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ABSTRACT 
 

We compare the ratio of the amplitudes of the third to the first harmonic of the 

torque, 
  
T

3
T

1
, measured in rotational parallel-disk flow, with the ratio of the 

corresponding harmonics of the shear stress, 
 
τ

3
τ

1
, that would be observed in 

sliding-plate or cone-plate flow.  In other words, we seek a correction factor with 
which 

  
T

3
T

1
 must be multiplied, to get the quantity 

 
τ

3
τ

1
, where 

 
τ

3
τ

1
 is 

obtained from any simple shearing flow geometry.  In this paper, we explore 
theoretically, the disagreement between 

  
T

3
T

1
 and 

 
τ

3
τ

1
 using the simplest 

continuum model relevant to large-amplitude oscillatory shear flow: the single 
relaxation time corotational Maxwell model.  We focus on the region where the 
harmonic amplitudes and thus, their ratios, can be fully described with power 
laws.  This gives the expression for 

  
T

3
T

1
, by integrating the explicit analytical 

solution for the shear stress.  In the power law region, we find that, for low 
Weissenberg numbers, for the third harmonics 

  
T

3
T

1
=

2

3
τ

3
τ

1
, and for the 

fifth harmonics, 
  
T

5
T

1
=

1

2
τ

5
τ

1
.  We verify these results experimentally.  In 

other words, the heterogeneous flow field of the parallel-disk geometry 
significantly attenuates the higher harmonics, when compared with the 
homogeneous, sliding-plate flow.  This is because only the outermost part of the 
sample is subject to the high shear rate amplitude.  Further, our expression for 
the torque in large-amplitude oscillatory parallel-disk flow is also useful for the 
simplest design of viscous torsional dampers, that is, those incorporating a 
viscoelastic liquid between two disks.   
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Figure 10: Third-to-first shear stress harmonic amplitude ratio 
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I. INTRODUCTION 
 

Since its conception in 1935 [1], oscillatory shear flow has become the most 
common way of measuring viscoelastic properties, and of late, this same test, 
performed at large-amplitude has sustained growing popularity [2].  This test 
can be used to differentiate materials by amplifying subtle differences in small-
amplitude oscillatory shear behavior [3].  It has thus been used to elucidate 
problems in plastics processing, such as shaping in blow molding, for example 
[4].  Sometimes, parallel-disk flow is chosen for oscillatory shear flow 
measurements, and in particular, for large-amplitude oscillatory shear flow.  By 
parallel-disk flow, we mean the flow generated between two parallel disks, when 
one disk rotates relative to the other (see Figure 1).  About the choice of parallel-
disk flow for large-amplitude oscillatory shear, Stickel et al. [5] write “with few 
exceptions, the linear mappings between torque and stress (at the rim) and 
between displacement and strain are still commonly employed with LAOS 
rheometry, despite the ample literature describing nonlinear material responses 
to LAOS.”  In this work, we consider the measurement of viscoelastic properties, 
at large shear rate amplitudes, using oscillatory shear flow.   

The sources of error for torsional flow form a subset of those in cone-plate 
flow.  However, secondary flows are not promoted by the presence of normal 
stress differences in this case (see Section 5.3 of [6]).  Also, for the cone-plate 
geometry, positioning the cone can take a long time.  This is why parallel-disk 
flow is often chosen over cone-plate flow, for oscillatory shear measurement.  
The parallel-disk geometry is also advantageous for suspensions of particles or 
fibers [7], since, for cone-plate flow, the particle size can approach the gap near 
the cone apex (or near the cone tip truncation).  Thus, for some materials, cone-
plate flow cannot be used at all, and thus, for large-amplitude oscillatory shear, 
one must resort to parallel-disk flow [8,9].   

When fluid inertia can be neglected [10,11,12], the resulting flow field is given 
by [13,14]:  

   
v

x
= !γ

0
cosωt y; v

y
= v

z
= 0  (1) 

where the shear rate amplitude, 
  
!γ

0 , is the product of the shear strain amplitude 
and the angular frequency, ω .  The flow given by In Eq. (1) can either be 
generated between sliding-plates (or for a close approximation, between a 
shallow cone and a plate [see caption to Figure 1]). This sliding-plate flow for 
oscillatory shear is illustrated in Figure 2, which, along with Table I, defines the 
Cartesian coordinates.  The shear rate corresponding to Eq. (1) may then be 
written as: 

   
λ !γ t( ) = λ !γ 0

cosλω t λ( )  (2) 

in which the dimensionless shear rate 
  
λ !γ 0  (the Weissenberg number), the 

dimensionless frequencyλω  (the Deborah number), appear [15], and where λ  is 
any characteristic time for the fluid.   
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Unlike sliding-plate flow (or its close approximant cone-plate flow) whose 
flow fields are homogeneous (see in Figure 2), parallel-disk flow is a 
heterogeneous flow field (see Figure 1) given by: 

  
v
θ
= Ω

0
r z h( )cosωt ;v

z
= v

r
= 0  (3) 

so	  that	  the	  shear	  rate	  is	  given	  by:	  

   
!γ

rθ
= !γ

R

0
r R( )cosωt  (4) 

and thus, its amplitude is proportional to radial position (and thus the distance 
from the center) in cylindrical coordinates (defined in Figure 3 along with Table 
I).  Eq. (4) can be nondimensionalized as: 

   
λ !γ

rθ
= λ !γ

R

0
r R( )cosλω t λ( )  (5) 

and, in general, when using parallel-disk flow for oscillatory shear, we identify 

   
λ !γ

R

0  in Eq. (4) with 
  
λ !γ 0  in Eq. (2).   

Since large-amplitude oscillatory shear properties are themselves strain-rate 
amplitude dependent, the heterogeneity of the parallel-disk flow field 
complicates the interpretation of the measured torque.  To see why, we first 
consider the connection between the torque and the shear stress in the parallel-
disk fixture for any fluid, and specifically, the torque that the fluid exerts on the 
stationary plate (see EXAMPLE 10.1-2 in [16]): 

   

T = − rτθz
⋅r dr dθ

0

R

∫0

2π

∫

= −2π r
2τθz

dr
0

R

∫
 (6) 

from which, it has been shown that (see Eqs. (5a) and (5b) of [17]; see also Eq. (5) 
of [18]; [19]; see Eq. (10) and Fig. 2 of the Supplemental Information [20] to [21]): 

   

τ
rθ =

1

2πR
3
θ

0

dT

dθ
0

+ 3T
⎛

⎝⎜
⎞

⎠⎟
 (7) 

Eqs. (6) and (7) are deduced from the equations of motion, and thus apply to all 
fluids.  Thus, getting 

 
τ

rθ
 requires an accurate determination of 

   
dT dθ

0
, and this 

at least involves numerical differentiation that can amplify noise (see how to 
cope with this in [22]; see also APPENDIX IV of [23] or the EXPERIMENTAL 
section of [24]).  The use of Eq. (7) for extracting higher harmonics of the shear 
stress response large-amplitude oscillatory shear flow from the observed torque 
in parallel-disk flow, have been reported ([25], see also Figs. 1 and 2 of [17]; Fig. 3 
of [18]).   

For a fixed test frequency, Eq. (7) requires that we take the derivative of every 
Fourier component of the torque with respect to the strain rate amplitude at the 
rim.  Thus, torque measurements with high signal-to-noise ratios [26,27], and 
many experiments at different strain rate amplitude at the rim, are required. For 
polymer solutions, shear strain amplitudes up to 

  
!γ 0 ω = 27  are reported.  

Measurements at much lower values of 
  
!γ 0 ω  have been corroborated with cone-

plate flow data.  These methods are tedious, but they involve no constitutive 
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assumptions.  In fact, one reason that experimentalists would prefer parallel-
disks for oscillatory shear, is that the edge distortions arising in rotational 
rheometry are postponed to much larger values of 

  
!γ 0 ω  than for cone-plate flow.  

For an iconic photograph of these edge distortions in parallel-disk flow, see Fig. 2. 
of [28].  Another reason that the parallel-disk geometry is often preferred over 
cone-plate, is that it takes far less time for the insertion normal thrust to vanish 
after sample loading.  

Less general schemes to extract non-sinusoidal large-amplitude oscillatory 
properties from parallel-disk flow experiments have been developed [5,29,30,31], 
but these assume specific constitutive relations to relate the measured torque to 
the shear stress.  Since a single constitutive equation will not be valid for all 
fluids, the more general approach of MacSporran and Spiers [25] seems 
preferable, if parallel-disk flow is to be used.   

In this paper, we focus particularly on the ratio of the amplitudes of 
harmonics (third-to-first and fifth-to-first), often called the relative intensities, a 
now widely established way of representing large-amplitude oscillatory shear 
measurements (see Fig. 2 of [32]; see Fig. 4.12 of [33,34]; see Fig. 6 of [35]).  This 
concept of relative intensities follows naturally from the analysis of molecular 
spectroscopy [33], and has become a popular way of summarizing nonlinear 
viscoelastic behavior.  Additionally, it allows for spectral averaging to 
substantially increase the signal-to-noise ratio [26].  The symbol 

  
I

3 1
 is often used 

for the amplitude ratio, 
 
τ

3
τ

1
, and: 

   

lim
!γ 0 ω( )→0

τ
3

τ
1

!γ 0 ω( )
2
≡ Q

0

3/1  (8) 

where 
  
!γ 0 ω( )  is the shear strain amplitude.  

  
Q

0

3/1  has been named the intrinsic 

nonlinearity (for a thorough treatment of this quantity see [36]).  We recognize 
that 

  
I

3 1
, has been used interchangeably for both 

  
T

3
T

1
 and 

 
τ

3
τ

1
, regardless 

of the geometry.  However, since this paper is specifically about the ratio of 

  
T

3
T

1
 to 

 
τ

3
τ

1
, we use 

  
I

3 1
 strictly to mean 

 
τ

3
τ

1
 measured in the cone-

plate or sliding plate fixture.  This limit is inspired by the usual expansions for 
the steady shear viscosity, or for the shear stress response in large-amplitude 
oscillatory shear, which give generally (see Eqs. (147) and (157) of [15]; see Eq. (3) 
of [32]; [37,38,39]): 

   
τ

h
τ

1
∝ !γ 0 ω( )

h−1

; h > 1,odd  (9) 

and specifically: 

  
τ

3
τ

1
∝ !γ 0 ω( )

2

 (10) 

where  h  is the integer number of the harmonic.   
Wagner et al. [40] have shown that for fluids with shear stress responses 

conforming to the expansion in odd powers of 
  
!γ

0
ω  (Eq. (147) of [15]): 
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τ yx t( )
γ

0

= − γ
0

m−1

n−1

odd

m

∑
m=1

odd

∞

∑ &Gmn ω( )sinnτ + &&Gmn ω( )cosnτ() *+  (11) 

which defines a set of pairs of nonlinear moduli (see Table I), Wagner et al. [40] 
get, for 

  
!γ 0 ω  small enough for the harmonic amplitudes and thus, their ratios, to 

be fully described with power laws (see Eq. (37) of [40]: 

   

τ
h

τ
1

T
h

T
1

=
3+ h

4
 (12) 

They use the factor given by Eq. (12) with   h = 3  to correct the third-to-first torque 

amplitude ratio measured in parallel-disk flow.  For instance, 
  

3

2
T

3
T

1
 is used 

as an estimate of 
 
τ

3
τ

1
, and 

  
2 T

5
T

1
 is used as an estimate of 

 
τ

5
τ

1
.  We 

find that analytical solutions to constitutive equations only occasionally come out 
in the form of Eq. (11) [28,40,41].  Instead, more commonly (see column 

“Notation Eq.” of Table 1 of [15]), they come out as odd powers of 
  
!γ 0 , defining a 

matrix of frequency dependent nonlinear viscosities ([42]; Eq. (157) of [15]), and 
which defines a set of pairs of nonlinear viscosities (see Table I): 

   

τ yx t( )
!γ
0

= − !γ 0
n−1

m=1

odd

n

∑
n=1

odd

∞

∑ &ηmn ω( )cosmτ + &&ηmn ω( )sin mτ)* +,  (13) 

as does the corotational Maxwell model that we use herein [Eq. (19)].  By 
corotational Maxwell, we mean that the derivative in the Maxwell model 
(formally defined in Eq. (15) below) measures a time rate of change of the extra 
stress tensor with respect to a coordinate system that translates and rotates with 
the fluid, but does not also deform with the fluid.  This corotating frame 
distinguishes the model from codeformational Maxwell models, where a 
different derivative is used that measures this rate of change with respect to a 
coordinate system that translates, rotates and also deforms with the fluid.  When 
the corotational derivative is replaced with a codeformational one, all higher 
harmonics disappear.  This is why codeformational models are not helpful for 
describing large-amplitude oscillatory shear flow behavior.   

The corotational Maxwell model is (with tensor-valued quantities in bold): 

    

τ + λ
D τ

D t
= −η

0
!γ  (14) 

in which: 

   

D τ

D t
≡

Dτ

Dt
+ 1

2
ω ⋅ τ − τ ⋅ω{ }  (15) 

defines the corotational derivative (also called the Jaumann derivative); here 

 Dτ / Dt  is the substantial derivative of τ  (see Section 3.5 of [43]) where: 

  

D

Dt
≡

d

dt
+ v ⋅∇  (16) 
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 and: 

   
!γ = ∇v + ∇v( )

†

 (17) 
is the rate-of-strain tensor, and: 

  
ω = ∇v − ∇v( )

†

 (18) 
is the vorticity tensor.  For a detailed treatment of the corotational Maxwell 
model see Chapters 7 and 8 of [44], and for its evaluation in large-amplitude 
oscillatory shear, see [15].  The corotational Maxwell model can also be used to 
explore complex flows arising in plastics processing, both analytically 
[44,45,46,47,48,49,50], and numerically [51,52].   
 
II. ANALYSIS 
 
Ιf (see [23,24,53,54,55,56,57]) and when (see Section 6 of [15] for a detailed 

analysis of startup of large-amplitude oscillatory shear flow) the shear stress 
response to large-amplitude oscillatory shear flow reaches alternance (cycle-to-
cycle periodicity [15] and thus, time-steady in the frequency domain), for the 
corotational Maxwell fluid (from Eq. (58) of [15,58]): 

   

τθz
=
η

0

λ

− λ !γ 0( )
cosτ + λω sinτ

1+L

+
λ !γ 0( )

3

4

3cosτ + 6λω sinτ
1+L( ) 1+ 4L( )

+
1−11L( )cos3τ + 6 1− L( )λω sin3τ

1+L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
λ !γ 0( )

5

8

5cosτ +15λω sinτ
1+ L( ) 1+ 4L( ) 1+ 9L( )

+
5−130L( )cos3τ + 45−120L( )λω sin3τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

+
1− 85L+ 274L

2( )cos5τ + 15− 225L+120L
2( )λω sin5τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+"

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (19) 

where   L ≡ λ
2
ω

2  and  τ ≡ωt , and which has general form: 

   

τ = τ
h ,n

h=0
odd

n

∑
n=1
odd

∞

∑ = τ
1,1

+ τ
1,3

+τ
3,3

⎡⎣ ⎤⎦ + τ
1,5

+τ
3,5

+τ
5,5

⎡⎣ ⎤⎦ +!  (20) 

where the brackets group nonlinear terms of equal  n , 
  
τ

h ,n
 are contributions 

from the term in the   nth  order of 
  
λ !γ 0( )  to the   hth  harmonic of the shear stress.  

This clarifies how FT-rheology and linear oscillatory rheology correspond.  Thus, 
FT-rheology is the natural extension of linear oscillatory rheology.   



	   11	  

For parallel-disk flow, where the shear rate amplitude is proportional to the 
radial position, measured with cylindrical coordinates centered on and between 
the parallel-disks: 

   

λ !γ 0
= λ !γ

R

0 r

R

⎛
⎝⎜

⎞
⎠⎟

 (21) 

Substituting Eq. (21) into Eq. (19), and then the result into Eq. (6) yields: 

    

T = T
h ,n

h=0
odd

n

∑
n=1
odd

∞

∑ = T
1,1

+ T
1,3

+T
3,3

⎡⎣ ⎤⎦ + T
1,5

+T
3,5

+T
5,5

⎡⎣ ⎤⎦ +! (22) 

where the brackets group nonlinear terms of equal  n , 
   
T

h ,n
 are contributions 

from the term in the   nth  order of 
  
λ !γ 0( )  in Eq. (19) to the   hth  harmonic of the 

torque, and these contributions are given by: 

    

T
1,1

= 2π
η

0

λ
cosτ + λω sinτ

1+L
λ !γ

R

0 1

R
r

3
dr

0

R

∫

=
π
2

η
0

λ
cosτ + λω sinτ

1+L
λ !γ

R

0( )R3

 (23) 

    

T
1,3

= −2π
η

0

λ

λ !γ
R

0( )
3

4

3cosτ + 6λω sinτ
1+L( ) 1+ 4L( )

⎡

⎣
⎢

⎤

⎦
⎥

1

R
3

r
5

dr
0

R

∫

= −
π
2

η
0

λ
λ !γ

R

0( )
3 3cosτ + 6λω sinτ

1+L( ) 1+ 4L( )
⎡

⎣
⎢

⎤

⎦
⎥

R
3

6

 (24) 

    

T
3,3

= −
π
2

η
0

λ
λ !γ

R

0( )
3 1−11L( )cos3τ + 6 1− L( )λω sin3τ

1+L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

1

R
3

r
5

dr
0

R

∫

= −
π
2

η
0

λ
λ !γ

R

0( )
3 1−11L( )cos3τ + 6 1− L( )λω sin3τ

1+L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

R
3

6

 (25) 

    

T
1,5

=
π
4

η
0

λ

5cosτ +15Desinτ

1+ De
2( ) 1+ 4De

2( ) 1+ 9De
2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
λ !γ

R

0( )
5 1

R
5

r
7

dr
0

R

∫

=
π
4

η
0

λ
λ !γ

R

0( )
5 5cosτ +15Desinτ

1+ De
2( ) 1+ 4De

2( ) 1+ 9De
2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
3

8

 (26) 

    

T
3,5

=
π
4

η
0

λ
λ !γ

R

0( )
5 5−130L( )cos3τ + 45−120L( )λω sin3τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

1

R
5

r
7

dr
0

R

∫

=
π
4

η
0

λ
λ !γ

R

0( )
5 5−130L( )cos3τ + 45−120L( )λω sin3τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

R
3

8

 (27) 

    

T
5,5

=
π
4

η
0

λ
λ !γ

R

0( )
5 1− 85L+ 274L

2( )cos5τ + 15− 225L+120L
2( )λω sin5τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

R
5

r
7

dr
0

R

∫

=
π
4

η
0

λ
λ !γ

R

0( )
5 1− 85L+ 274L

2( )cos5τ + 15− 225L+120L
2( )λω sin5τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
3

8

 (28) 

By substituting Eq. (21) into Eq. (19), and then the result into Eq. (6), we are 
choosing a simpler path than solving the problem from scratch in cylindrical 
coordinates, as has been outlined for steady parallel-disk flow (see Problem 7C.4 
of [44]).   
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III. ANALYTICAL RESULTS 
 

In the following sections, we will use Eq. (19), and Eqs. (22) through (28) to 
determine successively the total torque, the amplitudes of the first, third and fifth 
harmonics of the total torque, the amplitudes of the corresponding harmonics of 
the shear stress, and finally, the corrections needed to go from torque ratios of 
the harmonics from parallel-disk measurements, to their corresponding shear 
stress amplitude harmonic ratios.  Our analysis proceeds for a single 
characteristic time for the fluid, λ , but we discuss the case of multiple relaxation 
times near the end of Section III. h. 

 
a. Total Torque 

 
For oscillatory parallel-disk flow, substituting Eqs. (23) through (28) into Eq. 

(22) gives: 

    

T =
π
2

η
0

λ
R

3

− λ !γ
R

0( )
cosτ + λω sinτ

1+L

⎡

⎣⎢
⎤

⎦⎥

+
λ !γ

R

0( )
3

6

3cosτ + 6λω sinτ
1+L( ) 1+ 4L( )

⎡

⎣
⎢

⎤

⎦
⎥

+
1−11L( )cos3τ + 6 1− L( )λω sin3τ

1+L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−
λ !γ

R

0( )
5

16

5cosτ +15λω sinτ
1+ L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

+
5−130L( )cos3τ + 45−120L( )λω sin3τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

+
1− 85L+ 274L

2( )cos5τ + 15− 225L+120L
2( )λω sin5τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+"

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 (29) 

which happens to be the working equation for the simplest design of a torsional 
viscous damper (employing a viscoelastic liquid between two disks).   
	  

b. Torque Harmonics 
 

Thus, the   hth  harmonics of the torque 
  
T

h
 are given by: 
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T
1
=
π
2

η
0

λ
R

3

− λ !γ
R

0( )
cosτ + λω sinτ

1+L

⎡

⎣⎢
⎤

⎦⎥

+
λ !γ

R

0( )
3

6

3cosτ + 6λω sinτ
1+L( ) 1+ 4L( )

⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
5

16

5cosτ +15λω sinτ
1+ L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

 (30) 

    

T
3
=
π
2

η
0

λ
R

3

λ !γ
R

0( )
3

6

1−11L( )cos3τ + 6 1− L( )λω sin3τ
1+L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
5

16

5−130L( )cos3τ + 45−120L( )λω sin3τ
2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

 (31) 

    

T
5
=
π
2

η
0

λ
R

3 −
λ !γ

R

0( )
5

16

1− 85L+ 274L
2( )cos5τ + 15− 225L+120L

2( )λω sin5τ

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+"

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 (32) 

	  
c. Torque Harmonic Amplitudes 

 
The amplitudes of these torque harmonics are thus given by: 

    

T
1
=
π
2

η
0

λ
R

3

− λ !γ
R

0( )
1

1+L

⎡

⎣⎢
⎤

⎦⎥

+
λ !γ

R

0( )
3

6

3

1+L( ) 1+ 4L( )
⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
5

16

5

1+ L( ) 1+ 4L( ) 1+ 9L( )
⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

2

+

− λ !γ
R

0( )
λω
1+L

⎡

⎣⎢
⎤

⎦⎥

+
λ !γ

R

0( )
3

6

6λω
1+L( ) 1+ 4L( )

⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
5

16

15λω
1+ L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

2

 (33) 

    

T
3
=
π
2

η
0

λ
R

3

λ !γ
R

0( )
3

6

1−11L( )
1+L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
5

16

5−130L( )
2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

2

+

λ !γ
R

0( )
3

6

6 1− L( )λω
1+L( ) 1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
5

16

45−120L( )λω
2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

2

(34) 
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T
5
=
π
2

η
0

λ
R

3

−
λ !γ

R

0( )
5

16

1− 85L+ 274L
2( )

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+"

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

2

+
−

λ !γ
R

0( )
5

16

15− 225L+120L
2( )De

2 1+ L( ) 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+"

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

2

 (35) 

which we will next use to construct the torque harmonic ratios.   
	  

d. Torque Harmonic Ratio 
 

From Eqs. (34) and (33) we can construct the torque ratio: 
 

    

T
3

T
1

=

λ !γ
R

0( )
2

6

1−11L( )
1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
4

16

5−130L( )
2 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

2

+

λ !γ
R

0( )
2

6

6 1− L( )λω
1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
4

16

45−120L( )λω
2 1+ 4L( ) 1+ 9L( ) 1+16L( )

⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

2

−1+
λ !γ

R

0( )
2

6

3

1+ 4L( )
⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
4

16

5

1+ 4L( ) 1+ 9L( )
⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

2

+

−λω +
λ !γ

R

0( )
2

6

6λω
1+ 4L( )

⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
4

16

15λω
1+ 4L( ) 1+ 9L( )

⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

2

 (36) 

In Eqs. (33)-(35), if we just keep terms up to 
   
λ !γ

R

0( )
3

 we then get: 

    

T
3

T
1

≅

λ !γ
R

0( )
2

6
1−11L( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

+ λ !γ
R

0( )
2

1− L( )λω{ }
2

− 1+ 4L( )

+
λ !γ

R

0( )
2

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1+ 9L( )

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

2

+

−λω 1+ 4L( )

+ λ !γ
R

0( )
2

λω

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1+ 9L( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

 (37) 

Similarly, for the fifth-to-first harmonic ratio of the torque we get: 
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T
5

T
1

=

−
λ !γ

R

0( )
4

16

1− 85L+ 274L
2( )

2 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+"

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

2

+
−

λ !γ
R

0( )
4

16

15− 225L+120L
2( )λω

2 1+ 4L( ) 1+ 9L( ) 1+16L( ) 1+ 25L( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+"

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

2

−1

+
λ !γ

R

0( )
2

6

3

1+ 4L( )
⎡

⎣
⎢

⎤

⎦
⎥

−
λ !γ

R

0( )
4

16

5

1+ 4L( ) 1+ 9L( )
⎡

⎣
⎢

⎤

⎦
⎥

+"

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

2

+

−λω

+
λ !γ

R

0( )
2

6

6λω
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Eqs. (36) and (38) are plotted in Figure 4 and Figure 5.   
	  

e. Shear Stress Harmonics 
 

From the right side of Eq. (19), we get the amplitudes of each harmonic of the 

shear stress for cone-plate flow, τθφ , in large-amplitude oscillatory shear [by 

analogy with Eqs. (30) through (32)]: 
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We next use Eqs. (39) through (41), to construct expressions for the amplitudes of 
the shear stress harmonics. 
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f. Shear Stress Harmonics Amplitude 

 
The amplitudes of the shear stress harmonics are thus [by analogy with Eqs. 

(33) through (35)] given by: 
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and we next use Eqs. (42) through (44) to get the shear stress harmonic amplitude 
ratios.   
	  

g. Shear Stress Harmonic Amplitude Ratios 
 

The shear stress harmonic amplitude ratios, for a single relaxation time 
corotational Maxwell in cone-plate or sliding-plate flow are [by analogy with Eqs. 
(36) and (38)] then given by: 
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 (45) 

Eq. is used to plot the amplitude ratio 
 
τ

3
τ

1
 versus 

  
λ !γ 0  for three values of 

λω  in  
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 (46) 

Eqs. (45) and (46) are used to plot the amplitude ratios 
 
τ

3
τ

1
 and 

 
τ

5
τ

1
 

versus 
  
λ !γ 0  for three values of λω  in Figure 6 and Figure 7.   

 

h. Correction to 
  
T

3
T

1
 

 
From (45) and (36), we can construct the third-to-first torque harmonic 

amplitude correction factor [see Abstract or Table II for the definition of correction 
factor; see also after Eq. (12)]:   
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 (47) 

In Eqs. (19) and (29), if we just keep terms up to 
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5

 and 
   
λ !γ
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 and then 

expand in a Taylor series with respect to 
   
λ !γ

R

0  about 
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= 0 , we get:	  
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 (48) 

from which we learn that, to zeroth order, the torque amplitude ratio 
  
T

3
T

1
 

from rotating parallel-disk flow is attenuated to about two thirds of the shear 

stress amplitude ratio 
 
τ

3
τ

1
 from sliding-plate or cone-plate flow, and (ii) that 

to the next order, the attenuation will worsen with 
  
λ !γ 0( )

2

, and consequently, the 

correction factor given by Eq. (48) increases.  Since Eq. (19) has been extended to 
multiple relaxation times (see Eq. (117) in Section 7 of [15]), Eq. (48) can also be so 
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extended, and thus, where the discrete relaxation spectrum has been determined, 
torque harmonic amplitudes measured in parallel-disk flow can, with some 
difficulty, be corrected to their corresponding shear stress harmonic amplitudes 
(for 

  
!γ 0 ω  small enough for the harmonic amplitudes and thus, their ratios, to be 

fully described with power laws).  For steady shear flow (in the limit as  λω → 0 ), 
Εq. (48) gives: 
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 (49) 

In Eqs. (19) and (29), if we just keep terms up to 
  
λ !γ 0( )

3

 and 
   
λ !γ
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3

 we get the 

simpler, cruder approximation to Eq. (48): 
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which, for steady shear flow (in the limit as  λω → 0 ), gives: 
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 (51) 

the simpler, cruder version of Eq. (49).   
Eqs. (48) and (50) are the first main results of this work.  To a first 

approximation, Eqs. (48) and (50) agree with Wagner’s Eq. (12) above.  Eqs. (48) 
and (50) also demonstrate why the interpretation of torque in oscillatory parallel-
disk flow is more complicated than in cone-plate flow.  	  
 

i. Correction to 
  
T

5
T

1
 

 
Using Eqs. (46) and (38), we can construct the fifth-to-first torque harmonic 

amplitude correction [see Abstract or Table II for the definition of correction factor; 
see also after Eq. (12)]: 
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In Eqs. (19) and (29) and, if we just keep terms up to 
  
λ !γ 0( )

5

 and 
   
λ !γ

R

0( )
5

 and then 

expand in a Taylor series with respect to 
   
λ !γ

R

0  about 
   
λ !γ

R

0
= 0 , we get: 

    

τ
5

τ
1

T
5

T
1

== 2+
2L+1( )

2 L+1( ) 1+ 4L( )
λ !γ 0( )

2

−"  (53) 

which, in the limit of low frequency 
 
λω → 0( ) , Εq. (53) reduces to: 

   

τ
5

τ
1

T
5

T
1

== 2+ 1

4
λ !γ 0( )

2

−" (54) 

which corresponds to steady shear flow.  From Εq. (53), we learn that (i), to 
zeroth order, the torque amplitude ratio 

  
T

5
T

1
 from parallel-disk flow is 

attenuated by about half of the shear stress amplitude ratio 
 
τ

5
τ

1
 from sliding-

plate or cone-plate flow, and (ii) that to the next order, the attenuation will 
worsen with 

  
λ !γ 0( )

2 .   

Since Eq. (19) has been extended to multiple relaxation times (see Eq. (117) in 
Section 7 of [15]), Eq. (53) can also be so extended, and thus, where the discrete 
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relaxation spectrum has been determined, torque harmonic amplitudes 
measured in parallel-disk flow can be corrected to their corresponding shear 
stress harmonic amplitudes.  Eq. (53) is the second main result of this work.   
	  
IV. EXPERIMENTAL METHOD 
 

The sample of 1,4-cis-polyisoprene used was anionically synthesized in the 
Karlsruhe laboratory (

  
M

w
=  84,000  g/gmol [59]; 

  
PDI ≡ M

w
M

n
=  1.04  [59]; 

  
M

e
=  4,000  g/gmol  [60]; 

  
T

g
= −61.7ºC  measured using differential scanning 

calorimetry [61]).  It is an entangled [
  
M

w
M

e
=  21  entanglements per chain], 

nearly monodisperse, linear homopolymer melt.  The real part, ′η ω( ) , and 

minus the imaginary part, ′′η ω( ) , of the complex viscosity, 
 
η* ω( ) , were 

measured in parallel-disk flow using small-amplitude oscillatory shear flow with 

  
R = 8.0mm  and 

  
h = 0.5mm  [62,63] at   T = 52.8°C  with 

   
!γ 0 ω < 0.01 , and we 

present these results in Figure 18.   
Our large-amplitude oscillatory shear flow measurements were performed on 

an ARES-G2 strain controlled rheometer (TA Instruments, 159 Lukens Drive, New 
Castle, DE 19720) using parallel disks (  R = 5.0  mm, plate-partitioning gap in 
stationary plate of 0.1 mm, outer plate radius 5.1 mm) and cone-plate (  R = 5.0

mm, 
  

π

2
−θ

c
( )   = 0.099 rad) geometries.  For both the parallel-disk and cone-plate 

flow experiments, we used a stationary disk following the single-partition design 
of Fig. 1 of [64]).  We chose plate-partitioning to allow measurements up to 
higher shear rate amplitudes (without the offending effects of edge distortion 
and fracture) [65,66,67,68].  We find plate-partitioning to be an excellent 
alternative to sliding plate rheometry incorporating a local shear stress 
transducer in the stationary plate [69,70,71,72,73,74].In the large-amplitude 
oscillatory shear flow experiments, the sample was subjected to a series of 

oscillations with increasing strain amplitude 
  
!γ 0 ω( ) 0 at a fixed angular frequency 

of   ω = 6.3  rad/s and at   T = 52.8°C .  The temperature was controlled with a 
forced convection air bath.  The strain amplitude range was 

   
0.01 < !γ 0 ω < 3  and 

was chosen to span both the linear as well as the nonlinear region.  For each 
amplitude, 25 cycles were recorded by oversampling [75] in the time domain 
using the commercial TRIOS software provided by TA Instruments.  The first 2 
cycles of the sampled time data for each strain amplitude were discarded, to 
ensure alternance [15], so that cycles 3 through 27 were then analyzed for each 
point in Figure 10 through Figure 17.  Also, each data set in Figure 10 through 
Figure 17 represents a pair of separate sample loadings.  For the Fourier 
transform of the time data, a custom MATLAB [MathWorks, 3 Apple Hill Drive�, 
Natick, MA 01760-2098] code was used to get the amplitudes of the shear stress 
harmonics, 

 
τ

1
, 
 
τ

3
 and 

 
τ

5
, and also of the torque harmonics, 

  
T

1
, 

  
T

3
 and 

  
T

5
, 

from the corresponding measured time series [76].   
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V. THEORY VERSUS MEASUREMENT 
 

For the third-to-first 
 
τ

3
τ

1  
measurements (where 

   
λ !γ 0

> 0.05 ) we find Eq. 

(45) to fit at 
  
λ = 0.0158s  (see Figure 10).  The value 

  
λ = 0.0158s  compares with 

the value of 
  
λ ≡ 1 ω

c
=0.011s  deduced from the crossover frequency, 

 
ω

c
 [where 

 
′G ω

c( ) = ′′G ω
c( ) ] reported in Table 1 and in Figs. 2 a) and b) of [59].  Hence, the 

PI-84k, in cone-plate flow, seems to obey the single relaxation time corotational 
Maxwell model, include the slope of 2 [and thus the scaling exponent implied by 

Eq. (45)].  Using the same value of 
  
λ = 0.0158s , for the 

  
T

3
T

1
 measurements 

(where 
   
λ !γ

R

0
> 0.05 ), we then get agreement with Eq. (36) (see Figure 12).  In other 

words, the PI-84k, in parallel-disk flow, seems to obey the corotational Maxwell 

model too.  In Figure 14, for the 
  
T

3
T

1  
and 

 
τ

3
τ

1
 measurements (where 

   
λ !γ

R

0
> 0.05  and 

   
λ !γ 0

> 0.05 ), we confirm the first main result of this paper, that is, 
that the correction factor for parallel-disk flow is indeed 

  
τ

3
τ

1( ) T
3

T
1( ) = 3

2
 [from Eq. (50)].  

In Figure 15, for the 
  
T

5
T

1  
and 

 
τ

5
τ

1
 measurements (where 

   
λ !γ

R

0
> 0.2  

and 
   
λ !γ 0

> 0.2 ), we confirm the second main result of this paper, that is, that the 

correction factor for parallel-disk flow is indeed 
  
τ

5
τ

1( ) T
5

T
1( ) = 2  [from 

Eq.(53)].  . 

For the fifth-to-first 
  
T

5
T

1  
measurements (where 

   
λ !γ

R

0
> 0.2 ) we find a 

match for the slope [and thus the scaling exponent implied by Eq. (46)] of four 
predicted by Eq. (38) at 

  
λ = 0.0158s  (see Figure 13).  In other words, the PI-84k, 

in parallel-disk flow, seems to match the slope predicted by the corotational 

Maxwell model, but the model falls well below the measured values of 
  
T

5
T

1
.   

Using 
  
λ = 0.0158s , for the 

 
τ

5
τ

1
 measurements (where 

   
λ !γ 0

> 0.2 ), we again 

find a match for the slope of four predicted by Eq. (45) (see Figure 11).  In other 
words, the PI-84k, in cone-plate flow, seems to match the slope of the 
corotational Maxwell model, but the model falls below the measured values of 

 
τ

5
τ

1
.  In Figure 15, for the 

  
T

5
T

1  
and 

 
τ

5
τ

1
 measurements (where 

   
λ !γ

R

0
> 0.2  and 

   
λ !γ 0

> 0.2 ), we confirm the second main result of this paper, that is, 
that the correction factor for parallel-disk flow is indeed 

  
τ

5
τ

1( ) T
5

T
1( ) = 2 .   
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VI. CONCLUSION 
 

We find that parallel-disk flow attenuates the third-to-first harmonic ratio by 
a factor of 

 
2

3
, and the fifth-to-first, by a factor of 

 
1

2
.  By attenuates we mean that 

the torque harmonic amplitude ratios fall below the corresponding shear stress 
amplitude ratios that would be measured in cone-plate or sliding-plate flow, and 

specifically, that 
  
T

3
T

1
< τ

3
τ

1
 and 

  
T

5
T

1
< τ

5
τ

1
.  In this work, we 

have compared the higher harmonics of the torque, measured in oscillatory 
parallel-disk flow, with the higher harmonics of the shear stress, and measured 
in cone-plate flow.  We use an analytical solution for the corotational Maxwell 
model to arrive at two simple correction factors, one for the amplitude ratio of 
the third-to-first torque harmonics, and another for the fifth-to-first.  We find that 
data measured in the parallel-disk flow and corrected using, the factor of 

 
3

2
 for 

the third-to-first [Eq. (50)], and 2 for the fifth-to-first [Εq. (53)], agree with our 
oscillatory cone-plate flow measurements for 1,4-cis-polyisoprene.   

Further, our expression for the torque in large-amplitude oscillatory parallel-
disk flow [Eq. (22), with Eqs. (23) through (28), is also useful for the design of the 
simplest of torsional viscous dampers, consisting of a viscoelastic liquid between 
two disks.   
 
VII. APPENDIX: SHEAR RATE CORRECTION 
 

An alternative approach to correcting torque measurements from parallel-
disk flow is to try to adjust the shear rate at the rim to match a corresponding 
value for the cone-plate measurement.  For the power-law fluid in parallel-disk 
flow: 

  

τθz
= −m

∂vθ

∂z
+

1

r

∂v
z

∂θ
⎡

⎣⎢
⎤

⎦⎥

n

= −m
∂vθ

∂z

⎛
⎝⎜

⎞
⎠⎟

n

 (55) 

and substituting Eq. (3) into Eq. (55) gives:	  

 

τθz
= −m

∂
∂z

Ω r z h( )⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

n

= −m
Ω r

h

⎡
⎣⎢

⎤
⎦⎥

n

 (56) 

and substituting Eq. (56) into Eq. (6) gives: 

    

T = 2πm
Ω
h

⎡

⎣⎢
⎤

⎦⎥

n

r
2+n

dr
0

R

∫

= 2πm
ΩR

h

⎡

⎣⎢
⎤

⎦⎥

n

R
3

3+ n

=
2πmR

3

3+ n
!γ

R

n

 (57) 

For cone-plate flow, the torque that the fluid exerts on the plate is given by: 



	   24	  

   

T = − r ⋅τθφr sin
π
2( )dr dφ

0

R

∫0

2π
∫

= −2π τθφr
2

dr
0

R

∫
 (58) 

and the shear stress for cone-plate flow, for a power-law fluid, is given by: 

   

τθφ = −m
Ω

π
2
−θ

c( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n

= −m !γ
c

n  (59) 

Substituting Eq. (59) into Eq. (58): 

    

T = 2πm !γ
c

n
r

2
dr

0

R

∫

=
2πm

3
R

3
!γ

c

n

 (60) 

Equating Eqs. (57) and (60), and then rearranging gives the final expression for 
the power-law correction factor: 

   

!γ
c

!γ
R

=
3

3+ n

⎡

⎣⎢
⎤

⎦⎥

1 n

 (61) 

From	  Eq. (61) we learn that, for shear-thinning power-law fluids, the 
correction factor is bounded by: 

   

1

e
3

≤ !γ
c
!γ

R( ) ≤ 3

4
 (62) 

or approximately, by 
   
0.7165 ≤ !γ

c
!γ

R( ) ≤ 0.75   In other words, for shear-

thinning power-law fluids, the correction factor 
  
!γ

c
!γ

R
 hardly departs from its 

Newtonian value (by only   −4%  ).  From	  Eq. (61) we learn that 
  
!γ

c
!γ

R
 does not 

approach the Newtonian value 
 
3

4
 asymptotically, but rather with the low slope 

of: 

   

d !γ
c
!γ

R( )
dn

n=1

= 3
4

log 4
3
− 3

4( ) ≅ 0.03  (63) 

In	  Figure 19	  we	  illustrate	  the	  interesting	  behavior	  of	  the	  correction	  factor	  given	  by	  
Eq. (61). 

For the special case of a Newtonian fluid, where   n = 1 , Eq. (61) gives: 

   
!γ

c
=

3

4
!γ

R
 (64) 

which has already been tested experimentally and verified for 
  
T

3
T

1
 for 

  
!γ 0 ω ≤ 1  for a solution of polyisobutylene in oligoisobutylene. (see Figs. 4a and 

4b of [26]), but this correction then did not work for 
  
!γ 0 ω > 1 .  In other words, 

for some systems, one can accomplish the same correction as our new Eq. (51), 

however, Figure 16 shows that for the 
  
T

3
T

1
 data collected in this work, Eq. 
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(64) is unsatisfactory.  Curiously, Figure 17 shows that Eq. (64) did work well for 

the 
  
T

5
T

1
 data collected for our 1,4-cis-polyisoprene.   

For our 1,4-cis-polyisoprene, from the inflection point to the 
 
η* ω( )  curve 

(and applying the Cox-Merz rule [77]) we measure: 

   

n ≡
d log η * ω( )

d logω
ω

i

=
d logη !γ( )

d log !γ
!γ
i
=ω

i

= 0.685  (65) 

where 
 
ω

i
 is the angular frequency at the inflection of the 

  
log η* ω( )  versus 

  log !γ curve at   T = 52.8°C .  Substituting Eq. (65) into Eq. (61), gives the power-law 

correction for our 1,4-cis-polyisoprene of 
   
!γ

c
!γ

R
= 0.741  which hardly differs 

from the Newtonian correction of 
 
3

4
 that we illustrate in Figure 16 and Figure 17, 

which are discussed above.  For alternative treatments of correction factors for 
the shear rate in parallel-disk flow see Section 5.5 of [78] and also [79,80,81]). 
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Figure 1: Orthomorphic sketch of parallel-disk flow rheometer fixture.  
Cylindrical coordinates 

 
r,θ , z( )  with origin on the stationary disk.  The linear 

velocity profile, 
 
v
θ
= Ω r z h( ) , results from the assumption that inertial effects 

can be neglected. 
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Figure 2: Orthomorphic isometric sketch of alternating velocity profile in 
oscillatory shear flow between stationary and moving plates of the sliding-plate 
geometry [Eq. (6)].  Cartesian coordinates with origin on the stationary plate.  
The linear velocity profile,  vx =Vy h , results from the assumption that inertial 
effects can be neglected. 
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Figure 3: Orthomorphic sketch of cone-plate flow rheometer fixture.  Spherical 
coordinates 

 
r,θ ,φ( )  with origin at the cone apex.  The linear velocity profile, 

  
vφ = Ω r

π
2
−θ( ) π

2
−θ

c
( )⎡⎣ ⎤⎦ , results from the assumption that inertial effects can be 

neglected, and applies to shallow cones, where 
   
sin π

2
−θ

c
( )≪1 .   
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Figure 4: Third-to-first torque harmonic amplitude ratio 
  
T

3
T

1
 versus 

  
λ !γ 0  

for 
  
λω =

1

10
,1,10  [Eq. (36)].   
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Figure 5: Fifth-to-first torque harmonic amplitude ratio 
  
T

5
T

1
 versus 

  
λ !γ 0  for 

  
λω =

1

10
,1,10  [Eq. (38)].   

 
  



	   31	  

 

 

	  

	  

	  

	  

	  

 
 

Figure 6: Third-to-first shear stress harmonic amplitude ratio 
 
τ

3
τ

1
 versus 

  
λ !γ 0  for 

  
λω =

1

10
,1,10  [Eq. (45)].   
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Figure 7: Fifth-to-first shear stress harmonic amplitude ratio 
 
τ

5
τ

1
 versus 

  
λ !γ 0  

for 
  
λω =

1

10
,1,10  [Eq. (46)].   
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Figure 8:  Third-to-first harmonic amplitude ratio correction for torque measured 

in parallel-disk flow
  
τ

3
τ

1( ) T
3

T
1( )  versus 

  
λ !γ 0 for 

  
λω =

1

10
,1,10  [Eq. (47)]; 

the correction approaches 
 
3 2  at low 

  
λ !γ 0 .  
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Figure 9:  Fifth-to-first harmonic amplitude ratio correction for torque measured 

in parallel-disk flow
  
τ

5
τ

1( ) T
5

T
1( )  versus 

  
λ !γ 0 for 

  
λω =

1

10
,1,10  [Eq. (52)]; 

the correction approaches 2 at low 
  
λ !γ 0 . 
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Figure 10: Third-to-first shear stress harmonic amplitude ratio 
 
τ

3
τ

1
 versus 

  
λ !γ 0  for   λω = 0.0998  (

  
λ = 0.0158s  obtained by fitting corotational Maxwell 

model (solid curve), Eq. (45), to these data.  For 1,4-cis-polyisoprene,  ω = 2π rad s

,   T = 52.8°C , cone-plate flow measurements.   
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Figure 11: Fifth-to-first shear stress harmonic amplitude ratio 
 
τ

5
τ

1
 versus 

  
λ !γ 0  for   λω = 0.0998  (using fitted value of 

  
λ = 0.0158s ; 

 
ω = 2π rad s ) [solid 

curve is for corotational Maxwell model, from Eq. (45)].  For 1,4-cis-polyisoprene,
  T = 52.8°C , cone-plate flow measurements.   
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Figure 12: Third-to-first torque harmonic amplitude ratio 
  
T

3
T

1
 versus 

  
λ !γ 0  

for   λω = 0.0998  (using fitted value of 
  
λ = 0.0158s ; 

 
ω = 2π rad s ) [solid curve is 

for parallel disk flow of corotational Maxwell fluid, from Eq. (36)].  For 1,4-cis-
polyisoprene,  T = 52.8°C , parallel-disk flow measurements.   
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Figure 13: Fifth-to-first torque harmonic amplitude ratio 
  
T

5
T

1
 versus 

  
λ !γ 0  

for   λω = 0.0998  (using fitted value of 
  
λ = 0.0158s ; 

 
ω = 2π rad s ) [solid curve is 

for parallel disk flow of corotational Maxwell fluid, from Eq. (38)].  For 1,4-cis-
polyisoprene,  T = 52.8°C , parallel-disk flow measurements.   
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Figure 14: Measured third-to-first shear stress amplitude ratio, 
 
τ

3
τ

1
, (open 

circles) versus 
  
λ !γ 0 , and torque harmonic amplitude ratio 

  
T

3
T

1
 versus 

   
λ !γ

R

0  

(open squares), and also using the correction from Eq. (48), 
  

3

2
T

3
T

1
 versus 

   
λ !γ

R

0   (open triangles).  Arrow shows direction of correction from open squares 

to open triangles.  For 1,4-cis-polyisoprene,  T = 52.8°C .   
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Figure 15: Measured fifth-to-first shear stress amplitude ratio, 
 
τ

5
τ

1
, (open 

circles) versus 
  
λ !γ 0 , and torque harmonic amplitude ratio 

  
T

5
T

1
 versus 

   
λ !γ

R

0  

(open squares), and also using the correction from Eq. (48), 
  
2 T

5
T

1
 versus 

   
λ !γ

R

0   (open triangles).  Arrow shows direction of correction from open squares 

to open triangles.  For 1,4-cis-polyisoprene,  T = 52.8°C .   
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Figure 16: Measured third-to-first shear stress amplitude ratio, 
 
τ

3
τ

1
, (open 

circles) versus 
  
λ !γ 0 , and torque harmonic amplitude ratio 

  
T

3
T

1
 versus 

   
λ !γ

R

0  

(open squares), and also versus the Newtonian, and power-law corrections, 

   
3

4
λ !γ

R

0  (open triangle) and 
   

3 3+ n( )⎡⎣ ⎤⎦
1 n

λ !γ
R

0  (open diamonds).  For 1,4-cis-

polyisoprene,  T = 52.8°C .   

  



	   42	  

 

	  

	  

	  

	  

	  

	  

	  

	  
	  

Figure 17: Measured fifth-to-first shear stress amplitude ratio, 
 
τ

5
τ

1
, (open 

circles) versus 
  
λ !γ 0 , and torque harmonic amplitude ratio 

  
T

5
T

1
 versus 

   
λ !γ

R

0  

(open squares), and also versus the Newtonian correction, 
   
3

4
λ !γ

R

0  (open triangle).  

For 1,4-cis-polyisoprene,  T = 52.8°C .   
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Figure 18:  Real part, ′η ω( )  [black circles] and minus the imaginary part, ′′η ω( )

[red squares], of the complex viscosity, 
 
η* ω( )  [blue triangles] measured in 

parallel-disk flow using small-amplitude oscillatory shear versus frequency, ω , 
made dimensionless with 

  
λ = 0.0158s  (from fitting Eq. (45) to data in Figure 10).  

For 1,4-cis-polyisoprene,  T = 52.8°C . 
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Figure 19:  Correction factor 
  
!γ

c
!γ

R
 versus power-law index  n  using Eq. (61):  

   
!γ

c
!γ

R
= 3 3+ n( )⎡⎣ ⎤⎦

1 n

.  For shear-thinning fluids, the correction factor is 

bounded by 
   

1

e
3

≤ !γ
c
!γ

R( ) ≤ 3

4
 .   
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Table I: Dimensional Variables 

Name Symbol Dimensions Range 

Angular rate of 
displacement amplitude  Ω

0

   t
−1

  ≥ 0  

Angular test frequency ω
   t

−1

  ≥ 0  

Angular test frequency at 
the inflection of the 

 
η* ω( )  curve 

 
ω

i    t
−1

  ≥ 0  

Cartesian coordinate, 
distance from stationary 
plate (Figure 2) 

 y   L   !  

Cartesian coordinate, flow 
direction (Figure 2)  x   L   !  

Cartesian coordinate, 
transverse to flow 
direction (Figure 2) 

 z   L   !  

Characteristic time for 
fluid λ   t   ≥ 0  

Cone angle 
 
θ

0   rad   0 ≤θ < 2π  

Corotational derivative 
  

D

D t
   t

−1

  !  

Cylindrical coordinate, 
angular, flow direction 
(Figure 1) 

θ
   rad   0 ≤θ < 2π  

Cylindrical coordinate, 
distance from stationary 
plate (Figure 1) 

 z   L   !  

Cylindrical coordinate, 
radial, transverse to flow 
direction (Figure 1) 

 r   L   ≥ 0  

Extra stress tensor*,  ij −
component  

τ ij  
  
M Lt

2

  !  
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Loss viscosity of   mnth  
order  

!!η
mn     

Mt
n−2

L   ≥ 0  

Molecular weight, weight 
average   

M
w   

M mole   ≥ 0  

Molecular weight, number 
average   

M
n   

M mole   ≥ 0  

Molecular weight, 
entanglement   

M
e   

M mole   ≥ 0  

Nonlinear loss modulus, 
  mnth  order  

!!G
mn     

Mt
m−2

L   !  

Nonlinear storage 
modulus,   mnth  order  

!G
mn     

Mt
m−2

L   !  

Parallel-disk gap  h   L   ≥ 0  

Parallel-disk radius  R   L   ≥ 0  

Power-law coefficient  m    
Mt

n−2
L   ≥ 0  

Rate of deformation tensor 
 
!γ

   t
−1

  !  

Rate of deformation 
tensor*,

 
ij − component    

!γ ij    t
−1

  !  

Shear rate amplitude 
  
!γ

0

   t
−1

  ≥ 0  

Shear rate amplitude at 
parallel-disk rim    

!γ
R

0

   t
−1

  !  

Shear rate at inflection of 
steady shear viscosity 
curve, 

 
η !γ( )     

!γ
i    t

−1

  ≥ 0  

Shear rate, steady shear 
flow  

!γ    t
−1

  ≥ 0  

Shear stress harmonic 
amplitude,   hth   

τ
h    

M Lt
2

  ≥ 0  

Shear stress harmonic,   hth  
 
τ

h    
M Lt

2

  !  

Spherical coordinate, angle 
from axis (Figure 3) θ   rad   0 ≤θ ≤ π  

Spherical coordinate, flow 
direction (Figure 3) 

φ   rad   
0 ≤ φ < 2π  

Spherical coordinate, 
transverse to flow 
direction (Figure 3) 

 r   L   ≥ 0  
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Steady shear viscosity 
function  

η !γ( )  
 
M Lt   ≥ 0  

Storage viscosity of  mn th 
order  

!η
mn     

Mt
n−2

L   ≥ 0  

Temperature  T   T   ≥ 0  

Temperature, glass 
transition   

T
g   T   ≥ 0  

Time  t   t   ≥ 0  

Torque  T    
ML

2
t

2

  !  

Torque harmonic 
amplitude,   hth     

T
h    

ML
2

t
2

  ≥ 0  

Torque harmonic,   hth   
  
T

h  
  
ML

2
t

2

  !  

Torque harmonic,   nth  
order contribution term of 
the   hth   

   
T

h ,n   
  
ML

2
t

2

  !  

Velocity gradient tensor 
 ∇v

   t
−1

 
 !  

Velocity vector  v   L / t   !  

Velocity,   ith  component  
 
v

i   L / t   !  

Vorticity tensor ω    t
−1

  !  

Zero shear viscosity 
 
η

0    
M Lt   ≥ 0  

Legend:  M ≡  mass;   L ≡  length;  t ≡  time;   T ≡  temperature 
	  

	  

* Where 
 
τ

ij  is the force exerted in the jth direction on a unit area of fluid surface 

of constant 
 
x

i
 by fluid in the region lesser 

 
x

i
 on fluid in the region greater 

 
x

i
 [43].   

	  

**See Eqs. (4.4-14) and (4.4-15) and also NOTATION FOR VOLUME 1: Greek 
Symbols of [44].	  	  	  
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Table II: Dimensionless Variables and Groups 

Name Symbol Range 

Correction factor for measured 
torque amplitude ratios,   hth -to-first    

τ
h

τ
1( ) T

h
T

1( )   ≥ 0  

Deborah number squared 
  
L ≡ λω( )

2

  ≥ 0  

Deborah number, oscillatory shear λω   ≥ 0  

Harmonic number  h    ≥ 0  

Intrinsic Nonlinearity 
  
Q

0

h 1

  ≥ 0  

Natural logarithm  log    ≥ 0  

Power-law index  n    ≥ 0  

Shear stress harmonic amplitude 
ratio,   hth -to-first   

I
h 1

≡ τ
h

τ
1    ≥ 0  

Time  ωt   !  

Torque harmonic amplitude ratio, 
  hth -to-first    

T
h

T
1   ≥ 0  

Weissenberg number, oscillatory 
parallel-disk flow    

λ !γ
0

R   ≥ 0  

Weissenberg number, oscillatory 
shear flow   

λ !γ
0

  ≥ 0  

 
Legend:   ! ≡ all real numbers 
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