistry and global climate
change. The increased water vapor in the stratosphere had the potential to enhance the rate
of surface warming during the 1990s [1]. The increased water vapor in the mid-latitude
stratosphere will contribute to ozone loss [2,3] and impede polar stratospheric ozone
recovery [4].

Tropospheric air primarily enters the stratosphere across the tropical tropopause under
the mean upward tropical Brewer–Dobson circulation. Vapor in excess of ice saturation
is removed by the growth and sediment of ice crystals, called freeze drying [5]. When
air parcels pass through the low temperature region at the convective outflow of tropical
cyclones, the dehydration process occurs [6]. In addition to the dominant role of cold point
temperature on stratospheric water vapor, other mechanisms such as methane oxidation,
convective hydration, the quasi-biennial oscillation, and volcanic aerosol burden also
contribute to the variation in stratospheric water vapor [7–10].

Previous studies have shown that volcanic eruptions can directly inject water vapor
into the stratosphere [11–16], but this impact only lasts for a few days, and has a minor
disturbance on the background level of the stratospheric water vapor. In situ frost point
hygrometer measurements from an aircraft campaign determined ~40 ppmv water va-
por mixing ratio in the plume of Mount St. Helens [12]. According to the estimation
by Pitari et al. [16], 37.5 Tg of water vapor was injected into the stratosphere due to the
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Pinatubo eruption. Lower stratospheric water vapor mixing ratios exceeding 10 ppmv
were observed by the Microwave Limb Sounder (MLS) a few days after the 2015 Calbuco
eruption [13] and 2 Tg of mass of stratospheric water vapor was inferred. We notice that
these volcanic events originated from continents, while submerged volcano eruptions
might be capable of injecting greater amounts of water vapor into the stratosphere.

The submarine Hunga Tonga–Hunga Ha’apai volcano (20.54◦ S, 175.38◦ W, referred
to as Tonga) erupted violently on 15 January 2022, which is located near the South Pacific
islands in the Kingdom of Tonga [17–19]. Tonga eruptive activity produced an unsteady
volcanic plume that transiently reached 58 km into the mesosphere, corresponding to a
Volcanic Explosivity Index (VEI) of 5–6 for this event. During an eruption duration of ~12 h,
the eruptive volume and mass are estimated at 1.9 km3 and ~2900 Tg, respectively [20].

Using a combination of remote sensing and in situ measurements, the MLS and balloon-
borne Cryogenic frost point hygrometer (CFH) observations, we investigate and evaluate
the influence of the Tonga eruption on stratospheric water vapor from the following
two aspects:

1. To quantify the magnitude of the stratospheric water vapor increase caused by the
Tonga eruption;

2. To evaluate the spatial and temporal extent of water vapor injected directly into the
stratosphere as a result of the Tonga eruption.

2. Data and Methods
2.1. Data

Our analyses are based on remote sensing observations of water vapor from the
MLS/Aura. We used the MLS daily water vapor profiles version 4.2 with a vertical
resolution of 1.3–3.6 km from 316–0.22 hPa. More important for this study, MLS data
has 25 vertical levels within 100–1 hPa. At 100, 22, and 1 hPa, the precision for a single
profile of water vapor is 15%, 5%, and 6%, respectively [21]. The data screening criteria
of quality (>0.7) and convergence (<2) specified by Livesey et al. [21] failed to distinguish
anomalously high water vapor caused by the Tonga volcano. Therefore, appropriate data
screening criteria were applied to avoid misjudgment. Data with status (an even number),
precision (>0), and mixing ratio (>0.101 ppmv) at any pressure greater than or equal to
1 hPa (i.e., altitudes below that pressure level) were used.

In situ water vapor measurements with balloon-borne CFH are widely accepted as a
standard for tropospheric and stratospheric water vapor measurements [22]. In our study,
the balloon was launched at Lijiang (100.22◦ E, 26.85◦ N), Yunnan province on 9 April 2022
in the frame of the Sounding Water vapor, Ozone, and Particle (SWOP) campaign [23–25].
A CFH was attached to detect water vapor, with a small uncertainty (<0.2 K) in frost-
point temperature and a corresponding uncertainty (2–3%) in water vapor volume mixing
ratio [26].

In order to determine the propagation of exceptionally high water vapor in the strato-
sphere after the Tonga eruption, the European Centre for Medium-Range Weather Forecasts
reanalysis (ERA5) data [27] was used to display the stratospheric wind field. The ERA5
data was recorded on a 0.25◦ × 0.25◦ horizontal grid and on 137 hybrid levels from surface
to 0.01 hPa.

2.2. Methodology

The total mass of stratospheric water vapor was approximately calculated by the
sum of water vapor mass within 100–1 hPa (~16.6–47.6 km), which could be divided into
24 vertical layers according to MLS pressure levels. We derived the mass of water vapor
at each layer by accumulating the water vapor mass within each latitudinal band that is
divided into 45 bins:

M = ∑24
n=1 mn (1)
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With

mn = ∑45
i=1

(Pn − Pn+1)·Si
g

·ε·rin (2)

Here, Pn and Pn+1 are the pressure boundaries of the n-th layer, Si means the area of
the i-th latitudinal band, and rin denotes the average mixing ratio of water vapor in the
n-th layer and the i-th latitudinal band, g = 9.81 N kg–1 and ε = 0.622. We note that there
are no MLS water vapor measurements in the latitude range of 82–90◦, where the water
vapor mixing ratio of 78–82◦ is used instead.

3. Results

The motivation for this work comes from the enhanced water vapor at ~25–26 km
derived from in situ measurements in Lijiang on 9 April 2022. For determination of the
correlation between the observed enhancement and the Tonga eruption, we examined the
daily MLS water vapor profiles from the time of the outbreak for Tonga. The results are
illustrated in Figure 1, together with the corresponding ERA5 wind field. The tropical
easterly jet stream at 30 hPa covered the region of 20◦ S–5◦ N, where Tonga (20.57◦ S,
175.38◦ W) was located at the southern edge of the jet. Isolated maxima of water vapor
(>200 ppmv) were observed downwind of Tonga, showing excellent agreement between
the water vapor outliers near the Tonga volcano and the horizontal wind field around
30 hPa level during 16–26 January 2022. These moist air parcels were transported one circle
in the stratosphere along with the tropical easterly jet stream over a period of ~12 days.
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  Figure 1. Water vapor (dots) mixing ratio (VMR, ppmv) at 31 hPa derived from MLS/Aura and wind

field (magenta vectors) from the ERA5 reanalysis at 30 hPa at 00:00 UTC during 16–26 January 2022.
The plus sign marks the location of Tonga near 20◦ S, 175◦ W.
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The unprecedented enhanced water vapor (>200 ppmv) measured in Figure 1 far exceeds
the stratospheric mean value (~4–5 ppmv) at the same pressure level. This provides convincing
evidence that large amounts of water vapor were directly injected into the stratosphere due
to the underwater volcano. Although the ash and SO2 from El Chichon (1982) and Mount
Pinatubo (1991) volcanoes had significant effects on the earth’s climate, both of them originated
from the continent. To further describe the effect of the Tonga eruption on stratospheric water
vapor, we examined hundreds of water vapor profiles over 100–1 hPa, covering the period
from 5 January to 25 April 2022. MLS water vapor anomalies were calculated to highlight
the variation in water vapor after volcanic eruptions, by subtracting water vapor averaged
0–10 days prior to the eruption of Tonga, as shown in Figure 2a.

Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 9 
 

 

Figure 1. Water vapor (dots) mixing ratio (VMR, ppmv) at 31 hPa derived from MLS/Aura and wind 
field (magenta vectors) from the ERA5 reanalysis at 30 hPa at 00:00 UTC during 16–26 January 2022. 
The plus sign marks the location of Tonga near 20° S, 175° W. 

The unprecedented enhanced water vapor (>200 ppmv) measured in Figure 1 far ex-
ceeds the stratospheric mean value (~4–5 ppmv) at the same pressure level. This provides 
convincing evidence that large amounts of water vapor were directly injected into the 
stratosphere due to the underwater volcano. Although the ash and SO2 from El Chichon 
(1982) and Mount Pinatubo (1991) volcanoes had significant effects on the earth’s climate, 
both of them originated from the continent. To further describe the effect of the Tonga 
eruption on stratospheric water vapor, we examined hundreds of water vapor profiles 
over 100–1 hPa, covering the period from 5 January to 25 April 2022. MLS water vapor 
anomalies were calculated to highlight the variation in water vapor after volcanic erup-
tions, by subtracting water vapor averaged 0–10 days prior to the eruption of Tonga, as 
shown in Figure 2a. 

 

  

Figure 2. (a) MLS/Aura time series of mean (30° S–5° N) stratospheric water vapor anomalies (ppmv) 
from 100 to 1 hPa after the Tonga eruption (15 January 2022), during January–April 2022. The anom-
alies are calculated by subtracting water vapor averaged 0–10 days prior to the eruption of Tonga 
from daily water vapor data. (b) Stratospheric water vapor profiles on various days following the 
Tonga eruption. A narrower latitude range (15°–25° S, closer to Tonga) was chosen to highlight the 
effect of the eruption. 

Figure 2a shows the significant effect of the Tonga volcano on stratospheric water 
vapor, which can reach 1 hPa level (~47.6 km) and persist for more than three months. 
Such a high plume height and long period of hydration are substantially stronger than 
previous volcanic records [11–13], indicating the unprecedented impact on stratospheric 
water vapor of the Tonga eruption. There is a maximum area for enhanced water vapor 
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files approach the background value as time goes on (Figure 2b) but retain a maximum 
value (>12 ppmv) over ~30–20 hPa. In addition, we note that the variation in water vapor 
in the lower stratosphere over 100–46 hPa (~16.6–21 km, Figure 2a,b) is almost invisible, 
which differs from the observed enhancement of lower stratospheric water vapor by Sioris 
et al. [13]. These results confirm the strong upwelling plume and a great amount of direct 
injection of water vapor into the stratosphere caused by the Tonga eruption. 

Figure 2. (a) MLS/Aura time series of mean (30◦ S–5◦ N) stratospheric water vapor anomalies
(ppmv) from 100 to 1 hPa after the Tonga eruption (15 January 2022), during January–April 2022.
The anomalies are calculated by subtracting water vapor averaged 0–10 days prior to the eruption of
Tonga from daily water vapor data. (b) Stratospheric water vapor profiles on various days following
the Tonga eruption. A narrower latitude range (15◦–25◦ S, closer to Tonga) was chosen to highlight
the effect of the eruption.

Figure 2a shows the significant effect of the Tonga volcano on stratospheric water
vapor, which can reach 1 hPa level (~47.6 km) and persist for more than three months.
Such a high plume height and long period of hydration are substantially stronger than
previous volcanic records [11–13], indicating the unprecedented impact on stratospheric
water vapor of the Tonga eruption. There is a maximum area for enhanced water vapor
at pressure levels of 38–17 hPa (~22.2–27 km, Figure 2a,b), where water vapor mixing
ratio is increased by 6–8 ppmv. Given the plume dispersion, the stratospheric water vapor
profiles approach the background value as time goes on (Figure 2b) but retain a maximum
value (>12 ppmv) over ~30–20 hPa. In addition, we note that the variation in water vapor
in the lower stratosphere over 100–46 hPa (~16.6–21 km, Figure 2a,b) is almost invisible,
which differs from the observed enhancement of lower stratospheric water vapor by Sioris
et al. [13]. These results confirm the strong upwelling plume and a great amount of direct
injection of water vapor into the stratosphere caused by the Tonga eruption.

In the maximum area for water vapor at pressure levels of 38–17 hPa (~22.2–27 km),
we subtracted averaged water vapor 0–10 days prior to the eruption of Tonga to derive
the horizontal propagation of stratospheric water vapor anomalies, as shown in Figure 3a.
The anomalous water vapor rapidly diffused along with the easterly jet from the injection
site (black plus sign) during the first 12 days and was concentrated in the 30◦ S–5◦ N,
with a subsequent slow spread to mid-latitudes. Another irrefutable line of evidence of
stratospheric water vapor enhancement and dispersion is the in situ observation launched
in the North Hemisphere (26.8◦ N, 100.2◦ E) 84 days after Tonga erupted. Figure 3b shows
the balloon-borne CFH measurements on 9 April 2022 in Lijiang, Yunnan (black triangle in
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Figure 3a), which captures the enhanced water vapor (5–9 ppmv, relative to a background
value of about 4–5 ppmv) over ~30–20 hPa levels, approximately consistent with MLS water
vapor (5–7 ppmv). The MLS water vapor was derived from a profile (26.7◦ N, 108.6◦ E) at
the same latitude as Lijiang, ~830 km apart from the CFH launch site with a 4-h lag. The
MLS water vapor is a slightly drier than the CFH measurements between 22 and 26 hPa
over the Tibetan Plateau, which was confirmed by former observations [28].
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38–17 hPa levels. The locations of Tonga volcano and Lijiang are marked with a black plus sign and a
triangle, respectively. (b) Vertical profiles of water vapor at Lijiang on 9 April 2022, derived from in
situ observation (blue), and MLS remote sensing observation (black). The gray line shows the mean
April water vapor with standard deviations derived from MLS during 2005–2020.

To quantify the influence of the Tonga eruption on global stratospheric water vapor,
the calculations below are based on the estimation method mentioned in Section 2.2. The
difference in the total mass of stratospheric water vapor after and before the Tonga eruption
provides an estimate of the injected water vapor.

Time series for the daily variation in the total mass of stratospheric water vapor
before and after the Tonga eruption are illustrated in Figure 4. The results demonstrate
an increase of about 139 ± 8 Tg (8.9 ± 0.5%) for stratospheric water vapor. The total mass
of stratospheric water vapor has increased from 1557 ± 1 to 1696 ± 8 Tg (1 Tg = 1012 g).
Glaze et al. [11] suggested that the entire stratosphere contains 1400 Tg of water vapor, and
their simulations showed that violent volcanic eruptions (such as Pinatubo-sized eruption)
possess the capacity to inject more than 96 Tg (or 7%) water vapor into the stratosphere.
This provides strong support for our estimation of 139 ± 8 Tg water vapor injected into the
stratosphere by Tonga.

We calculated the total mass of stratospheric water vapor per unit area based on the
MLS and in situ CFH measurements (Figure 3b) on 9 April 2022, respectively, to assess
the uncertainty of MLS remote sensing measurements of water vapor. Results show that
the total mass of stratospheric water vapor per unit area calculated by MLS is 2.65 g m–2,
which reasonably agrees with the quantification by CFH (2.52 g m−2). In addition, a similar
calculation was applied to the mean MLS water vapor in April during 2005–2020, which
comes out to be 2.33 g m–2. Referring to this mean water vapor mass, the relative increase
is 13.7% according to MLS and 8.2% according to the CFH.
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4. Summary and Discussion

Volcanic eruptions can directly inject water vapor into the stratosphere based on
theoretical research and measurements [12,13,16]. The main objectives of this study were
to evaluate the spatial and temporal extent of the Tonga volcanic eruption on stratospheric
water vapor and to quantify the magnitude of injected volcanic water vapor.

Based on MLS measurements, an estimation of the stratospheric water vapor increase
is 139 ± 8 Tg (8.9 ± 0.5%), caused by the Tonga eruption (Figure 4). The volcanic plume
transiently reached 58 km in the mesosphere [20], with the corresponding observed water
vapor injection transiently reaching 1 hPa level (~47.6 km) in our results (Figure 2a). The
increased water vapor was transported full circuit along with the easterly jet during the first
12 days and rapidly diffused to be concentrated in the 30◦ S–5◦ N (Figures 1 and 3a). Then,
in the subsequent period of three months, direct injected hydration of the stratosphere
due to the Tonga eruption mainly occurred over ~38–17 hPa (~22.2–27 km) levels, where
water vapor mixing ratio increased by 6–8 ppmv (Figure 2a). Meanwhile, the anomalously
high water vapor continuously spread to the mid-latitude and was captured by the in situ
measurements at Lijiang (26.8◦ N, 100.2◦ E) 12 weeks after the Tonga eruption (Figure 3b).

Previous research provided various estimates of the total erupted mass of stratospheric
water vapor. Given the volume of the plume as 2 × 106 km3 [29] and an average mixing
ratio in the plume of 20 ppmv from an aircraft campaign, Murcray et al. [12] calculated that
a total mass of 3.2 Tg of water vapor was injected by the Mount St. Helens eruption (on
18 May 1980). Estimates of the total erupted mass from Mount St. Helens was 870 Tg [30]
and a study by Rutherford et al. [31] found 4.6 ± 1% volatiles in the erupted melt, which
are considered to be predominantly water vapor. Thus, a mass of ~40 Tg of water vapor is
inferred from the Mount St. Helens eruption.

The mass of stratospheric water vapor injected by the Calbuco eruption (on 22 April 2015)
was determined using MLS satellite observations [13]. Removing negative concentration
anomalies relative to the background, the Calbuco water vapor mass enhancement of 1.5 Tg is
estimated in the stratosphere, whose largest sources of uncertainty come from the longitudinal
extent of the water vapor enhancement and the uniformity of the water vapor within the plume.

It is important to reiterate that there are similar uncertainties in our estimates of
stratospheric water vapor injected by Tonga. According to the method mentioned in
Section 2.2, substituting with water vapor of 78◦–82◦ due to the lack of water vapor
measurement within the pole (82◦–90◦) regions is a source of value for estimating the
total mass of stratospheric water vapor. However, simulations from three CLaMS cases
in Tao et al. [9] show little difference in water vapor between the two latitudinal bands.
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Consequently, the above approximate substitution would have little error due to the small
area of poles. Moreover, the method for estimating the total mass of stratospheric water
vapor is highly dependent on the precision and accuracy of the MLS data. In comparison
with the CFH measurements, the MLS measurements have a 5.3% wet bias in estimating
the total mass of stratospheric water vapor.

As a result of filtering anomalously high stratospheric water vapor, MLS data quality
limitation (>0.7) and convergence limitation (<2.0) were not used, especially during the
first 2 weeks after eruption. However, additional adverse influences on stratospheric water
vapor cannot be found in Figure 1 under such loose data screening. We also conducted
sensitivity control experiments that using strict quality and convergence limitations had
little effect on our results at least 2 weeks after the eruption (not shown).

Most of the “shallow branch” of Brewer–Dobson circulation is below 70 hPa [32], while
the water vapor injected by the Tonga volcano is concentrated at 38–17 hPa. Therefore, the
increased stratospheric water vapor would be transported to higher latitude mainly by the
“deep branch” of Brewer–Dobson circulation (see Figure 2a). Such a single-cell poleward
circulation transports from the tropics into the winter hemisphere [33], which explains why
we captured the increase in water vapor at Lijiang in the Northern Hemisphere. According
to our results, the increased stratospheric water vapor has not yet spread to the poles
currently. However, the “deep branch” circulation and the meridional mixing driven by
planetary and synoptic-scale Rossby waves breaking would continuously transport water
vapor to higher latitudes and may have a significant impact on ozone chemistry [34,35].

Our overall results demonstrate that a large amount of water vapor is injected into
the stratosphere by the Tonga volcanic eruption, which is one to two orders of magnitude
greater than calculations of the Mount St. Helens [12] and Calbuco [13] eruptions. Addi-
tionally, unlike the short-lasting increase in stratospheric water vapor (e.g., ~9 days for 1980
Mount St. Helens; ~1 week for 2015 Calbuco), the water vapor injected by the submarine
Tonga volcanic eruption has been present for several months in the stratosphere. Though
the Tonga eruption had insignificant impacts on the global climate according to the weak
intensity of SO2 injection [36,37], a large amount of water vapor in the stratosphere posts
extreme challenges for stratospheric chemistry and radiation budget. Future studies are
required to assess the potential effects of this stratospheric injected hydration event.
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