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Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed

an increasing drive toward clinical translation of breakthrough technologies. However,

the progression of promising preclinical data to achieve successful clinical market

authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition

from small animal research to advanced preclinical studies in large animals to test

safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable

conclusions from animal experiments it is critical that the species and disease model

of choice is relevant to answer the research question as well as the clinical problem.

Selecting the most appropriate animal model requires in-depth knowledge of specific

species and breeds to ascertain the adequacy of the model and outcome measures

that closely mirror the clinical situation. Traditional reductionist approaches in animal

experiments, which often do not sufficiently reflect the studied disease, are still the

norm and can result in a disconnect in outcomes observed between animal studies and

clinical trials. To address these concerns a reconsideration in approach will be required.

This should include a stepwise approach using in vitro and ex vivo experiments as well

as in silico modeling to minimize the need for in vivo studies for screening and early

development studies, followed by large animal models which more closely resemble

human disease. Naturally occurring, or spontaneous diseases in large animals remain

a largely untapped resource, and given the similarities in pathophysiology to humans

they not only allow for studying new treatment strategies but also disease etiology and

prevention. Naturally occurring disease models, particularly for longer lived large animal

species, allow for studying disorders at an age when the disease is most prevalent. As

these diseases are usually also a concern in the chosen veterinary species they would

be beneficiaries of newly developed therapies. Improved awareness of the progress
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in animal models is mutually beneficial for animals, researchers, human and veterinary

patients. In this overview we describe advantages and disadvantages of various animal

models including domesticated and companion animals used in regenerative medicine

and tissue engineering to provide an informed choice of disease-relevant animal models.

Keywords: large animal models, sheep, pig, horse, dog, regenerative medicine, tissue engineering, naturally

occurring disease

INTRODUCTION

The use of sentient animals for research purposes is a
controversial topic, which has raised public and ethical concerns
and is criticized by opponents claiming that animal models often
do not generate appropriate benefit with regards to their potential
risks and harm and as a consequence, are often ethically not
permissible. The increasing status of pets as family members and
corresponding high level of veterinary care for privately owned
pets further amplifies the controversy over the use of animals for
research purposes.

However, animal models are still an important and, at
a regulatory level, a compulsory component of translational
research, which cannot yet be replaced by in vitro experiments.
Although in vitro models allow for systematic, standardized
analysis of various cellular, biophysical and biochemical cues in a
controlled environment, without the natural variability inherent
to in vivo animal models, they can only offer an abstract insight
into the pathophysiology of diseases and disorders. Therefore,
while animal models cannot yet be replaced, the number of
animals used should be reduced to a minimum and experiments
involving animals should be optimized with regard to their
translatability and the welfare of the animals.

However, to date a reductionist approach often using
immature laboratory species is commonly employed (Jackson
et al., 2017). Small rodent animals, specifically mouse and
rat, are valuable for research into mechanisms of disease and
fundamental biology, but findings from such small animal
models often do not translate into human clinical applications
(Prabhakar, 2012; Lorbach et al., 2015). Shanks et al. impressively
illustrated the translational challenges, showing the difference
in bioavailability of pharmaceuticals between humans, primates,
dogs and rodents (Shanks et al., 2009). However, although
awareness is increasing there is still a massive disproportion
between rodent studies and large animal studies.

Therefore, the European Medicines Agency (EMA), the
USA Federal Food and Drug Administration (FDA) and the
International Society for StemCell Research (ISSCR) recommend
the use of large animal models to evaluate efficacy, durability,
dose response, degradation and safety of advanced therapeutic
medicinal products (ATMPs)1,2. For successful and timely
translation from animal models to regulatory approval and
clinical application, a step-wise development using laboratory
animals for screening and early development work, followed by
a large animal model such as the pig, sheep or horse which offers

1http://www.isscr.org/docs/guidelines/isscrglclinicaltrans.pdf
2https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-
gene-therapy-guidances

amore realistic approach for late development and pivotal studies
would be more appropriate (Hurtig et al., 2011).

Moreover, animals develop many naturally occurring
(or spontaneous) diseases that are equivalent to human
disease leading to the development of the “One Health One
Medicine” concept which presumes that diseases in men
and animals (mostly mammals) have similar aetiologies and
pathophysiologies and require analogous therapeutic approaches.
Hence, human and veterinary medicine can mutually benefit
from research that applies a one health approach. Using large
animal models with naturally occurring disease with a similar
pathophysiology as in humans, allows study of not only new
treatment strategies but also disease development and prevention
at a relevant age. However, although using naturally occurring
disease models best reflect disease complexity, standardization of
disease grade and availability of sufficient clinical case numbers
for recruitment into studies can be challenging.

In order to achieve the best output while following the three R’s
principle (to reduce, refine and replace animal models) of using
the smallest possible number of animals, animal models need to
be optimized to the greatest possible extent (Madden et al., 2012).
They require careful selection and design to ensure they are fit-
for-purpose and address both optimal predictive validity, as well
as ethical, animal-welfare and societal considerations. Species,
anatomic, physiologic, biomechanical aspects and their clinical
relevance need to be considered.

Furthermore, knowledge regarding the epidemiology and
natural history of diseases in different animal species, disease
similarities to humans, availability of diagnostics, treatment
options, and outcomemeasures as well as criteria defining species
specific quality of life and functional parameters is important
but still scarce in the scientific community. Other important
considerations in using large animal models include availability,
handling and economic concerns.

To optimize scientific output and translational potential with
animal welfare needs, tight cooperation between basic science,
human and veterinary medicine is necessary. The veterinary
academic environment offers unique expertise to make that goal
attainable to the highest standards. This includes the veterinary
knowledge required to make a rational decision for the choice of
animal model rather than being based on in-house availability.

There are several research groups which have a track record
of developing preclinical large animal models, some of which
have managed to translate their research into clinical applications
(Kang et al., 2010, 2013; Mcilwraith et al., 2011, 2012; Godwin
et al., 2012; Smith et al., 2013; Bach et al., 2017; Whitehouse
et al., 2017; Goldberg et al., 2018; Tellegen et al., 2018;
Broeckx et al., 2019; Tellegen et al., 2019). This − by no means
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exhaustive − list clearly demonstrates the collective efforts of the
veterinary community to provide large animal models to be used
in translational projects.

However, yet it is still often argued, that translational studies
using large animal models are rare because they are complex,
time-consuming, technically demanding, slow, and usually not
suitable for mechanistic investigations. Nevertheless, because
large animals better reflect the human body conformation
and pathophysiology of certain naturally occurring diseases
than rodent models, these studies are essential justifying
the challenges and costs. Unfortunately, the added value of
the clinical relevance of large animal models is often not
appreciated by reviewers of manuscripts and grant applications
are assigned low scores on the basis of lack of mechanistic
insights and insufficient conceptual novelty. However, for a
successful translation of tissue engineering and regenerative
medicine research into clinical therapies, it is critical that this
misperception is corrected.

It is the authors’ hope that this review, which introduces
different large animal models, their naturally occurring
diseases and their specificities, may stimulate biomedical
researchers to look for the very best model possible for
their specific research question and that it will encourage
interdisciplinary cooperation to optimize the choice of
disease-relevant animal models in the future. Deciding which
animal model should be used in a particular study is first
and foremost dependent on defining the specific question
that needs to be answered. Only then can the pertinent
benefits and drawbacks of individual models be considered and
a decision made.

In this review, we focus on horses, sheep, dogs, cats and pigs
as the most frequently used large animal models in research
and do not include primates due to the ethical dimension
and limited indications, which require their specific use. Using
animals which are so similar to humans, raises serious ethical
concerns. Therefore, the use of non-human primates is closely
monitored and strictly regulated and much has been done to
specifically safeguard these animals. The use of great apes has
been completely prohibited. As long as non-human primates are
used for medical research, the European Commission strongly
advocates the “3Rs principle,” now a legal obligation embedded
in the EU legislation to: Replace non-human primates with
viable alternatives whenever feasible, Reduce the use of non-
human primates and Refine scientific procedures and the care
and treatment of the animals. Even phasing-out the use of non-
human primates in Europe is discussed3.

WHY THE CHOICE OF ANIMAL MODELS
IS CRUCIAL

The most obvious and demonstrative reason why the choice of
animal models is crucial, are gross anatomic differences between
the human and different animals and even between animals
of different species (Figure 1). These differences imply that
the same anatomic structures may have a different function
and are subjected to different biomechanical strains. Table 1

3https://ec.europa.eu/health/sites/health/files/scientific_committees/scheer/docs/
scheer_o_004.pdf

FIGURE 1 | Gross anatomical differences between animals of different species (courtesy of Niklas Dresen, Institute of veterinary anatomy, University Leipzig) and the

human (courtesy of Elfriede Cremer, Bernhard Cremer and Elisabeth Schieder). (A) Pig; (B) Sheep; (C) Dog; (D) Horse; (E) Mouse; (F) Human.
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TABLE 1 | Comparison of physiologic and biomechanical parameters of different model animals.

Species Mouse (C57BL/6) Rat Rabbit Canine Mini-Pig Sheep Goat Horse Human

Body temperature (in ◦Celsius) 36.5−37.3◦C 37.5−39.5 38.0−39.5 38.0−39 38.3−38.8 38.5−39.5 38.3−39.0 37.5−38.0 36.5−37.3

Heartrate (beats per minute) 491−626 250−450 150−300 60−160 68−72 60−80 60−80 28−40 60−80

Respiration rate per minute 272 70−120 35−100 15−30 14−18 16−30 10−30 10−14 12−20

Cartilage thickness medial femoral

condyle (in mm)

0.1 0.3 0,6−1.3 1.5 0.7−1.7 0.7−1.5 1.75 2.35

Critical size cartilage defect (in mm) 1.4 3 4 6 7 7 9 10

Subchondral bone plate thickness

medial femoral condyle (in mm)

0.4−0.5 0.7 0.3 0.7 0.2−0.5

Anterior cruciate ligament length

(in mm)

10.6 21.2 37.0 31.77 37.78

Anterior cruciate ligament diameter

(in mm)

4.84 5.45 10.86 9.27 12.73

Posterior cruciate ligament length

(in mm)

10.0 22.8 39.68 37.03 40.30

Posterior cruciate ligament diameter

(in mm)

4.34 5.33 8.2 6.67 14.23

Medial Meniscus length (in mm) 9.2 16.83 25.32 25.63 39.8

Lateral meniscus length (in mm) 10.0 16.3 25.60 26.03 33.28

Range of motion – knee joint extension

(in ◦)

22 34 42 40 45 2.5

Range of motion – knee joint extension

(in ◦)

161 160 144 146.7 145.5 137.5

Age of skeletal maturity (age until

growths plates remain open)

3−6 months

(growths plates

remain open

life−long)

16−39 weeks 12−24 weeks 42−52 weeks 36−48 months 36−48 months 60−72 months 18−22 years

Weight at skeletal maturity in kg 20−40 g 0.25−0.55 3−4 1−30 20−40 40−70 40−70 450−500 60−90

Life span in years 2 2.5−3.5 10−15 15 10−12 15−18 30 70−80

Table modified from Tankersley et al. (1994); Campen et al. (2005), Frisbie et al. (2006); Baumgartner et al. (2009), Chu et al. (2010); Proffen et al. (2012), Maher et al. (2015); Moran et al. (2016) and https:

//www.jax.org/news-and-insights/jax-blog/2017/november/when-are-mice-considered-old# and https://www.jax.org/jax-mice-and-services/strain-data-sheet-pages/body-weight-chart-000664.
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illustrates differences of different animals to emphasize the
importance of correct model selection with respect to species’
physiologic aspects.

Age Matters
Age should be an important consideration in the choice of
any animal model independent of the species used (Jackson
et al., 2017). For practical and organizational reasons animal
trials are often carried out in juvenile or neonatal animals.
However, differences in the healing potential and therefore the
healing response between juvenile and adult animals can bias the
outcome of such trials (Namba et al., 1998; Beredjiklian et al.,
2003; Conboy et al., 2005; Favata et al., 2006; Bos et al., 2008;
Ansorge et al., 2012; Connizzo et al., 2013; Mienaltowski et al.,
2016; Van Weeren and Back, 2016; Jackson et al., 2017). The use
of skeletally mature animals of an appropriate age (Table 1) to
mimic adult disease and healing potential is therefore a critical
consideration for optimal study design. To truly reflect human
age-related disease, the animals used should be of comparable
age. Ideally old animals would be used to study age-related
diseases as for instance senile osteoporosis. However, the use of
elderly compared to immature or young adult animals requires
specific considerations, as aged animals are more difficult to
procure and may suffer from comorbidities. Hence, potential
animal loss due to other diseases needs to be accounted for
in the study design and financial planning. Furthermore, the
predisposition for age-related diseases varies between species.

Naturally Occurring and Generated
Models of Genetic Disease
Many naturally occurring genetic diseases have been identified
in companion and farm animals which are often caused
by a mutation in an orthologous gene and lead to a
comparable clinical phenotype as observed in human patients,
including the pathological alterations at the biochemical and
cellular levels (Lairmore and Khanna, 2014; Kol et al., 2015).
Most of these animal models are associated with congenital
heart disease, lysosomal storage disease, hemophilia, muscular
dystrophies, neurological disorders, immunodeficiencies and
dwarfism (Lairmore and Khanna, 2014). Information about these
naturally occurring genetic diseases in animals was compiled in
a comprehensive database − Online Mendelian Inheritance in
Animal − created by Prof. Frank Nicholas at The University of
Sydney and Australian National Genomic Information Service4.

Naturally Occurring and Generated
Models of Musculoskeletal Disease
Osteoarthritis (OA) is a heterogeneous disease for which no
single animal model perfectly recapitulates the complex etiology
and clinical manifestations of the human disease (Aigner
et al., 2010; Cohen-Solal et al., 2012; Little and Zaki, 2012;
Mccoy, 2015). Currently available OA models are generally
grouped into spontaneous, or surgically induced models.
Spontaneous models include naturally occurring disease or

4https://omia.org/home/

genetically manipulated models, whereas surgically induced
models employ (i) destabilization of the joint such as partial or
total meniscectomy, meniscal tear, anterior cruciate ligament
or posterior cruciate ligament transection, medial and/or
lateral collateral ligament transection or osteotomy (ii) physical
defects of the articular cartilage such as creation of articular
grooves, (iii) impact trauma including transarticular impact,
and intra-articular osteochondral fragmentation (iv) chemically
induced lesions using intra-articular injection of monosodium
iodoacetate, collagenase, carrageenan or Freund adjuvant
(Bentley, 1975; Little and Zaki, 2012; Lampropoulou-Adamidou
et al., 2014; Mccoy, 2015). Spontaneous models that develop
progressive and chronic disease are likely to more closely
mimic idiopathic OA. However, these models take longer
to develop and tend to be more variable with respect to
outcome measures (Vincent et al., 2012; Teeple et al., 2013;
Lampropoulou-Adamidou et al., 2014; Mccoy, 2015).

Surgical models have the advantage of repeatability and
reproducibility as well as rapid onset and progression
(Lampropoulou-Adamidou et al., 2014), but for that reason
are less ideal models of spontaneous OA and are often regarded
as posttraumatic (secondary) OA (Bendele, 2001; Little and
Hunter, 2013; Teeple et al., 2013; Mccoy, 2015).

The validity of chemically induced models for OA has been
questioned (Poole et al., 2010; Teeple et al., 2013) due to the
resulting widespread cell death and rapid joint destruction,
which are not considered typical for either spontaneous or
posttraumatic OA (Little and Zaki, 2012).

Animal models are further widely used in osteoporosis
research. They include, among others, models for disuse
induced osteoporosis, glucocorticoid-induced osteoporosis and
postmenopausal osteoporosis. The most popular animal models
of postmenopausal osteoporosis are those generated in the
mouse, rat, sheep, and nonhuman primates by ovariectomy
(Iwaniec, 2008).

The choice of the animal models differ markedly, depending
on the objectives of the study. It has to be noted that rodents
for example are of limited value for investigating intra−cortical
bone remodeling, because they lack true Haversian cortical bone
remodeling under physiological conditions due to their small
weight (Baron et al., 1984; Lelovas et al., 2008; Iwaniec, 2008).
Larger animals such as dogs are more appropriate for these
studies because, similar to humans, dogs have well-developed
Haversian remodeling (Iwaniec, 2008).

Challenges of Translating Results From
Animal Models to Human Patients – An
Example
To date, animal models of human asthma have included:
Drosophila, rats, guinea pigs, cats, dogs, pigs, cattle, sheep,
horses and primates, but the most widely used model is
the mouse (Zosky and Sly, 2007; Kirschvink and Reinhold,
2008; Shapiro, 2008; Blume and Davies, 2013). The mouse
is a useful model due to the availability of specific probes
and reagents for studying allergic outcomes, such as cellular
and humoral responses, and the good adaptability for genetic
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manipulation (Shapiro, 2008; Bonamichi-Santos et al., 2015).
Nevertheless, this model has some limitations for translational
medicine mainly related to the anatomical and physiological
differences with respect to man. Obviously, the lung and
bronchial tree, total lung capacity (6 liter for man vs. 1 ml
for mouse), and the blood-gas barrier thickness (0.62 µm vs.
0.32 µm) are much smaller than in man and the bronchial
artery supplies the entire lung in man but is absent in the
pleura, septa and alveoli in mice. In addition, the respiratory
rate, or beats per minute (10−14 vs. 250−350), is very
different in people and mice. Moreover, the mouse lacks
sub-mucosal glands and has limited airway smooth muscles
compared to man (Lange-Consiglio et al., 2019). In view of
these important differences, the pre-clinical results obtained
when using a mouse model for asthma should be interpreted
with care. Furthermore, the mouse does not have natural
inflammatory or allergic pulmonary pathologies, so airway
inflammation is usually induced by exposure to ovalbumin
(OVA) or other aeroallergens. In contrast to naturally occurring
human asthma, which is a chronic disease characterized by
persistent inflammation and remodeling due to intermittent
or continuous inhalation exposure to allergens resulting in
chronic eosinophilic/neutrophilic inflammation (Aun et al., 2017;
Bullone and Lavoie, 2019), the mouse model shows more acute
(<3 months) inflammation and no remodeling. To circumvent
this problem, systemic sensitization protocols and repeated
exposures to allergens have been tried but the results obtained
from different routes of systemic sensitization (subcutaneous
injection, intraperitoneal injection or intranasal inhalation)
and different allergens (OVA, fungi, Ascaris antigens, house
dust mite, cockroach extracts), used alone or in combination,
are difficult to compare and to interpret (Aun et al., 2017).
For example, in the mouse the induced inflammation profile,
although dependent on the antigen, is mainly Th2, mirroring
disease in only a subsection of human asthmatics who are
Th2 and/or Th1/Th17 (Douwes et al., 2002; Woodruff et al.,
2009). Another criticism of the mouse model is that OVA does
not induce asthma in human patients and the sensitization
routes do not mimic the routes of exposure to allergens in
human asthma (Aun et al., 2017). Hence, differences in the
results may be due to the different types of allergens and
sensitization routes.

An appropriate animal model for translational studies should
mimic the pathological changes associated with human asthma
and reflect the environmental factors that determine the
evolution of human asthma.

HORSES AS ANIMAL MODELS

General Considerations
Horses (equus caballus) are a well-accepted, well-established and
clinically relevant animal model particularly for musculoskeletal
disease, which is of major interest in regenerative medicine.

An important aspect of clinical research is the precise
demonstration of the initial injury, the disease progress,
outcome and follow up. The validated applicability of advanced

diagnostic methodologies in horses such as arthroscopy and
MRI (together with scoring approaches) (Brittberg andWinalski,
2003; Marlovits et al., 2006), ultrasound, radiographs, CT and
scintigraphy, has made the horse a popular model for which
non-terminal studies with thorough evaluation and monitoring
are possible. Also, second-look arthroscopy and serial sampling
are feasible. Moreover, the large size of horses allows for the
creation of critical size defects or multiple defects and offers
a high amount of material that can be sampled for analysis.
This enables large and comprehensive studies which may not
be possible in smaller animals. Together with well-established
histologic scoring (Mcilwraith et al., 2010) and pain scores
(Price et al., 2003; Graubner et al., 2011; Dalla Costa et al.,
2014; Gleerup et al., 2015) or assessment of other clinical
parameters for horses these methods facilitate comparability
of diagnosis, follow-up and results. Controlled postoperative
exercise programs and rehabilitation protocols using e.g.,
treadmills and horse walkers further support standardization of
the results. A broad offer of modern methods to further objectify
outcome measures became available including gait kinematics
(e.g., lameness locators) and/or kinetics using force plate/ground
reaction force analysis.

Also the lack of traceability of cells injected for cell therapies
could be overcome to a certain extent by using either super
paramagnetic iron oxide particle (SPIO) for MRI (Delling et al.,
2015a,b; Julke et al., 2015; Berner et al., 2016; Burk et al., 2016)
or nuclear labeled (Technetium 99M, GFP, Indium 111) cells for
scintigraphic tracing (Sole et al., 2012, 2013; Becerra et al., 2013;
Trela et al., 2014; Dudhia et al., 2015; Spriet et al., 2015; Espinosa
et al., 2016; Geburek et al., 2016; Scharf et al., 2016).

Some disadvantages of using the horse as a model include
high costs of animal of animal purchase, maintenance/handling
as well as ethical concerns and lower acceptance of the horse
as an experimental animal compared to small animal studies
by the lay public. In addition, some key parameters building
the framework used in studies applying Omics approaches
are not well enough researched in horses yet. A restrictive
annotation status and availability of equine specific antibodies,
molecular tools and markers are limiting factors. A major
challenge when using horses is that their weight precludes
non-weight-bearing investigations postoperatively. Significant
limitations may arise regarding biomechanical strains, which
far exceed those considered physiologic in humans and other
animal models, which could render the stabilization of injured
structures, transplants and/or sutures ineffective. Therefore,
horses are a less amenable model for meniscus or bone
repair. Nonetheless, these are major challenges in equine
patients and several different attempts have been made or are
envisaged to support healing of these structures by regenerative
medicine approaches (Fox et al., 2010; Milner et al., 2011;
Ferris et al., 2012; Kisiday et al., 2012; Mcduffee et al., 2012;
Seo et al., 2014; Warnock et al., 2014; Govoni, 2015; Yu
et al., 2015; Gonzalez-Fernandez et al., 2016) which may also
hold valuable preclinical results for human medicine. For
example, hyperextension of the stifle joint was found to lead
to pathologic levels of forces and injury in the cranial horn
of the equine medial meniscus, analogous to observations
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in the human posterior medial horn upon hyperflexion
(Drosos and Pozo, 2004).

Tendinopathy
Horses commonly suffer from naturally occurring tendon
injuries (tendinopathy) and degenerative joint disease
(osteoarthritis − OA) with similar pathophysiology to the
human in terms of etiology and risk factors, which include
over-exercise, age and genetic factors (Goodship et al., 1994;
Patterson-Kane and Firth, 2009; Mcilwraith et al., 2012; Voleti
et al., 2012; Smith et al., 2014; Andarawis-Puri et al., 2015). As
athletic individuals, horses incur idiopathic primary or sports
related injuries to tendon and joint related tissue.

An example is the equine superficial digital flexor tendon
(SDFT) which performs a similar function to the human Achilles
tendon during high-speed locomotion. In both species, their
respective tendons are one of the most frequently injured
(Jarvinen et al., 2005; Thorpe et al., 2010) with age and
participation in sports as key risk factors. The SDFT supports
the metacarpophalangeal (MCP) joint and functions as an energy
storing elastic tissue to enable efficient locomotion. During
high-speed locomotion the SDFT can experience strains of
16% as the MCP joint hyperextends. These strains are within
the functional limit of the SDFT at which failure can occur
(Richardson et al., 2007). The Achilles tendon can experience
strains of up to 8% allowing as much as 34% of the total work
performed by the calf muscles to be stored in the Achilles
(Fukashiro et al., 1995).

Acute and chronic Achilles tendon pathology is estimated to
be responsible for as many as 50% of all sports-related injuries
in humans (Fukashiro et al., 1995; Maffulli, 1999; Jarvinen et al.,
2005). The incidence of SDFT tendinitis in horses is reported
to be as high as 8−43% (Dowling et al., 2000). Injuries in
both often manifest within the body of the tendon as core
lesions, which heal by the formation of fibrous scar tissue.
This scar tissue is biomechanically inferior with significantly
reduced elasticity which leads to a high risk of re-injury (Smith,
2008). It is therefore essential that repair strategies are aimed
at restoring function by achieving scar-free healing for which
regenerative medicine holds great potential. Studies in the horse
to test and improve cell and cell free therapies for tendon
regeneration (Smith et al., 2003; Pacini et al., 2007; Richardson
et al., 2007; Schnabel et al., 2007; Fortier and Smith, 2008;
Lacitignola et al., 2008; Smith, 2008; Godwin et al., 2012;
Marfe et al., 2012; Carvalho Ade et al., 2013; Renzi et al.,
2013; Smith et al., 2013; Van Loon et al., 2014; Geburek et al.,
2015; Muttini et al., 2015) could serve as preclinical data for
human medicine.

However, due to the challenges of standardization of disease
grade and availability of sufficient clinical case numbers for
recruitment of horses with naturally occurring disease, a number
of induced equine models have been developed to investigate
both tendon and joint disease.

Several surgically induced tendon injury models have been
developed to try to achieve a standard lesion size, anatomical
location and the ensuing inflammatory response as well as
time to treatment (Guest et al., 2008; Schramme et al., 2010;

Caniglia et al., 2012; Cadby et al., 2013). While most of these
are aimed at partial or full transection of the tendon, the
mechanically inducedmodel described by Schramme et al. (2010)
mimics a typical tendon core lesion of spontaneous disease
with similarities in healing characteristics (Cadby et al., 2013).
In contrast, collagenase induced tendon injury models which
attempt to mimic core lesions (Williams et al., 1984; Nixon
et al., 2008; Moraes et al., 2009; Schnabel et al., 2009; Crovace
et al., 2010; Karlin et al., 2011; Watts et al., 2011, 2012; Carvalho
Ade et al., 2013) lead to a strong inflammatory response and
are difficult to standardize with respect to location, size, shape
and volume due to leakage of collagenase through the injection
sites and uncontrollable diffusion from the center of the tendon
(Schramme et al., 2010).

Cartilage Injuries and Osteoarthritis
Another example to illustrate “what the horse can tell the human”
is Osteoarthritis, a degenerative joint disease characterized by
progressive loss of articular cartilage. Adult articular cartilage
has limited capacity for repair and regeneration (Kim et al.,
1991). Any disruption of the superficial zone, or injury to
the chondrocytes that maintain the cartilage matrix and zonal
architecture, affects the load-distribution of the viscoelastic
hyaline cartilage and may ultimately culminate in degenerative
joint disease (Rolauffs et al., 2010). OA of the knee and hip
joints is one of the most commonly diagnosed diseases in
human general practice with 52 million people (=22.7% of adults
older than 18 years) in the United States and an estimated
30 – 40 million Europeans suffering from arthritis of one or
more joints (Cheng et al., 2012; Johnson and Hunter, 2014).
With age and obesity as key risk factors the prevalence of
OA is expected to double by the year 2020 (Johnson and
Hunter, 2014). As currently no proven disease-modifying therapy
capable of restoring damaged articular cartilage and function
of the joint is available, there is an increasing demand for
novel, safe and effective treatments, which regenerative medical
research could offer. In equids as for human patients, there
is an unmet need for early diagnosis and effective treatments
that allow return to full performance (Mccoy, 2015). In
horses OA constitutes the main cause of chronic lameness
with an incidence of chronic degenerative joint disease in
elderly horses of up to 83.5%. Interestingly, not only is the
pathophysiology of equine OA similar to the human but also
the thickness of the knee cartilage is similar to the human
(Frisbie et al., 2006; Malda et al., 2012). These similarities
support the horse as relevant model for studies on naturally
occurring OA.

A number of surgically induced equine models of articular
cartilage degeneration and healing have been developed which
were reviewed by Mcilwraith et al. (2011). As in humans, the
major aims of OA research are to achieve resurfacing of the
damaged cartilage with biomechanically resilience and acceptable
pain control. However, for any studies on cartilage repair it is
important that the duration should be at least 8 to 12 months,
as failure at long-term follow-up is a common outcome in
human and equine clinical trials even if short-term results look
promising in animal models (Mcilwraith et al., 2011).
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Asthma
Horses, analogous to humans, commonly suffer from asthma.
Asthma is a chronic inflammatory disease characterized by
airway hyper-responsiveness and airway remodeling due to
increased mucus production, epithelial fibrosis, hypertrophy and
hyperplasia of airways smooth muscles, and gland enlargement
(Shinagawa and Kojima, 2003). This remodeling can induce
irreversible obstruction of airways and may be a consequence
of chronic tissue inflammation and altered repair processes.
Since function and structure are closely related, the hypothesis
is that remodeling leads to loss of airway and lung function
(Bullone and Lavoie, 2019).

Around 300 million people worldwide (both adults and
children) suffer from asthma and hence the societal impact
is high5. The standard therapy is based on corticosteroid
administration to reduce airway obstruction thus improving
quality of life. However, about 20% of people are corticosteroid
resistant and do not respond to therapy (Panettieri, 2016).
Corticosteroid therapy is reparative and not regenerative and
does not counteract remodeling. Better therapies may be derived
from a regenerative approach to asthma-induced pathology.

The gold standard species for studies into human asthma
would be human patients, but such studies are ethically
impossible, because of the large number of patients requiring
repeated biopsies to understand the causes of remodeling.
Therefore, although requiring ethical authorizations, animal
models are essential to advance understanding of the disease.

Severe equine asthma (SEA), which occurs spontaneously in
horses (Herszberg et al., 2006;Williams and Roman, 2016), shares
many features with human asthma. The horse has potential
to be a good animal model with similar lung anatomy to
man. SEA shares many features with human asthma: lower
airway inflammation, completely reversible airflow obstruction,
bronchial hyperresponsiveness, increased respiratory efforts at
rest, coughing and exercise intolerance (Bullone and Lavoie,
2015; Couetil et al., 2007). This condition is spontaneously
triggered by exposure to environmental antigens present in
horse housing, similar to exposure in man and it can become
incurable like chronic asthma in people. Up to 10–15% of
adult horses suffer from SEA (Hotchkiss et al., 2007) with
a Th-2 predominant cytokine profile (increase of IL-4), as
described in human asthma (Lavoie et al., 2001; Klukowska-
Rotzler et al., 2012), and decrease of Th-1 profile (decrease
of interferon-γ). The predominant cell type in bronchoalveolar
lavage fluid (BALF) found in horses may be different to
humans depending on the severity of asthma: horses with
severe and late-onset asthma have neutrophilic inflammation
(Panettieri, 2016) as demonstrated in some people (Cosmi
et al., 2016), while increased eosinophils are frequently detected
in milder forms of equine asthma (Couetil et al., 2007). As
in people with neutrophilic asthma, horses with SEA can
show an increase in Th-17 expression (Debrue et al., 2005;
Cosmi et al., 2016).

In a good animal model, homology of genes regulating
immune function is essential and the horse shares higher

5https://goldcopd.org/wp-content/uploads/2016/04/GOLD-2018-WMS.pdf

homology with man for IL2, IL23, and IL17, compared to the
mouse (Tompkins et al., 2010; Lange-Consiglio et al., 2019).
However, the most interesting aspect of the horse as a model to
study asthma is airway remodeling, although this is less marked
and involves the bronchial tree more peripherally than in man
(Bullone and Lavoie, 2019). The remodeling can be completely
reversed by appropriate corticosteroid treatment in both human
patients and horses (Bullone and Lavoie, 2019) and sequential
biopsies can be collected from the same standing sedated horse
without the imperative to sacrifice the animal as compared to the
mouse (Leclere et al., 2011).

Additional Considerations Regarding
Horses
In horses’ wounds on the distal limbs show delayed healing
compared to wounds located on the upper body.

Reasons for this are not fully understood. However, differences
in the rate of epithelization and wound contraction, inefficient
inflammatory response (resulting in chronic inflammation
and hence impaired formation of healthy granulation tissue),
imbalance in collagen homeostasis, profibrotic environment,
tissue hypoxia and inappropriate cell apoptosis are discussed as
contributing factors (Provost, 2019).

Interestingly ponies heal better and faster than horses, with
ponies yielding a quicker and more intense inflammatory
response and an improved resistance to infection as compared to
horses (Provost, 2019). Some of the most important advantages
and disadvantages of using horses as model animals are
summarized in Table 2.

Another challenge of using horses as animal models,
particularly for orthopedic disease, is so called supporting limb
laminitis (SLL). Laminitis is a disorder of the tissue suspensory
apparatus which suspends the distal phalanx to the inside of the

TABLE 2 | Advantages and disadvantages of the horse as a model.

Advantages Disadvantages

Largest of the models: Multiple large (critical

size) defects and serial sampling possible

Ethical concerns – companion

animals

Functional correspondence of equine SDFT and

human Achilles tendon

Different breeds, not usually

purpose-bred for research

Thickness of the knee cartilage is similar to the

human

Costs- Special facilities needed

for housing, surgery, imaging,

necropsy, etc.

Imaging plus validated scoring approaches Non-weight-bearing

postoperatively is not feasible

Arthroscopy (also second look) plus validated

scoring approaches

Restrictive annotation status

and availability of equine

specific antibodies, molecular

tools and markers

Controlled postoperative exercise programs

and rehabilitation using treadmills and horse

walkers to support standardization are well

established

Weight − biomechanical

strains, which far exceed those

considered physiologic in

humans

Well characterized temporal pattern of healing

Equine aging well documented

Clinical need − naturally occurring disease
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horse’s hoof wall. SLL of the contralateral or supporting limb
occurs when horses are forced to bear weight predominantly
unilaterally (with the supporting limb) for prolonged periods,
due to a severe, unilateral lameness. Mechanical loading or
overloading of the supporting limb is the primary factor in its
pathogenesis (Baxter and Morrison, 2008; Orsini, 2012).

SHEEP AS ANIMAL MODELS

General Considerations
Domestic sheep (Ovis aries) provide unique opportunities in
research as an experimental and pre-clinical animal model (Hems
and Glasby, 1992; Glasby et al., 1993; Al Abri et al., 2014)
because of their availability, low costs and acceptance by the
society as a research animal (Diogo et al., 2017). Sheep are
docile, easy to handle and relatively inexpensive with respect
to housing and feeding. Their size (50−90 kgs) is more similar
to humans than small animal models, lending themselves to
repeated sampling from different anatomical structures over an
extended period. Their size is ideal for clinical imagingmodalities
designed for humans such as MRI or CT (which are limited with
other large animal models like the horse). At the same time,
it allows for testing surgical procedures and medical devices in
animals similar to human-size (e.g., bioengineered constructs,
pacemakers, stents). On the other hand, sheep housing requires
more space (barns for pens) which are not widely available. The
commercial availability of molecular tools (e.g., antibodies) is
also more limited than for rodents although these are increasing.
Nonetheless, the practical disadvantages of the sheep as an
experimental model do not make it inaccessible. Based on the aim
of the study, the potential benefits may compensate its technical
limitations. The publication and annotation of the sheep genome
(Jiang et al., 2014) should improve the amount of commercially
available reagents, thus facilitating the use of the ovine model
in future studies. Concomitantly, the annotation of the sheep
genome could support the development of useful biological tools
for sheep as genetic models of human diseases (e.g., Huntington’s
Disease) (Pinnapureddy et al., 2015). Moreover, anesthesia and
surgical equipment in sheep is more similar to humans than other
large animals (like horses) and small rodents: Hence, using sheep
does not require significant investment in large and specialized
handling equipment, or surgical tables. At the same time, sheep
can be sourced relatively easily and at low cost and they are
considered as a socially acceptable animal model for research
that raises fewer ethical issues than companion animals (Entrican
et al., 2015; Rogers, 2016).

Sheep are used as models for a wide range of
pathologies: cardiovascular diseases (Divincenti et al., 2014;
Rabbani et al., 2017), orthopedics (Kon et al., 2000; Vandeweerd
et al., 2013; Dias et al., 2018; Mcgovern et al., 2018; Music
et al., 2018), respiratory function (Meeusen et al., 2009) and
reproductive or pregnancy disorders (Andersen et al., 2018;
Morrison et al., 2018). A major reason is that ruminants, as
compared to rodents, share more anatomical and physiological
characteristics (with exception of the digestive tract − testing
efficacy of drugs may be complicated by the 4-stomach system

and uptake dynamics which defer from human gastrointestinal
tract characteristics) with humans (Scheerlinck et al., 2008).
This makes the sheep a useful model for preclinical and
translational studies in fields of Tissue Engineering and
Regenerative Medicine.

Musculoskeletal Disorders
Sheep have anatomical and biomechanical features relatively
similar to humans (bone composition, weight, joint structure and
architecture) which allows for good simulation of healing and
remodeling processes of bone or cartilage tissue (Newman et al.,
1995; Taylor et al., 2006). In addition, arthroscopic evaluation
is possible in the sheep due to the size of their stifle joints.
Therefore, the ovine species is the most commonly used large
animal model in orthopedic research including studies on:
cartilage repair (Music et al., 2018), meniscal repair (Hurtig
et al., 1998; Tytherleigh-Strong et al., 2005), osteochondral tissue
engineering (Sanjurjo-Rodriguez et al., 2017), tendon defects
(Crovace et al., 2008; Martinello et al., 2013), osteoarthritis
(Oakley et al., 2004; Gugjoo et al., 2019), and osteoporosis (Dias
et al., 2018) among the others.

Sheep have been involved in studies for treating critical-sized
bone defects using scaffolds with or without Mesenchymal Stem
cells (MSCs). These treatments were shown to enhance bone
formation and improve mechanical properties if compared to
gold standard reparative methodologies like bone grafts (Kon
et al., 2000; Cipitria et al., 2013; Fernandes et al., 2014; Berner
et al., 2015; Mcgovern et al., 2018; Pobloth et al., 2018).

Although the ovine knee cartilage differs in thickness to
human cartilage (0.7−1.7 mm and 2.35 mm, respectively), it
provides a close match regarding mechanical properties for
preclinical studies (Frisbie et al., 2006; Chu et al., 2010; Mclure
et al., 2012). Tissue engineering approaches including different
cell sources (as MSCs or chondrocytes) have been widely tested
in the sheep for chondral/osteochondral defects (Lo Monaco
et al., 2018; Gugjoo et al., 2019). Cells can also be applied
with scaffolds of different nature to improve and support
regeneration (Chitosan, type I/III collagen, b-TCP, collagen
hydrogels) (Bernstein et al., 2013; Sanz-Ramos et al., 2014; Dias
et al., 2018). For example, Hopper et al. (2015) used a biphasic
collagen-GAG scaffold loaded with MSCs in a full-thickness
osteochondral defect boosting cartilage repair while Zorzi et al.
(2015) used a 1:1 chitosan-collagen scaffold seeded with human
MSCs for articular cartilage regeneration (Hopper et al., 2015;
Zorzi et al., 2015). Recently, a bilayered scaffold to simulate the
bone-cartilage interface (chondral and bone tissue components)
has been developed and tested in sheep (Schagemann et al., 2009;
Fan et al., 2013).

Furthermore, regenerative strategies for osteoarthritis (usually
induced by meniscectomy) have been investigated in sheep (Song
et al., 2014; Desando et al., 2016; Feng et al., 2018). Of particular
interest are the studies on scaffolds for meniscal repair because
of its shared characteristics with the humanmeniscus (cellularity,
vascularity, biomechanics) (Chevrier et al., 2009; Brzezinski et al.,
2017). Gruchenberg et al. (2015) tested a silk fibroin scaffold
as a meniscal implant after meniscectomy in sheep showing its
biocompatibility (Gruchenberg et al., 2015).
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Spontaneous cartilage lesions (including osteoarthritis) have
been observed in the sheep without experimental induction
(Hurtig et al., 2011; Vandeweerd et al., 2013; Kuyinu et al.,
2016). These are especially prevalent in aging sheep and might
better recapitulate the human ailment than artificially created
cartilage defects.

Sheep, like horses, are ideal candidates for tendinopathy
modeling, but cheaper and easier to handle and house. Martinello
et al. (2013) showed the treatment efficacy of MSCs, with
or without PRP (platelet rich plasma), on collagenase-induced
tendinitis in the superficial digital flexor tendon, with a better
structural organization of the repaired tendon (Martinello
et al., 2013). Deprés-Tremblay et al. (2018) tested the use of
chitosan-PRP implants in an ovine acute defect model to mimic
rotator cuff injuries. The implants led to an extensive bone
remodeling and tissue ingrowth at the tendon-bone interface
level (Deprés-Tremblay et al., 2018).

Nervous System
The ovine species also serves as an adequate and effective model
to study peripheral nerve regeneration, because of the similar
nerve size (Starritt et al., 2011) and similar regenerative behavior
(Hems et al., 1994; Fullarton et al., 2001) compared to humans
(Diogo et al., 2017).

Apart from conventional autografts and allografts for
repairing peripheral nerve injuries in sheep (Frey et al., 1990;
Matsuyama et al., 2000), tissue engineering techniques have
also been applied. Casanas et al. (2014) applied a commercially
available biodegradable scaffold withMSCs or PRP to reconstruct
damaged radial and tibial nerves. The addition of MSCs, with
or without PRP, led to the production of myelinated nerve
fibers at the distal and proximal level with fiber regeneration
and functional recovery after 6 months (Casanas et al., 2014).
Radtke et al. (2011) compared the use of autologous nerve and
acellularized vein grafts produced from spider silk. The outcomes
obtained with the construct where similar to the nerve autograft
results: axonal regeneration and myelination were achieved at
10 months (Radtke et al., 2011).

Using sheep models, MSCs were shown to play a reparative
role in intervertebral disc regeneration. Injection of MSCs led to
a reduction of degeneration of the discs compared to the control
group (Freeman et al., 2016; Daly et al., 2018).

Heart Disease
Sheep have been frequently used as model for cardiovascular
applications, especially for testing heart valves which have similar
valve anatomy to the human and the sheep size permits access
to the pulmonary and aortic valve. Kluin et al. (2017) developed
an in-situ heart valve replacement for the pulmonary valve using
a resorbable synthetic graft. 12 months post-implantation the
tissue-engineered valve was shown to be colonized by host cells
and replaced by newly formed tissue with a mature organization
of the extracellular matrix without any sign of valve calcification
(Kluin et al., 2017).

Cell therapies with MSCs have further been applied in
acute myocardial infarction models to improve myocardial
function. The inoculation of cells has been demonstrated to

be safe, to increase vasculature, and to reduce fibrosis in the
infarcted heart (Houtgraaf et al., 2013). Rabbani et al. (2017)
showed that the injection of MSCs and endothelial cells (ECs)
promoted angiogenesis and cardiac function, supposing that
one of the mechanisms of action of the MSCs might lie in
their differentiation potential toward the endothelial lineage
(Rabbani et al., 2017).

Also, different tissue engineering approaches for the
development of preclinical vascular grafts have been tested in the
sheep model (Cummings et al., 2012; Aper et al., 2016; Fukunishi
et al., 2016; Koobatian et al., 2016).

Tissue Engineering Applications in Other
Systems
The ovine model has further been deployed to test regenerative
approaches for treating respiratory disorders (similar airways
structure and lung size to humans):

MSCs led to a reduction of inflammation and oedema and
an improved oxygenation in sheep models of acute respiratory
distress (Asmussen et al., 2014; Kocyildirim et al., 2017). In an
induced emphysema model, the infusion of MSCs resulted in
blood reperfusion of the damaged tissue and the formation of new
extracellular matrix (Ingenito et al., 2012).

Recently, Kajbafzadeh et al. (2019) have tested the
transplantation viability of decellularized kidneys in sheep.

The sheep model has also been described for wound healing
studies because it allows for the creation of relatively large
and deep wounds to mimic the typical scenario of traumatic
injuries like burn injuries or decubitus ulcers. Martinello et al.
(2018) used a sheep second intention wound healing model and
showed how the intradermal and topical application of allogeneic
MSCs led to a better re-epithelialization and dermal structure
as compared to the control group at 42 days after wounding
(Martinello et al., 2018). The identical model was recently used
by Iacopetti et al. (2020) to compare secondary intention healing
of wounds, treated with a topical application of commercially
available hyaluronic acid, Manuka honey or Acemannan gel
(Iacopetti et al., 2020).

In a similar ovine wound model, Liebsch et al. (2018) applied
native spider silk as a wound dressing to test its biocompatibility
and regenerative capacities (Liebsch et al., 2018). Mazzone et al.
(2020) used bioengineered autologous skin substitutes to treat
myelomeningocele in a spina bifida repair model. The skin
substitute, made of hydrogel colonized by autologous fibroblasts
and keratinocytes, was transplanted in utero. The skin substitutes
showed a normal histology after 1 month (Mazzone et al., 2020).

Recently, Martines et al. (2020) evaluated the use of a low-
temperature atmospheric pressure plasma (ionized gas) as a
treatment for extensive wounds in a sheep model. The plasma
stimulated cell proliferation, angiogenesis and the development
of skin adnexa; concomitantly, it reduced bacterial infection and
inflammation (Martines et al., 2020).

A different tissue engineering approach to treat
myelomeningocele was used by Watanabe et al. to treat
spina bifida wounds with a gelatin/collagen sponge hybrid
scaffold (Watanabe et al., 2016).
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Embryonic/Fetal Healing
True “scarless healing” is observed only in embryos and early
fetus (Stramer et al., 2007). The restitutio ad integrum in
embryos (Beredjiklian et al., 2003) is considered an ideal situation
unmatched by any treatment regimen in adults. Therefore,
an increasing amount of research studies is performed in
embryos or fetal animals. To study the mechanism of fetal
regeneration, relevant in vivo as well as in vitro models are
required. Fetal sheep share many important physiological and
developmental characteristics with humans and have hence
proven themselves invaluable models for mammalian physiology
(Almeida-Porada et al., 2004; Jeanblanc et al., 2014). Sheep
frequently carry twins, which allows using one twin as uninjured
control on a background of low genetic variation to enable
differentiation between regular fetal development and fetal
response injury.

Furthermore, their long gestational period (150 days) provides
sufficient temporal resolution to translate findings obtained in
sheep into human parameters (Almeida-Porada et al., 2004;
Jeanblanc et al., 2014).

Fetal sheep have a fully functioning immune system by
75 days of gestation (gd) (Emmert et al., 2013). They produce
leukocytes by 32 gd (Sawyer et al., 1978), TNF and Il-1 as early
as 30−40 gd (Dziegielewska et al., 2000) and obtain the capability
to form significant amounts of specific antibodies in response
to antigenic stimulation as early as 70 gd (Silverstein et al.,
1963). Fetal lambs reject orthotopic skin grafts and stem cell
xenotransplants placed post 75−77 gd (Silverstein et al., 1964)
andmount an inflammatory response to injury by gestational day
65 (Nitsos et al., 2006; Moss et al., 2008; Herdrich et al., 2010;
Morris et al., 2014).

For all these reasons, results obtained in the fetal lamb have
been directly applicable to the understanding of human fetal
growth and development and are highly predictive of clinical
outcome in a variety of applications including in utero stem cell
transplantation (Liechty et al., 2000; Almeida-Porada et al., 2004,
2007; Porada et al., 2005; Kuypers et al., 2012; Kim et al., 2013;
Jeanblanc et al., 2014).

Additional Considerations Regarding
Sheep
Due to their special stomach system (4 stomachs: rumen,
reticulum, omasum, and abomasum) bio-availability and efficacy
of drugs administered orally is questionable for the human GI
tract. Moreover, prolonged inappetence and application of non-
steroidal anti-inflammatory drugs, antibiotics or both resulting
in sustained high acidity in the abomasum may cause abomasal
ulceration. Also stress, high dietary fiber and inadequate dietary
fiber are believed to play a role (Ducharme, 2004; Fubini and
Ducharme(eds), 2004).

Therefore, pain management and anti-microbial management
have to be planned carefully and adapted to meet the special
requirements of sheep (Lizarraga and Chambers, 2012; Varcoe
et al., 2019). Sheep guidelines for pain assessment by facial
expression are available (Hager et al., 2017) which may
help managing pain.

Some of the most important advantages and disadvantages of
using sheep as model animals are summarized in Table 3.

PIGS AS ANIMAL MODELS

General Considerations
Porcine models present the advantage of having similarities with
the human in terms of gastrointestinal anatomy, metabolism
and physiology (Court et al., 2004). When compared with other
farm animals, pigs acquire early sexual maturity, sizeable litter
size and have a quick reproduction time. They also breed year-
round, which makes them highly suitable for biomedical research
programs (Polejaeva et al., 2016). Due to these characteristics
and the anatomical and physiological similarities, and also
their size (young pigs have a size and body weight similar
to human adults), pigs are widely used as models in organ
transplantation and other surgical procedures (Kahn et al.,
1988; Chari et al., 1994; Martin et al., 1999; He et al., 2013;
Spetzler et al., 2015; Vogel et al., 2017), or as preclinical
models in drug discovery (Swindle et al., 2012; Segatto et al.,
2017), and numerous naturally occurring and generated genetic
models of human disease (Swindle et al., 2012; Polejaeva et al.,
2016). Hence, and similarly to the areas of medicine described
above, the pig is gaining traction as the large animal model
of choice for the study of tissue engineering and regenerative
medicine products and applications, and of biomechanic studies.
A good evidence of this is the steep rise in the number
of publications in these broad areas in the past 30 years
(Cone et al., 2017).

Drug Discovery and Toxicology
Traditionally, animal models used for preclinical testing of
new drugs and toxicology studies have been rodents, mainly
mice and rats, for the primary screening studies. Nonetheless,
because translation from rodents into humans is often not fully

TABLE 3 | Advantages and disadvantages of the sheep as a model.

Advantages Disadvantages

Multiple large (critical size) defects

and serial sampling possible

Different breeds, not usually purpose-bred

for research

Thickness of the knee cartilage is

similar to the human

Special facilities needed for housing,

surgery, imaging, necropsy, technical skills

Docile to handle Non-weight-bearing postoperatively is not

feasible but can modulate with location

Availability, and acceptance by the

society as a research animal

Different stomach system than humans

Size is more similar to humans than

small animal models or horses

Ethical concerns but minor compared to

companion animals

Publication and annotation of the

sheep genome

Costs

Imaging plus validated scoring

approaches available (esp. for

orthopedics)

Arthroscopy (also second look) plus

validated scoring approaches
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realized, regulatory agencies also demand the use of non-rodent
models. Pigs are increasingly being used as an alternative to
dogs or primates, the previous nonrodent species of choice
(Swindle et al., 2012). However, due to growing pressure from
the public, there has been a drive for new alternatives. The pig
has been favored as a suitable alternative, since they have many
anatomical and physiological features valuable for translational
research and are already well accepted as one of the gold
standard surgical models (Swindle et al., 2012). In particular,
the cardiovascular system, skin and digestive tract closely mimic
the human. Due to these similarities the metabolism and toxic
effects of chemicals and drugs in pigs may more closely resemble
the effects in man than some other laboratory animals. The
minipig has been introduced recently as another alternative
(Dalgaard, 2015) which is frequently used due to its smaller
size and easier handling for drug discovery and toxicology
applications (Mcanulty et al., 2011), boosted by the publication
of the RETHINK project (Forster et al., 2010). Furthermore, the
porcine CYP450 system has been studied and partially described,
and their metabolic pathways have been found to be relatively
analogous to humans, with substantial overlap in substrate
specificity (Skaanild, 2006; Murayama et al., 2009).

Generated Genetic Models
With the advent of DNA recombination and gene editing
technologies, modifying the pigs genome has enabled its use
as a genetic model of numerous human diseases (Flisikowska
et al., 2014; Yao et al., 2016). This is reflected in the multiple pig
strains developed to study, amongst others, cancers, Duchenne
muscular dystrophy, autosomal polycystic kidney disease,
Huntington’s disease, spinal muscular atrophy, cystic fibrosis,
hemophilia A, X-linked severe combined immunodeficiency,
retinitis pigmentosa, Stargardt’s Disease, Alzheimer’s disease,
various forms of diabetes mellitus and cardiovascular diseases
(Flisikowska et al., 2014; Rogers, 2016; Yao et al., 2016; Perleberg
et al., 2018). From these, the RAG2 or RAG2/IL2RG KO pigs
are particularly relevant for biomedical research, since they can
accept xenografts and/or human bioengineered tissue/organs
(Boettcher et al., 2018).

Transplantation Models
The pig has been used as a teaching and research animal model
in surgery in the past decades. Starting in the 1990s, it became
so prominent in academic and surgical training that it can be
regarded as default model for non-survival surgical teaching
classes, substituting the dog (Swindle, 2007). Its ubiquitous
presence and use in academia, enabled also its widespread
adoption in multiple models of liver, lung, heart, pancreas and
kidney transplantation (Marubayashi et al., 1995; Martin et al.,
1999; He et al., 2013; Fonouni et al., 2015; Mariscal et al., 2018).
Furthermore, in transplantation medicine, the pig has also been
proposed as xenograft donor, where porcine grafts have been
transplanted into non-human primates with different degrees
of success (Sachs et al., 2009; Griesemer et al., 2014). This
has encouraged several research groups to target the porcine
genome to eliminate the major xeno-antigen(s) recognized by
human natural antibodies, in a so-called effort of humanizing

the pig (Lai et al., 2002; Phelps et al., 2003; Petersen et al.,
2011; Jeong et al., 2013). If ultimately realized, these procedures
might enable the future xenotransplantation of porcine organs
into humans as the main approach for transplantation medicine.
Efforts are currently being taken to reduce the risk of viral
zoonosis from porcine endogenous retrovirus (PERV), either by
pharmacological treatment of PERV or by inactivating it with
gene editing tools (Denner, 2017; Niu et al., 2017). Finally, other
efforts have been concentrated on porcine uterus, urethra, kidney
or liver bioengineering for transplantation (Baptista et al., 2011;
Sullivan et al., 2012; Campo et al., 2017; Simoes et al., 2017). All
these are an important testimony of the relevance of the pig as a
vital translation research animal model.

Skin
The minipig has been used as a model in the development
of dermatological products (Mitra et al., 2015; Yamamoto
et al., 2017), and more recently, as a model for microbiome
studies (Ericsson, 2019). As omnivores with an analogous
gastrointestinal tract to humans, the well-characterized fecal
microbiota of young and adult domestic pigs and other strains
used in research also offers compositional resemblances to
that of humans (Pedersen et al., 2013b; Zhao et al., 2015).
Remarkably, many of these strains are used to investigate diet-
induced obesity in genetically susceptible individuals and the
same modifications (e.g., an increase in the ratio of Firmicutes
to Bacteroidetes) observed between lean and obese humans are
emulated in these pig models during the development of obesity
(Pedersen et al., 2013a).

Musculoskeletal Disorders
In this particular area of biomedicine, the pig is experiencing
a higher increase in adoption when compared to other large
animal models (Cone et al., 2017) and several studies have been
published assessing interspecies and interstrain differences in
the anatomy and biomechanics of tissues and joints and their
applicability in tissue engineering and regenerative medicine
studies. Porcine models have a long history of use for studying
the biomechanics of specific joints like the knee or the
temporomandibular joint (TMJ), and specific tissues, including
bone, cartilage, and ligaments (Xerogeanes et al., 1998; Sweigart
et al., 2004; Proffen et al., 2012; Murphy et al., 2013; O’leary
et al., 2017). Hence, the pig has been used with success to test
the efficacy of bone substitute biomaterials (Li et al., 2015) and
in osteochondral defect studies (Gotterbarm et al., 2008; Meng
et al., 2020). Similarly, extensive research has been conducted
with the pig in tendon and ligament repair as reviewed by others
(Carpenter and Hankenson, 2004).

Pigs have also been used recently as a model of amyotrophic
lateral sclerosis (ALS). This research has been based on the use of
transgenic pigs with a mutated human copper/zinc superoxide
dismutase 1 gene that mimics the human neurodegenerative
disease in these pigs (Chieppa et al., 2014; Yang et al.,
2014). Similarly, a pig model of Duchenne muscular dystrophy
(DMD) has been created by Klymiuk et al. by deleting DMD
exon 52 in male pig cells by gene targeting. The offspring
generated by nuclear transfer exhibit absence of dystrophin
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in skeletal muscles, progressive dystrophic changes of skeletal
muscles with impaired mobility, muscle weakness and a
maximum life span of 3 months due to respiratory impairment
(Klymiuk et al., 2013).

Additional Considerations Regarding
Pigs
Pigs suffer from porcine malignant hyperthermia also known as
porcine stress syndrome which is characterized by hyperthermia
triggered by stress, certain anesthetic agents or intense exercise
and may lead to sudden death (Nelson, 1990). Some of the most
important advantages and disadvantages of using pigs as model
animals are summarized in Table 4.

COMPANION ANIMALS AS ANIMAL
MODELS

General Considerations
The importance of companion animals to serve as models for
human disease has received significant attention through the
One Health initiative which aims to “break through the species
barrier” in a drive toward a better link between medical and
veterinary research for the benefit of both the human and
veterinary patient (Christopher, 2015).

While the definition of companion animals covers a range of
animals this article extends only to the dog and cat as models, as
they share remarkable similarities with the human and provide
unique opportunities for developing advanced therapeutics.

One of the main reasons why dogs returned as a focus of
genetic research is related to the specific population structure that
has been created over the past 150−200 years.

To fully appreciate and exploit the biomedical potential
of dogs (both as pets and as experimental animals), some
insight into the unique canine population structure is necessary.
Domesticated dogs were subjected to rigorous breeding selection,
for instance for behavioral traits and/or specific morphological
features such as excessive muscle formation, short limbs or a
specific coat color (Larson et al., 2012). Illustrative for this
process is the extreme size variation, by far the largest of all

TABLE 4 | Advantages and disadvantages of the pig as a model.

Advantages Disadvantages

Size of the pigs: Multiple and

longitudinal measurements possible

Ethical concerns but minor compared

to companion animals

Functional equivalence of various

diseases in men and pigs

Special facilities needed for housing,

surgery, imaging, necropsy

Genetic variation between breeds (cfr

human population), moderate genetic

variation within breeds (naturally

occurring diseases)

Non-weight-bearing postoperatively is

not feasible but can modulate with

location

Imaging plus validated scoring

approaches available (esp. for

orthopedics)

Costs

Arthroscopy (also second look) plus

validated scoring approaches

mammals known, ranging from less than 1 kg for Chihuahua
dogs to over 70 kg for Irish wolfhounds and Neapolitan
Mastiffs. This selection process was intensified in the last two
centuries and resulted in isolated genetic populations of dog
breeds (Parker et al., 2010). Whereas the genetic variation
over the various breeds remained intact, the reduced genetic
variability within breeds worked as a genetic amplifier and
offers “genetic dissection microscope” for research (Lindblad-
Toh et al., 2005; Parker et al., 2010; Larson et al., 2012; Van
Steenbeek et al., 2016). Together with the selection for unique
traits, an increased risk for the development of specific inheritable
disorders arose within breeds, providing physiologically relevant
models corresponding to human conditions. To make the
best out of the current situation may be to exploit the
downside of inbreeding as a gene-discovery instrument for
causative and modifier genes involved in complex diseases
and/or rare diseases.

Canine Inherited Copper Toxicosis
The trace element copper is indispensable for critical biochemical
processes such as enzyme function, for instance cytochrome c
oxidase (part of the respiratory enzyme complex) or superoxide
dismutase (conversion of superoxide radicals into molecular
oxygen or hydrogen peroxide) (Inesi, 2017). Since copper
is a transition element (reduced as Cu+ and oxidized as
Cu2+) its Jekyll and Hyde character becomes evident in the
involvement in chemical reactions leading to the production
of reactive oxygen species. In a Fenton reaction, Cu+ catalyzes
the formation of the highly reactive hydroxyl radical (OH.).
In the converse Haber-Weiss reaction Cu2+ inactivates the
damaging superoxide radical O2. Therefore, regulation of
its intracellular free concentrations is of utmost importance
and needs to be controlled within very narrow limits (Kim
et al., 2008). Several inherited copper-related diseases are
diagnosed in men such as Menke’s Disease (copper deficiency
disorder), Wilson Disease (WD, copper accumulation), and the
very rare Indian childhood cirrhosis (Tanner, 1998), endemic
Tyrolean infantile cirrhosis (Muller et al., 1996), and idiopathic
copper toxicosis (Scheinberg and Sternlieb, 1996). These all
are rare diseases posing specific obstacles for researchers
aiming to dissect molecular pathways and for rational drug
design. These obstacles include limited financial resources
compared to diseases affecting large numbers of patients, smaller
patient cohorts for clinical phase 1−3 studies, difficulties for
properly matched case-control studies in genetics and molecular
signaling studies.

Copper disorders also affect sheep and dogs (Twedt et al.,
1979; Haywood et al., 2001; Fuentealba and Aburto, 2003).
Deleteriously increased levels of hepatic copper are described
in a number of dog breeds including Bedlington terriers, Skye
terriers, West-Highland White terriers, Doberman, Dalmatians
and Labrador retrievers (Twedt et al., 1979; Haywood et al.,
1988; Thornburg et al., 1996; Thornburg, 1998; Webb et al.,
2002; Hoffmann et al., 2006). In 1999 genetic mapping studies
revealed that the copper toxicosis locus within Bedlington
terriers was located on canine chromosome 10. 3 years
after positional cloning a 13kB deletion covering exon-2 of
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the murr1 gene was identified as the causative mutation
for Bedlington terrier copper toxicosis (Van De Sluis et al.,
1999, 2002). The causative role of murr1 mutations in WD
is a matter of debate. Stuehler et al. found an association
between murr1 mutations and WD, whereas two other papers
did not detect a correlation between murr1 mutations and
WD (Stuehler et al., 2004; Lovicu et al., 2006; Wu et al.,
2006). This novel gene product, currently called COMMD1
(COpper Metabolism Murr1 Domain-containing protein 1) had
no known function at the time it was discovered, and the
mechanism of action related to hepatic copper accumulation
remained enigmatic. The discovery that COMMD1 and ATP7B
interact intracellularly revealed a mechanistic link between
COMMD1 protein and copper toxicosis, later confirmed for
the Menkes Disease protein ATP7A (De Bie et al., 2007;
Vonk et al., 2012).

The discovery of the COMMD1 mutation and subsequent
investigations into functions of COMMD1 is an intriguing
example for a useful exploitation of inbred dog strains to reveal
novel molecular and genetic pathways. Genetically speaking the
big advantage of canine genetics to benefit human genetics is the
ease to discover modifier genes. This is a needle-in-a-haystack
technology in men even today, but the specific genetic population
structure in inbred dogs clearly facilitates this approach.

Labrador retrievers are among the most popular breeds in
the Western world.

It was already known for a long time that approximately one
in every three first-line relatives of Labradors retrievers with
copper toxicosis had elevated copper levels (Hoffmann et al.,
2006). This pushed investigations into whether or not Labrador
retrievers were new model animals for WD and as a consequence
propelled genetic studies (Fieten et al., 2014). A SNP based
genome-wide association study aiming to discover the genetic
background of inherited copper toxicosis in Labrador retrievers
included over 200 Labrador retrievers (154F, 81 M cases; 37F
and 22 M as replication cohort) in the Netherlands that were
genotyped on the 170k SNP Illumina Canine HD Bead Chip
(Fieten et al., 2016). For details on the mechanism of action of
these mutations the readers are referred elsewhere (Fieten et al.,
2016). Approximately 12% of the phenotype can be explained by
two mutations identified in Labrador retrievers. Since mutations
in these genes were already described in copper-related disorders,
it remains to be seen what other as-yet-unidentified genetic
mutations will be discovered.

This genetic study clearly illustrates the power of the canine
model. Explaining 12% of the phenotypic variation with an ample
250 dogs doesn’t even remotely resemble the number of human
patients used to explain similar percentage for age at menarche,
Inflammatory Bowel Disease (IBD) and Rheumatoid arthritis
(RA) for which over 100,000 individuals were included (Elks
et al., 2010; Okada et al., 2014; Liu et al., 2015).

The examples prove that due to the specific population
structure of inbred dog breeds, genetic studies can be successfully
performed even for rare and/or complex genetic diseases.

In order to investigate COMMD1-deficient dogs as a
preclinical model for liver stem cell transplantations, a breeding
colony of five COMMD1 deficient dogs was created on a Beagle

background and followed for over 4 years (Favier et al., 2011,
2012; Favier et al., 2015). This model for inherited copper
toxicosis has some practical features specifically relevant for pre-
clinical studies that aim to investigate surgical procedures. In
contrast to mouse models, that are sacrificed for every liver
measurement, the dogs’ size allowed for a true longitudinal study
permitting liver biopsy sampling twice a year.

Heart Disease
The most prevalent non ischaemic cardiomyopathies in
humans are hypertrophic cardiomyopathy (HCM) and
dilated cardiomyopathy (DCM), reported to affect 1 in 500
and 35 in 100,000 people, respectively (2017, Heron, 2016).
Arrhythmogenic ventricular cardiomyoapthy (AVC) is also
recognized as an important and distinct form of cardiomyopathy.
Together they are associated with mechanical and/or electrical
dysfunction and manifestations of the disease can range from
microscopic alterations in cardiomyocytes and cardic fibroblasts
to heart failure (which results in inadequate tissue perfusion
and fluid retention) and arrhythmia which may cause sudden
death. In veterinary species HCM is the most common feline
cardiac disease affecting around 1 in 15 cats and DCM is
the second most common cardiac disease in dogs and can
affect a wide variety of breeds including the Doberman where
its cumulative prevalance is as high as 44%. AVC has been
comprehensively described in the Boxer breed at the molecular,
cellular and clinical levels. All three cardiomyopathies share
striking pathological and clinical similarities with the human
disease. While there has been progress in the management
of the symptoms associated with these cardiomyopathies in
human patients, the actual disease processes remain a challenge
to treat as there are few therapies that target the underlying
pathology. There has therefore been an emphasis on the use
of regenerative cellular therapies, although most studies have
focused on ischaemic myocardial disease using mesenchymal
stem cells (MSCs) derived mostly from bone marrow or
adipose tissue. Stem cells derived from myocardial tissue
have more recently been developed and have been tested in a
number of induced disease models. A comparison of MSCs and
cardiosphere derived cells (CDCs) suggests that CDCs are more
efficacious in their ability to regenerate the myocardium (Li
et al., 2012) and phase 1 clinical trials using autologous CDCs
show encouraging results (Bolli et al., 2011; Makkar et al., 2012;
Malliaras et al., 2014).

The development of cell-based approaches in the feline and
canine clinic will have significant benefits for translation in
human cardiomyopathy treatment.

Human and Feline Hypertrophic
Cardiomyopathy
Hypertrophic cardiomyopathy is the most common
cardiomyopathy in both humans and cats with a prevalence of
approximately 0.1−0.2% and 16%, respectively (Maron et al.,
1995; Payne et al., 2010; Semsarian et al., 2015; Husser et al.,
2018). There is increasing literature that supports the cat as
an animal model of human HCM and evidence suggests it is
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essentially the same disease in both species (Maron and Fox,
2015). HCM is characterized by left ventricular hypertrophy in
the absence of systemic causes and can result in heart failure
and/or sudden death. In humans genetic mutations are identified
in 60% of HCM cases, mainly in genes encoding sarcomeric
proteins (Cahill et al., 2013). HCM in the cat is also considered to
have a familial cause although only two causative mutations have
so far been identified (Maron and Fox, 2015), in contrast several
hundred have been identified in human patients. Both of the
feline mutations occur in the cardiac myosin binding protein C
(MYBPC3) gene, one of which occurs in the Maine Coon breed
(A31P mutation) and the other in the Ragdoll breed (R820W
mutation) (Meurs et al., 2005, 2007). It is of interest to note
that one specific non-truncating mutation, MYBPC3/R820W,
that occurs in Ragdolls has been identified in a human family
with HCM (Ripoll Vera et al., 2010; Borgeat et al., 2014). The
role sarcomeric mutations play in the development of HCM in
non-pedigree cats requires further investigation.

The underlyingmolecular pathogenesis driving HCM remains
to be elucidated although a common pathway is thought
to exist in both humans and cats in which altered calcium
handling within the myofilaments enhances calcium sensitivity,
causing maximal force production and energy deficiency
promoting mitochondrial dysfunction, cell death, fibrosis and
cardiomyocyte hypertrophy (Huke and Knollmann, 2010;
Marston, 2011; Song et al., 2013; Robinson et al., 2018).

Studies using myocardial tissue from a cat homozygous for the
MYBPC3/R820W mutation suggest that increased myofilament
calcium sensitivity can occur in the absence of haploinsufficiency,
which is common feature in humanMYBPC3 mutations (Messer
et al., 2017). Increased myofilament calcium sensitivity was
also seen in other HCM affected cats of unknown genotype
but not in unaffected cats. An additional feature of the study
was that the calcium sensitivity of the sarcomere is uncoupled
from the phosphorylation status of troponin I, although it
remains unclear how mutations outside the troponin complex
cause this uncoupling phenomenon. The reasons clearly are
complex but the similarities at the molecular level show the
cat to be a highly relevant natural disease model for human
HCM for deciphering the mechanisms. Targeting the disease
with Epigallocatechin-3-gallate, for example can reverse troponin
I phosphorylation uncoupling in cat HCM (Messer et al.,
2017) which has been replicated in human HCM samples
(Sheehan et al., 2018).

Such studies highlight the need to identify detailed molecular
mechanisms for precise drug targeting. However, there are
practical limitations with obtaining sufficient heart tissue and
the survival of isolated primary cardiomyocytes is poor. Induced
pluripotent stem cells (iPSC) or embryonic stem cells (ESCs)
represent an alternative and robust source for preparing
cardiomyocytes. The development and use of human ESCs
represents an ethical dilemma and while less of an issue in
veterinary species, there are only two reports of ES-like cells
from cats, but these do not replicate indefinitely in culture unlike
true ES cells. iPSCs on the other hand do not have the concerns
associated with ESCs and can be relatively readily prepared
from somatic cells.

Feline iPSCs have recently been reported for the first
time by our group, the development of which represents a
significant step in the generation of iPSC derived cardiomyocytes
from a veterinary species (Dutton et al., 2019). It paves the
way for generating further cell lines from feline patients
carrying the HCM causing MYBPC3/R820W mutation to
test novel therapeutics for modifying the disease. iPSCs
can further be manipulated with technologies such as
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) to enable targeted genetic manipulation of both
normal and diseased patient cell lines (Cai et al., 2018;
Sasaki-Honda et al., 2018).

iPSCs derived from patients with HCM or iPSCs with
a genetic mutation inserted using CRISPR to model HCM,
display characteristics of hypertrophic cardiomyocytes in
culture (Mosqueira et al., 2018) suggesting the suitability
of the approach in establishing cell models of HCM. The
availability of feline iPSC lines will enable dissecting out
the molecular mechanisms of HCM enabling targeted drug
screening where promising molecules can be rapidly assessed
in the feline clinic with the potential of swift translation to
human patients.

Human and Canine Dilated and
Arrhythmogenic Ventricular
Cardiomyopathy
DCM is the third most common inherited myocardial disease
in humans with an estimated prevalance of 0.35% and some
2.5 million cases globally affected6. It is the second most
common cardiac disease in dogs and accounts for 10% of
canine cardiac diagnosis (Egenvall et al., 2006). As with feline
HCM there are remarkable similarities in the pathophysiology of
DCM between human and dog. Although it is a heterogenous
disease it is characterized by progressive enlargement of
the left ventricle that leads to reduced systolic function,
congestive heart failure and a variety of arrhythmias. Underlying
causes include systemic disorders such as hypertension and
atherosclerosis in humans but is also now recognized as a
primary genetic disorder that may manifest with or without
accompanying predisposing factors. Giant dog breeds such
as the Great Dane and Newfoundlands are at risk and a
genetic basis has been proposed in some dog breeds including
the Doberman Pinscher and Boxer in which the disease is
both common and severe with a cumulative prevalence in
European Dobermans >8 years of age of 44% (Mausberg
et al., 2011; Simpson et al., 2015a,b). A genetic deletion
in the Pyruvate Dehydrogenase Kinase 4 (PDK4) gene has
been reported. PDK4 is critical in regulating mitochondrial
energy metabolism as the genetic deletion predisposes affected
individuals to developing DCM as it results in chronic energy
attenuation (Meurs et al., 2012). More recently a missense
variant in the titin gene has been reported in affected Doberman
pinscher dogs negative for the PDK4 mutation. The Boxer
breed has a distinct form of cardiomyopathy that closely

6https://www.bhf.org.uk/what-we-do/our-research/heart-statistics/heart-
statistics-publications/cardiovascular-disease-statistics-2017
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resembles AVC in humans (Vischer et al., 2017). A causative
mutation in the striatin gene has been identified in Boxer
dogs in the United States but this was not seen in the UK
population (Meurs et al., 2010; Cattanach et al., 2015). The
role of genetics in other dog breeds with DCM remain to be
better described.

Histopathological observations of the myocardium show
that canine cardiomyopathy displays either an attenuated
wavy fiber type and fibro-fatty infiltration type (Tidholm
and Jonsson, 2005) with the latter highly similar to AVC in
humans. These findings emphasize the comparable pathological
changes and clinical presentation between the two species
(Basso et al., 2004; Meurs et al., 2014; Vila et al., 2017). The
pathophysiologic mechanism underlying AVC is thought to
involve mechanical and electrical decoupling and cardiomyocyte
apoptosis (Wess et al., 2010) which with the fibro-fatty
replacement of the myocardium are considered primary drivers
for risk of arrhythmia and sudden cardiac death. Dogs that
survive develop progressive ventricular dilation and systolic
dysfunction leading to congestive heart failure (Wess et al., 2010;
Meurs et al., 2014).

There have been efforts to use stem cells for the treatment
of cardiac disease in humans spurred by observations that
the adult heart processes regenerative ability (Condorelli
et al., 2001; Nadal-Ginard et al., 2003). A number of
clinical trials are under way or completed using adipose
or bone marrow derived mesenchymal stem cells (MSC)
although these are predominantly for ischaemic disease.
One published study in Doberman pinchers with DCM
administered allogeneic adipose derived MSCs that were
virally transfected to overexpress stromal derived factor-1 to
enhance homing and engrafting capabilities of endogenous
MSCs to the myocardium (Pogue et al., 2013). Although no
significant improvements in survival rates were found at 2-
year follow up, the study demonstrated that the dog model
of naturally occurring DCM can be utilized to overcome
a number of challenges for regenerative therapies. There
is increasing interest in CDCs as they appear to possess
a superior ability to regenerate the myocardium (Li et al.,
2012) compared to MSCs. CDCs are a heterogenous
cardiac stem cell population which display features typical
of stem cells such as forming clones, self-renewal and
commitment to multiple lineages (Johnston et al., 2009;
Chimenti et al., 2010; Cheng et al., 2014; Hensley et al.,
2015). The use of CDCs clearly is not practical because
of the need to sample from the patient and also because
of expansion of cells from a diseased individual which
adds to patient risk, time and treatment costs. Allogeneic
cells offer an alternative off-the-shelf-product but risks
include immunological complications that may lead to
graft versus host disease. Work in a rodent model and
other induced disease models suggests allogeneic CDCs are
non-immunogenic (Malliaras et al., 2012). Allogeneic CDCs
have been tested in a small clinical trial in dogs affected with
DCM (Hensley et al., 2017) and no significant adverse effects
were reported. Nevertheless, the process of cryofreezing of
cell stocks may potentially alter intrinsic properties of the

cells as has been shown for MSCs (Moezzi et al., 2005).
Effects such as chromosome abnormalities resulting in
abberrant cellular activity and risk of tumorigenesis may
compromise their clinical use. However we have demonstrated
that cryopreservation of dog CDCs does not alter their
immunophenotype and cellular characteristics (Dutton et al.,
2018a). Furthermore, we have shown at a molecular level
that canine CDCs are also immune- privileged similar to the
immunomodulatory function of MSCs (Dutton et al., 2018b) and
cryopreservation retains this property suggesting they are safe to
use in vivo.

Musculoskeletal Disorders in Companion
Animals
Osteoarthritis

Dog models have long been used to study joint disorders
particularly osteoarthritis. The canine model for osteoarthritis
has been more commonly used than the horse, sheep or
goat model (Mccoy, 2015). One of the reasons might be the
easier post-operative management and follow up using various
exercise regimes on e.g., treadmills (Mccoy, 2015). While there
are some similarities in cartilage anatomy between humans
and dogs, the standing angle in the hindlimb in dogs is
much larger. This should be considered when biomechanical
aspects are compared and evaluated (Mccoy, 2015). As stated
previously the cartilage thickness in dogs is 0.6−1.3 mm and
cartilage defects are considered to have a critical size at a
minimum diameter of 4mm. Experimental OA is preferably
induced in the stifle joint (Pond and Nuki, 1973; Marijnissen
et al., 2002; Kuroki et al., 2011), whereas naturally occurring
disease is also common in the elbow or hip joint with an
estimation prevalence of OA affecting 20% of adult dogs
(Mccoy, 2015).

With respect to osteoarthritis dogs are divided in two
classes, non-chondordystrophic (NCD) and chondrodystrophic
(CD) dogs. The last group presents with disproportionally
short limbs, caused by aberrant endochondral ossification of
long bones. Dachshunds are typical examples. The molecular
mechanisms of this short limb phenotype is associated with
a retrogene insertion of the FGF4 fibroblast growth factor
4 gene. This leads to elevated levels of FGF3 signaling.
Interestingly, whereas CD dogs are more prone to intravertebral
disc degeneration (IVDD), the insertion of the retrogene renders
short-limb dogs less likely to develop OA in comparison with
NC-dog (Tellegen et al., 2019). These examples emphasize
the need to carefully select for a specific dog breed for
musculoskeletal investigations.

Intervertebral Disc Degeneration

Despite walking on four legs in contrast to men walking on
two only, both species develop intervertebral disc degeneration
with great similarities and similar prevalence. Link-N is a
protein involved in proteoglycan stabilization (beneficial)
and is highly homologous between men and dogs. However,
neither human link-N nor canine link-N can protect cultured
canine intervertebral disc cells form degeneration, whereas
human link-N improved glycosaminoglycn deposition
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in human and bovine chondrocyte-like cell cultures
(Bach et al., 2017).

In a classcial pre-clinical study a controlled release system
for the COX-2 inhibitor celecoxib (cyclooxygenase-2) was
tested in a dog model for IVDD (Tellegen et al., 2018).
Since celecoxib prevented IVDD progression and reduced
inflammation, follow-up studes will be conducted in a clincal
study aiming to eliviate the chronic pain associated with low
back pain.

Cranial Cruciate Disease and Meniscal Injury

Naturally occurring cranial cruciate disease has been
studied extensively in veterinary medicine (Cook, 2010;
Bergh et al., 2014). It can therefore be stated, that the
pathophysiology differs between injuries in humans and
canines, because dogs typically suffer from degenerative
ruptures (Comerford et al., 2011) as compared to acute
traumatic injuries seen in humans. To study new treatment
approaches and validate their success, experimental models
with artificially severed cruciate ligaments should be employed
(Bozynski et al., 2016).

Dogs also suffer from naturally occurring meniscal
pathologies and hence lend themselves as potential
translational models to study mechanisms of degeneration
or for testing new treatment strategies (Krupkova et al.,
2018). The canine meniscus has comparable anatomic
features (vascularization, cellularity, collagen structure)
and similar permeability to the human (Sweigart et al.,
2004; Deponti et al., 2015). However, some differences
between canine and human menisci especially with regard
to biomechanical properties such as the aggregate- and
shear-modulus should be pointed out (Sweigart et al., 2004;
Gupte et al., 2007).

Nervous System
Cats often serve as models to study spinal cord healing and
comparative aspects in neurosurgery (Barbeau and Rossignol,
1987; Bélanger et al., 1996; Abelew et al., 2000; Bouyer
and Rossignol, 2003). Biomechanical motion analyses using
treadmills and force plates as well as electromyography (EMG)
are performed to evaluate spine kinematics and muscular
properties following experimentally induced spinal cord or
cerebral lesions.

Additional Considerations Regarding
Companion Animals
Dogs and cats are companion animals and pets and as such
subject of unprecedented love and care in our society. Therefore,
studies involving dogs and/or cats raise more ethical debate
than other animal studies. However, most studies in these
animals use clinical cases seen in veterinary hospitals and clinics,
which highlights the importance of this underused resource
for research. Some of the most important advantages and
disadvantages of using dogs as model animals are summarized
in Table 5.

TABLE 5 | (a) Advantages and disadvantages of canine research in general and

hepatology in particular. (b) Advantages and disadvantages of companion

animals as models.

Advantages Disadvantages

Size of the dogs: Multiple and

longitudinal measurements possible

Ethical concerns – companion animals −

More of a concern if experimental use

Functional equivalence of various

diseases in men and dogs/cats

No canine hepatitis virus causally

correlated with canine hepatitis

Large genetic variation between

breeds (cfr human population), limited

genetic variation within breeds

(genetic magnifier glass)

Specific drug intolerances for specific

breeds

Imaging plus validated scoring

approaches available (esp. for

orthopedics)

Dogs: Arthroscopy (also second look)

plus validated scoring approaches

Costs

Dogs: Objective weight-bearing of

legs possible (force plate analysis)

Special facilities needed for housing,

surgery, imaging, necropsy

Dogs: Size variations cover new-born

human-size until adult size

Size variation, so drug dosing needs

special attention

Clinical need, large patient population

(pets) available

CONCLUSION

Companion animal and large animal models offer realistic
naturally occuring disease models that more accurately evaluate
safety and efficacy of new treatments as they share the
heterogeniety of the human population including genetic and
physiological variations and the complex interactions of these
with the environment.

There are an increasing number of studies emerging from
companion animals and large animal species that demonstrate
they have much to offer to the human clinic in the quest for
the next generation of drug or cell-based therapies and tissue
engineering. The use of large animal models will enable greater
attention to key questions. These include route of administration
as it is not clear as yet which route(s) allow optimal engraftment
of injected cells for different diseases. It also needs to be
determined whether multiple injections will be more beneficial
and if so the question arises whether there is an associated
increase in risk of an adverse immune reaction. Cell therapies
likely function via a paracrine mechanism and as such alternative
approaches such as cell-free extracellular vesicle fractions or
soluble factors, need to be explored that may reduce some risks
posed by cell administration particularly of allogeneic cells.

For tissue engineered constructs implantation studies using
animals with similar size andweight as human patients are crucial
to test the implants under relevant biomechanical conditions.

To answer these questions pre-clinical trials with patient
cohorts of sufficient size are required which need to be designed
robustly to measure appropriate safety and efficacy readouts.
Equivalent diseases in animals makes them not only relevant
models which offer a more accurate evaluation of safety and
efficacy of new treatments, but at the same time are potential
beneficiaries of new treatment approaches. Hence, human and
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veterinary medicine can mutually benefit if one appreciates
the similarities.
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