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Abstract  flow disturbance is O(T ), then ? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>>L/a' 
ch ch 

Two dimensional unsteady transonic channel 
The present  paper i s  concerned with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc a s e  

where the p ressu re  oscil lbtion has amplitude Ore2) 
and period O(c2 );-again in the slowly varying t ime 
reg ime,  s o  that, as will be seen, the shock-wave 
oscil lation amplitude is  O(1). 
consider those c a s e s  where,  as a resu l t  of the 
p ressu re  oscil lations introduced downstream, the 
shock wave moves upst ream of the throat, disap- 
pears ,  and then reappears a s  the downstream 

flow with a shock wave is considered for the slow- 
l y  varying t ime regime. P r e s s u r e  oscil lations. 
introduced downstream of the shock wave, cause 

the shock wave to osc i l la te ;  the case considered 
is  that where the shock is  forced upst ream of the 
throat, d isappears,  and then reappears a s  the 
downstream pressure f i rs t  increases and then d e -  
creases. The subsequent shock wave motion con- 
s i s t s  of oscil lations e i ther  about the throat or  

In par t icu lar ,  we 

original steady flow shock position, de-  
pending upon parametric relationships developed 

p ressu re  decreases .  Then, depending upon the 
flow parameters ,  i t  will be shown that the subse-  
quent shock motion will follow one of seve ra l  dif-  
ferent  paths, ranging f rom an oscil lation in which 
the shock d isappears and reappears on a periodic 
bas is  to a periodic oscil lation during which the 
shock never  again reaches the throat. 
ble applications to unsteady flow problems in inlets 
and flows between blades in turbomachinery indi- 
ca te  that the solutions to be presented fo r  s imple 
boundary shapes will be quite helpful toward under-  
standing flows in m o r e  complex geometr ies.  

in the analysis. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
case  are i l lustrated with example calculations. 

These two cases  and the dividing 

Introduction 
The poss i -  

Recent papers on unsteady transonic channel 
flows, where the unsteadiness a r i s e s  as a resu l t  
of pressu re  oscil lations introduced downstream of 
a shock wave, ei ther  have dealt with relat ively 
small amplitude shock osci l lat ions"*. or  have in- 
cluded only very  br ie f  discussions of possible 
la rge  amplitude osci l lat ions. '- Thus, if the chan- 
ne l  half width at the throat  is L loverbars denote 
dimensional quantit ies). a is the c r i t i ca l  sound 
speed, and E i s  a smal l  parameter  which measures 
the typical difference between the fluid velocity and 
the sound speed, the case where the impressed 
p ressu re  oscil lations have amplitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ( E ' )  with a 

period O(4. and the amplitude of the shock-wave 
oscil lation is O(E), is covered in re ference 1; 
solutions are presented for a symmet r ic  channel. 
In re ference 2, where a relat ively highly curved 
asymmet r ic  channel is considered, the impressed 
p ressu re  oscil lations have amplitude O ( E ' )  and now 
a period of O ( e z ) ,  s o  the amplitude of the shock 
osci l lat ions is O(1). However,  only a relat ively 
sma l l  amplitude is actual ly considered, the empha- 
sis being on the asymmet ry  of the flow. Finally, 

p ressed p ressu re  amplitude and period are d is -  
cussed,  and i t  i s  pointed out by means of a s imple 
example that i t  i s  possible to analyze the caae 

where the shock wave moves upstream to the 
throat, d isappears,  and then later reappears .  In 
each of the above named references,  a "slowly 
varv ina"  t ime reg ime is considered. where if the 

Derivation of Equation for Shock-Wave Position 

The problem considered is  that of a symme-  -* . 
t r i c  two-dimensional channel with an arb i t ra ry  
wall  shape, in which there is  a transonic flow with 
a shock wave. Coordinates x and y, with cor re-  
sponding velocity components u and v, are aligned 
para l le l  and perpendicular to the channel ax is ,  
respectively, 
steady;  p ressu re  osci l lat ions are impressed upon 
the f low downstream of the shock, a t  x = X, say, 
causing the shock wave t3 osci l late. 
assumed to follow the per fect  gas law and to have 
constant specif ic heats. The flow upst ream of the 
shock wave i s  isentropic, and because the flow is 
transonic, the shock is weak enough that a veloci- 
ty potential may  be used to the order  des i red.  
The coordinates Y and y are made dimensionless 
with respec t  to i,, the t ime T with respec t  to L/a"; 
and velocities with respec t  to ; hence, the di- 
mensionless velocity potential i s  re fe r red  to the 
product E;*. 
pera ture  T. are made dimensionless with respec t  
to the i r  c r i t i ca l  values, and the enthalpy is  re- 
f e r red  to ;*'. 

The flow upstream ot the Wave is 

The g a s  i s  

in re ference 3, severa l  combinations of the im- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  

The p ressu re  P ,  density p ,  and tem-  

. -  - 
character is t ic  t ime associated with the imposed 
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The wall shapes considered are  wri t ten a s  

follows, for symmet r ic  channels: 

= L (1 + € Z f ( Y ) )  (1) 
YW 

where f(x) i s  the a rb i t ra ry  wall shape function, 
such that f (0 )  = f ' ( 0 )  = 0. Thus, x i s  measured 
f rom the channel throat. The radius of curva ture  
of the channel a t  the throat  i s  O(E-') ,  from eqn. 
( I ) ,  and as will be seen l a te r ,  u - 1  = O(c); for 
transonic flow E << 1. 



Unsteady f lows may he character ized by pre-  
scr ib ing the relat ive o rder  of the character is t ic  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- t ime associated with the impressed disturbances, 
Tch, and the character is t ic  t ime associated with 
- the acoustic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwaves traveling through the channel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L f i * .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs mentioned previously, the slowly vary -  
ing t ime re ime  is considered here ,  where 
Tch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>>z/a . Therefore,  a parameter  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT is intro- 
duced and a new st retched t ime coordinate i s  made 
nondimensional with a s  follows: 

- -$ 

ch 

where T >> 1 and t = O(1).  The relat ionship he- 
tween zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 and E depends upon the case considered. 
Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" - 1  = O(E), the t ime T,h requi red fo r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa s ig-  
na l  to t ravel  upst ream f rom the origin of the flow 
dis turbance to the shock wave is O(</a*c), and so 
T,h/Tsh = O ( t  T). If T = O[E-'). the c a s e  studied 
in re ference then Tsh = O(Tch) and there is  a 
lag between the impressed oscil lations in p ressu re  
and the pressure ,  temperature,  e tc . ,  oscil lations 
in the channel flow downstream of the shock. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 = O [ C - ~ ) ,  the case  studied he re  and in re ference 
2 ,  pressu re  signals f rom downstream of the 
shock wave reach the shock "instantaneously" 
compared with the period of the impressed chan- 
ges in pressure ;  i. e., Tsh/T,h = O ( E ) .  As  will 
be seen, this leads to shock-wave oscil lation am-  
plitudes of o rder  one. Thus, w e  choose 

- 
1, 

If 

- 

T = (k c 2 ) - '  ( 3 )  

where k is an arb i t ra ry  constant of o rder  unity. 

The genera l  method of solution follows that 
used in reference-5 1 and 2, The solutions fo r  
U. v. P, p ,  and T are written in the form of 
asymptotic expansions fo r  x, y. t = O(1). 
flow upstream of the shock is  steady and the im-  
p ressed p ressu re  downstream of the wave has t ime 
variat ions only in second order  terms, then to 
f i r s t  o rder  (i. e . ,  O(E)),  the flow i s  steady and the 
t ime dependence enters  only in second order  
te rms.  As shown previously'" and a s  i l lustrated 
in f igure 1, variat ions in pressure of order  E' a t  
Y = X are sufficient to c a u s e  local p ressu re  var ia -  
tions of o rder  E across the shock; as will be seen, 
these variat ions a r e  a lso  sufficient to cause shock 
wave displacements of o rder  one. Hence, re la -  
tively small impressed p ressu re  variat ions can 
cause large loca l  p ressu re  changes over a l a rge  
par t  of the channel; this, of co i~rse ,  i s  a very i m -  
portant e lement  in the study of blade f lu t ter  in 
transonic turhomachinery. 

Since the 

The only difference between the problem con- 
s idered in re fe rence 1 and that studied he re  is  
that in re ference 1,  

case (1). 7 = O(E-') whereas in the present  c a s e ,  

-I = O ( E - ' ) ;  the radius of curvature of the channel 
a t  the throat, O(E-' ), and the o rde r  of the im-  
p ressed oscil lations in the p ressu re  are the same. 
Hence, in the genera l  governing equations, since 

hereaf ter  re fe r red  to as 

1 a / a T  = - ( a / a t ) ,  
T 

i t  i s  seen that in the present  c a s e  the par t ia l  der iv-  
at ives with respec t  to t ime will be one orde r  

2 

higher than they were  in case  (1) .  Therefore,  the 
genera l  outer solutions may  he derived eas i ly  f rom 
the outer solutions given in re ference 1, i .  e., 

those solutions, valid outside a thin region enclosing 

do not satisfy the shock wave jump conditions in 
second order ,  i t  i s  necessary  here  a lso to consider  
an inner region about the shock, in which the solu- 
tions satisfy the jump conditions at  the shock and 
match with these outer solutions in the appropriate 
l imi t  a s  the outer regions a r e  approached. Then 
the inner and outer solutions can be joined to f o r m  
a composite solution uniformly valid to O(E')  every-  
where in the channel. Because the thickness [in the 
x direction) of the inner region is  O(E"') and in 
case ( I ) ,  the amplitude of the shock wave motion is 
O(t) ,  i t  i s  possible in case ( I )  to consider a stat ion- 
a ry  inner region. In the present  case ,  the inner 
region thickness is again O(e"21, hut as will be 
shown, the amplitude of the wave motion is 0 ( 1 ) ,  
and a moving inner region must  be accounted fo r .  
However,  hecause T = O [ E - ~ ) ,  i t  can he shown4 that 
the inner solutions are  unchanged in form f rom 
those given in re fe rence 1. The essent ia l  dif fer- 
ence is that whereas in c a s e  (1)  the shock motion is 
a perturbation ahout a steady s tate location and the 
relat ive velocity ahead of the shock wave i s  con- 
stant  to f i rs t  o rde r ,  in the present  case the shock 
wave m a y  move throughout the channel, and the up- 
St ream ffuid velocity relat ive to the shock depends 
on the shock position and is  thus a function of t ime. 
Since to the order  considered, no t ime derivatives 
remain in the dif ferential equations fo r  the inner 
region, the form of the solutions is the same in the 
two c a s e s ,  the t ime dependence ar is ing through the 
boundary conditions on the relat ive upst ream velo- 
city. 

the shock wave. Because the solutions in question v 

L 

In view of the above remarks ,  i t  i s  Seen that 
the general fo rm of the composite solution holds 
e i ther  fo r  case  (1)' or  the present  c a s e ;  these s o h -  
tions a r e  repeated here ,  f rom reference 1, fo r  
convenience. 

" . 1 + E U ' t t 2 u d  t . . .  (4a) 

v = E L v 2  + . . .  f4b) 

(4c)  

p = 1 - E U ,  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (u2  + (y+& + . . . (4d) 

P = 1 - E Y U ,  - t Z y u r  + . . .  

where Y = C /C is the rat io of specific heats, and 
where P V  



(5e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5a). Cw is an a rb i t ra ry  constant de ter -  
mined by the value of the velocity at the throat; 
i. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe . ,  if the flow is supersonic or subsonic there,  
C 
f rom subsonic to supersonic speed and is  therefore 
sonic at the throat, Cw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. Also, in equations (5), 
f '  = d f/dx, e t c . ,  and f b  i s  the value of f '  at  x 

SO' 
the zero order  approximation to the shock-wave 
location, x which is expanded as follows: 

s so 1 

For  c a s e  (1). xs0 = constant, and in both cases ,  
the y dependence of xs occurs in higher o r d e r  
te rms .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn equations (5b) and ( S c ) ,  the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C*(x*, y) 
t ial  function f rom the inner solution. Upstream of 
the shock wave r* r 0, and downstream I" i s  given 
by equation (5d). Finally, Cu i s  the value of u I  a t  
x 
in equation (sa)). In c a s e  (1). C = constant, while 
in the present  case, i t  is a function of t ime s ince ,  
as will be seen, x = x (t). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 
> 0, while if the flow is one which accelerates 

W 

s' 

x = x  ( t ) + E X S  ( t ) +  ... (6) 

is the contribution to the composite poten- 

evaluated upst ream of the shock (upper sign 
s 0' 

u 

so  so  

Before equations (5 ) can be evaluated, i t  i s  
necessary  to find h,. The equation for h, i s  found 
f rom the next higher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAorder solution in v, i .  e. ,  v j r  

which sat is f ies the boundary condition that the flow 
remain tangent to the channel walls. For  c a s e  (1) 
the differential equation for h is '  

s h t + u l h x  = - u,( f "+(2V-3)~: ) /6  + A ( t )  

where the subscr ip ts  t and x represent  par t ia l  d i f -  
ferentiat ion. In re ference 1, a genera l  numer ica l  
procedure for solution fo r  hx was given, which per -  
mitted u I  = u, (x, t). In re ference 3, i t  was shown 
that if u I  = u ,  (x), the condition finally considered 
in re ference 1 and considered here .  then for c a s e  

( l ) ( ~ , = ( k , ~ ) ~ )  the solution fo r  h, can be writ ten a s  

follows: 

(7) 

W 

(8a) 
1 

u *  UI 
+-G( t - tp )  

h x = - ~ [ f " + ( 2 Y - 3 ) u ~ ] + ~  1 

In equation @a),  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC z  is an arb i t ra ry  constant of in- 
tegration s e t  by boundary conditions and G(t) i s  pro-  
portional to the oscil lation in p ressu re  impressed 
downstream of the shock wave, at x = X. That is ,  
f rom equations (4c),(5a) and (5b), i t  is seen that, 
a s  mentioned previously, the p ressu re  var ies with 
t ime in second order ,  and that a t  x = X, G(t) i s  the 
t ime varying par t  of h and thus of the pressure .  

X 

For  the present  case, where T = O(E-'), ht is 
dropped f rom equation (7 )  and the solution is s i m -  
ply equation (8a) with tp = 0. That is, there is no 
lag between the impressed osci l lat ions in p ressu re  
and velocity and the corresponding oscil lations any- 
where in that par t  of the flawfield affected by the 

x , and X).  Signals t ravel  ups t ream instantaneous- 
ly8, compared to the period of the oscil lation. 

d ' impressed oscil lations (between the shock position, 

3 

Finally, i t  i s  possible to calculate the shock 
position a s  a function of t ime. F i rs t ,  we consider 
the shock wave velocity, us = d x /dT  + O ( 9 ) ;  
(Vs = O(E"~ ) is negligible)'. Refative to the shock zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wave, the f i r s t  o rde r  shock jump condition is ,  for 
transonic flow, ( ~ 1 - u ~ ~ ) ~  = - ( u , - u I ~ ) ~ .  where  u Is  
is the f i r s t  o rder  absolute shock-wave velocity 
(i. e . ,  u = E uIs + E ' U ~ ~  + . . . ) and where the sub-  
sc r ip ts  u and d re fe r  to conditions immediately up- 
s t ream and downstream of the shock respectively. 
Now, u , ~  and u l d  are given by equation (5a) with 
the upper and lower sign respectively, so u l d  = 
- u,,,, and f rom the shock relat ions, therefore,  
uIs = 0. 
satisfied by u 2 ,  i t  is c lea r  that u 
u = O(E'). There fore  

u s - d T  = ~ E ~ $ ( X ~ ~ + E X  SI + . . . ) = O ~ E ' )  ( 9 )  

and s o  x = x ( t ) ;  this means that the lowest o r -  
de r  tern?% x '$aries with t ime so that the ampl i -  
tude of the shzck motion is Oi l ) .  
motion in case, (1). T = O ( F - ' )  and u 
that x = constant, x = x ( t ) ,  an$ the shock 
wave undergoes only smal l  
i ts  equi l ibr ium position'. 

S 

Since the shock jump conditions are  not 
f 0 and s o  

s 2  

dx 

For  the shock 
= O ( t z ) ,  so 

displacements f rom 
S O  s, SI 

The governing equation fo r  x (t) ,  the f i r s t  
SO 

approximation to the instantaneous shock position, 
i s  derived by applying the mass conservation prin- 
ciple to a control volume containing (moving with) 
the shock wave. The chance in e n t r o w  a c r o s s  the - .. 
wave (O(9 )), is employed in writ ing the density down- 
s t ream of the wave. Although variat ions in p and 
u up to third o rde r  must  therefore be considered,  
the f inal resu l t  involves only second o r d e r  te rms ,  
a resu l t  repor ted p re~ ious l y " " ' ~ .  
calculations a r e  given in re ference 4, the resu l t -  
ing equation for u = k dx /dt i s ,  

Details o f  the 

5 2  s o  

This equation has exactly the same fo rm as that 
given for case  (1 )  ( re ference 1,) the only d i f fe r -  
ence being that fo r  caSe (1) d xs,/dt i s  calculated; 
in the present  case C = C ( t )  whereas in c a s e  

(1) C = constant. F%r th; specif ic problem con- 
s idered here ,  where the flow ups t ream of the 

shock is  steady and pressure  osci l lat ions are  im-  
p ressed upon the f low downstream of the shock a t  
x = X, say, h is given by equation (8a) evaluated 
a t  x = x For a flow which is sonic 
a t  the throat ( e .  g., an accelerat ing flow), the case 
considered here ,  C,, = 0 also. 4gain. subscr ip ts  
u and d denote conditions immediately upst ream 
and downstream of the shock wave, respectively. 

xd Equation (8a), evaluated at  x 
(with t 
T = O(&') ) ;  the value chosen fo r  CZd gives the 
steady s tate location fo r  the shock wave, when 
Gltl = 0. Thus. i f  the above mentioned relat ions 

U 

w% G = 0. 
s 0 3  

i s  used fo r  h 
s 0' 

= 0 s ince for the present  calculation 

. .  
f o r  h and h are  substituted into equation (10). 
one f%ds t ha rd  



Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa t  the steady s ta te  shock location, where 
dx /d t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G(t )  = 0, CZd = - 2 Y  C3(x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) / 3 ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. s o  
LS now a constant. Thus. sett ing Cad gives 

value of x can be calculated fo r  a 
which f r o m  equation (5a) means that the 

given wall  shape. If wsec)denote by C the value of 
C a t  this steady s ta te  location, the:%quation (11) 
can be writ ten as follows: u 

This equation thus gives thc unsteady shock loca- 
tion measured  f r o m  the steady flow location, for  a 
given a rb i t ra ry  impressed p ressu re  oscil lation 
represented by G(t ) .  

Before analyzing the shock motion, i t  is  of in- 
t e r e s t  to note that i t  is possible to wr i te  a general-  
ized solution, valid for  e i ther  case  ( I ) ,  with T 

O(E-'), or  fo r  the present  case,  with 7 = O ( E - ' ~ .  
Thus, if one replaces equation (8b) with the follow- 
ing general ized relation, 

- 

and equation (11) with the following equations 

then the general  solution i s  given by equations (4), 

(5). (Sa), (13) and (14). In equations (14). x is  the 
steady s ta te  location of the shock, and t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 t (x ). 

4 0  P 0 
It i s  seen that for T = O ( E - ' ) ,  then f rom equation 
(13) .  t = 0(1) ,  and f r o m  equation (14a). x = O f c ) ,  
i . e . ,  ' xf = E X  . For T = O(E-'). then T," = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(c )  
and i s  negligihlz! ard X +  = Oi l ) ,  s o  x: + xo = x 
The general ized soluti&s a r e  part icular ly use?A' 
in making numer ica l  calculations: i t  i s  easy  to 
separate c a s e s  ( 1 )  and the present case  asymptoti-  
cally, but i t  i s  not easy  to choose one c a s e  over the 
othcr in a given physical situation, i .  e . ,  with given 
numerical  values of F and -I. 

+ 

Large Amplitude Shock Wave Motion 

As indicated previously, when -i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ( e 2 )  the 
shock wave motion result ing f rom p ressu re  osci l la-  
t ions impressed downstream of the shock wave has 
an amplitude of o r d e r  unity. As  a resul t ,  there 
are conditions under which the shock wil l m o v e  up- 
s t r e a m  through the nozzle, disappear upstream. 
and then reappear  a s  Bhe downstream plenum p res -  
sure  drops to the point where a shock wave in the 
channel is  necessa ry  to sa t is fy  this instantaneous 
p ressu re  requirement.  
cu r rence  and the subsequent shock wave motion 
depend in a complex manner upon the amplitude of 
the forcing function, G, the steady s ta te  conditions 
about which the osci l lat ions occur ,  represented by 
C L ~ .  the wall  shape f(x), and the numer ica l  value 
of the t ime constant, represented by k. 

The conditions f o r  this oc- 

The equation which governs the shock motion 
i s  equation (11) or equation (12). where, s ince 
xs = xso t O(e) ,  then to the o rde r  considered he re ,  
xs and xso are  interchangeable. 

disturbances reach the shock wave instantaneously 
in a f i r s t  approximation. the shock wave does not 
respond instantaneously. 
f inite, and indeed there i s  a lag between the im-  
p ressed disturbance G(t) and the result ing shock 
velocity dxSo/dt. In equation (12).  for  example, 
i t  i s  seen that the term (Cia - C i )  always has a 
sign such that i ts  e f fect  is  to cause the shock to 
move toward the equil ibr ium or  steady s ta te  posi- 
tion. On the other hand, G(t) i s  a forcing function 
which changes sign periodically. 
shock motion which lags G(t). 

It is c lear  f rom equations (11) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor (12) that 

It i s  interest ing 
to note that although signals f rom the impressed v 

The shock velocity is 

The resul t  i s  a 

singular i t ies occur  a s  the shock wave approaches 
the throat and C -- 0. The behavior of integral 
curves which cross the x = 0 axis can he found 
fo r  a sihusoidal G(t),  for  example, by writ ing equa- 
tion (11) for Y (and thus C ) sma l l  compared 10 

unity and fo r  p t o i  << 1, wh%re k, is the value o f t  
a t  which the bracket on the r ight hand side of equa- 
tion (11) goes to zero a t  the throat x = 0. Thus, 
i f ,  fo r  example, 

then 

U 

S O  

S O  

G = G s in  bt 115) 

sin bt = - Crd/Go (16) 

and equation (11) becomes, for  x << 1 and 
I t - t  ' << 1, s o  

01 L 

c o s  b to = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 j1 - (C2d/Go)' l17b) 

where, again, C, = uIu(xs0) is  the value of u, at 
x = xs ( t ) ,  upstream of the shack, and where 
C: << Tt-t,/. A typical wall shape and the corre-  
sponding solution to equation f l i 'a) are, in the 
neighborhood of the throat, 

f (x )  = a x z  (18a) 

Thus, if cos bt  > 0, the point (0, t ) i s  a center  
and the integra? curves (e l l ipses)  in the neighbor- 
hood of this center  cross x = 0 with an infinite 
slope. 
g ra l  curves in the neighborhood of ( 6 ,  t 1 are hyper-  
bolae, the point being a saddle point, 2nd the two 
integral curves  pass  through the point (0. t ) with 
slopes 

0 

On the other hand, ??cos bto < 0,  the inte- 

An understanding of the possible shock motions 
may be gained by analyzing the integral curves  L 

which pass  through the saddle points. 
possible configurations for  these curves a r e  

The three 

4 



sketched in f igure 2. In these sketches, the a r rows  
indicate the direct ion the solutions must follow a s  
t ime increases. In f igure 2a, conditions a r e  such 
that the integral  curves entering the saddle point 
originate f rom a part icular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxgo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo a t  t=O. Those 
leaving the saddle begin to r ise,  then reverse  their  
direct ions and cross the t ime axis with vert ical  
slope a t  some point between the center  (indicated 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa )  and the next saddle point (indicated by x). 
Other integral  curves a r e  sketched also, a s  dotted 
l ines. As indicated in the sketch, the paths t raced 
by the integral  curves a r e  repetit ive. In f igure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 c ,  
the opposite situation ex is ts ;  the integral  curves 
entering the saddle point begin on the abscissa, 
between a saddle and a center, with an infinite slope 
and then change direct ion and en ter  the next saddle 
point. 
turn to the axis xso=O. but asymptotical ly approach 
a’s ingle periodic curve (for a given Czd). 
curves which originate with an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxs0 greater  than any 
xgo on this periodic curve wil l  approach the period- 
i c  curve asymptotical ly f rom above. This periodic 
curve i s  near ly  symmetr ic about xo, the steady 
state value of xSO. In the dividing case, shown in 
f igure Zb, the curves entering and leaving the sad- 
dle points a r e  the same curve. 

L-- 

Those curves leaving the saddle never re- 

Those 

The integral  curve map obtained in any given 
c a s e  depends upon Cad. k, 
shape, f(x). Although general  solutions f rom which 
a general  cr i ter ion fo r  the dividing condition (figure 
2h) could be derived a r e  not available, an approxi- 
mate resul t  can be found for  G a s  given in  equation 
(15) and f(x)  a s  in equation (18a). Then, equation 

G(t), and the wall  

v (11) becomes 

and the slopes of the integral  curves a t  the saddle 
points are given by equation (19). with to and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGo 
related a s  in equation (16). Now, if it i s  assumed 
that the integral  curve which passes  through the 
saddle point a t  bt = bto and a lso through the next 
saddle point a t  b t = b t o + 2 r  (e.g.. eee f igure 2b). i s  
approximately symmet r ic  about bt = bto + r, then 
the maximum value of xgo is ,  f rom equation (20a), 

Next, if equation (ZOa) i s  integrated f i r s t  over one 
period ( e .  g, bt  = bto to bt = bto + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n)  and then over a 
half period, then since xso = 0 a t  bto and bto + 2n  
and xgo = (xso)m a t  bt =bto + a, one finds the fol- 
lowing relat ions 

where, in equation ( 2 2 ~ ) .  advantage 
ken of the fact  that the integral  of xio over half a 
per iod is half the integral  over  a ful l  period be- 
cause of the symmet ry  of xS0. Substituting for  
cos bto using equation (16). one finds f rom equa- 
tion (22c) the following relat ion fo r  Go. for  the 
special  case (figure 2b): 

has been ta- 

(G,’ - cgd)l‘2 = h K(xso)A/4 (23) 

where K is given in equation (20b). Although this 
equation is nseftil in sett ing a f i r s t  approximation 
for  Go, a more accurate resul t  m a y  be found by 
taking into account the fact  that the integral  curve 
in question is not in  fact  symmetr ic,  but is  sl ight- 
ly  asymmetr ic.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn this calculation, i t  i s  necessa-  
r y  to employ an approximate fo rm for  x,,(t); a 
cubic equation of the following f o r m  suff ices: 

x 80 = C 1 ~ ( 1 - 9  + c2:(l-P) (24) - 
Now, a t  xso = ( x ~ ~ ) ~ ,  where dx 
f i n e d a s ?  , where 

/dt  = 0, t is de- 
SO - m 

t m  - - ’ + a  2 (25) 

Also, i t  i s  assumed that b i s  numerical ly sma l l  
enough that t e rms  involving b 2  may be ignored. 
Then, f rom equation (2Oa) evaluated a t  xso = (xs0),. 
equation (22a) with equation (24) used in the evalua- 
tion of the integral,  equation (2Oa) integrated over  
one half period (r = O  to t = 1/2) with equation (24) 
used in  integrating the te rm,  ( x ~ ~ ) ~  evaluated 
using equation (Z4),and equation (25). one can de- 
r ive the following relat ions for  ( x ~ ~ ) ~ .  b ,  and 
finally, Go. 

(26a, b)  
b K(x,,); 

4 
- 6a(O. 207r(Xs0)& - CZd) (GO2 - c td)l’l = 

( 2 6 ~ )  
where, again, K and r a r e  defined in  equations 
(ZOb, c). 

Example calculations of the integral  curves  
through the saddle points, with the sinusoidal f o rc -  
ing function given in equation (15) and with para-  
bolic walls a s  in equation (ISa), a r e  shown in  f ig- 
u re  3; the f i r s t  approximation to the special  value 
of Go f o r  case  (b), calculated using equation (26c), 
mus t  be modified using t r i a l  and e r r o r .  
culations were c a r r i e d  out by numerical ly integra- 
ting equation (20a), using equation (19) to find an 
init ial  condition near  xso =O. In the calculatioq, 
b = 2 ,  k = l ,  a = ( Y + l ) / 2  = 1.2, x = 1.5, C = 
( 2 f ( ~ ) / ( y t . l ) ) ~ ” .  and CZd = -2Y8:,/3, where x i s  
the steady State value of xsb. 
t e r s  a, b. and C .  re fer  to the corresponding ca8es 
shown in f igure 2. 
through one saddle point a r e  shown: the repeti t ive 
nature of the curves a t  each saddle point i s  not 
shown, f o r  clari ty. It should be noted that the 
value to in f igure 3, referr ing to the location of a 
saddle point, is dif ferent for  each case. 
ters ,  which a lso occur a t  dif ferent values of t f o r  

The cal-  

U 

In f igure 3, theqet-  

In each case, only the curves 

The cen- 
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each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare noted in f igure 3. With the para-  
me t r i c  values given above, it was found that fo r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
specia l  case, shown in f igure 2b, the specia l  value 
f o r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGo was. f r o m  equation (23), (Go)* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4 .33  and 
f r o m  equation ( 2 6 ~ ) .  (Go),p = 4.77. ?he value 
which gives accurate results (figure 3) is 

(GO)Sp = 4.968 (27) 

Thus, equation (26c) is helpful in giving a relat ive- 
l y  accurate (4% error) f irst guess  fo r  (Go),p; in 
another case ,  with a l l  other parameters  the same, 
but with xo = 0 .75 ,  i t  was found that equation (26c) 
gave an est imate with an error of 6%. The curves 
labeled a and c in f igure 3 w e r e  calculated using 
Go = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . 5  > and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGo = 4 < respectively. 
In each of these cases ,  curves enter ing and leaving 
the saddle point a t  t-to = O  a r e  shown, the behavior 
in  each case  following that sketched in the c o r r e s -  
ponding par t  of f igure 2. The solutions shown in 
f igure 3 are for very  s imple (parabolic) wall  shapes. 
There  appears  to he no s imple way of predict ing 
(Cp)sp fo r  more complicated wall shapes;in genera l ,  
it 2s necessary  t o  integrate numer ica l ly  along an 
in tegra l  curve leaving a saddle point to see which 
case  occurs  fo r  the given pa ramete rs .  Examples 
a r e  shown la te r .  

With the mathemat ica l  behavior of the in tegra l  
cu rves  through saddle points understood, i t  i s  pos- 
s ib le  to in te rpre t  the physical behavior of the 
shock wave in each c a s e .  Referr ing to f igure 2a, 
f o r  any init ial condition which does not l ie on an 
in tegra l  cu rve  entering a saddle point (two a r e  i l -  
lus t ra ted by c i rc les  in f igure 2a), the shock pas-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s e s  through the throat and d isappears ups t ream.  
This is Seen by following the in tegra l  c u r v e  in 
question a s  t ime increases :  x goes to zero,  for 
any init ial  condition, between a center  and a saddle 
point. A s  t ime increases ,  then, a saddle point oc- 
c u r ~  a t  x = 0, and an in tegra l  curve  r i ses  f rom 
the saddle point in the direct ion of increasing t. 
This means that the hack p ressu re  has decreased 
to the point where a shock wave must  fo rm in the 
channel in o r d e r  to sat is fy  the instantaneous p res -  
sure requi rements.  
p ressu re  a t  x = X, using equations ( 4 ~ ) .  (5b), and 
(Ea) with t = O ;  for f " ( X )  = 0, 

s o  

s o  

This is seen by writ ing the 

P 

+ . . .  ( 2 8 )  

where u ,  ( X )  < 0. 
that the conditions fo r  the hack p ressu re  to he that 
which gives the subsonic solution for 0 < x < X, 
with sonic p ressu re  a t  the throat  is 

From equation ( 2 8 ) .  i t  is seen 

CLd + G(t )  = 0 ( 2 9 )  

But this condition, for the c a s e  where G(t )  (and 
hence the p r e s s u r e )  is decreasing,  Ps prec ise ly  
the condition fo r  the saddle point, as exemplif ied 
by equations ( 1 5 )  and (16) and the discussion fol- 
lowing these equations. 
p ressu re  requi rement  must  be satisf ied instanta- 
neously by a shock forming at the throat i s  a 

The fact that this hack 

resul t  of the fact that there is no t ime lag in the 
solutions fo r  the velocity, p ressure ,  e tc .  As a 
result,  then, the proper  behavior for the shock, 
a f ter  i t  d isappears,  i s  to reappear  a t  the t ime as-  
sociated with the f i r s t  saddle point after i ts disap- 
pearance. It then follows the path given by the 
integral curve  through the saddle point and s o  dis-  
appears again, fo rms again at the throat a t  the 
following saddle, e tc .  Thus, no mat te r  what the 
init ial condition is ,  the result ing shock motion is 
associated with the integral curves leaving the 
saddle points, a s  shown in f igure 4 a .  For  the 
periods of t ime between the disappearance and r e -  
appearance of a shock wave, the flow is subsonic 
throughout the channel. If the init ial condition 
should l ie on an in tegra l  curve entering the saddle 
point, the shock moves to the throat and moves 
away again on the integral curve leaving the sad-  
dle point. Thereaf ter ,  i ts motion is the same a s  

that shown in f igure 4a. 

u 

Referr ing now to the dividing c a s e  shown in 
f igure Zb, i t  i s  seen that there are severa l  dif fer- 
ent possibil i t ies for the shock motion. depending 
on the init ial condition, again indicated by c i rc les .  
If the init ial condition l ies  outside the in tegra l  
curves through the saddle points, the shock posi- 
tion mere l y  osci l lates with time, never going 
through the throat. 
beneath the in tegra l  curves through the saddle 
points, the shock moves upst ream, passes  through 
the throat and d isappears;  then for the same rea -  
sons mentioned in the previous case ,  i t  fo rms at  
the throat a t  the t ime corresponding to the f i r s t  
saddle point a f ter  i ts disappearance. It then fol- 
lows the integral curves through the saddle points, 
s o  that thereaf ter ,  i t  j u s t  moves to the throat and 
never  passes  ups t ream;  this motion is i l lustrated 
in f igure 413. If the init ial condition should l ie  on 
an integral c u r v e  through a saddle point, the shack 
position is  completely described by in tegra l  c u r -  
ves through the saddle pqints; the shock never 
moves upstream of the throat. 

If the init ial conditions l ies  

\ 

Finally, re fe r r ing  to f igure 2c, there  a r e  
again several possible init ial conditions. 
init ial condition l ies  above the in tegra l  curve en- 
tering the saddle point, the shock motion approa- 
ches a periodic fo rm,  never  reaching the throat. 
If i t  l i es  on an in tegra l  curve below the curve  en- 
ter ing the saddle point, i t  moves ups t ream through 
the throat and d isappears,  forms a t  the throat a t  
the t ime corresponding to the f i r s t  saddle point 
after i ts disappearance, and then m o v e s  away 
f rom the throat  and approaches a periodic motion, 
never approaching the throat again. 
i s  shown in f igure 4c .  
dition should l ie on the integral curve entering the 
saddle, the shock wave moves to the throat, 
moves away immediately on the integral c u r v e  
leaving the saddle point, and approaches the same 
periodic motion mentioned above. 

If the 

This motion 
Finally, i f  the init ial con- 

The numer ica l  examples shown s o  fa r  (e. g . ,  
f igure 3 )  have been for simple wall geometr ies 

relat ionship between the parameters  for the spe-  
c ia l  dividing c a s e  shown in f igure 2. 

fo r  which i t  i s  possible to der ive an approximate L 

(Equation 
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26~1.  F O ~  genera l  geometr ies,  i t  is necessary  to 
integrate equation (1 1) numerical ly along the inte- 
g r a l  curves leaving the singulari ty, using equation 
(17a) to'find s tar t ing values near  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxso zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, to find 
which c a s e  holds. Examples of such calculations, 
f o r  more  complicated wall shapes, a r e  shown in 
f igures 5 and 6; in these calculations f fx)  is as 
follows : 

.\, 

f(x) = 18x2/13  X < l  

= 2 7 ( ~ - 2 ) ~ / 1 3  +48(x-2) ' /13  + 3  1 5 x 5 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx > 2 (30) 

F igure 5 shows calculations made for Czd = 0, 
that i s ,  fo r  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc a s e  where the steady s tate solu- 
tion is  that f o r  which the flow goes through sonic 
velocity a t  the throat but i s  subsonic thereafter, 
with no shock waves. Clear ly ,  the unsteady mo- 
tion is that i l lustrated in f igure 2a. In f igure 6. 
two examples are shown in which the only parame- 
te r  varied is the steady s tate shock position, x . 
Referr ing to the in tegra l  curves through the f i r s t  
saddle points, i t  is seen that fo r  xo = 1. 5, the s i t -  
uation is that i l lustrated in f igure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 c .  while fo r  
xo = 0. 75, i t  i s  that i l lustrated in f igure 2 a .  Also 
shown in f igure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 are the solution curves f rom the 
init ial condition to the point where the shock pas-  
s e s  through the throat. With these two curves and 
those leaving the f i r s t  saddle point, one can find 
then the result ing shock wave motions correspond-  
ing to f igures 4a (x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

= 0 .  75) and 4 s  (yo i 1. 5). 
0 

Conclusions 

v- The above examples i l lus t ra te the remarkably  
varied shock wave motions governed by the s imple 
f i r s t  o rder  nonlinear equation ( 1  1). 
they i l lus t ra te the we l l  known fact  that in transonic 
channel f lows, sma l l  changes in downstream p res -  
su res  can cause l a rge  loca l  changes in p ressu re  
by changing the location of the shock; in these ex- 
amples,  the p ressu re  jump across the shock is  
Oid, and the position is governed by changes in 
hack p ressu re  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ( E z ) .  
l a rge  changes in shock position can resu l t  f rom 
smal l  changes in back p ressu re ;  i. e . ,  for 
AP = Oft'), Ax = O(1). The solutions presented 
allow relat ively t imp le  calculations of shock posi- 
tions to he made for transonic flows in symmet r ic  
channels with a rb i t ra ry  wall shapes and a rb i t ra ry  
osci l lat ions in back p ressu re .  
asymmet r ic  channels, still with radius.of curva- 
ture O(e" )  is not difficult, and it appears that 
these resul ts  may  have application to inlet buzz 
and to f lutter problems in turbomachinery. 

Moreover, 

Finally, they show that 

b 

The extension to 
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Fig. 1. Pressure distr ibution in nozzle with acce l -  
erat ing flow. ---shockless flow; -flow with a 

shock wave. 

C 

t 
Fig. 2 .  Sketch of possible configurations f o r  inte- 
g ra l  curves through saddle points (solid l ines) ;  
o ther  in tegra l  curves  indicated by dashed l ines. 
.center; x saddle point. (a) Integral curves leaving 
x reach t ime ax is  before next x. (b) Integral curves  
leaving x reach t ime ax is  a t  next x. ( c )  In tegra l  
curves leaving x never  re tu rn  to t ime ax is .  
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Fig.  3. Calculated in tegra l  curves for the s imple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
case represented by eqs. (15). (18a), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 6 ) .  and (2Oa1, 
with b = 2 ,  k = 1, a = (Yt1)/2 = 1.2, xo = 1.5, and C,d 
= - ZY C i O l 3 ,  i l lustrat ing the three c a s e s  sketched 
in fig. 2;curves labeled a(---), b[-), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd- - -) 
re fe r  to the corresponding cases  in fig. 2. 
the steady s tate value of xSO. 
point. 

xo i s  
.center; x saddle 

1 

Fig.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Calculated in tegra l  curves through the 
saddle point i l lustrat ing the case sketched in fig. Za. 
fo r  Czd=O, G = 4 s i n Z t ,  y = 1 . 4 .  ~ = 1 0 0 ,  € = O . l ,  
C, = O .  and f[x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas given in e q s .  (30). Solutions 
found by numerical ly integrating eq. (11). 

Fig. 4. Sketches of shock wave motion when the 
amplitude of the impressed pressure  oscil lation i s  
large enough to dr ive the shock wave upst ream of 
the throat.  for  each of the three cases shown in 
fig. 2 ;  cases  labeled a ,  b, and c re fer  to the corre- 
sponding c a s e s  in fig. 2 .  
state,  condition for the shock position. 

xo is the in i t ia l ,  steady 
Fig. 6. Calculated in tegra l  curves through the 
saddle points (solid l ines) and f rom the in i t ia l  con- 
dition to the t ime axis [dotted l ines)  for two values 
of xo and thus Czd. For curves marked a ,  corre- 
sponding to the case sketched in fig. 2a,  x o =  1.5 ;  
for curves marked c ,  corresponding to the case 
sketched in fig. Zc, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk o = 0 . 7 5 .  For  each case,  
G = 4 . 5 s i n 2 t , Y = l . 4 , ~ = 1 5 0 , ~ = 0 . 1 ,  C,=O, and 
f (x)  is a s  given in eqs. (30). 
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