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Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis
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Normal mode analysis (NMA) is a leading method for studying long-time dynamics and elasticity
of biomolecules. The method proceeds from complex semiempirical potentials characterizing the
covalent and noncovalent interactions between atoms. It is widely accepted that such detailed potentials
are essential to the success of NMA's. We show that a single-parameter potential is sufficient to
reproduce the slow dynamics in good detail. Costly and inaccurate energy minimizations are eliminated,
permitting direct analysis of crystal coordinates. The technique can be used for new applications, such
as mapping of one crystal form to another by means of slow modes, and studying anomalous dynamics
of large proteins and complexes. [S0031-9007(96)01063-0]

PACS numbers: 87.15.By, 87.15.He

Thermal equilibrium fluctuations of the x-ray crystal E, = 1 Ky(b — bo)* + 1 Z Ko(6 — 6)*
coordinates of proteins provide a basis for understanding 2 onds 2 yngles
the complex dynamics and elasticity of biological macro- 1
molecules [1]. Analysis of the normal modes of globu- + 5 Z Ky4[1 + codng — 8)]
lar proteins shows an interesting anomaly. The density dihedrals
of the slow vibrational modes is proportional to their fre- A B qiq»

— 2 ; + — = — + = |. @)

guency,g(w) ~ w, rather thang(w) ~ w* as predicted 2 6 Dr

nonbonded pairs

by Debye’s theory [2]. Yet, the atoms in globular pro-
teins are packed as tightly as in solids. We show thafhe first three terms describe the energy cost in the
a single-parameter potential reproduces the slow elastidistortion of bond lengths, bond angles, and dihedral
modes of proteins obtained with vastly more complexangles, and the last term represents steric repulsions,
empirical potentials. The simplicity of the potential per- van der Waals attractions, and electrostatic interactions
mits greater insight and understanding of the mechanismsetween nonbonded atoms. The various bonded con-
that underlie the slow, anomalous motions in biologicalstants,K,,, by, Ky, €etc., are specific for each type of co-
macromolecules such as proteins. valent interaction, and the nonbonded constaAtsnd

To date, normal modes of globular proteins have beem, are specific for every type of interacting atom pairs.
used to reproduce crystallographic temperature factors [3[hese constants are carefully determined from extensive
and diffuse scatter [4]. Normal mode analyses (NMA’s)theoretical and experimental studies (see Ref. [7]).
shed light on shear and hinge motions necessary for cata- In this work, | show that in some cases the usual sophis-
Iytic reactions, and have been used with some success tizated potentials may be replaced by a far simpler pair-
map one crystal form of a protein into another [5]. Finally, wise Hookean potential, controlled by a single parameter.
NMA'’s yield macroscopic elastic moduli of large protein Such a formulation is sufficient to fully describe the
assemblies, based on their microscopic structure [6].  anomalous low-frequency motion of large globular pro-

NMA studies of macromolecules are handicapped, howteins, including time scales and eigenfrequencies, as well
ever, by the complex phenomenological potentials used tas displacements of atoms as predicted by eigenvectors.
model the covalent and nonbonded interactions betweefhe simplified potential provides a very attractive alter-
atom pairs. The necessary initial energy minimization renative for the NMA of macromolecular assemblies. The
quires a great deal of computer time and memory, anderivation of the eigenvalue equation is simple, rapid, and
is virtually impossible for even moderately large proteinsaccurate. Time-consuming and structure-distorting en-
(with typically thousands of degrees of freedom) with aergy minimization are circumvented, preventing unphysi-
reasonable degree of accuracy. This inevitably leads toal instabilities (negative eigenvalues), and the reduction
unstable modes which must be eliminated through elabdn the number of fitting parameters yields to the new for-
rate methods, and which cast doubts on the validity of thenulation a stronger predictive value.
analysis. Moreover, partly because the minimization is The size of the computation depends on the number
carried outin vacuo,the final configuration disagrees with of internal coordinates considered. A molecule consist-
the known crystallographic structure, complicating the in-ing of N atoms possess8#’ degrees of freedom, defined
terpretation of the results of NMA. by bond lengths, bond angles, and rotations about bonds

A typical example of a semiempirical potential used in(or, alternatively, by the Cartesian coordinates of each of
molecular dynamics studies and NMA's has the form [7] the constituent atoms). For long-chain molecules such as
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proteins, bond lengths and angles are constrained within The potential energy within a molecule is then given by

very narrow limits by the chemical bonding, while ro-

tations about (single) bonds are much less restricted. E, = > E(r,r). ©)

Hence, for the analysis of slow modes one typically con- (a.b)

siders the bond lengths and angles as fixed, permittinfhe sum is restricted to atom pairs separated by less

only rotations about bonds. The latter are knowrid®- than Rygw(a) + Ryw(b) + R., where Rqw refers to

dral anglesand serve as a convenient set of generalizethe van der Waals radii, an&. is an arbitrary cutoff

degrees of freedom. The number of the dihedral angle cqgparameter which models the decay of interactions with

ordinates is about /2 and is determined by the specific distance. R. determines the total number of interacting

makeup of the protein in question. atom pairs contributing to the potential energy of the
Given a potential energy functio®, and a set of system, and is inversely related to the “bond strength”

n generalized coordinatesy’, one first must find a We shall argue below that best results are obtained with

stable local minimumE, .in(q’ = qo). The potential small cutoff distances. Fortunately, this tends to reduce

energy is then approximated by the quadratic fofip:=  the size of the computation.

(1/2)> qiFijq; = (1/2)q"Fq (q = ¢’ — qp), whereF is The proposed potential seems too simplistic. For ex-

the generalized force matrix ample, it is unclear how interactions between nonbonded
a2Ep atoms could model the 3-state “knob” potential for ro-

tations about the backbone. The answer lies in the fact
that slow vibrational modes involve coherent motion of
ey . large groups of atoms. The effective force opposing large

1 “ ”
q'Hgq, where the elements of the “mass” matkiare scale oscillations stems from the combined effect of nu-

v ar;  dry merous interacting atom pairs. The sum of these interac-
H,"j = Z nmy . H H
ag:  0q; tions approaches a universal form, governed by the central
=1 ! J . K . . .
limit theorem, regardless of the details of individual pair-
epotentials. Hence, for slow vibrations these details could
be neglected.

To test this hypothesis, | compare the eigenfrequency
and eigenvector data obtained using the potential of
Egs. (4) and (5) and the detailed potential of Levitt, L79
[7]. In all cases, | refer only to the slowest frequency
modes. The higher frequency modes, pertaining to rapid
oscillations of sidechains and small groups of atoms,

_ EA — AHA’_ - (2,) require an accurate analysis at the microscopic level and
subject to the normalization conditiocn' HA = I. (This  guid not be modeled by simplified potentials.

ensures .that the eigenmodes diagonalize the_system’s| performed extensive tests on the muscle protein,
Hamiltonian, ' = Ey + E,.) The eigenfrequencies;  G.actin. This system has a molecular weight of 44 kD
are given by the elements of the diagonal matkixo; =  and contains 375 residues (3500 atoms) in a single
Aji, the eigenvectors are the columns of the ma&iand  polypeptide chain [8]. The polypeptide chain is folded
the amplitudes and phases, and o, are determined by 5o as to form two large domains joined by a narrow neck
initial conditions. region. These two domains are partly held together by
| replace the habitual detailed potentials, such asalt bridges and hydrogen bonds provided by a nucleotide
the one in Eg. (1), by the Hookean pairwise potential ADP) and a catioiCa* ) bound in the cleft between the

Y 9gi0q; lg=o

Similarly, the kinetic energy is expressed@s= (1/2) X

r; are the Cartesian coordinates of atéyand the sum-
mation runs over all the atoms of the molecule. Th
{ar/dq} are moving derivatives which eliminate transla-
tional and rotational motion of the molecule as a whole.
Equations of motion are derived from Lagrange’s
equation, with the Lagrangial = E; — E,. Writing
qj = Y} Ajrarcodwit + &), one obtains the eigen-
value problem

(between atoma andb): two domains. Complete eigenfrequency and eigenvector
E(re,rp) = —(rapl — |1‘2,b|)2- 3) data exist for_ this system using the L79 potential [9]. .
2 Focusing first on the density of modes, let us examine

Here r,, =r, —r, denotes the vector connecting the cumulative density of modes up to frequengy
atomsa and b, and the zero superscript indicates theG(w) = n™! [ dw’ g(w'). In globular proteinsG(w)

giveninitial configuration. Thus, the usual minimization falls under a universal curve [2]. For small frequencies,

of the potential energy is eliminated. G(w) ~ w?. The difference from regular crystals, where
Expanding to second order abo\ﬂ;b yields G(w) ~ w3, reflects the anomalous dynamics of slow
vibrations in proteins.

(U 2
E(ry, 1)) = £<r“’b0ﬂ> , (4) Figure 1 shows5(w) againstw for G-actin:ADP:Cd*
2 Irapl for the slowest 10% of the modes (138 modes). The
whereAr = r — r’. The strength of the potential is  dashed curve refers to data obtained using the standard
a phenomenological constant, assumed to be the same for9 potential. Superposed are curves obtained with

all interacting pairs. R. = 1.1, 1.5, 2.0, an®.5 A, resulting in 19248, 27310,
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FIG. 1. The fraction of the total number of modes upFIG. 2. The rms deviation of all mainchai@, atoms per

to frequencyw (cm™!) for the slowest 150 modes of the mode, for the slowest 30 modes. The dashed line refers to data
G-actin:ADP:Cd* system. The dashed line pertains to dataobtained using the L79 potential, and the four solid curves are
obtained using the L79 potential, while the four solid curvesobtained with the same cutoff valugs,, as in Fig. 1. The rms

are obtained using®Rc values of 1.1, 1.5, 2.0, and.5 A. fluctuations due to the first four modes contribute over 50% to
The R, = 1.1 A curve is nearest the dashed line at higherthe total rms deviations of alf, due to all modes [8]. There
frequencies, with the fit progressively worsening for the higheris no obvious improvement in choosing one particular cutoff
cutoff values. parameter according to these data.

38654, and 51020 nonbonded interactions, respectivelyesults with those obtained previously, in terms of both
To obtain optimal fits to the standard (dashed) curvedispersion spectra as well as rms deviations.
the values ofC need to be adjusted to 2.49, 1.29, Theoretical temperature factordy, used to model
0.73, and0.47 kJ/A2mol, respectively. CuriouslyC  X-ray crystgllographic temperature factors, are obtained
seems to scale as/R? rather than1/R3. This may by computing the rms fluctuat_lc_)ns at room temperature
reflect the unusual spectral dimension, i.e., the effectivef eachC, due to a superposition of modes. Figure 3
dimensionality of interatomic interactions, of globular Shows the theoretical temperature factors for e@ghof
proteins, d, = 2 [2]. The product CR? results in a
universal “bond-strength” constant of abdud kJ/mol. , TEMPERATURE FACTORS FOR G-ACTIN

Figure 1 also shows that larger cutoff values increase ' ' R
the curvature of the curve, and hence smalter val- ,
ues better model the previous eigenvalue data. This emr 2T
phasizes that nonbonded interactions are dominated b 10’ tf
nearest-neighbor interactions, presumably due to screet 1o ;gg@y
ing effects. *

In addition to the frequency of the modes, one can. sor
compute the root mean square (rms) displacements c=
atoms from equilibrium at room temperature from the
eigenvector data. Figure 2 shows the rms fluctuations o
all the C, atoms as a function of the slowest 30 modes.
The dashed curve shows the data obtained using th
standard, L79 potential. The rms deviations decreas: 2
rapidly with mode number, indicating that the correlation
length of the motion decreases as well. Superposed 0 % 50 100 150 200 250 300 850 400
the dashed curve are the four curves obtained with the ‘ RESIDUE NUMBER
sameR, and C values used in Fig. 1. Values af FIG. 3. Comparison of theoretical temperature factaBs,
predicted from the eigenfrequency data, Fig. 1, fit theobtained with the L79 potential (dashed curve) and the
eigenvector data equally well. These data also indicatgotential of Eg. (1), for the G-actin:ADP:Ca system. The

. ontributions of the 30 slowest modes are included. The inset

no clear advantage to using larger values of the CUt(,)fghows the scatter plot of the two data sets: the standard potential
parameterR.. For the slowest modes, therefore, there iszjong the ordinate, and the current simplified potential along the
overall consistency and a very good match of the currerdbscissa.
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TABLE I. CPU time requirements to compute generalized eigenvalue equations.

pdb # of # of # of nonbonded CPU time
Protein identifier residues coordinates interactions (min)
Crambin 1lcrn 46 139 4817 0.12
Trypsin inhibitor Spti 58 208 6529 0.45
Ribonuclease A 5rsa 124 455 14946 2.50
Lysozyme 6lyz 129 471 15834 3.10
G-actin latn 372 1382 37951 66.0
Myosin (HC) 1mys 780 3010 88653 390

G-actin:ADP:Cd *, including the contribution of the 30 itis now possible to quantitatively test whether two crystal
slowest modes. The data obtained with the L79 potentiglorms of a protein, as in an “open” and “closed” configu-
are shown by the dashed curve. The solid line igation, are interconvertible using the slow modes as coor-
obtained using the current potential, with. = 2.2 A.  dinates. Tests performed on a periplasmic maltodextrin
The very good fit argues against the need for additionabinding protein indicate that the slowest modes do indeed
parametrization in Egs. (3)—(5). closely map the open form into the closed form [Tirion, in
Finally, | have tested the efficiency of NMA with the preparation].
simple potential. Table | shows the central processing | thank Daniel ben-Avraham for useful discussions and
unit (CPU) times required for reading in coordinates anddeas, Ken Holmes for use of computer facilities at the
chemical formulas, indexing degrees of freedom and nonMax-Planck Institute for Medical Research in Heidelberg,
bonded interactions, and setting up the generalized eigeand Michael Lorenz for the full coordinates of myosin S1.
value Eqg. (2). The entries show the CPU requirement3his material is based upon work supported by the
on a Convex 220 for the following four proteins (the National Science Foundation under Grant No. MCB-
Brookhaven protein database label is given in parenthe9316109.
ses): bovine pancreatic trypsin inhibitor (5pti), ribonucle-
ase A (5rsa), G-actin bound with ADP and ‘Ca(latn),
and myosin subfragment 1 bound with ADP (Imys, with
the sidechains kindly modeled by Michael Lorenz). These

proteins range in size from 58 residues (trypsin inhibitor) [1] M. Levitt, P. Stern, and C. Sander, J. Mol. Bidl8L,

to 780 residues (myosin S1). For this table, | used a cut- 423 (1985); A. Kidera and N. & J. Mol. Biol. 225, 457
off distanceR. = 2.0 A. These CPU times represent im- (1992); B. I,3ro.oks and M. Ka'rplus: Proé. Naﬁ. Acad. Sci.
provements of 2 to 3 orders of magnitudes over earlier g A g0, 6571 (1983).

NMA. The main effect is due to the absence of mini- [2] D. ben-Avraham, Phys. Rev. 87, 14559 (1993).
mizations and the faster computation of the force malirix [3] R. Diamond, Acta Crystallogr. A46, 425 (1990);
with the simple potential. It should be stressed that NMA A. Kidera and N. ®, J. Mol. Biol. 225 457 (1992).

of systems as large and poorly resolved as myosin S1[4] P. Faureet al., Nature Struct. Bioll, 124 (1994).

could not be undertaken with “standard” potentials, due to[5] O. Marques and Y.-H. Sanejouand, Protei@8, 557
the accumulation of roundoff errors and distortions during ~ (1995); M. M. Tirion, D. ben-Avraham, M. Lorenz, and
minimizations. K. C. Holmes, Biophys. X8, 5_(_1995)._

This work demonstrates the surprising result that a (] l()l.ggg?-Avraham and M. M. Tirion, Biophys. &8, 1231
single-parameter model can reproduce complex vibra—m S 3. Weineret al. J. Am. Chem So0c106, 765 (1984);
tional properties of macromolecular systems. The simple” " 5 g 'Brooks et .éll.,- 3 éomp_ Chem.4, 187 (1983);
form of the potential dispenses with the need to perform \; | evitt, J. Mol. Biol. 168 595 (1983).
initial energy minimizations, which are especially detri- [8] w. Kabschet al., Nature (London)347, 37 (1990).
mental for NMA’s due to the absence of solvent. Since [9] M. M. Tirion and D. ben-Avraham, J. Mol. BioR30, 186
the analysis proceeds directly from the crystal coordinates,  (1993).
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