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Abstract  
 

We explore the utility of strain-controlled large amplitude oscillatory shear (LAOS) 

deformation for identifying and characterizing apparent yield stress responses in 

elastoviscoplastic materials.  Our approach emphasizes the visual representation of the LAOS 

stress response within the framework of Lissajous curves with strain, strain-rate, and stress as the 

coordinate axes, in conjunction with quantitative analysis of the corresponding limit cycle 

behavior.  This approach enables us to explore how the material properties characterizing the 

yielding response depend on both strain amplitude and frequency of deformation.  Canonical 

constitutive models (including the purely viscous Carreau model and the elastic Bingham model) 

are used to illustrate the characteristic features of pseudoplastic and elastoplastic material 

responses under large amplitude oscillatory shear.  A new parameter, the perfect plastic 

dissipation ratio, is introduced for uniquely identifying plastic behavior.  Experimental results are 

presented for two complex fluids, a pseudoplastic shear-thinning xanthan gum solution and an 

elastoviscoplastic invert-emulsion drilling fluid.  The LAOS test protocols and the associated 

material measures provide a rheological fingerprint of the yielding behavior of a complex fluid 

that can be compactly represented within the domain of a Pipkin diagram defined by the 

amplitude and timescale of deformation. 
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1. Introduction 
In this work we examine the response of "yield stress fluids" to large amplitude oscillatory 

shear (LAOS) deformation.  Without seeking to be drawn into an extended debate, we use the 

term "yield stress fluid" pragmatically to refer to any material or model which exhibits a 

dramatic change in viscosity (orders of magnitude) over a small range of applied stress (Barnes 

and Walters (1985); Barnes (1999)).  This definition might include pseudoplastic (dramatically 

shear-thinning) liquids, or elastoviscoplastic 1  materials which effectively behave as linear 

viscoelastic solids for applied stresses below a critical yield stress σ<σy, but irreversibly deform 

and flow as a fluid for applied stress above the yield stress σ>σy. 

Yield stress behavior is sometimes desired in order to achieve particular performance with 

complex fluids.  For example, oilfield drilling fluids are often formulated to be yield stress fluids 

to meet the needs of an intermittent drilling process. While drilling ahead, relatively long periods 

of fluid flow will be interrupted by short periods (usually less than ten minutes) when the fluid is 

not pumped as pipe connections are made. During non-drilling activities (tripping pipe, running 

casing, etc.) the drilling fluid may lie stagnant in the hole for hours or even days. During this 

period, settling of solids can be especially problematic if the fluid does not have sufficient yield 

structure to support both large and small particulate matter. However, a fluid with an excessive 

yield stress can also provide problems; for example, if a large stress is required to break the 

structure and initiate fluid flow in the well annulus, the result is tremendous pressure surges 

which may fracture the formation and lead to further problems. The balance between minimizing 

these swab and surge pressures while maintaining suspension of weight materials (high specific 

gravity solids, primarily barite) and drilled cuttings can be difficult to maintain in fluids that are 

thixotropic and exhibit a yield stress (Maxey (2007)). 

What is needed is a test protocol for characterizing the elastic, viscous, and yielding 

characteristics of a prototypical mud in the field or in the formulation laboratory.  Large 

amplitude oscillatory shear (LAOS) is a test method which systematically interconnects familiar 

material measures such as steady flow viscosity ( )η γ& , linear viscoelastic moduli G'(ω) and G"(ω), 

                                                
 
1 The terms elastic, viscous, and plastic are sometimes used to refer to specific components of constitutive equations, 
but here the term elastoviscoplastic is used to refer to experimentally measured material responses as described in 
the text. 
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as well as nonlinear viscoelastic properties (Dealy and Wissbrun (1990)), allowing for nonlinear 

viscous and elastic effects to be characterized simultaneously.  In strain-controlled LAOS 

deformation, the imposed strain takes the form 0( ) sint tγ γ ω= , which consequently imposes a 

phase-shifted strain-rate 0 cos tγ γ ω ω=& .  The resulting oscillatory shear stress 0( ; , )tσ ω γ  is 

recorded and analyzed.  LAOS tests are completely defined by two input parameters, e.g. 

frequency and amplitude {ω, γ0}.  These two parameters define an experimental test space in 

which results can be compactly represented, which is now known as the Pipkin diagram (Pipkin 

(1972)).  The steady flow curve, ( ) ( )η γ σ γ γ=& & & , is recovered in the limit of small frequency, 

0ω → , whereas the familiar measures of linear viscoelasticity, G'(ω) and G"(ω), are recovered 

in the limit of small strain amplitude, 0 0γ → .  Many complex fluids are processed or utilized 

outside of these limiting regions, e.g. the oilfield drilling fluids discussed above experience large 

strains and strain-rates on the order of the reciprocal of the characteristic timescales in the 

material.  LAOS offers a systematic methodology for characterizing viscoelastic material 

responses over the full domain of amplitudes (γ0) and timescales (1/ω) of the imposed shearing 

deformation. 

Methods for analyzing LAOS include Lissajous curves (Philippoff (1966); Tee and Dealy 

(1975)), Fourier transform rheology (e.g. Wilhelm (2002)), Stress decomposition (Cho et al. 

(2005); Ewoldt et al. (2008); Yu et al. (2009)), computation of viscoelastic moduli (Hyun et al. 

(2002); Ewoldt et al. (2008)), decomposition into characteristic waveforms (Klein et al. (2007)), 

and analysis of parameters related to Fourier transform rheology (Debbaut and Burhin (2002); 

Hyun and Wilhelm (2009)).  A unifying framework, or ontology, for LAOS was recently 

proposed by Ewoldt et al. (2008) which introduced a number of physically-meaningful material 

measures for LAOS tests and identified the inter-relation between some of the different 

approaches listed above.  The physical meaning of some of these measures was highlighted by 

considering graphically the raw test data in the form of Lissajous-Bowditch curves, which are 

parametric plots of stress σ(t) vs. strain γ(t) or strain-rate ( )tγ& .  This inherently visual approach 

allows for qualitative interpretations of quantitative material measures such as Fourier or 

Chebyshev coefficients. 

Steady state LAOS responses can be visualized as parametric curves in a 3-D space with 

strain, strain-rate, and stress as the coordinate axes, { ( )tγ , ( )tγ& , ( )tσ } (Cho et al. (2005)).  We 
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use the term “elastic Lissajous-Bowditch curve” to denote the projection of the oscillatory 

response curves onto the stress σ(t) vs. strain γ(t) plane, whereas viscous Lissajous-Bowditch 

curves denote parametric plots of stress σ(t)  vs. strain-rate ( )tγ& .  A linear elastic material 

response, Gσ γ= , appears as a straight line on the elastic Lissajous curve of σ(t) vs. γ(t), or a 

circle in a suitably scaled plot of / Gσ vs. 0/γ γ ω& .  In the linear viscoelastic regime, the Lissajous 

figures are elliptical when the stress response is a sinusoidal function, 0( ) sin( )t tσ σ ω δ= + and is 

plotted against ( )tγ  or ( )tγ& .   

A nonlinear viscoelastic response will distort the elliptical shape of a Lissajous curve.  

Although very small nonlinearities are best identified quantitatively by the presence of higher 

harmonics in the Fourier response spectrum, moderate and large nonlinearities are easily 

identified by the non-elliptical distortions induced in the Lissajous curves.  Furthermore, 

Lissajous curves provide a meaningful way to visualize and interpret viscoelastic nonlinearities 

in general.  The particular nonlinear LAOS signature associated with yield stress fluids such as 

drilling muds can be identified and better understood by first considering representative 

constitutive models.  Here we consider two canonical models: a purely viscous Carreau model 

and the elastic Bingham plastic model.  We determine the signature responses of these yield 

stress fluid models in LAOS tests and explore suitable measures for quantifying typical yield-

like responses for any material in LAOS.  We examine the experimental response of two material 

samples using these measures; a shear-thinning aqueous xanthan gum solution and an 

elastoviscoplastic oilfield drilling mud.  We show that the LAOS protocol can be used to identify 

regimes within the shear deformation space {ω,γ0} in which a complex material most closely 

approximates the response of a yield stress fluid. 

 

2. Materials and Methods 

2.1 Materials 

The aqueous xanthan gum solution (0.2 wt%) was provided by CPKelco, San Diego, CA in 

solution form.  An oilfield drilling fluid was provided by Baker Hughes Drilling Fluids, Houston, 

TX.  The invert emulsion drilling fluid (IEDF) was obtained as a sample from field operations 

and had a density of 1.53 g/ml.  The fluid component of the drilling mud is an invert emulsion 

with a continuous mineral oil phase surrounding an internal phase of calcium chloride brine 
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(17%wt, 1.76 molar).  The oil/water ratio was 76/24 (by vol).  The drilling mud contained high 

specific gravity solids (barite) at ~15%wt and organophilic clays ~2%wt. Drilled solids, which 

primarily consist of a mixture of reactive and non-reactive clays, composed greater than 5%wt of 

the IEDF. 

 

2.2 LAOS protocol 

Large amplitude oscillatory shear (LAOS) tests were performed using an ARES-LS 

displacement controlled rheometer (TA Instruments).  A cone-plate geometry was used for the 

aqueous xanthan gum solution, diameter D = 50 mm, cone angle α = 0.0402 rad, truncation 

h  = 0.049 mm.  Xanthan gum tests were performed at T=22ºC.   

For the drilling fluid, a plate-plate geometry was selected (diameter D = 25 mm, gap 

h = 0.5 mm) because of the presence of a significant particulate phase.  Adhesive-backed, 

waterproof sandpaper (600 grit) was attached to both the top and bottom plates to inhibit slip at 

the surface.  In an attempt to avoid edge fracture artifacts, the gap was deliberately over-filled 

with the fluid sample.  An outer ring (D=30 mm) was used to contain the over-filled sample.  

The ring was sealed to the bottom sandpaper surface using vacuum grease.  Using a Peltier plate, 

the temperature of the drilling fluid was maintained at 48.9ºC (i.e. 120ºF which is recommended 

as standard practice by the American Petroleum Institute (A.P.I. (2009)).   

The strain field for the rotational parallel plate geometry is inhomogeneous, and angular 

displacement and torque are the naturally measured quantities.  For the intrinsic variables of 

strain and stress, we report (and use in subsequent analysis) the strain at the edge of the plate, Rγ , 

and the apparent stress which would exist at the edge of the plate assuming a linear 

response, 32 /A M Rσ π= .  The possible artifacts of this approach are given more detailed 

consideration in a subsequent section below.   

Raw data was collected with the native rheometer control software (TA Orchestrator) using 

the Arbitrary Waveshape test as described by Ewoldt et al. (2008).  Although extremely high 

sample rates and signal-to-noise ratios can be achieved by acquiring and oversampling raw 

voltage signals from the BNC outputs on the back of the ARES (van Dusschoten and Wilhelm 

(2001)), we find that the Arbitrary Waveshape test sequence provided by the rheometer software 

allows for sufficiently high sample rates for our analysis without the requirement of a separate 
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data acquisition system.  Furthermore, the sample stress and strain signals are directly accessible 

with our protocol, and in contrast to the raw voltage signal, our measured variables available 

from the native rheometer control software presumably include all of the internal calibration 

factors of the instrument.   

 

2.3 Data Processing 

The raw data exported from the rheometer control software was processed using MATLAB®.  

The majority of data processing is performed using a freely available LAOS data analysis 

package, MITlaos (Ewoldt et al. (2007)).  The MITlaos software is used to determine the Fourier 

coefficients, Chebyshev coefficients, elastic/viscous stress decomposition, and the corresponding 

viscoelastic moduli.  For a specified pair of LAOS input parameters, {ω,γ0}, the sample is 

subjected to multiple deformation cycles. The initial transient response is monitored and allowed 

to decay so that a steady-state limit cycle is reached.  Six complete strain cycles in the periodic 

steady state regime are used for the data processing.  MITlaos uses the higher-harmonic 

information, up to a user-specified cutoff harmonic max max /n ω ω= , to calculate the desired 

viscoelastic material parameters.  For the drilling fluid, the cutoff frequency was chosen to be 

nmax=11 or higher depending on the noise floor of the power spectrum, in order to capture of all 

the meaningful information in the response signal while avoiding noise.  For the xanthan gum 

solution the cutoff frequency was chosen to be nmax=9, except for the lowest frequency test at 

{ω=0.15 rad.s-1, γ0=1.0} in which nmax=5 was used to filter unnecessary noise in the (small) 

torque signal.  Fig. 1 shows an example of a full time series response of a drilling fluid LAOS 

test, along with the associated Lissajous curve and normalized harmonic spectrums.  The noise 

floor appears near a normalized intensity of 4
1/ 5 10nI I −≈ ⋅  (Fig. 1b).  This noise floor could be 

reduced by oversampling but would not significantly change the quantitative measurements of 

the odd harmonics through n=11.  Even harmonics are negligible, e.g. 3
2 1/ 2.6 10I I −= ⋅ , and do 

not appear as distinct peaks in the power spectrum.   

In order to validate the procedure of using MITlaos to analyze raw stress and strain 

waveforms we first compared the results from a pair of strain sweep tests performed using the 

ARES software.  One test used the Arbitrary Waveshape protocol with offline processing by 

MITlaos, and the other test used the standard oscillation protocol of the ARES software, which 
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does not capture the raw waveforms.  The results from these duplicate tests are shown in Fig. 2 

for the xanthan gum solution at ω=3.75 rad.s-1 and increasing values of strain amplitude 0γ .  

Good correspondence between the two protocols is obtained for both 1 0( , )G ω γ′  and 1 0( , )G ω γ′′  

across the full range of strain amplitudes. 

 

 

 

 
Fig. 1.  Data processing example, LAOS of the drilling fluid at -115 rad.sω = , 0 3.16γ = .  (a) Full 

time series waveforms of the raw data signals, of which the final six cycles are used for analysis 
of periodic steady-state oscillations.  (b) Normalized power spectrum of the steady oscillatory 
stress signal.  Here a cut-off harmonic n=15 is used for the calculation of viscoelastic parameters. 
(c) Full waveform shown as a Lissajous curve of stress ( )tσ  vs. strain ( )tγ , and (d) the spectrum 

of Chebyshev coefficients which decompose the elastic and viscous nonlinearities from the 
steady oscillatory signal, here 1 1/ tan 3.87v eω δ= =  which indicates that the viscous component 

is dominant. 
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Fig. 2. Validation of the MITlaos software, using a strain sweep for xanthan gum solution 
(0.2 wt%) at ω=3.75 rad.s-1.  MITlaos software is used to analyze the raw stress and strain 
waveforms resulting from Arbitrary Waveshape tests (squares).  A duplicate test was 
performed with the typical oscillation test mode of the ARES rheometer software 
(circles), which provides viscoelastic parameters but no raw data or assessment of higher 
harmonic content.  The superposition of results indicates the validity of the Arbitrary 
Waveshape test and the MITlaos software for analyzing both linear and nonlinear LAOS 
results. 
 

3. Response of model fluids with yield stress characteristics 
Before we examine experimental LAOS measurements, it is instructive to explore the 

characteristic features of Lissajous curves for model yield stress fluids.  This helps build intuition 

when examining results from experiments or other proposed constitutive models.  Here we 

consider two models which are simpler limits of a general elastoviscoplastic response.  One 

model is a purely-viscous Generalized Newtonian Fluid which exhibits pseudoplasticity (shear-

thinning) and can approach perfect plastic behavior (i.e. a stress response independent of 

deformation rate) in a specific limit.    The second model behaves as a linear elastic solid before 
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yield with a rate dependent stress after yield.  Each model can be allowed to approach the 

canonical Bingham plastic constitutive response in an appropriate limit.  

3.1 Purely viscous Carreau model 

Many Generalized Newtonian Fluid models can approach the familiar Bingham plastic limit, 

for example the Cross model (Cross (1965)), Papanastasiou model (Papanastasiou (1987)), and 

Carreau-Yasuda model (Bird et al. (1987)).  Bird et al. (1983) and Mitsoulis (2007) provide 

comprehensive reviews of the relative merits of many of these different models and their utility 

in solving flow problems.  Here we select the Carreau model because of its familiarity and its 

ability to describe pseudoplastic (shear-thinning) data as well as materials with a critical plastic 

stress.  Furthermore, the model requires only two variables to fully describe a response to LAOS 

deformation, as shown below.   

The Carreau-Yasuda model is a Generalized Newtonian Fluid which describes a non-

Newtonian viscosity ( )η γ& as an instantaneous single-valued function of shear rate (Bird et al. 

(1987)).  The non-Newtonian viscosity is given as 

( )( )
1

0

1
n

a aη η
λγ

η η

−

∞

∞

−
= +

−
&  (1) 

 
where 0η  is the low-rate Newtonian plateau viscosity, η∞ is the high-rate plateau viscosity, λ is a 

characteristic timescale (or more accurately the inverse of a characteristic shear-rate, *1/λ γ= & ) 

beyond which non-Newtonian behavior becomes important,  n is the power-law exponent, and a 

is correlated with the sharpness (concavity) of the transition from Newtonian to power-law 

behavior.  Many good fits can be found for a = 2 and 0η∞ = , especially for polymer solutions 

and melts (Bird et al. (1987)).  For a = 2, the model reduces to the Carreau model. 

The Carreau model reduces to the Newtonian fluid for n = 1 and describes shear-thinning for 

n < 1.  For n → 0, and 0η η∞? , the model represents a yield stress fluid in which the viscosity 

dramatically changes within a small range of stress.  The apparent yield stress of the Carreau 

model (Eq.(1)) for n = 0 can be found by considering the power-law regime, 1λγ& ? , and 

determining the shear stress from ( )σ η γ γ= & & .  The apparent shear yield stress is found to be 

0Yσ η λ=  in the limit n=0.  The Carreau model gives a purely viscous response, because stress 



10/46 
 

only depends on the instantaneous value of the shear-rate, ( )σ γ& .  The elastic modulus G' is 

therefore always zero, even in the nonlinear regime. 

The LAOS material response of the Carreau model (Eq.(1), a = 2) can be concisely 

represented by two parameters when we set 0η∞ =  for simplicity.  For 0( ) ( ) / sinx t t tγ γ ω= = , 

0( ) ( ) / cosy t t tγ γ ω= =& &  the dimensionless stress response is 

° ( ) ( )( )
1

2 2; , ( ) 1 ( )
n

t n Cu y t Cu y tσ
−

= +  (2) 

where ° 0 0σ σ η γ≡ &  and 0Cu λγ ω≡  is the Carreau number.  The normalized stress waveform is 

therefore a function of two non-dimensional parameters.  The stress response of Eq.(2) is 

represented in terms of a family of Lissajous-Bowditch plots in Fig. 3.  Fig. 3a depicts the 3D 

response curve of the normalized stress response as a function of the two orthogonal LAOS 

inputs, ( ( ), ( ))t tσ γ γ& .  When suitably scaled so that ( ) sinx t tω=  and ( ) cosy t tω= , the periodic 

system output corresponds to trajectories on the surface of the bounding cylinder shown in gray 

(Fig. 3a).  In the limit n = 1, the response corresponds to a plane curve sectioned through the 

cylinder with max 0 0σ η γ= & .  As n is decreased, the trajectory becomes increasingly distorted and 

the maximum stress decreases.   

The Carreau model approaches a yield stress fluid response as n→0 and the Carreau 

number 0 1Cu λγ ω= ? .  For this yield stress response, the maximum stress becomes 

max 0 /σ η λ→  and the trajectory approaches two plane semicircles (Fig. 3a, top) offset 

by max 02 2 /σ η λ= .  For this yield-like response, normalized elastic Lissajous-Bowditch curves of 

stress vs. strain appear as squares (Fig. 3a, bottom-left, n=0).  The viscous Lissajous-Bowditch 

curves of stress vs. strain-rate enclose no area and are single-valued functions of the 

instantaneous strain-rate 0( ) ( ) /y t tγ γ= & &  (see Eq.(2)) as expected for all Generalized Newtonian 

Fluid constitutive models.  For this purely viscous response, the slope of any local secant line 

equals the viscosity, ( ) /η σ γ γ≡ & & .  Near | | 0γ →&  it is the tangent line of the viscous Lissajous 

curve which represents the low-rate Newtonian plateau viscosity, η0; however, this becomes 

increasingly difficult to resolve.  The apparent viscosity at the minimum resolvable rate, 

0M d d
γ

η σ γ
=

′ ≡
&

& , and at the largest imposed rate, 
0

L γ γ
η σ γ

=
′ ≡

& &
& , are two useful measures of the 
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nonlinear response which are generally applicable to any viscoelastic LAOS response, as 

discussed by Ewoldt et al. (2008). 

The limiting yield stress behavior of the Carreau model is representative of a viscoplastic 

yield stress response.  A corresponding elastoplastic limit is considered in the following section. 

3.2 Elastic Bingham model – homogeneous strain 

The elastic Bingham model responds as a linear elastic solid below the yield stress and 

transitions to a Bingham plastic response above the yield stress in which recoverable elastic 

strain is stored during flow (Yoshimura and Prudhomme (1987)).  This model incorporates 

material elasticity below yield and in this sense represents a more general yield stress response 

than the Carreau model presented in the previous section.  This model has recently been used by 

(Rouyer et al. (2008)) to understand the LAOS response of aqueous foams.  A number of more 

general elastoviscoplastic models have also been proposed in the literature (see for example 

Mujumdar et al. (2002), Saramito (2007)); however for simplicity we focus here on the canonical 

elastoplastic model. 

The shear stress-strain relationships for the elastic Bingham model are described by 

EE
Y

E
Y p Y

G

G

γ γσ γ

σ γ µ γ γ γ

<=

= + =&
 (3) 

 

where G is the elastic modulus, Eγ is the recoverable elastic strain, Yγ is the yield strain, and μp is 

the plastic viscosity.  The yield stress for this model is Y YGσ γ= .  The elastic strain Eγ  is found 

by integrating the shear-rate with respect to time, but saturates at | |E

Yγ γ=  during flow.  When 

the flow stops and reverses direction, the accumulated elastic strain is recovered and the response 

is linear elastic until the material is re-yielded again, when E

Yγ γ= ± . 
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(a)  max( ) /tσ σ at 0 10λγ ω =  

 

 
 
 

(b) 0 0( ) /tσ η γ& at various 0λγ ω  

 

Fig. 3.  Lissajous-Bowditch curves of the 
Carreau pseudoplastic model (Eq.(2)) for 
various values of the Carreau number 

0Cu λγ ω=  and power law index n.  Here 

n=1.0 is Newtonian (dotted lines), n=0.5 is 
shear-thinning (dashed lines), and n=0.0 is 
the limiting case of viscoplastic yield 
stress behavior (solid lines). (a) 3D 
trajectories of the stress response 

max( ) /tσ σ  as a function of the normalized 

LAOS inputs {x(t), y(t)}, shown 

for 0 10λγ ω = .  Note that the maximum 

stress maxσ  is different for each value of n, 

as shown in (b), which depicts 2D 
Lissajous curves projected onto the planes 

of stress vs. strain ( °( )tσ vs. x(t)) and stress 

vs. strain-rate ( °( )tσ vs. y(t)).  In (b) the 

stress is scaled by the Newtonian 

stress 0 0η γ& , rather than the maximum 

stress, at each value of the Carreau 
number 0Cu λγ ω= . 
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The response of the model to LAOS flow is completely governed by two non-dimensional 

parameters, representing the normalized strain amplitude and normalized strain-rate amplitude 

(Yoshimura and Prudhomme (1987)), 

0
0

0

maximum imposed strain
~

yield strain

max viscous stress
~ .

yield stress

Y

p

Y

N

γ
γ

µ γ

σ

Γ =

=
&

 (4) 

 
N is related to the inverse of the characteristic Bingham number for LAOS, N = 1/Bi (Bird et al. 

(1983)).  Here we use N to parameterize the flow since it directly corresponds to an input of the 

LAOS deformation, strain-rate amplitude 0γ& . 

The elastic Bingham model is simulated in homogeneous LAOS flow to produce the Lissajous 

curves shown in Fig. 4a.  For ease of comparison, each Lissajous curve is normalized once again 

by the maximum stress which is shown above each trajectory.  The curves are arranged across 

the two-dimensional parameter space of strain-rate-amplitude and strain-amplitude (N, Γ0), 

which represents the appropriate Pipkin space for the elastic Bingham model response. 

The elastic Bingham model reduces to a traditional Bingham plastic as the yield strain goes to 

zero, 0Yγ → , which corresponds to large values of 0Γ  and the top of the Pipkin space in Fig. 4a.  

In this viscoplastic limit the stress is only a function of strain rate, ( )σ γ& , since the yield criteria 

is satisfied for almost all times.   

The elastic Bingham model further reduces to a perfect plastic model with a constant flow 

stress after yield as 0pµ → , corresponding to  N→0 and 0 1Γ ?  (the top left corner of the Pipkin 

space of Fig. 4a).  In this limit the constitutive equation of the perfect plastic model is written 

as sgn( )Yσ σ γ= & . 

The most prominent feature of the yielded response ( 0 1Γ > ) is a rectangular elastic Lissajous 

curve, which is approached exactly in the limit of the perfect plastic response (N→0 at 0 1Γ ? ).  

The elastic Lissajous curve of the perfect plastic response has vertical sides ( G →∞ ) and a flat 

top and bottom ( 0pµ → ).  The limit of a Bingham plastic model ( 0 1Γ ? , arbitrary N) also has 

vertical sides, but is rounded on the top and bottom because the flow stress is proportional to 

shear-rate, ( ) ( )Y pt tσ σ µ γ= + & .  The full elastoplastic Bingham model response includes an 
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additional feature, sloped sides, which are caused by the finite elasticity, /d d Gσ γ = , for 

stresses below the yield stress.   

For completeness, the viscous representation of the Lissajous curves are also shown in Fig. 4a.  

For the viscous Lissajous curves of stress vs strain-rate, ( )tσ vs. ( )tγ& , the importance of the 

plastic viscosity µp term in flow is indicated by the slope of linear portions of the curves 

(for 0 1Γ > ).  The enclosed area in the center of the viscous Lissajous curves is indicative of the 

finite elasticity below yield.  Elasticity is negligible at 0 1Γ ? , which corresponds to the limit of 

the (purely viscous) traditional Bingham plastic response.  The response is approximately 

Newtonian in the limit of 0 1, 1NΓ ? ?  (upper-right portion of the Pipkin diagram).  In this 

limit the flow stress dominates, rendering the yield stress negligible.  Even though the underlying 

constitutive model is elastoplastic, the yielding behavior is insignificant for shear deformations 

at 0 1, 1NΓ ? ? , and in this part of the deformation space, the LAOS behavior of a material that 

is described by the elastoplastic Bingham model would instead appear almost Newtonian. 

 

3.3 Elastic Bingham model – torsional plate-plate response 

Because of the high volume fraction of solid particulates in many elastoviscoplastic materials 

such as the drilling fluid considered in the present work, it is typically necessary to use a parallel 

plate configuration in which the shearing deformation is inhomogeneous.  It is therefore 

necessary to address the possible Lissajous curve artifacts which are introduced by 

inhomogeneous torsional shear flow.  Exploring LAOS plate-plate artifacts is important because 

this geometry is often used for materials which are susceptible to wall slip and the parallel disk 

surfaces are easily modified to increase the roughness (e.g. with adhesive-backed sandpaper as 

used in this work for the drilling fluid).  LAOS plate-plate artifacts have been considered in 

terms of both the harmonic response (Macsporran and Spiers (1982); Macsporran and Spiers 

(1984)) and the oscillatory response in the time domain (Yoshimura and Prudhomme (1987)).  

Approximate shift factors have also been considered for matching FT-rheology parameters from 

cone-plate and parallel plate tests (Wilhelm et al. (1999)).  Our work here is concerned 

specifically with Lissajous curves, and we therefore examine the parallel disk artifacts 

introduced in the form of the Lissajous curves for the elastic Bingham model.  The elastic 

Bingham model (Eq.(3)) under torsional shearing is simulated in the plate-plate geometry 
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following the same procedure as Yoshimura and Prudhomme (1987).  Yield begins at the plate 

edge for sufficiently large angular displacements, and the radial location of the yield surface 

separating the yielded and un-yielded regions is time dependent.  For the plate-plate geometry, 

the non-dimensional parameters governing the LAOS torque response involve the relative 

magnitude of the yield strain Yγ  and the strain amplitude at the edge of the plate, given 

by 0 0 /R hγ θ= , where R is the plate radius, h is the gap and 0θ is the maximum angular 

displacement of the plate.  The inhomogeneous strain torque response for the elastic Bingham 

model is shown in  Fig. 4b. 

Comparing the plate-plate responses of Fig. 4b with the homogeneous (e.g. cone-plate) 

responses of Fig. 4a, we observe that the plate-plate artifacts are small, and there is little 

qualitative difference in the general shapes of Lissajous curves for cone-plate vs. plate-plate 

deformations with this model.  In general, the inhomogeneous kinematics of the plate-plate 

geometry tend to smooth the linear-to-nonlinear transitions, for instance by rounding some 

otherwise sharp corners, but otherwise do not introduce any qualitative new features.  The strong 

similarities between the Lissajous curves for cone-plate and plate-plate can be rationalized as 

follows.  First, the range of strain within a plate-plate geometry always varies from 0γ =  at the 

center of rotation to 0γ γ=  at the edge of the fixture.  Although the strain amplitude at the edge 

of the plate may transition into the nonlinear regime, e.g. the yielded regime 0 1Γ > , part of the 

sample will always be in the linear regime at sufficiently small radial position r.  Any dramatic 

linear-to-nonlinear transition will first occur at the outer edge of the plate, while the majority of 

the sample remains in the linear elastic (un-yielded) regime.  The torque response of any purely 

strain-dependent transition will therefore be smoothed in LAOS tests with the plate-plate 

geometry. 

Second, the measured torque M is weighted by the magnitude of the stress at large radius r (i.e. 

the shear stress in the yielded region).  A torque balance between the applied torque and sample 

stress (neglecting inertia) gives 2

0
2 ( )

R

M r r drπ σ= ∫ .  The material first yields at the maximum 

radius r = R, and the nonlinear constitutive response will quickly dominate the torque response 

for the plate-plate geometry.  The characteristic shapes of the nonlinear Lissajous curves for the 

plate-plate and cone-plate flows thus closely resemble each other.   
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We can quantitatively compare the maximum values of the normalized curves, by examining 

the peak value of normalized stress shown above each curve, ( )
maxYσ σ .  For the cone-plate 

geometry this value approaches ( )
max

1Yσ σ →  in the yielded region ( 0 1Γ > ) and at low strain-

rate amplitudes (N<1).  For the plate-plate response, the peak value of the normalized torque 

( )3

max
2 YM Rπ σ  is shown above each curve, or equivalently ( )

max
/A Yσ σ  where 32A M Rσ π=  

is the apparent stress which would exist at r = R for a linear material response at a given torque 

M (this corresponds to the typical method of estimating the stress at the plate edge based on a 

torque measurement (Bird et al. (1987))).  In the yielded region at low strain-rate amplitude 

(N<1), we observe from Fig. 4b that ( )
max

/ 4 / 3A Yσ σ → .  That is, the assumed edge stress is 

larger than the actual model yield stress by only 33% (Brunn and Asoud (2002)).  This numerical 

value 4/3 can be understood by determining the torque response M for a perfect plastic material 

in which the shear stress is constant throughout the sample with magnitude ( ) Yrσ σ= .  

Substituting into the normalized torque expression gives 

3

3 3

max

22 2 4

3 3
Y

Y Y

RM

R R

π σ
π σ π σ

 
= = 

 
. (5) 

 
Note that the plate-plate results in the yielded region for high strain-rates (N > 1, upper-right of 

the Pipkin space, Fig. 4b) are also slight overestimates of the actual maximum stress (compare to 

Fig. 4a), but the difference is smaller in this region.  The difference between cone-plate and 

plate-plate is smaller here because the material response for 0 1Γ > , N > 1, becomes dominated 

by the plastic viscosity term, which is inherently a linear response in this model. 

This analysis provides a broad interpretation of the artifacts in Lissajous curves that can be 

expected to be introduced from LAOS tests in a parallel plate rheometer.  In general, the 

inhomogeneous strain field softens the nonlinear features of the response and leads to small 

overestimation of stresses for shear-thinning or yield stress materials.  The preceding analysis 

will aid in the interpretation of the LAOS response for the drilling fluid examined in this work, 

and also for future LAOS tests using parallel plate fixtures. 
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Elastic Curves  

(load vs. deformation) 
Viscous Curves  

(load vs. deformation-rate) 
 
(a) homogeneous strain 
 

 
(b) plate-plate 

 
Fig. 4  Lissajous-Bowditch curves for the elastic Bingham model in terms of the 

variables 0 0 / Yγ γΓ = , 0 /p YN µ γ σ= &  defined by Yoshimura and Prudhomme (1987).  All 

curves are two-dimensional projections of fully three-dimensional Lissajous curves, 
( ( ), ( ))t tσ γ γ& . (a) Homogeneous strain (e.g. cone-plate) response showing individual limit 

cycles of the oscillatory stress vs. strain (elastic curves) and stress vs. strain-rate (viscous 

curves).  Maximum normalized stress max( / )Yσ σ  is shown above each curve. (b) Steady 

oscillatory response of plate-plate deformation (inhomogeneous strain), curves of torque vs. 
displacement (elastic curves) and torque vs. displacement-rate (viscous curves).  The 

maximum normalized torque shown above each curve, ( )3

max
2 YM Rπ σ . 
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4. Quantitative indicators of plastic behavior in LAOS 
 

The rheological response of a complex fluid in LAOS can be characterized by numerous 

material parameters, including strain- and frequency-dependent viscoelastic moduli and higher-

harmonic coefficients Wilhelm (2002).  In this section we consider the expected behavior of such 

viscoelastic parameters for a yield stress fluid in response to large amplitude deformation.  We 

also introduce a measure that we refer to as the perfect plastic dissipation ratio, φ , which acts as 

a metric for quantifying how closely a particular LAOS response is to the perfect plastic 

response of an idealized yield stress fluid.  

4.1. Harmonic analysis and Chebyshev coefficients 

For strain-controlled LAOS, 0( ) sint tγ γ ω= , the stress response can be represented in the 

time domain by a Fourier series (Dealy and Wissbrun (1990)) of the form 

 

( ) ( ) ( ){ }0 0 0 0; , , sin , cos .n n

n

t G n t G n tσ ω γ γ ω γ ω ω γ ω′ ′′= +∑  (6) 

 
On the basis of symmetry arguments it can be shown that the series contains only odd harmonics 

(n: odd) for typical rheological behavior in which the material response only changes sign if the 

coordinate system is reversed, i.e. where ( , ) ( , )x y x yσ σ= − − −  (Cho et al. (2005)).  Such 

symmetry corresponds to Lissajous curves which can be rotated by 180 degrees about an axis 

normal to a coordinate plane and retake the same shape.  This precludes the presence of even 

harmonic terms in Eq.(6).  Even harmonic terms can be observed in responses which are periodic 

but do not have 180 degree rotational symmetry, in transient rheological responses (e.g. when the 

oscillatory waveforms are not strictly periodic and do not close), in the presence of secondary 

flows (Atalik and Keunings (2004)), or in flows with dynamic wall slip events (Graham (1995)) 

due to the existence of transient events.   

Even harmonics have been discussed as possible indicators of wall slip or yield stress (Harris 

and Bogie (1967); Macsporran and Spiers (1984); Fischer et al. (2007); Klein et al. (2007)).  

However, the presence of even harmonics does not specifically indicate a wall slip or yield stress 

material response in general, nor does the absence of even harmonics indicate the lack of wall 
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slip.  For example, Yoshimura and Prudhomme (1988) examined the LAOS response of a simple 

slip layer at the surface of a linear viscoelastic model and did not observe even harmonics.  

Even-harmonics are only related to non-periodic or asymmetric slip/yield responses.  Any stress 

response which is steady, periodic, and unchanged if the coordinate system is reversed (e.g. a 

perfect plastic yield stress) will result in only odd, integer harmonics in the Fourier series 

representation (Eq.(6)).   

The harmonic material coefficients in Eq.(6) have a characteristic form for fluids exhibiting 

idealized yield stress behavior.  As we have shown, the ideal perfect plastic yield stress response 

appears as a square wave in the time domain, ( ) sgn( ( ))Yt tσ σ γ= & .  The spectrum of Fourier 

coefficients for this square wave behavior is 

( )
n-1

2

0

4 1
1     : odd

n

Y
n

o

G

G n
n

σ
π γ

′ =

′′ = −
 (7) 

 
which indicates that the higher order viscous Fourier coefficients decay as 1/n (Klein et al. 

(2007)).  The third-harmonic Fourier coefficients have recently been given a physical meaning 

through the use of Chebyshev polynomial analysis (Ewoldt et al. (2008)).  The signs of the third-

order Chebyshev coefficients, 3 3e G′= − and 3 3v G ω′′= , indicate how the nonlinear contributions 

to the elastic and viscous stresses evolve.  For the perfect plastic, 3 0e = which confirms the 

absence of elastic contributions to the stress and 3 04 3Yv σ πγ= − &  is negative and therefore 

correctly indicates shear-thinning.  Although the single parameter 3v  correctly indicates that a 

plastic-like material is strongly shear-thinning, it is not per se a sensitive discriminator of a yield 

stress response. Other materials including pseudoplastic liquids  will give rise to negative values 

of v3. More specifically, it is the scaling in the decay of the higher viscous harmonics, 

0~ 1/nv nγ ω , rather than the value of a single coefficient, which indicates a Lissajous curve 

approaching the perfect plastic yield stress response limit associated with the rectangular shape 

shown in Fig. 4a.   
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4.2. Viscoelastic moduli 

The presence of a critical stress or yield stress intrinsically leads to nonlinear behavior, and 

we therefore consider more general LAOS measures which quantify material nonlinearity within 

a periodic limit cycle (i.e. a single closed Lissajous curve).  Ewoldt et al. (2008) introduced 

several dimensionless indexes of nonlinearity which can be applied broadly to any complex fluid 

response and which approach limiting values for idealized yield stress behavior.  These indexes 

depend on local definitions of the elastic modulus and dynamic viscosity within a single periodic 

LAOS cycle.  The elastic modulus at the minimum resolvable strain MG′ , and the largest imposed 

strain LG′ , respectively, are given by 

0

1 3 1 3

0

3 ..., ...M L

d
G e e G e e

d γ γ γ

σ σ
γ γ= =

′ ′≡ = − + ≡ = + +  (8) 

 
The apparent viscosity at the minimum resolvable shear rate and the largest imposed shear rate, 

respectively, are given by:   

0

1 3 1 3

0

3 ... , ...M L

d
v v v v

d γ γ γ

σ σ
η η

γ γ= =

′ ′≡ = − + ≡ = + +
& & &

& &
 (9) 

 
These measures (Eqs.(8),(9)) make use of the Lissajous curves to provide a physically 

meaningful interpretation of each parameter, and for a linear viscoelastic response the definitions 

reduce identically to G′  andη′ , respectively (Ewoldt et al. (2008)).  The dimensionless indexes 

of nonlinearity compare the elastic moduli (or dynamic viscosities) at large and minimum strain 

(or strain-rate), according to  

3 5

1 3 5

4 4 ...

...
L M

L

e eG G
S

G e e e

′ ′ − +−
≡ =

′ + + +
,         3 5

1 3 5

4 4 ...

...
L M

L

v v
T

v v v

η η
η

′ ′ − +−
≡ =

′ + + +
 (10) 

 
in which nonlinearities are indicated by non-zero values, and the nature of nonlinearity is 

captured by the signs of the strain-stiffening index S and shear-thickening index T.   

We first discuss the limiting value of the strain-stiffening measure S.  For an idealized perfect 

plastic model ( sgn( )Yσ σ γ= & ) or any Generalized Newtonian Fluid model (i.e. solely shear-rate 

dependent such as the Carreau model), 0MG′ = and 0LG′ = , thus S=0/0 and is formally undefined.  

However, for any real experiment with finite data acquisition rates (or in the limiting case of the 

elastic Bingham model approaching a perfect plastic), 0MG′ = and 0/ = finiteL YG σ γ′ ≈ .  Thus in 
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the limit of a perfect plastic response ( 0 1, 0NΓ →? corresponding to the upper-left region of 

Fig. 4a), we expect ( )0 1L LS G G′ ′= − → . 

The limiting value of the shear-thickening coefficient T is also undefined for the perfect 

plastic model. The large-rate dynamic viscosity is readily determined to be 0L Yη σ γ′ = & , but the 

minimum-rate viscosity is undefined due to the discontinuous analytical response at 0γ =& .  We 

therefore consider the apparent minimum-rate dynamic viscosity which would be determined 

from the finite data acquisition rate (or the spacing of simulated data).  In fact, Mη′ diverges as the 

resolution of the shear-rate increases, and thus represents the dynamic viscosity at the minimum 

strain-rate which can be resolved by the number of data points available. In such a case Mη′  will 

be finite but very large, M Lη η′ ′? .  We find that T is then a function of data-acquisition rate, 

which is undesirable in a material measure.  As sampling rate of a given experiment improves (or 

for the elastic Bingham model in the limit of 0 1, 1NΓ ? ? ), the value of T would behave as 

( )L M L M LT η η η η η′ ′ ′ ′ ′= − ≈ − → −∞  for a perfect plastic.  The value of T evaluated for the 

Carreau model (Fig. 3) also depends on the sampling rate.  With sufficiently fine data 

spacing, 0Mη η′ → ; in this limit ( ) ( )
1

2 2
0 0( ) 1

n

L M LT Cuη η η η η γ
−

′ ′ ′= − ≈ − = − +&  for the Carreau 

model.   

The nonlinear viscoelastic measures discussed in this section are all well-defined for an 

arbitrary elastoviscoplastic response.  However, for yield stress materials, the parameters 

systematically approach limiting values which depend on the data acquisition rate (i.e. higher 

point density creates larger apparent slopes at discontinuities), making it difficult to compare 

results from different tests.  In the following section we propose a material measure which is 

well-defined and has almost no sensitivity to the data acquisition rate.  

 

4.3. Perfect plastic dissipation ratio 

We consider here a scalar metric for quantifying how close a measured material response 

corresponds to rigid, perfect plastic yield stress behavior ( sgn( )Yσ σ γ= & ).  Rigid, perfectly 

plastic behavior is an idealized approximation for a material which exhibits negligible elastic 

strains in comparison with large plastic deformations at practically constant stress (Ugural and 
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Fenster (2003)).  Physically, this corresponds to a microstructure which can be disrupted by a 

yield stress, but after disruption incremental deformation is comparatively easy.  For example, 

the stress to deform and disrupt the initial microstructure may be much larger than the 

incremental stress required to generate additional deformation.  Such a response can originate 

from strong short-range interparticle forces which maintain a jammed or percolated solid phase, 

but once the solid structure is disrupted the structural units (solid particles, emulsified droplets, 

etc.) are readily aligned by the flow and the additional contribution of the viscous stress is very 

small.  This behavior is approximately observed for many “apparent yield stress fluids” such as 

colloidal suspensions, microgel pastes, and dense emulsions, as evidenced by nearly constant 

flow stress over a wide range of shear-rates (see Barnes (1999) for various examples of such 

stress plateaus).   

We compare the energy dissipated in a single LAOS cycle to the energy which would be 

dissipated in a rigid, perfect plastic response with equivalent strain amplitude 0γ  and maximum 

stress maxσ .  The perfect plastic response, sgn( )Yσ σ γ= & , represents the maximum possible 

dissipated energy for a given strain amplitude 0γ  and maximum stress maxσ .   

The energy dissipated per unit volume in a single LAOS cycle, dE dσ γ= ∫Ñ , can be visualized 

by the area enclosed by the Lissajous curve of stress vs. strain.  The Lissajous curve for the 

corresponding perfect plastic reference response is always a rectangle which circumscribes the 

measured response on a plot of stress vs. strain.  An example is shown in Fig. 5.  The energy 

dissipated per cycle by the perfect plastic in large amplitude oscillatory shear 

is ( ) ( )( )0 max2 2d pp
E γ σ= .  The local shape of a Lissajous curve depends on all of the harmonics, 

but the total energy dissipated per cycle by any harmonic strain-controlled LAOS response is 

only a function of the first-order viscous Fourier coefficient (Ganeriwala and Rotz (1987)), and 

is given by 2
0 1dE Gπγ ′′= . 

Normalizing the actual dissipated energy by the perfect plastic dissipation gives a dissipation 

ratio, φ , which takes the following values for some simple model responses: 

( )
0 1

max

1 Perfect Plastic

4 0.785 Newtonian
4

0 Purely Elastic

d

d pp

E G

E

πγ
φ π

σ

→
′′ 

≡ = → =
 →

 (11) 
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This scalar measure is well-behaved for any arbitrary LAOS response, since the strain amplitude 

and maximum stress are always well-defined and easily determined from the data.  This 

dimensionless measure φ  can be universally applied to any measured LAOS response, as it 

compares the unknown response with the maximum possible energy dissipation, which is 

represented by the perfect plastic model.  For a general LAOS response, we 

expect 0 1 max( , , )Gφ φ γ σ′′= .  As an example, for a linear viscoelastic response, *
max 0 | |Gσ γ= and 

thus
*

sin
4 | | 4

G

G

π π
φ δ

′′
= = .  For a more general nonlinear viscoelastic response, 

max 0( , , )n nf G Gσ γ ′ ′′= and thus φ  is a complicated function of the higher-order coefficients. 

We can use the constitutive models presented here (the Carreau model and the elastic 

Bingham model) to guide the interpretation of the perfect plastic dissipation ratio φ .  For the 

elastic Bingham model with homogeneous deformation (Fig. 4a), it is clear that 0φ =  in the un-

yielded regime 0 1Γ ≤  (since no energy is dissipated, 0dE = ).  For 0 1Γ >  in the yielded regime, 

φ  takes positive values.  We have analyzed the response curves in Fig. 4a to calculate the 

corresponding values of φ .  At the lowest normalized frequency, 0.001N = , the three curves 

shown at scaled strains of 0 10, 100, 1000Γ =  result in dissipation ratios 0.900, 0.990, 0.999φ = .  

Thus, in the top left corner of the Pipkin space, ( 00.001, 1000N = Γ = ) the response deviates by 

only 0.1% from an idealized rigid, perfect plastic response.  At the largest normalized frequency 

shown, 10N = , the three curves shown at the scaled strains of 0 10, 100, 1000Γ =  result in 

dissipation ratios 0.759, 0.803, 0.805φ = .  These responses are dominated by the viscous flow 

stress which is linearly dependent on shear-rate, and φ  is close to the Newtonian fluid reference 

value, / 4 0.785φ π≈ ≈  in this region of the Pipkin space. 

A closed form expression for φ  can be derived for the Carreau model response to LAOS.  

Using the definition for φ  (Eq. (11)), and substituting (Eq.(2)) for the Carreau model stress 

response, together with the change of variable 0( ) cos( ) ( )
( )

d
d d t t d t

d t

γ
γ ω γ ω ω

ω
= = , gives   
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( )( )
( )( )

Carreau

max 0

1
2 22 2

0

1
2 2

( )
( , )

4

cos 1 cos ( )1

4
1

n

n

t d
n Cu

t Cu t d t

Cu

π

σ ω γ
φ

σ γ

ω ω ω
−

−

=

+
=

+

∫

∫

Ñ

 (12) 

 
where the Carreau number is 0 0Cu λγ λγ ω= =& .  Fig. 6 shows the behavior of Eq.(12), which will 

serve as a reference for interpreting φ  for a predominantly viscous LAOS response.  As the 

power law index 0n →  and the Carreau number 1Cu ? , the value of φ  smoothly and 

monotonically approaches the limit 1φ → .  This measure thus gives an unambiguous method of 

assessing how close a given material response is to that of a perfect plastic under LAOS 

deformations.   

 

 
Fig. 5.  The energy dissipated by a single LAOS response is represented by the area enclosed in a 
Lissajous curve of stress vs. strain.  For a given strain amplitude 0γ  and maximum stress maxσ , 

the maximum possible dissipated energy is the circumscribing rectangle of the perfect plastic 

model response, with strain amplitude 0γ  and yield stress maxYσ σ= .  The example shown here is 

the measured steady LAOS response of the drilling fluid at ω=15 rad.s-1, with 0 3.16γ = , 

max 113Paσ = ,  and 0.829φ = . 
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Fig. 6.  Carreau model response, characterized by the perfect plastic dissipation ratio, 

0( , )nφ φ λγ ω= (Eq.(12)). (a) Behavior of φ  with respect to normalized shear-rate amplitude.  (b) 

Behavior of φ  as a function of n, shown for various values of the Carreau number 0Cu λγ ω= : maxφ , 

0( 10)φ λγ ω = , 0( 1)φ λγ ω = . 

 

5. Experimental Results 
 

In this section we examine experimentally the nonlinear oscillatory response of two fluids, a 

strongly shear-thinning (pseudoplastic) fluid and an elastoviscoplastic drilling fluild.  We use the 

various material measures introduced above for indicating the yield-like character of the fluid 

response in LAOS. 

Fig. 7 depicts a purely viscous perspective of the fluid characterization, showing flow curves 

of shear viscosity η for each fluid sample along with fits to the Carreau model of Eq.(1) (for 

a = 2).  For the xanthan gum, a constant shear rate was applied and the steady state value of the 

viscosity was recorded, after which a higher shear-rate was applied and the process repeated.  

For the drilling mud, a thixotropic loop test was performed to match experimental conditions for 

tests on other drilling fluids (Maxey (2007)).  The drilling fluid sample was pre-sheared at 

-11022 sRγ =&  for 60s (where Rγ&  is the shear-rate at the rim of the plate), followed by a 10 minute 

wait time.  The shear-rate was then linearly ramped up from -10 1000 sRγ = −&  over 450 seconds, 

and immediately ramped down, linearly from -11000 0 sRγ = −& .  The time between data points 

limits the minimum resolution of shear-rate to approximately -13 sRγ∆ =& . 
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Each material exhibits pronounced shear thinning behavior.  For the xanthan gum, a Carreau 

model fit (forcing 0η∞ = ) results in the parameters 0 1.50 Pa.sη = , 8.0 sλ = , 0.35n =  (c.f. 

Eq.(1)).  The power law exponent does not approach yield-like behavior, which would be 

indicated by 0n → .   

In contrast, the drilling fluid is closer to viscoplastic and approaches a yield stress fluid 

response.  The apparent and corrected flow curves for the drilling fluid are shown in Fig. 7 (open 

symbols are apparent stress, closed symbols show the corrected stress).  For steady flow between 

parallel plates, the true stress can be determined from ( )1
3 ln ln

4
R A A Rd dσ σ σ γ= + &  (e.g. see 

Macosko (1994)), where Rσ  is the true stress at the edge of the disk and Aσ  is the apparent stress 

determined by 32 /A M Rσ π=  where M is the measured torque and R is the disk radius.  

Applying this correction requires derivatives of the apparent stress data.  To calculate the 

required derivatives, we fit a fifth order polynomial function to the raw data of ln Aσ  vs. ln Rγ& , 

since this allows calculation of the derivative of an smooth analytical function rather than 

differentiating discrete raw data. A Carreau fit to the corrected viscosity (filled symbols) of the 

drilling fluid (allowing for the term η∞ ) results in the parameters 7
0 3.29 10 Pa.sη = ⋅ , 

62.60 10  sλ = ⋅ , 0.337 Pa.sη∞ = , and 0.099n = .  The experimental data lacks a Newtonian 

plateau in the limit of low shear rates, and therefore the values of 0η  and λ  cannot 

independently be fit with high precision.  However, a low value of the rms error is associated 

with a specific combination of these two parameters in the power-law shear thinning region for 

which experimental data is available.  For 1λγ& ? , 0η η∞? , the viscosity is approximately 

1
0( ) ( )nη γ η λγ −

& &;  before the approach to the high shear-rate plateau.  For the drilling 

fluid 0.099n = , and therefore 0.901 -0.901
0 55.4 Pa.sη λ− =  gives the lowest value of the rms error 

between the model and the data in the power-law shear-thinning region.  Additional rheological 

tests, which approach the Newtonian plateau in the limit of low shear rate, are required to 

precisely determine 0η  and λ  lambda independently.  LAOS tests at low frequencies and large 

strains (so that the material is yielded) can provide such information and can thus be used to 

refine the values of the constitutive parameters as we show below.  
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The strongly shear-thinning nature of the drilling fluid is apparent from the very low power 

law exponent 1n = .  The yield-like behavior is readily observed by replotting the flow curve in 

the form of viscosity vs. stress ( )η σ  (Fig. 7, inset); the viscosity of the drilling mud changes by 

more than a factor of ten while the stress changes by less than a factor of two.  LAOS tests over a 

range of frequency and strain amplitude can be used to further explore the behavior of these 

materials, from linear to nonlinear viscoelastic responses, to reveal how much each material acts 

like a yield stress fluid for some fraction of the relevant deformation parameter space {ω,γ0}. 

 

 

 
Fig. 7  Viscosity flow curves for the 0.2wt% xanthan gum solution (squares, step shear rate for 
each data point) and the invert emulsion drilling fluid (thixotropic loop test; open circles depict 
apparent viscosity and closed circles represent the parallel disk correction).  Fits to the Carreau 
model are shown for each fluid (lines).  The inset plot gives viscosity vs. stress. 
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5.1 Xanthan gum LAOS response 

LAOS results for the 0.2% xanthan gum are shown in Fig. 8 (steady state smoothed data), and 

Fig. 9 (rheological fingerprints of potential yield stress indicators).  LAOS tests were performed 

at four frequencies and five strain amplitudes, which are all shown in Fig. 8.  For each frequency 

and strain amplitude {ω,γ0}, the final six steady state cycles are processed to produce the 

Lissajous curves in Fig. 8.  Fig. 8a shows the 3D Lissajous curve traces at ω=3.75 rad.s-1.  The 

full Pipkin space response is shown in Fig. 8b,c, which includes elastic Lissajous curves of the 

total stress (and the corresponding elastic stress contribution) vs. strain and also viscous 

Lissajous curves of stress (and viscous stress) vs. strain-rate.  The response is linear viscoelastic 

at all strain amplitudes 0 1γ ≤ , as shown by the elliptical Lissajous figures and the linear shape of 

the elastic and viscous stress contributions.  The frequency domain -10.15 18.75 rad.sω = −  

encompasses a range of phase angle 41 61δ≤ ≤o o  (in the linear viscoelastic regime), and 

therefore includes the G'=G" crossover frequency at which tan 1δ = .  For strains 0 1γ >  the 

response becomes increasingly nonlinear and pseudoplastic in nature.  The onset of non-linearity 

in the elastic stress and viscous stress functions are quickly identified by visual inspection, and 

correlate with the distortion of the elliptical shape of the limit cycles showing the periodic 

variations in the total stress.  As the strain-amplitude increases, the curves of total stress vs. 

strain become increasingly rectangular with strongly rounded corners (consistent with the 

Carreau model with 0 < n < 1, c.f.Fig. 3).  The Lissajous curves of stress vs. strain-rate (Fig. 8c) 

appear as shear-thinning at the largest strain amplitude.  The response is primarily viscous in the 

low frequency, large amplitude regime, since the single-valued curves of viscous stress ( )tσ ′′  vs. 

strain-rate ( )tγ&  closely correspond with the loops of total stress ( )tσ  vs. strain-rate ( )tγ&  (Fig. 

8c).  The xanthan gum solution is therefore a shear-thinning viscoelastic liquid.   

The similarity to a yield-like response can be quantified by examining contour plots of S, T, 

andφ , as shown in Fig. 9 (other viscoelastic parameters ( 1 3, ,e e δ , etc.) can be shown as contours 

in the 2-D space of {ω,γ0}, but are omitted here for clarity and brevity).  For a perfect plastic 

response, these parameters are expected to approach the limiting values 1S → , T →−∞ , 

and 1φ = .  Within the limits of the linear regime ( 0 1γ = ), we observe 0.05S ≈  and 0.05T ≈  

indicating an approximately linear viscoelastic response as expected.  At low strain amplitude the 
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perfect plastic dissipation ratio, shown in Fig. 9c, is less than expected for a Newtonian fluid 

( / 4φ π< ) as expected for a material response that is, in fact, partially elastic (and stores energy).   

At larger strain amplitudes, values of S~O(1) indicate strain-stiffening in the elastic response 

and 0.25T ≈ −  indicates shear-thinning.  At these large strains, the plots in Fig. 9b,c indicate a 

region in which the xanthan gum solution is pseudoplastic in nature ( 0T < , / 4φ π> ).  However, 

the maximum observed value, 0.87φ = , does not indicate an idealized yield stress response.  

This experimentally measured maximum value of -1
0( 15 rad.s , 10) 0.87φ ω γ= = =  is close to 

(but slightly lower) than predicted by the parameters of the Carreau model fit (Fig. 7, n=0.35, 

λ=8.0s), which results in ( 0.35, 12) 0.90n Cuφ = = =  (c.f. Fig. 6 and Eq.(12)).  This suggests that 

elasticity plays a weak role in this region of the deformation space, which is consistent with the 

Lissajous curves at (ω=0.15s-1, γ0=10).  The significance of elasticity in the fluid at large Carreau 

numbers is also indicated by the observed functional dependence ofφ , shown by the contours in 

Fig. 9c.  For a purely viscous fluid such as the Carreau model, the dissipation ratio is only a 

function of the shear-rate amplitude, 0 0( )φ γ γ ω=& .  For such a case, φ would be constant along 

lines of constant shear-rate amplitude which correspond to lines with slope -1 on the log-log plot 

of Fig. 9c.  Instead, lines of constant φ  are approximately horizontal, and φ  is a strong function 

of the strain amplitude, 0( )φ φ γ≈ which indicates the significance of elastic behavior for the 

range of deformation parameters {ω, γ0} shown in Fig. 8 and Fig. 9. 

Consistent with the inspection of the steady flow curves shown in Fig. 7, the xanthan gum 

solution is best described as a shear-thinning viscoelastic liquid but without a distinguishable 

yield stress behavior. We conclude that the dissipation ratio φ  correctly distinguishes a 

moderately shear-thinning material response from a yield stress response. 
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Shear-thinning xanthan gum solution 
(a) ω = 3.75 rad.s-1 

 
      (b)                                                                       (c) 

   
 
Fig. 8. Steady-state Lissajous curves for the xanthan gum solution (0.2wt% aqueous).  (a) 

Un-normalized 3D Lissajous curves at -13.75 rad.sω = . (b,c) Normalized curves arranged 
in a Pipkin space at the corresponding input parameters of frequency and strain-
amplitude, {ω,γ0}. (b) individual plots of normalized stress (solid black lines) and elastic 
stress (dashed red lines) vs. strain; (c) individual plots of normalized stress (solid black 
lines) and viscous stress (dotted blue lines) vs. strain-rate.  The maximum stress maxσ  in 

each test is shown above each limit cycle. 
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Shear-thinning xanthan gum solution 

                  (a)                                                            (b) 

 
(c) 

 
 

Fig. 9. Yield stress indicators for the xanthan gum solution (0.2wt% aqueous), shown as a 
function of the LAOS input parameters {ω,γ0}. (a,b) Stiffening index and Thickening 
index, respectively, lines shown at S=0, T=0.  (c) perfect plastic dissipation ratio φ .  

/ 4φ π>  indicates a region in which the Xanthan gum solution is shear-thinning.  The 

maximum observed value, max 0.87φ = at { -13.75 rad.sω = , 0 10γ = }, does not indicate an 

idealized yield stress response, which would appear as 1PPφ = . 
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5.2 Drilling fluid LAOS response 

LAOS results for the drilling fluid are shown in Fig. 10 (processed Lissajous curves) and Fig. 

11 (rheological fingerprints of yield stress indicators).  A predominantly elastic regime can be 

observed at sufficiently small strain amplitudes.  At the minimum imposed strain amplitude, 

0 0.01γ = , the material response is already weakly nonlinear and viscoelastic as indicated by the 

nonlinearities in the curves of elastic stress (dashed line) and viscous stress (dotted line) in Fig. 

10b,c.  It is typical for a filled system to exhibit a nonlinear material response at such small strain 

amplitude. 

As the strain amplitude is increased, the material exhibits a rich nonlinear response in which 

the elastic stress curves indicate strong elastic strain stiffening for strain amplitude 0 0.1γ ≈ .  The 

nonlinearity is sufficiently strong that the viscous Lissajous curves appear to self-intersect, 

forming secondary loops.  These apparent self-intersections lead to the formation of secondary 

loops and are quite generally observed in sufficiently nonlinear LAOS responses.  For example, 

they can also be observed with the xanthan gum solution (Fig. 8c, 0 10γ = , 

-10.15 3.75 rad.sω = − ) and have been observed for other material systems including a micelle 

solution (Ewoldt et al. (2008)), a polystyrene solution (Jeyaseelan and Giacomin (2008)), molten 

polystyrene (Tee and Dealy (1975)), and a polymer melt in the absence of long-chain branching 

(Stadler et al. (2008)).  Some nonlinear viscoelastic constitutive models also show secondary 

loops, including a non-affine network model (Jeyaseelan and Giacomin (2008)) and a single 

mode Giesekus model (Ewoldt and McKinley (submitted in concert with this manuscript)).  Such 

secondary loops are correlated with viscoelastic stress overshoots in which the instantaneous 

stress is unloaded more quickly than new deformation is accumulated (Ewoldt et al. (2008)), 

quantitatively corresponding to negative values of MG′ .  A detailed description of this 

phenomenon is given in a companion communication (Ewoldt and McKinley (submitted in 

concert with this manuscript)).  Animations of three-dimensional space curves (Fig. 8 and Fig. 

10) are provided as supporting material. The complexities of this transition regime could not be 

observed by a steady flow viscosity curve, but are revealed here by the LAOS protocol.   

As the deformation amplitude continues to increase ( 0 1γ ≈ ), the sample becomes increasingly 

plastic as indicated by the increasing area enclosed by the elastic Lissajous curves (Fig. 10) and 

the corresponding increase in the values of the dissipation ratio, φ (Fig. 11).  However, for 



33/46 
 

strains 0 1γ ≈  none of the Lissajous responses are representative of a perfect plastic material, and 

moreover the dissipation ratio is smaller than the Newtonian benchmark, 0 Newtonian( 1)φ γ φ= < .  

The material is thus properly denoted as elastoplastic in nature.   

In order to observe behavior close to perfect plastic, the strain amplitude must be further 

increased ( 0 10γ = ) so that the sample fully yields.  At this amplitude, the drilling fluid visually 

appears to behave as a viscoplastic fluid (Fig. 10).  The shapes of Lissajous curves at 0 10γ =  are 

consistent with the elastic Bingham model (c.f. Fig. 4).  Here the Lissajous curves of stress vs. 

strain become increasingly rectangular in the upper-left of the Pipkin space with additional 

rounding from viscous stress at high deformation rate amplitudes (upper-right of the Pipkin 

space).   

Fig. 11 shows the rheological fingerprints of the potential discriminators of yield-like 

behavior, S, T, andφ .  As previously discussed, for yield-like behavior, these parameters take the 

limiting values 1S → , T →−∞ , and 1φ = .  In Fig. 11a, the value of S approaches S = 1 in the 

upper left of the Pipkin space.  At 0 10γ = , we measure S = 0.94, 1.07, 0.90 at ω = 0.475, 1.5, 

4.75 rad.s-1, respectively.  However, the stiffening ratio S inherently represents elastic 

nonlinearities, and therefore also takes the value S ≥ 1 at other locations in the Pipkin space over 

which sufficient strain-stiffening is observed, notably in the region 0 0.1γ ≈ .  Thus, for complex 

nonlinear viscoelastic material responses, S~O(1)  is associated with, but does not uniquely 

identify, a yield-like response. 

The shear thickening ratio, T, captures intra-cycle viscous nonlinearities.  From Fig. 11b, it is 

clear that T does become negative for a yield-like response in the drilling fluid (upper left region 

of the Pipkin space).  However, the most negative values of T occur at moderate strain 

amplitudes, 0 0.1γ ≈ , and lower frequencies where the drilling fluid response exhibits a strongly 

nonlinear viscoelastic response (see Fig. 10b,c) but not a yield-like response specifically.  We 

therefore conclude that negative values of T may be associated with a strong pseudoplastic 

response, but local extrema cannot be used to precisely indicate a yield-like response. 

 In Fig. 11c we investigate the ability of the perfect plastic dissipation ratio to uniquely 

identify a yield-like response.  The value of φ  is strictly related to the energy dissipated per 

cycle, rather than other intra-cycle nonlinearities, and is therefore robust to complex nonlinear 
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viscoelastic responses such that 1φ →  is uniquely associated with a perfect plastic response.  For 

the drilling fluid, the maximum dissipation ratio is max 0.93φ ≈  which is observed at moderate 

frequencies and large strains {ω=0.475 rad.s-1, γ0=10}.  The corresponding maximal value of the 

measured apparent stress at {ω=0.475 rad.s-1, γ0=10} is ,max 102 PaAσ = , which is higher than the 

prediction from the purely viscous Carreau model fit from Fig. 7, in which 84PaAσ =  

at -1
0 4.75 sγ γ= =& & .  This provides a measure of the dynamic yield stress in the fluid at these 

deformation conditions. 

The perfect plastic indicator, φ , typically reaches its maximum value for large strain-

amplitude 0γ  and low frequency ω.  This is the case for the viscous and viscoelastoplastic 

constitutive models as well as the experimental results shown in Fig. 11c.  This asymptotic limit 

1φ →  at large strain-amplitude 0γ  and low frequency ω can be understood by considering the 

response of the elastic Bingham model (Fig. 4).  For this model, the elastic portion of the yielded 

response is negligible as 0 Yγ γ?  (creating vertical sides of the Lissajous curves), and the 

viscous stress is approximately constant for small values of 0 0γ γ ω=&  (corresponding to small 

values of ω at a given 0γ ), which creates a flat top to the Lissajous curve.  In contrast, for large 

shear-rate amplitudes 0γ& , the elastic Bingham model response is predominantly Newtonian, since 

the instantaneous rate-dependent plastic viscosity ( ( )p tµ γ& ) dominates the pre-yield elastic stress 

( YGγ ).   Thus, the elastic Bingham model approaches the perfect plastic response in the upper-

left corner of the Pipkin space (large amplitude 0γ  and small frequency ω), in agreement with the 

experimental response of the elastoviscoplastic drilling fluid.  

Finally, we note that LAOS results can be used to augment the rheological measurements in 

steady shear (Fig. 7) by providing measurements of the viscous response at progressively lower 

values of the shear rate 0 0γ γ ω=& .  In Fig. 12 we show the agreement between measurements of 

the apparent steady shear viscosity ( )η γ&  (limited to 11sγ −≥&  ) and the apparent dynamic 

viscosity 1 0 1 0( ) ( )v γ η γ′=& &  for oscillatory shear-rate amplitudes down to 3 1
0 3 10 sγ − −= ×& . Good 

overlap in the data is observed, especially at larger strain amplitudes. This is a manifestation of 

the so-called Rutgers-Delaware rule (or ‘extended Cox-Merz’ rule) for yield stress fluids 



35/46 
 

Doraiswamy et al. (1991). The plateau at the minimum LAOS shear-rate amplitudes is used to 

determine a lower bound for the Carreau model estimates of 0η  and λ , which could not be 

independently fitted with any precision from the data in Fig. 7.  As previously discussed, the 

value 0.901 -0.901
0 55.4 Pa.sη λ− =   is required to match the true viscosity of the drilling fluid 

response in the shear-thinning region.  Fig. 12 suggests a lower bound of 3
0 1 10  Pa.sη ≈ ×  which 

corresponds to 53 sλ ≈ .  This modified Carreau model fit (for the shear-rate-dependent 

viscosity) is shown in Fig. 12.   

Closer inspection of the data in Fig. 12 shows that as the strain-amplitude is reduced (at fixed 

frequency) the LAOS data in fact systematically deviate below the extrapolated viscous response. 

This is because the material is not really yielded at these strains. From Fig. 11, it is clear that we 

need to impose strains 0 3γ ≥  to achieve / 4φ π> , corresponding to a yielded material that is 

dissipating at least as much energy per cycle as a Newtonian fluid.  One of the necessary 

conditions for the validity of the Rutgers-Delaware rule is “high strain amplitude” (Mujumdar et 

al. (2002), Doraiswamy et al. (1991)), i.e. strain amplitudes much larger than the yield strain.  

The absolute value of the “large strain” required to successfully apply this rule will be different 

between materials, but the material measure φ  helps to unambiguously identify highly-yielded 

regimes (corresponding to / 4φ π> ) in which the Rutgers-Delaware rule will be most applicable.  

 

6. Conclusions 
Large amplitude oscillatory shear (LAOS) deformations provide a rich picture of the yielding 

transitions in a complex elastoviscoplastic fluid in terms of variations with respect to the strain 

amplitude and frequency of imposed deformation.  This rich behavior can be represented in 

terms of 3D Lissajous curves ( ( ), ( ))t tσ γ γ&  or 2D projections of Lissajous curves arranged in a 

Pipkin diagram (e.g. Fig. 4, Fig. 10).  The LAOS characterization provides a more complete 

“rheological fingerprint” which is especially important for understanding materials which exhibit 

elastic solid-like behavior at low strains, as this cannot be captured by steady flow curves.   

We have considered various measures for identifying yield-like viscoplastic behavior as a 

function of the imposed LAOS deformation conditions, {ω,γ0}.  Although the strain-stiffening 

ratio S and the shear-thickening ratio T accurately represent the measured intra-cycle 
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nonlinearities in the elastic and viscous properties of a complex fluid such as the oil-based 

drilling mud, they do not uniquely indicate yield stress behavior (Fig. 11).   

We have introduced a new scalar parameter for identifying a plastic yield-like response under 

large amplitude oscillatory deformations, the perfect plastic dissipation parameter, 

( )d d pp
E Eφ = , which uniquely identifies a plastic yield-like response as 1φ → .  Calculations 

with simple pseudoplastic and elastoplastic constitutive models, as well as experimental 

measurements, correspond to increasingly rectangular Lissajous curves.  For regions of the 

Pipkin space in which 1φ → , the dynamic yield stress in LAOS can be determined from the 

maximum value of the stress, max Yσ σ= .  Of the measures considered here, we conclude that φ  is 

the best choice for clearly identifying yield-like behavior in large amplitude oscillatory shear 

flow.  The parameter φ  is straightforward to calculate, stable to dramatic nonlinear responses, 

and is associated uniquely with perfect plastic behavior. 

For any material of interest, the relevant processing or in-use conditions can be related to the 

material response in an appropriate region of the Pipkin space {ω, γ0}.  For such a set of 

conditions, the Lissajous curves and perfect plastic indicator, φ , can be used in both a qualitative 

and quantitative fashion to identify if a specific fluid will appear (or feel, or process) like a 

perfect plastic material that yields at a given stress.  We conclude that the LAOS protocol, and 

the parameter ( )d d pp
E Eφ = , can be used to provide more complete rheological fingerprints of 

an elastoviscoplastic material, and identify regimes within the shear deformation space {ω,γ0} in 

which any  material can be usefully considered to behave as a fluid with a critical or “yield” 

stress. 
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Elastoviscoplastic drilling fluid 
(a) ω = 4.75 rad.s-1 

 
          (b)                                                                          (c) 

 

 
Fig. 10.  Steady state Lissajous curves for the drilling fluid, shown for a selected range of 
strains and frequencies.  (a) Un-normalized 3D curves for fixed ω=4.75 rad.s-1 and strain 
amplitudes 0 0.562, 1, 1.78, 3.16, 5.62, 10γ = .  (b,c) Normalized 2D projections of 

max/σ σ arranged in a Pipkin space according to the input parameters {ω,γ0} which 

generated each response curve.  The maximum stress is shown above each curve. (b) 
individual plots of normalized stress (solid black lines) and elastic stress (dashed red 
lines) vs. strain, (c) individual plots of normalized stress (solid black lines) and viscous 
stress (dotted blue lines) vs. strain-rate. 
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Drilling fluid 

               (a)                                                             (b) 

 
(c) 

 
Fig. 11  Quantitative LAOS analysis of the drilling fluid. (a,b) Stiffening index and 
Thickening index, respectively, lines shown at S=0, T=0.  (c) Perfect plastic dissipation 
ratio, φ , shown as contours in a Pipkin space.  At small strain amplitude φ  takes very 

small values indicated a predominantly elastic response, which at larger strain amplitude 
gives way to a predominantly viscous response and eventually a maximum dissipation 
ratio, max 0.93φ = , nearing the behavior of an idealized perfect plastic response. 
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Fig. 12. First-harmonic dynamic viscosity 1 0 1 0( ) ( )v γ η γ′=& &  from LAOS tests (closed symbols) 

compared to the apparent shear viscosity ( )η γ&  from the thixotropic loop test (open circles).  

Good correspondence is found between the data at sufficiently large strain amplitudes 0 3γ ≥ , 

consistent with the Rutgers-Delaware rule.  The viscosity at low shear-rates gives a lower bound 

for the Carreau model fitting parameter 3
0 1 10 Pa.sη = × .  The Carreau fit for 3

0 1 10 Pa.sη = × , 

53.5 sλ = , 0.099n = , and 0.377 Pa.sη∞ =  is given by the solid line.  
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Appendix 

A.I Raw data from LAOS experiments 

 The full LAOS response of the xanthan gum, including transients, is shown in Fig. A1.  The 

Lissajous curves of the raw measured stress vs. strain indicate an initial transient response which 

quickly settles into steady oscillatory orbits.   

 The drilling fluid LAOS response is shown in Fig. A2.  Lissajous curves of apparent stress vs. 

rim shear-rate are arranged within a Pipkin space according to the LAOS input conditions {ω,γ0}.  

The startup transients settle into steady oscillations, which are used for the quantitative LAOS 

analysis presented here.  

 Both materials settle into steady oscillations which have the expected symmetry for shear-

symmetric responses, i.e. any curve can be rotated by 180 degrees about an axis out of the page 

and result in the same steady oscillatory curve.  This corresponds to the existence of only odd 

harmonics in the Chebyshev/Fourier representation, Eq. (6). 
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Fig. A1.  Raw LAOS data for the xanthan gum solution (0.2wt% aqueous).  Individual 
orbits are Lissajous curves of normalized stress vs. strain.  The initial condition at the 
beginning of each test is 0γ = , 0σ = .  Each individual plot is positioned within a Pipkin 

space according to the associated LAOS input parameters {ω,γ0}.  The peak stress within 
each cycle (including the initial transient) is indicated above the individual curves. 
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Fig. A2.  Experimental LAOS data for the drilling fluid, including transients, shown as 
normalized Lissajous curves of stress vs. strain.  The maximum absolute value of stress is 
shown above each curve.  The test sequence consists of strain-amplitude sweeps (γ0 = 
0.0056 - 10) at constant frequency, in the order ω=(15, 4.75, 1.5, 0.475) rad.s-1.  The total 
number of cycles for each frequency is N=(19, 12, 20, 12) cycles for ω=(15, 4.75, 1.5, 
0.475) rad.s-1, respectively.  The approach to the final periodic orbit can be identified 
visually.  The data shown in Fig. 1 correspond to the test shown here at 15ω =  rad.s-1, 

0 3.16γ = .  The final six steady oscillatory cycles are used for quantitative analysis of the 

limit cycle behavior. 
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A.II Interpolation method used for Pipkin space fingerprints 

 To improve visualization of trends and contour lines in the rheological fingerprints, the data 

are interpolated to produce smooth gradients, as in Fig.A3b.  The figures presented here have 

been interpolated to include 100 points per decade in both frequency ω and strain-amplitude γ0.  

The collection of experimental data occurs at discrete values within the Pipkin space of (ω,γ0).  

For example, the drilling fluid data is spaced at 2 points per decade in frequency ω and 4 points 

per decade in strain-amplitude γ0.  The viscoelastic parameters corresponding to these discrete 

sampling points can be visualized by plots such as Fig.A3a.  Color blocks are used for this plot, 

which are centered about the imposed values of (ω,γ0).  The width and height of the block area is 

determined by the spacing of the data.  The finite width and height of each block increases the 

limits of the plot beyond where data was actually collected, since the blocks are centered over 

the corresponding (ω,γ0) location.  Only four strain-sweeps (at different fixed frequency) were 

used to create this fingerprint. 

 

 
(a)                                                          (b) 

 
Fig. A3.  Rheological fingerprint for the first-harmonic elastic modulus of the drilling fluid.  
Discrete experimental data points shown in (a) are interpolated to allow for smoothed gradients 
and contour lines within the Pipkin space (b). 
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