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ABSTRACT 

 

The classical problem of deflection of a cantilever beam of linear elastic material, 

under the action of an external vertical concentrated load at the free end, is analyzed. 

We present the differential equation governing the behaviour of this physical system 

and show that this equation, although straightforward in appearance, is in fact rather 

difficult to solve due to the presence of a non-linear term. In this sense, this system is 

similar to another well known physical system: the simple pendulum. An 

approximation of the behaviour of a cantilever beam for small deflections was 

obtained from the equation for large deflections, and we present various numerical 

results for both cases. Finally, we compared the theoretical results with the 

experimental results obtained in the laboratory. 

 

 



BELÉNDEZ, Tarsicio; NEIPP, Cristian; BELÉNDEZ, Augusto. "Large and small deflections of a cantilever beam". 
European Journal of Physics. Vol. 23, No. 3 (May 2002). ISSN 0143-0807, pp. 371-379 
DOI: 10.1088/0143-0807/23/3/317 
 
 

 3

1.- Introduction 
In this paper we shall analyze an example of a simple physical system, the 

deflections of a cantilever beam. We shall see that it is not complicated to formulate 

the equations governing its behaviour or to study it in a physics laboratory at 

university level. However, a differential equation with a non-linear term is also 

obtained. Moreover -as occurs with the simple pendulum for small oscillations- [1] 

when small deflections of the cantilever beam are considered, it is possible to find a 

simple analytical solution to the problem. In this sense, the study of large and small 

deflections of a cantilever beam presents a certain analogy with the study of large and 

small oscillations of a simple pendulum.  

The mathematical treatment of the equilibrium of cantilever beams does not 

involve a great difficulty [2-4]. Nevertheless, unless small deflections are considered, 

an analytical solution does not exist, since for large deflections a differential equation 

with a non-linear term must be solved. The problem is said to involve geometrical 

non-linearity [5, 6]. An excellent treatment of the problem of deflection of a beam, 

built-it at one end and loaded at the other with a vertical concentrated force, can be 

found in “The Feynmann Lectures on Physics” [2], as well as in other university 

textbooks on physics, mechanics and elementary strength of materials. However, in 

these books the discussion is limited to the consideration of small deflections and they 

present a formula for the vertical deflection of the end free of the cantilever beam that 

shows a relation of proportionality between this deflection and the external force 

applied [2, 4]. The analysis of large deflections of these types of cantilever beams of 

elastic material can be found in Landau’s book on elasticity [5], and the solution in 

terms of elliptic integrals was obtained by Bisshopp and Drucker [7]. Nevertheless, 

the developments presented in these last references are difficult for first year 

university students. 

In this paper we analyze the problem of the deflection of a cantilever beam, in 

the case of both large and small deflections. Firstly, we obtain the differential 

equation for the deflection curve (elastic curve) in the general case of large 

deflections, as well as the equations that determine the Cartesian coordinates of each 

point on the elastic curve. These equations will be solved numerically in an easy way 

with the aid of the program Mathematica, without using elliptic functions. We obtain 

the approximation for small deflections from the equations presented for large 
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deflections. Various general numerical results are presented and, only by way of 

example, these are compared with the experimental results obtained in the laboratory. 

 

2.- Theoretical analysis 
We consider a long, thin, cantilever beam of uniform rectangular cross section  

made of a linear elastic material that is homogeneous and isotropous, in which the law 

of behaviour of the material is represented by the linear relation: 

 Eεσ =  (1) 

 

that it is known as Hooke’s law [2, 8], and where σ is the normal stress, ε is the strain 

and E is the modulus of elasticity or Young’s modulus [2]. The deflection of a 

cantilever beam is essentially a three dimensional problem. An elastic stretching is 

one direction is acompanied by a compression in the perpendicular directions: the 

ration is known as Poisson’s ratio. However we can ignore this effect when the length 

of the beam is larger than the thickness of the perpendicular cross-section and this is 

shorter than the curvature radius of the beam [2]. In this study, we assume that the 

beam is non-extensible and strains remain small, and that Bernoulli-Euler’s 

hypothesis is valid, i. e., plane cross-sections which are perpendicular to the neutral 

axis before deformation remain plane and perpendicular to the neutral axis after 

deformation. Next, we also assume that the plane-sections do not change their shape 

or area. Following, for instance, the analysis proposed by Feynmann regarding the 

study of the deflection of a cantilever beam, it is possible to write the Bernoulli-Euler 

bending moment-curvature relationship for a uniform-section rectangular beam of 

linear elastic material as follows [2]: 

 MEI =
sd

dϕ  (2) 

 

Where M and κ = dϕ/ds are the bending moment and the curvature at any point of the 

beam respectively, and I is the moment of inertia of the beam cross-section about the 

neutral axis [2-4]. We will consider the deflections of a cantilever beam subjected to 

one vertical concentrated load at the free end, by supposing that the deflection due to 

its self-weight is null. This implies considering a mass-less beam [2].  
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2.1.- Large deflections of a cantilever beam 

Figure 1 shows a cantilever beam of length L with a concentrated load F 

applied at the free end of the beam. In this figure δx and δy are the horizontal and 

vertical displacements at the free end, respectively, and ϕ0 takes into account the 

maximum slope of the beam. We take the origin of the Cartesian coordinate system at 

the fixed end of the beam and let (x,y) be the coordinates of point A, and s the arc 

length of the beam between the fixed end and point A. If we differentiate equation (2) 

once with respect to s, we obtain: 

 
s

M
s

EI
d

d
d
d

2

2
=

ϕ  (3) 

 

where the bending moment M at a point A with Cartesian coordinates (x,y) is given by 

the equation (Figure 1): 

 )()( xLFsM x −−= δ  (4) 

 

By differentiating equation (4) once with respect to s, taking into account the 

relation cosϕ = dx/ds and substituting in equation (3), we obtain the non-linear 

differential equation that governs the deflections of a cantilever beam made of a linear 

material under the action of a vertical concentrated load at the free end: 

 0cos
d
d

2

2
=+ ϕϕ F

s
EI  (5) 

 

Equation (5), although straightforward in appearance, is in fact rather difficult 

to solve because of the non-linearity inherent in the term cosϕ. As indicated in the 

introduction, this situation is similar to that which can be found in the study of the 

simple pendulum [1]. In order to obtain the solution of equation (5), this equation is 

multiplied by dϕ/ds, so that it becomes: 

 0
d
dcos

d
d

d
d

2

2
=+

s
F

ss
EI ϕϕϕϕ  (6) 

which can be written as: 

 0sin
d
d

2
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Equation (7) is immediately integrable taking into account that at the free end ϕ(L) = 

ϕ0, where ϕ0 is the unknown slope at the free end of the beam (see Figure 1), and from 

equations (2) and (4), it follows that (dϕ/ds)s = L = 0. From equation (7) we can obtain: 

 )sinsin(2
d
d

0

2

ϕϕϕ FF
EIs

−=⎟
⎠
⎞

⎜
⎝
⎛  (8) 

 

and by integrating it we can obtain the following equation for the arc length s as a 

function of the slope ϕ: 

 ∫ −
=

ϕ

ϕϕ
ϕ

0 0 sinsin
d

2F
EIs  (9) 

 

The total length L corresponds to the unknown angle ϕ0 at the free end of the beam: 

 ∫ −
=

0

0 0 sinsin
d

2

ϕ

ϕϕ
ϕ

F
EIL  (10) 

 

Equation (10) allows us to obtain the angle ϕ0 at the free end of the beam as a 

function of the length, L, the modulus of elasticity, E, the moment of inertia of the 

cross-section of the beam, I, and the external load, F. After obtaining the arc length s 

as a function of ϕ (equation (9)), and taking into account that cosϕ = dx/ds and sinϕ = 

dy/ds, the x and y coordinates of the horizontal and vertical deflection at any point 

along the neutral axis of the cantilever beam are found as follows: 

 

 )sinsinsin(2
00 ϕϕϕ −−=

F
EIx  (11) 

 ∫ −
=

ϕ

ϕϕ
ϕϕ

0 0 sinsin
dsin

2F
EIy  (12) 

From Figure 1, it is easy to see that the horizontal and vertical displacements 

at the free end can be obtained from equations (11) and (12) taking ϕ  = ϕ0: 

 )( 0ϕδ xLx −=  (13) 

 )( 0ϕδ yy =  (14) 
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We introduce the non-dimensional load parameter α, and the non-dimensional 

coordinates ξ and η defined as follows: 

 
EI

FL
2

2
=α  (15) 

 ξ = x/L                η = y/L  (16) 

 

as well as the non-dimensional tip deflection ratios: 

 

 βx = δx/L = 1 - ξ(ϕ 0)         βy = δy/L = η(ϕ 0)       (17) 

 

Using the parameter α, it is possible to obtain a more general view of the 

results, because cantilever beams with different combinations of E, I, F and L may 

give the same value of α and, consequently, they would have the same behavior. 

Taking into account the definitions of α, ξ  and η, equations (10), (11) and (12) can be 

written as: 

 02
sinsin

d0

0 0
=−

−∫ α
ϕϕ

ϕϕ
 (18) 

 )sinsinsin(1
00 ϕϕϕ

α
ξ −−=  (19) 

 ∫ −
=

ϕ

ϕϕ
ϕϕ

α
η

0 0 sinsin
dsin

2
1  (20) 

 

Equation (18) allows us to obtain ϕ0 as a function of the non-dimensional load 

parameter α. However, equations (19) and (20) are elliptic integrals that may be 

evaluated numerically [7].  

 

2.2.- Small deflections of a cantilever beam 

We obtain the approximate solution for small deflections of the cantilever 

beam from the general equations in the previous section instead of formulating the 

problem again from the beginning, as is done, for instance, in Feynmann’s book [2]. 

In the case of  small deflections, the angle ϕ  is small for all the points on the 
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cantilever beam. If ϕ and ϕ0 are sufficiently small, the approximations sinϕ  ≈ ϕ and 

sinϕ0 ≈ ϕ0 may be used in equations (18)-(20). From equation (18), we can write: 

 02d0

0 0
=−

−∫ α
ϕϕ

ϕϕ
 (21) 

 

and integrating it, we can easily see that, for small deflections, the value of the angle 

at the free end of the beam, ϕ0, is equal to the load parameter, α, that we introduced in 

the previous section, and taking into account the definition of α (equation (15)): 

 
EI

FL
2

2

0 =ϕ  (22) 

 

From equation (22), we can see that if α is sufficiently small, it is possible to 

consider small deflections for cantilever beams loaded with a vertical concentrated 

force at the free end. We can conclude that, provided the approximation sinα ≈ α can 

be made, it is possible to consider small deflections. For small deflections, equation 

(19) takes the form: 

 
α
ϕξ −−= 11  (23) 

 

we can see that for ϕ  = ϕ0 = α, we obtain ξ(ϕ 0) = 1, that is, x = L and then δx = 0. 

This implies that under the hypothesis of small deflections, there is no horizontal 

displacement at the free end (Figure 2). From equation (4) it can be deduced that, for 

small deflections, the bending moment is: 

 )()( xLFsM −=  (24) 

 

which is the equation Feynmann uses as the starting point in his study [2]. Finally, for 

small deflections, from equation (20) it is easy to obtain the relation: 

 ⎥
⎦

⎤
⎢
⎣

⎡
−+−=

α
ϕαϕαη 1)2(

3
2  (25) 

 

The vertical displacement at the free, βy, can be obtained considering ϕ  = ϕ0 = α in 

equation (25): 
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 αβ
3
2

=y  (26) 

 

Using equations (23) and (25), it is possible to write the following non-dimensional 

equation for the elastic curve of the cantilever beam for small deflections: 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

62
2

32 ξξαη  (27) 

It is easy to check that if we substitute the values of  ξ, η and α from equations (15) 

and (16) in equation (27),we obtain the equation for the elastic curve for small 

deflections which appears as equation (38.41) in reference [2]. 

   

3.- Numerical results 
As mentioned above, in order to study large deflections of a cantilever beam 

subjected to a vertical concentrated load at the free end, it is necessary to know the 

angle ϕ0. To do this, it is necessary to solve equation (18) in order to obtain ϕ0 as a 

function of α. Instead of writing equations (18) and (20) in terms of elliptic functions, 

by means of complex changes of variable which give little insight as to the nature of 

the solutions, it is easier for the students to solve them numerically using one of the 

packages of commercial software available. Nowadays all university students of 

science and engineering are familiar with programs such as Mathematica or Matlab, 

which also have student versions. Taking this into account, we used the Mathematica 

program, with the aid of the “NIntegrate” command, to solve the improper integrals in 

equations (18) and (20). Firstly, we integrate equation (18) between 0 and ϕ0 - 10-12 

(in order to avoid singularity) varying the values of ϕ0 (the incognita). Using the 

Mathematica program, we obtained the values of ϕ0 as a function of α. We chose as 

the error quota a result of equation (18) lower than 10-7. This is very illustrative for 

the students, because they see how it is possible to easily obtain the value of the 

incognita which is implicit in an improper integral. Figure 3 shows the results 

obtained for ϕ0 as a function of α. We can see that for low values of the load 

parameter (α < 0.25), the deflections are small (ϕ0 < 15°). However, for large values, 

large deflections are obtained (ϕ0  ≈ 50° for α ≈ 1.25). 
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Knowing ϕ0 as a function of α,  it is easy to calculate the horizontal non-

dimensional tip deflection ratio using equation (17), and integrating equation (18) 

with the aid of the Mathematica program, the vertical non-dimensional tip deflection 

ratio can also be calculated. Figures 4 and 5 show the results obtained. In Figure 5 the 

value of βy for small deflections has been included. It can be seen that the deflection 

βy, obtained exactly from equation (18), and its approximative value calculated using 

equation (26) only coincide for small values of the load parameter α, that is, for small 

deflections of the cantilever beam. Finally, in Figure 6 the elastic curves for different 

values of the load parameter have been plotted.  

 

4.- Experimental results 
In the laboratory it is possible to design simple experiments in order to analyze 

the deflection of a cantilever beam with a tip load applied at the end free [4]. For 

example, Figure 7 shows a photograph of a system made up of a steel ruler of 

rectangular section built-in at one end and loaded at the free end with a mass. The 

length of the ruler is L = 30 cm and it has an uniform rectangular cross-section of 

width b = 3.04 cm and heigth h = 0.078 cm. The moment of inertia of the cross 

section is given bay the equation [2, 4, 9]: 

 3
12
1 hbI =  (28) 

 

and its value is I = 1.20 x 10-12 m4. The weigth of the ruler is W = 0.554 N and an 

external force F = 3.92 N acts on the free end of the ruler. The Young’s modulus of 

the ruler material was calculated for small deflections and the value obtained was E = 

200 GPa [4]. In the absence of an external load (F = 0), the maximum vertical 

deflection of the ruler, experimentally measured and theoretically calculated as 

WL3/8EI [2, 9], was approximately 7.8 mm. This means that the non-dimensional 

vertical deflection due to its own weight is approximately 0.026, which can be 

disregarded for large external loads. Taking into account the values of F, L, E and I 

and equation (15), the calculated value for the non-dimensional load parameter is α = 

0.735. From equations (16)-(20), we obtain ϕ0 = 0.62993 rad (36.09º), βx = 0.1047 (δx 

= 3.14 cm) and βy = 0.4053 (δy = 12.16 cm). Figure 8 shows the experimental elastic 
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curve as well as the one calculated with the aid of equations (18)-(20). The difference 

between both is due to the weight of the ruler itself, which has not been considered in 

the theoretical treatment.  

 

5.- Conclusions 
We have studied the deflections of a cantilever beam both theoretically and 

experimentally. Firstly, we obtained the equations corresponding to the general case 

of large deflections and from these we deduced the equations corresponding to the 

case of small deflections. We have shown that, although we are dealing with a simple 

physical system, it is described by a differential equation with a non-linear term. 

Although the solutions to the elastica equations could be expressed in terms of elliptic 

functions, it is much more convenient for undergraduate students to use numerical 

integration as outlined in this paper. Numerical integration was performed using the 

Mathematica program to obtain the exact solution. Finally, we have shown that the 

deflections of a cantilever beam may be easily studied with a simple, easy-to-

assemble, low-cost experiment, which allows us to experimentally study the 

deflections of cantilever beams by means of a series of simple measurements, such as 

lengths and masses. 
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FIGURE CAPTIONS 

 

Figure 1.- Cantilever beam loaded with an external vertical concentrated load at the 

free end and definitions of parameters for large deflections. 

 

Figure 2.- Cantilever beam loaded with an external vertical concentrated load at the 

free end for small deflections. 

 

Figure 3.- Values obtained from equation (18) for ϕ0 as a function of the non-

dimensional load parameter α. 

 

Figure 4.- The horizontal non-dimensional tip deflection ratio, βx, as a function of 

the non-dimensional load parameter α, for large deflections (for small 

deflections βx = 0). 

 

Figure 5.- The vertical non-dimensional tip deflection ratio, βy, as a function of the 

non-dimensional load parameter α, for large and small deflections. 

 

Figure 6.- Elastic curves for different values of the load parameter. 

 

Figure 7.-  Photograph of a cantilever beam loaded with an external vertical 

concentrated load at the free end. 

 

Figure 8.- Experimental and theoretical elastic curves for the ruler analyzed 

experimentally.  
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