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Abstract: We propose a switchable phase grating using fringe field 

switching (FFS) cells. The FFS phase grating possesses several attractive 

features: large diffraction angle, high diffraction efficiency, fast response 

time, and high contrast ratio. It can diffract >32% light to ± 2nd orders with 

a large diffraction angle of 12.1°. Meanwhile, its response time remains 

relatively fast even at −40°C. A simulation model is developed to explain 

the experimental results and good agreement is obtained. We also 

demonstrate a blazed phase grating to achieve tunable beam steering 

between 0th, 1st and 2nd orders. 
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1. Introduction 

In the past few decades, liquid crystal (LC) technology has undergone tremendous 

development incessantly. This ever-growing technology has now become indispensable not 

only in displays [1–3] but also in tunable photonic devices [4–7] due to its lightweight, low 

cost, and low power consumption. LC-based electrically tunable phase gratings [8–12] are 

among such components and have found widespread applications in optical interconnects, 

beam steering, three-dimensional displays, etc. In order to form a phase grating, the LCs need 

to have a periodically varying refractive index profile, which is usually produced by two 

types of electric field configuration. One uses a longitudinal electric field with patterned 

electrodes [9, 10, 12] whereas the other employs a transversal (TE) field generated by the 

interdigitated electrodes [8, 13]. However, with conventional nematic LCs, most of such 

gratings show slow response time (~10-100ms) and low diffraction efficiency (≤26%) [13, 

14]. 
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Recently, extensive efforts have been devoted to solve these problems [15–18]. In 

particular, tunable phase gratings using polymer-stabilized blue phase liquid crystal (PS-

BPLC) showing submillisecond response time and high diffraction efficiency have been 

demonstrated [19–22]. But the major tradeoffs are twofold: high driving voltage (~150V) and 

noticeable hysteresis [22, 23]. Meanwhile, the PS-BPLC require special fabrication 

conditions, such as precise temperature control and UV polymerization [24, 25]. 

On the other hand, most the LC phase gratings using interdigitated (or in-plane switching, 

IPS) electrodes possess a small diffraction angle (~3°) [15, 19], which is too narrow for large-

angle beam steering applications. The small diffraction angle originates from the large grating 

constant, which is determined by the dimension of IPS electrodes. The biggest challenge lies 

in the difficulties of fabricating small-dimension electrodes, thus there is limited space to 

further enhance the diffraction angle. Moreover, for the LC-based gratings investigated so far, 

their structural periodicity is fixed once fabrication is completed. Therefore, the diffraction 

angles cannot be tuned electrically. 

In this paper, we propose a high-efficiency and large-angle phase grating using a fringe 

field switching (FFS) cell. The FFS phase grating can diffract >32% light to ± 2nd orders 

with a diffraction angle of 12.1°. And it possesses a high contrast ratio as well as fast 

response time (rise time 0.21ms and decay time 2.95ms at 23°C). Even at −40°C, the decay 

time is 40.4ms, which is still reasonably fast. To explain these experimental results, we 

construct a simulation model and obtain good agreement. Finally, we also demonstrate a 

blazed phase grating and achieve tunable beam steering between 0th, 1st and 2nd orders. 

2. Physical principle 

 

Fig. 1. Sketched phase LC director distributions (lower) and corresponding phase profiles for 

TM wave (upper) in an FFS cell under (a) 0V and (b) 35V applied voltage. The homogeneous 

alignment direction is 10° w.r.t. the pixel electrodes (x axis). 

The LC director deformations of a FFS cell-based grating at voltage-off and voltage-on states 

are depicted in Figs. 1(a) and 1(b), respectively. The FFS cell is homogeneously aligned so 

that the phase change from the LC layer is uniform at different position along horizontal 

direction. Hence, the diffraction only comes from the index mismatch between the thin 

indium tin oxide (ITO) electrodes and the LC medium when no voltage is applied. Since the 

ITO layer is very thin (typically ∼40 nm), the phase difference Δφ is very small, as shown by 

the phase profile in the upper plot of Fig. 1(a). As a result, its diffraction effect is very weak 

and can be neglected. The grating constant is Λ1 = (W + L), where W and L are the pixel 

electrode width and gap, respectively; as defined in Fig. 1(a). Hence, the diffraction angle θm 

can be calculated with following equation: 
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 1sin / ,m m nθ λ≅ Λ  (1) 

here m stands for the diffraction order, λ is the wavelength, and n is the average refractive 

index of LC layer. 

As the applied voltage increases, the LC directors are reoriented gradually along the 

electric field, provided that the employed LC has a positive dielectric anisotropy (Δε>0). 

Because of the non-uniform electric field in the FFS cell [26], the LC director distribution is 

not uniform as well, as Fig. 1(b) illustrates. The LC directors are vertically aligned by the 

electric fields on top of the pixel electrodes, whereas those are horizontally aligned at the gaps 

between the electrodes. Hence, the incident light would experience different phase changes at 

different positions along the horizontal direction and such a periodic phase distribution forms 

diffraction gratings. For qualitative illustration of the physical principle, we have calculated 

the phase difference of TM wave Δφ by integrating the phase change in each LC layer, as 

shown in the upper plot of Fig. 1(b). The phase difference becomes symmetric w.r.t. the 

center the electrode gap; as a result, the grating constant is reduced to Λ2 = Λ1/2. Accordingly, 

the diffraction angle is doubled compared to the voltage-off state, thus achieving a large-angle 

grating. 

3. Experiment 

To validate this concept, in experiment we prepared a FFS cell using UCF-L1, which is a low 

viscosity LC mixture developed by our group [27]. Its physical properties are listed as 

follows: Δn = 0.121, Δε = 2.89, γ1 = 35 mPa·s, K11 = 10.2 pN and K22 = 5.5 pN at T = 23°C, λ 
= 633 nm and f = 1 kHz. The FFS cell employed has pixel electrode width W = 3 µm, 

electrode gap L = 4 µm, cell gap d = 3.65 μm, and pretilt angle 2°. The cell is photo-aligned at 

10° w.r.t. pixel electrode, and the dielectric constant of photo-alignment material is ε = 3.9. 

The passivation layer between the pixel and common electrodes is SiO2 (ε = 3.8) with a 

thickness of 300 nm. 

Figure 2(a) shows the experimental setup for optical measurement of the phase gratings. A 

He-Ne laser (λ = 633 nm) was used as probing beam. The transmission axis of the polarizer 

was set perpendicular to the pixel electrodes of the FFS cell in order to select the TM-

polarized light [19]. An iris was placed behind the FFS cell to select the diffraction order and 

the intensity of the diffraction orders was detected by a photodiode in the far-field at a 

distance of ~30 cm. 

At V = 0, the diffraction effect results from the periodicity of electrodes is quite weak and 

the laser power is mostly on the zeroth order, as Fig. 2(b) depicts. Although the higher orders 

can be observed, their intensity is negligible as compared to that of the zeroth order. Next, we 

drove the LC cell with a square-wave voltage at 1 kHz frequency. As the applied voltage 

increases, the periodic phase distribution appears and serves as a diffraction grating. Due to 

the aforementioned halved grating constant, the energy is transferred from the zeroth order to 

the 2nd order, as Fig. 2(c) illustrates. At 35V, the 2nd order has higher intensity than the 0th 

order, indicating that most of the light energy has been diffracted to the ± 2nd orders. The 

diffraction angle of the 2nd order is 12.1°. In contrast, there is no reduction in grating 

constant of the IPS cell when a voltage is applied. As a result, it is very challenging for IPS 

gratings to diffract light with such a large angle and comparable efficiency [15, 19]. 

Compared to IPS grating whose diffraction angle is ~3° at 1st order (highest-intensity order), 

our FFS phase grating exhibits a much larger diffraction angle. The diffraction angle can be 

further enhanced if we can reduce the electrode dimension of FFS cell [28]. Hence, the 

proposed FFS phase grating is promising for large-angle beam steering applications. 
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Fig. 2. (a) Experimental setup for measuring the diffraction efficiency. The iris is relocated to 

select the diffraction orders. (b) Recorded diffraction patterns at the voltage-off state. (c) 

Diffraction patterns at 35V. λ = 633nm and T = 23°. 

 

Fig. 3. Diffraction efficiency of the zeroth to fourth orders (Dots: measured data, solid curves: 

simulation results). Please note positive and negative orders have the same diffraction 

efficiency. 

The dots in Fig. 3 show the measured diffraction efficiency of the zeroth to fourth orders. 

The diffraction efficiency ηm is defined as the ratio between the intensity of mth diffracted 

order and the total intensity at V = 0, described by Eq. (2): 

 0( ) / .m mI V Iη =  (2) 

Figure 3 clearly shows that as voltage increases, some energy is transferred from 0th order to 

the even (e.g. 2nd, 4th, etc.) orders. However, the intensity of the 1st and 3rd orders are very 

weak, indicating the energy transferred to the odd orders is negligible. The diffraction 

efficiency is the same for the + 2 and −2 orders, both can achieve 32.1% at 70V with a 
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contrast ratio over 800:1. However, the diffraction efficiency gradually saturates in the high 

voltage region due to the strong anchoring effect of the LC cell [29]. Thus, if we are willing 

to sacrifice 2% in diffraction efficiency, then we can drive the FFS cell at 35V with 30% 

diffraction efficiency, which is still higher than that of traditional IPS phase gratings. The 

operation voltage can be further reduced if a larger Δε LC is employed. 

Next, we measured the response time of the 2nd diffraction orders. Due to overdriving 

effect [30] from the high applied voltage (70V), the rise time is as fast as 0.21 ms at 23°C. 

Since the LCs are over-rotated from its rubbing direction at the on-state, as shown in Fig. 

1(b), the elastic torque LC directors experience from the anchoring is very large during the 

relaxation process. Thus, the decay time is also very fast upon the removal of the applied 

voltage. The decay time of our FFS grating is 2.95 ms at 23°C. Both rise and decay times are 

much faster than those of nematic LC-based phase gratings (typically ~10-100 ms). More 

attractively, our phase grating using UCF-L1 still exhibits very fast response time even at low 

temperatures due to its ultra-low viscosity and low activation energy [27]. The measured 

decay time under different temperatures is plotted in Fig. 4. The decay time increases as the 

temperature decreases due to the increased viscosity. But even when the operation 

temperature drops to −40°C, the decay time is still as fast as 40.4 ms, which is much faster 

than the high-viscosity LCs, whose response time is usually around hundreds of milliseconds. 

Hence, our phase grating exhibits great potentials for low-temperature beam steering 

applications. 

 

Fig. 4. Measured temperature-dependent decay time of FFS grating employing UCF-L1. 

Another approach to obtain fast rise and decay time is to employ dual frequency liquid 

crystals (DFLCs) [31, 32]. In a DFLC device, a low-frequency voltage is used to turn-on 

while a high-frequency voltage is used to turn-off the LC phase modulator. As a result, both 

fast rise and decay times can be achieved. A major challenge of DFLC devices is noticeable 

dielectric heating effect [33] originated from the applied high frequency, which in turn causes 

the crossover frequency to drift. Therefore, for a DFLC device to work well, the operation 

temperature needs to be controlled precisely. 

4. Simulation results 

4.1 Numerical model 

The physical principles of FFS gratings were qualitatively illustrated in Sec. 2, but without 

rigorous calculations. Therefore, we need to build a quantitative model to fit the experimental 
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data. It’s worth mentioning here that for those LC gratings using uniform longitudinal electric 

field or blue phase liquid crystal, the polarization of incident light would not be changed. 

Hence, the phase profile can be calculated in a relatively easy way and the diffraction 

efficiency can be computed based on fast Fourier transforms. However, in our nematic FFS 

grating, the polarization of incident polarization light would be changed due to the rotation of 

LC molecules when a lateral field is applied, as shown in Fig. 1(b). Thus, we have to use the 

Jones matrix to track the polarization change in our model. 

In our model, we first compute the LC director distribution using the finite element 

method [34], and this step can be done with commercial software TechWiz LCD (Sanayi, 

Korea). Then we utilized Jones matrix methods to calculate the output wavefront of the light. 

Since the grating constant Λ >> λ, the light interference inside the grating is negligible and 

the periodic boundary condition can be applied here [35]. On the other hand, the LC medium 

is divided into many layers (~40 layers), thus the refractive index mismatch between adjacent 

LC layers is very small so that the reflection can be neglected. Based on these assumptions, 

the Jones matrix calculation method could be used here. 

The direction of pixel electrode is defined as x-axis, and the polarization direction of the 

incident light, which is perpendicular to the pixel electrodes, is therefore set as y-axis. The 

light propagates along the z-axis. Hence, the Jones vector of the incident light is J0 = (0, 1). 

The LC bulk layer is divided into 40 layers and each layer can be considered as a wave plate 

and the Jones matrix of Nth layer can be represented as: 

 
0

0

0
,

0

eff

o

jk n d

N jk n d

e
W

e

⋅ ⋅

⋅ ⋅

 
=  
 

 (3) 

where d is the thickness of the layer and neff is the effective index at the Nth layer: 

 
2 2 2 2

.
sin cos

o e
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e o
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n nθ θ

⋅
=

⋅ + ⋅
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Here, θ denotes the tilt angle of the LC directors. Therefore, the output electric field 

distribution along y-axis is the product of the Jones matrices of the whole LC layers and J0 

[34]: 

 ' ' '

2 2 1 1 1 1 1

( )
... ,
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= 

 
 (5) 

where RN is the rotation matrix of the Nth layer and can represented by: 

 
cos sin

.
sin cos

NR
ϕ ϕ

ϕ ϕ

 
=  − 

 (6) 

Here, φ is defined as the azimuthal angle between the polarization of incident light and x-axis. 

Since the diffracted light is detected by the photodiode at far field, here we can use the 

Fraunhofer diffraction equation [36] to model the diffraction pattern. Based on the calculated 

wavefront of output light, the diffraction efficiency is computed via fast Fourier transform: 

 
( ) ( ) ,

( ) ( ) .

y

y

jk y

x y x

jk y

y y y

E k E y e dy

E k E y e dy

− ⋅

− ⋅

= ⋅

= ⋅




 (7) 

Then the output intensity can be calculated from following equation: 

 2 2( ) ( ) ( ) .y x y y yI k E k E k= +  (8) 
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And the diffraction angle δ is determined by: 

 
0sin / .yk kδ =  (9) 

The simulated voltage-dependent diffraction efficiency curves using our model are also 

plotted in Fig. 3 as the solid curves. It is clearly shown that the simulation results overlap with 

the experimental data, indicating our model well describes the physical principles of FFS 

gratings. Hence, from here on we will use this model to further study the electro-optic 

properties of the FFS grating. 

4.2 Phase retardation effect 

The maximum diffraction efficiency (ηmax) of the 2nd order depends on the phase retardation, 

or dΔn/λ of the FFS cell. The blue solid line in Fig. 5 depicts the calculated ηmax at different 

dΔn/λ values for the FFS grating. As dΔn/λ increases from 0.4 to 1.0, ηmax climbs to a peak of 

33.4% at dΔn/λ ≈0.71 and then gradually decreases. To validate this phase retardation effect 

in experiment, we prepared three more FFS cells in addition to the one presented above using 

following materials: MLC-6686 [27], ZLI-1132 [37], and HAI-653265, all of which are 

commercially available materials. The first two are from Merck (Germany) and the third one 

is from HCCH (China). The parameters of FFS cells employed here are identical to the one 

discussed above except the cell gap. The material properties along with dΔn/λ values for these 

three cells are listed in Table 1. We measure the ηmax of these three samples and plot them as 

the red squares in Fig. 5. We can see that the measured data show the same trend as discussed 

above. An attractive feature of FFS grating can be found in Fig. 5: in the 0.65 < dΔn/λ < 0.80 

range ηmax keeps larger than 98% of the peak value, which provides a reasonably large cell 

gap tolerance. Hence, we can choose dΔn/λ within this range during fabrication in order to 

achieve high diffraction efficiency of 2nd order. 

 

Fig. 5. Maximum diffraction efficiency of the 2nd order at different dΔn/λ values for FFS 

gratings (λ = 633nm and T = 23°). 

Table 1. LC material properties and corresponding dΔn/λ of three FFS cells (λ = 633nm, f 

= 1 kHz, T = 23°C). 

LC Δn Δε γ1 (mPas) K11 (pN) K22 (pN) K33 (pN) dΔn/λ 
MLC-6686 0.097 10.0 102 8.8 6.7 14.6 0.50 

ZLI-1132 0.137 13.1 153 7.4 4.2 14.5 0.54 

HAI-653265 0.096 2.3 44 13 7.8 14.2 0.68 
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5. Discussion 

From the results presented above, the maximum 2nd order diffraction efficiency (~32%) of 

FFS grating is lower than that of a simple binary grating (~42%), in which perfectly 

rectangular phase profile is formed. Nevertheless, for most LC gratings, especially those 

employing nematic LCs, the diffraction efficiency is typically <26% [15]. Hence, our FFS 

grating exhibits a much higher diffraction efficiency than most nematic LC gratings with an 

additional advantage of large diffraction angle (~12°). 

Nevertheless, for some applications such as imaging and 3D displays [38], high 

diffraction efficiency of the diffracted order is not the sole goal pursued. The diffraction ratio, 

which is usually defined as the ratio between diffraction efficiency of diffracted and 0th 

orders, is another important criteria for evaluating the phase grating performance. However, 

the experimental results in Fig. 3 only exhibit a diffraction ratio of ~3:1, which is relatively 

low and will generate cross-talk issues. In order to improve the diffraction ratio, we can 

optimize the dΔn value by altering the cell gap or Δn, as shown in Figs. 6(a) and 6(b) are the 

simulation results of two FFS gratings using UCF-L1 with cell gap d = 4 and 5 μm, 

respectively. Compare to Fig. 3, we can see that the diffraction efficiency of 0th order is 

greatly reduced by increasing cell gap, leading to an enhanced diffraction ratio. 

 

Fig. 6. Simulated diffraction efficiency of the 0th, 2nd, and 4th orders of the FFS gratings with 

different cell gaps: a) d = 4 μm; b) d = 5μm (LC: UCF-L1, Δn = 0.121). 

This concept is also validated in experiments. Since the cell gap of our FFS cells are 

thinner than 4 μm, we choose to boost the Δn of LC in order to achieve a higher diffraction 

ratio. We prepared a FFS cell using LC with a higher Δn = 0.146. The measured diffraction 

efficiency of the 0th, 2nd, and 4th orders of this FFS cell are depicted in Fig. 7. In this case, 

the diffraction ratio is improved to ~30:1 at V = 80Vrms. By optimizing the dΔn value, the 

diffraction efficiency of 0th order can be further reduced, and a high diffraction ratio is 

therefore obtained. 
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Fig. 7. Measured diffraction efficiency of the 0th, 2nd, and 4th orders in a FFS cell with Δn = 

0.146. 

6. Blazed phase grating 

Blazed grating can be selected to achieve maximum diffraction efficiency in a given 

diffracted order [39, 40] and thus has widespread applications in fiber communications, 

microdisplays, optical scanners, etc [38]. However, for most of the LC-based gratings 

investigated so far, their structural periodicity is fixed once the fabrication is completed; thus 

the diffraction angles cannot be tuned electrically. Here, we propose a blazed phase grating 

that can be freely switched between 0th, 1st and 2nd orders using a fringe in-plane switching 

(FIS) cell [41]. The FIS mode was first proposed to reduce operation voltage and enhance 

transmittance for display applications. Here we employ this structure and modify its driving 

scheme to achieve a blazed phase grating. The device configuration is depicted in Fig. 8. The 

basic structure of the FIS cell remains the same as the FFS cell but the pixel electrodes are not 

necessarily in the same potential: adjacent pixel electrodes are applied with V1 and V2 

voltages, respectively. To steer the light to ± 2nd orders, same voltage is applied to the 

adjacent pixels (V1 = V2) and the device operates in the same principle as the FFS cell. 

However, in order to steer the light to ± 1st orders, we keep V1 and V2 different so that not 

only a fringe field is formed between pixel and common electrodes but also an in-plane 

electric field is generated between pixel electrodes. Therefore, the grating constant is enlarged 

to Λ = (W + L) again and more light are diffracted to ± 1st orders. 

 

Fig. 8. Device configuration of the blazed grating using a FIS LC cell. 
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As discussed above, in order to achieving high diffraction ratio for reducing the cross-talk 

issue, here we optimized the dΔn values. Figure 9 depicts the simulated voltage-dependent 

diffraction efficiency of 0th, 1st and 2nd orders for this blazed grating. To reveal the energy 

transfer between different orders, V1 is fixed at 50V and V2 is scanned from −50V to 50V. 

From Fig. 9, when V2 = −10V, the 1st order can achieve ~26% efficiency at a diffraction 

angle θ1 = 5.9° whereas diffraction efficiency of the 2nd order is much lower, only 9.7%. This 

is because in-plane field exists between adjacent pixel electrodes and the grating constant is Λ 

= (W + L), as illustrated by the phase profile in Fig. 10(a). As V2 increases, more energy starts 

to transfer from 1st order back to 0th order. As V2 exceeds 0V, energy starts to transfer to 2nd 

order since electric field between adjacent pixel electrodes becomes weaker and the 

symmetric LC director distribution w.r.t. the center of electrode gap starts to build up. When 

V2 reaches the same potential as V1, the electric field between adjacent pixel electrodes 

disappears and the device functions in the same way as the FFS cell, as shown in Fig. 10(b), 

thus directing the light onto the 2nd order with a diffraction efficiency of 29.4% at the 

diffraction angle θ2 = 12.1°. Our blazed grating can switch between 0th, 1st and 2nd orders 

flexibly, thus potential use of more applicable gratings by optimizing cell gap, Δn, and 

driving voltages are foreseeable. 

 

Fig. 9. Simulated diffraction efficiency of 0th, 1st and 2nd orders when V2 is scanned from 

−50V to 50V (V1 is fixed at 50V). Cell gap = 5.0μm. λ = 633 nm. 

 

Fig. 10. Simulated phase profile of FIS grating under (a) V2 = −10V and (b) V2 = 50V. V1 is 

fixed at 50V (λ = 633 nm). 

7. Conclusion 

We have proposed switchable phase grating using a FFS cell. The FFS phase grating 

possesses several attractive features: large diffraction angle, high diffraction efficiency, fast 
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response time, and high contrast ratio. It can diffract >32% light to ± 2nd orders with a 

diffraction angle of 12.1°. Meanwhile, it is able to achieve a rise and decay time of 0.21ms 

and 2.95ms, respectively. Even when the phase grating operates at −40°C, it still exhibits a 

reasonably fast decay time of 40.4ms. A simulation model is developed to explain the 

experimental results and good agreement is obtained between the model and experiment. 

Moreover, a blazed phase grating is proposed to achieve tunable beam steering between 0th, 

1st and 2nd orders. 
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