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Large Area 3-D Reconstructions From
Underwater Optical Surveys
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Abstract—Robotic underwater vehicles are regularly per-
forming vast optical surveys of the ocean floor. Scientists value
these surveys since optical images offer high levels of detail and
are easily interpreted by humans. Unfortunately, the coverage
of a single image is limited by absorption and backscatter while
what is generally desired is an overall view of the survey area.
Recent works on underwater mosaics assume planar scenes and
are applicable only to situations without much relief. We present
a complete and validated system for processing optical images
acquired from an underwater robotic vehicle to form a 3-D re-
construction of the ocean floor. Our approach is designed for the
most general conditions of wide-baseline imagery (low overlap
and presence of significant 3-D structure) and scales to hundreds
or thousands of images. We only assume a calibrated camera
system and a vehicle with uncertain and possibly drifting pose
information (e.g., a compass, depth sensor, and a Doppler velocity
log). Our approach is based on a combination of techniques from
computer vision, photogrammetry, and robotics. We use a local to
global approach to structure from motion, aided by the navigation
sensors on the vehicle to generate 3-D submaps. These submaps
are then placed in a common reference frame that is refined by
matching overlapping submaps. The final stage of processing is a
bundle adjustment that provides the 3-D structure, camera poses,
and uncertainty estimates in a consistent reference frame. We
present results with ground truth for structure as well as results
from an oceanographic survey over a coral reef.

Index Terms—Computer vision, structure from motion, 3-D re-
construction, underwater vehicles.

I. INTRODUCTION

A. Context

O
PTICAL imaging of the ocean floor offers scientists high
levels of detail and ease of interpretation. However, light

underwater suffers from significant attenuation and backscatter,
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limiting the practical coverage of a single image to only a few
square meters [1]. For many scientific surveys the area of in-
terest is much larger, and can only be covered by hundreds or
thousands of images acquired from a robotic vehicle or towed
sled. Such surveys are required to study hydrothermal vents and
spreading ridges in geology [2], ancient shipwrecks and settle-
ments in archeology [3], forensic studies of modern shipwrecks
and airplane accidents [4], [5], and surveys of benthic ecosys-
tems and species in biology [6], [7].

The visible spectrum in water has attenuation lengths of

the order of meters, thus most underwater vehicles carry out

optical imaging surveys using their own light source. Apart

from casting shadows that move across the scene as the vehicle

moves, power and/or size limitations lead to lighting patterns

that are far from uniform. Also with the advent of autonomous

underwater vehicles (AUVs) for imaging surveys [2], [7] ad-

ditional constraints are imposed by the limited energy budget

of an AUV. AUV surveys are typically performed with strobed

light sources rather than continuous lighting, and acquire low

overlap imagery to preserve power and cover larger areas.

Generating a composite view by exploiting the redundancy

in multiple overlapping images is usually the most practical

and flexible way around this limitation. Recent years have

seen significant advances in mosaicing [8], [9] and full 3-D

reconstruction [10, ch. 9], [11] though most of these results are

land based and do not address issues particular to underwater

imaging. Underwater mosaicing has been motivated largely

by vision-based navigation and station keeping close to the

sea floor [12]–[15]. The large area mosaicing problem with

low overlap under the assumption of planarity is addressed

in [16]. Mosaicing assumes that images come from an ideal

camera (with compensated lens distortion) and that the scene

is planar [17]. Under these assumptions, the camera motion

will not induce parallax. Thus, no 3-D effects are involved

and the transformation between views can then be correctly

described by a 2-D homography. These assumptions often

do not hold in underwater applications since light attenuation

and backscatter rule out the traditional land-based approach

of acquiring distant, nearly orthographic imagery. Underwater

mosaics of scenes exhibiting significant 3-D structure usually

contain significant distortions.

In contrast to mosaicing, the information from multiple

underwater views can be used to extract structure and motion

estimates using techniques from structure from motion (SFM)

and photogrammetry [18]. We propose that when dealing with

a translating camera over nonplanar surfaces, recovering 3-D

structure is the proper approach to providing a composite

global view of an area of interest. The same challenges seen in

mosaicing underwater apply to SFM underwater with the added
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Fig. 1. SeaBED vehicle ready for deployment in Bermuda.

requirement that all scene points must be imaged at least twice

to produce a roughly uniform distribution of reconstructed fea-

ture points through triangulation (50% overlap in the temporal

image sequence). These techniques are considerably more

complex than mosaicing: even for land-based applications

(with high overlap, structured motion, and uniform lighting)

consistency at large scales cannot be guaranteed unless other

sensors are available. Some promising work has gone into 3-D

image reconstruction underwater [19] using a stereo-rig with

high overlap imagery in a controlled environment.

Underwater vehicles for scientific surveys use navigation sen-

sors that provide pose estimates. This information can be used

to constrain and regularize the underwater structure from mo-

tion problem. In previous work [20], [21], we showed in detail

how to improve the search for corresponding features between

images using pose estimates. In addition, we used navigation

sensors to provide estimates of baseline magnitude and to se-

lect a unique solution in cases where there is ambiguity in the

image-based solution.

B. Imaging Platform

The SeaBED AUV acquired the field data used in this

paper (Fig. 1). The vehicle was designed as a calibrated and

pose-instrumented platform for underwater imaging. SeaBED

is capable of maneuvering at slow speed and is passively stable

in pitch and roll. The vehicle specifications are summarized

in Table I. SeaBED collected the field data used in this paper

following survey patterns preprogrammed as a mission and

executed in dead-reckoning mode. The vehicle makes acoustic

measurements of both velocity and altitude relative to the

bottom. Absolute orientation is measured within a few degrees

using a magneto–inductive compass and inclinometers, while

depth is obtained from a pressure sensor.

C. Outline

Our methodology (Fig. 2) takes a local-to-global approach

inspired by mosaicing [9] and SFM [11], [22] but takes advan-

tage of navigation and attitude information. The 3-D structure

of local subsequences is derived independently and then regis-

tered in a global frame for bundle adjustment. Our approach is

more suitable than purely sequential methods [23] because in

TABLE I
SUMMARY OF THE SEABED AUV SPECIFICATIONS

Fig. 2. Flowchart of structure and motion recovery from underwater imagery.
An image sequence is processed into short submaps of structure and motion
aided by navigation information. Submaps are then matched to infer and refine
additional spatial constraints (such as loop closures and overlapping parallel
tracklines). An initial estimate of poses and structure in a global frame is then
used to perform a final bundle adjustment.

a typical underwater survey each 3-D feature appears only in

few images and each image only contains a small fraction of all

features making the global solution approach a series of weakly

correlated local solutions.

The following sections briefly describe our approach fo-

cusing on feature extraction and description, submap generation

based on two and three view processing, topology exploration,

and local-to-global registration. The last section presents re-

sults from a coral reef survey and validation of the proposed

framework by tank experiments with associated ground truth.

II. FEATURE EXTRACTION AND DESCRIPTION

We calculate the relative pose between images using a fea-

ture-based approach under wide-baseline imaging conditions

with changing illumination and unknown scene structure. A
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Fig. 3. Steps in determining an affine invariant region. (a) boundary points de-
termined along rays. (b) An ellipse approximates the boundary points using the
method of moments. (c) The elliptical region is mapped onto a unit disc.

Fig. 4. Extracted affine invariant regions. Only regions that are found in corre-
spondence are shown. Scene dimensions � 2.5 m � 2 m.

modified Harris corner detector [24] yields well-localized,

repeatable interest points by selecting local maxima of the

smaller eigenvalue of the second moment matrix. To describe

each interest point we determine a neighborhood around it that

is invariant to affine geometric transformations using a modi-

fied version of the method proposed by Tuytelaars [25], [26]

(Fig. 3). The original method defines an affine invariant region

around an intensity extreme point by determining affine in-

variant points along rays radiating from the intensity extremum.

The boundary point associated with a ray corresponds to the

extremum of an affine invariant function that can be related

to the presence of a boundary (Figs. 4 and 5). The boundary

points along the rays are given by

(1)

Fig. 5. Detail of some extracted regions from the images in Fig. 4. The actual
border samples outline jagged regions. The elliptical regions that approximate
the border samples are also shown. Scene dimensions � 0.6 m � 0.5 m.

where is the extremum of intensity and are the image

values considered in polar coordinates. This region is extracted

in an affine invariant manner in the sense that an affine transfor-

mation will “stretch” the individual rays but the boundary points

should remain recognizable since points that form a ray remain

in a ray when affinely transformed (colinearity is preserved and

any translation should be accounted for by the repeatable in-

terest point detector).

For natural scenes few interest points correspond to sharp cor-

ners of planar surfaces. Instead they are generally blob-like fea-

tures at different scales. By using rays radiating from the interest

point instead of an intensity extremum, the matching procedure

is simplified since the feature is well localized. In essence, we

sample the neighborhood along lines radiating from the interest

point. Our current implementation uses a diameter of 51 pixels

(i.e., rays that are 25 pixels in length without sampling the cen-

tral pixel) and samples every 6 (for a total of 60 lines). For each

line, the boundary point corresponds to the maximum difference

in intensities between the intensity extremum nearest to the in-

terest point and points along the ray.

The set of maximal points is approximated with an elliptical

neighborhood by using the method of moments where the sam-

ples along the boundary are placed on an ellipse that has the
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same second moment matrix as the original samples. This el-

liptical region is then mapped onto the unit circle . In prac-

tice, the polar representation used to determine the boundary is

resampled so that the boundary points have the same radius in-

stead of applying a 2-D affine transformation to the region. The

canonical form of the region is stored as a polar representation

with resampled radii. This representation is particularly conve-

nient when the description of the region is based on Zernike mo-

ments since the basis functions are presented more compactly in

polar form (Section II-B).

To increase robustness to changes in lighting, before cal-

culating descriptors of the patch the resampled intensities

are demeaned and normalized by the energy content in

the patch

(2)

where is the mean of over the patch . The nor-

malized patch satisfies

(3)

effectively providing invariance to affine changes in intensity.

Fig. 5 illustrates several matches despite significant lighting

changes between extracted regions.

A. Orientation Normalization

Navigation instruments provide attitude information that can

simplify the description and matching of features. For example,

normalized correlation as a similarity metric fails in the pres-

ence of modest rotations (more than a few degrees) between an

image pair and . It is possible to use descriptors that are in-

variant to rotations at the price of less discrimination. However,

knowledge of 3-D orientation for camera frames and in a

fixed reference frame allows for normalization of orientation

viewpoint effects via a homography.

The infinite homography defined as [10, ch. 12]

(4)

where is the orthonormal rotation matrix from frame to

frame and is the camera calibration matrix [10, ch. 7] (con-

taining intrinsic parameters for focal length, principal point co-

ordinates, and skew in pixel shape), warps an image taken from

camera orientation into an image taken from camera orienta-

tion . This warp is exact and independent of scene structure;

there is no scene-induced parallax between viewpoints and ,

because and share the same projective center.

Given 3-D camera rotation matrices and generated

from vehicle orientation measurements, we can warp images

and each into a canonical viewpoint coordinate frame ori-

ented parallel with frame (e.g., the warped images correspond

to a camera coordinate frame oriented with north, east,

down).

B. Description by Zernike Moments

We chose to use Zernike moments as descriptors as they are

compact (generated from a set of orthogonal complex polyno-

mials) and highly discriminating [16], [27]. Typical applications

only use the magnitude of Zernike moments as this provides ro-

tational invariance, but we can precompensate for orientation

using attitude sensors, and therefore, utilize the full complex

moments.

Zernike moments are derived from Zernike polynomials,

which form an orthogonal basis over the interior of the unit

circle, i.e., [28]. If we denote the set of poly-

nomials of order and repetition by , then these

polynomials are complex, and their form is usually expressed

as

(5)

with a positive or zero integer, an integer such that

is even, and . We have also defined polar coordinates

, . Note that

.

The radial polynomial is real and of degree ,

with no power of less than

(6)

The Zernike moment of order with repetition corre-

sponding to the projection of an image function (in the

unit circle) is given by

(7)

Note that is complex and . In the case of

a discrete image , the moments can be approximated for

points inside the unit circle as

(8)

The orthogonality relation for permits reconstruction of

an image from its Zernike moments

(9)

so that

(10)

C. Similarity Measure

A vector of moments can be used directly as the descriptor

for an image feature. Similarity between features can then be

expressed as a distance between vectors. The problem with this
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Fig. 6. Similarity score versus actual correlation score for varying number of
coefficients. The approximation improves as more terms are added, in particular,
for high correlations.

approach is that the distances between vectors of moments do

not necessarily have an obvious meaning. Using training data

it is possible to derive a distance metric [29] but this requires

relearning the metric if the training set no longer represents

the imagery. Instead, we determine that the cross correlation

between image patches can be expressed conveniently by

weighted Zernike moments and can form a feature descriptor

from appropriately weighted moments.

We express the zeroth-order cross-correlation coefficient be-

tween image patches and in terms of their moments

(11)

and by replacing and by their expansions in

terms of Zernike moments [as in (10)], rearranging the sums

and integrals, and using orthogonality of Zernike polynomials

[(9)], we have

(12)

where denotes the complex conjugate.

This result suggests that we construct a vector of descriptors

from all Zernike moments up to order and repetition by

concatenating the coefficients for all consid-

ered and into a vector . We can then define the similarity

score (based on Zernike moments of up to order and rep-

etition ) for the preliminary match as

(13)

To obtain the exact correlation score requires evaluating an

infinite sum. In practice, only a few coefficients suffice to ap-

proximate image patches reasonably well. The quality of the re-

construction depends on the number of terms used and the fre-

quency content of the image patch. To determine the number

Fig. 7. For the matches classified as inliers it is possible to calculate the viewing
angle change between cameras viewing the feature. For all matches, across all
pairs in the trial, we show the number of inliers as a function of viewing angle.
For narrow-baseline conditions (angles of 10 or less) both regions behave sim-
ilarly. For larger viewing angles the affine invariant region (light gray wide bars)
outperforms the fixed window method (dark gray narrow bars).

of coefficients required we conducted a simple test based on

the self-similarity of the descriptors for multiple (over 18 000)

patches from typical imagery. To test the performance of the

descriptors for other values of correlation score we generated

a synthetic sequence of image patches where each image is

a small random perturbation of the previous one. This yields

patches that are highly correlated with nearby patches in the

sequence but uncorrelated with those that are distant (the fre-

quency content of the synthetic patches was adjusted so that the

autocorrelation scores approximated those observed in typical

underwater imagery). Results are summarized as curves of sim-

ilarity score versus true correlation for different order of descrip-

tors in Fig. 6, and show that the reconstruction quality improves

as the order is increased from 8 to 24. Overall, we chose to

use all moments up to order as a compromise between

quality of approximation and compactness. In addition, the use

of moments results in significant computational savings when

calculating similarity between multiple features. For example,

the 51-pixel diameter patch used in our implementation requires

multiplying 2041 pixel values in the disc to calculate

the correlation directly while the similarity measure that approx-

imates the cross correlation requires multiplying 153 (

and all valid repetitions ) weighted moments.

To evaluate the performance of our method, the affine in-

variant region extraction and moment-based descriptor was

compared to a fixed-window correlation-based match on a

sequence of underwater imagery. We conducted our test for a

diverse range of baseline magnitudes by matching each of 67

images to the next six images in a test sequence (for a total

of 351 two-view matches). The details of the robust two-view

matching technique we used are described in Section III. We

used it here as a means to compare similarity-based measures

over many correspondences by determining which proposed

matches are inliers, i.e., consistent with the epipolar geometry.
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Fig. 8. (a) The distribution of the ratio of inliers to proposed matches against baseline magnitude for the 351 test pairs under fixed-window matching. For narrow
baseline, most proposals are inliers, but for normalized baseline larger than 0.4, this abruptly changes to a low ratio. (b) For the affine-invariant region, the degra-
dation is gradual and inliers are detected for wider baselines. Color bar values correspond to number of occurrences.

Navigation sensors provide an image-independent estimate of

baseline magnitude and altitude , which allows us to formu-

late a normalized baseline magnitude . This is the relevant

quantity for induced parallax. For pairs that could be matched

reliably and for which the camera pose could be calculated ac-

curately, the change in viewing angle to a feature can be cal-

culated from the camera poses and from the rays in correspon-

dence (Fig. 7).

The fixed-window feature method failed to match 122 of the

351 pairs, typically for large baselines. This can be seen in Fig. 8

for normalized baseline magnitudes above 0.45. The affine-in-

variant regions failed on only 44 pairs, with a gradual degrada-

tion in matching performance for increasing baseline.

III. SUBMAP GENERATION

The core of our algorithm for SFM is based on robust esti-

mation of the essential matrix (Fig. 9) [20] from a set of candi-

date correspondences between two views. These potential corre-

spondences are proposed between features that have descriptor

vectors with high similarity scores. To prevent calculating the

similarity between all features in both images, the navigation-

based estimates of interimage motion and vehicle altitude are

used to limit the search space (Fig. 10) by propagating pose and

altitude uncertainties through the two-view point-transfer equa-

tion [21].

A modified version of RANdom SAmple Consensus

(RANSAC) [30] determines the putative correspondences

that are consistent with an essential matrix (Fig. 11). In cases

of multiple valid solutions, we select the one closest (in the

Mahalanobis distance sense) to the navigation-based prior. The

inliers and the essential matrix estimate are used to produce a

maximum a posteriori (MAP) estimate of relative pose with

the navigation-based estimates as a prior [31]. The solution

includes the triangulated 3-D features (Fig. 12).

Fig. 9. Overview of our approach to relative pose estimation from instrumented
and calibrated platforms. Unshaded blocks represent additional information
compared to the uninstrumented/uncalibrated case. Given two images, we
detect features using the Harris interest point detector. For each feature, we then
determine the search region in the other image by using sensor-based pose and
altitude information. Putative matches are proposed based on similarity. We
then use RANSAC and the proposed six-point algorithm to robustly estimate
the essential matrix, which is then decomposed into motion parameters. The
pose is then refined by minimizing the reprojection error over all matches
considered inliers.

A. Essential Matrix Estimation

Relative pose from calibrated cameras is a five-degrees-of-

freedom (5 DOF) problem (3 DOF for rotation and 2 DOF for

direction of motion between cameras) because of loss of scale.

Minimal five-point algorithms [32]–[34] tend to be ill-posed,

have complex implementations, and can present up to 20 so-

lutions that then have to be tested. We use a six-point method

presented by the authors [20], which is simpler than five-point
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Fig. 10. Prior pose restricted correspondence search on a pair of underwater
coral reef images. (a) Interest points are shown as crosses. A sampling of interest
points (light crosses) is transferred to the right image. (b) The 99% confidence
regions for the transferred points based on the pose prior and depth standard
deviation of 0.75 m. The candidate interests points that fall within these regions
are highlighted. Scene dimensions � 2.5 m � 2 m.

implementations and overcomes the failure of the classic linear

six-point algorithm in the presence of planar scenes [35]. Our

proposed algorithm will produce up to six possibly valid es-

sential matrices. Using synthetic data sets (generated for both

planar and nonplanar scenes) and random relative motion, we

have determined that one of the essential matrices produced by

this six-point algorithm always corresponds to the true camera

motion for perfect (noise-free) measurements. We have also ob-

served that for perfect measurements of points in a planar con-

figuration, the proposed six-point algorithm always produces

two essential matrices, one which corresponds to the true essen-

tial matrix, and one which corresponds to the (incorrect) output

of the linear six-point algorithm.

B. Robust Essential Matrix Estimation

The following two statements must hold for the proposed

six-point algorithm to be useful in the context of estimating the

essential matrix from a large set of putative correspondences.

First, the quality of the solution must degrade gracefully in the

presence of measurement noise. Second, we must be able to se-

lect the correct solution from up to six essential matrices. We

address these issues in the next subsections.

1) Effects of Noise: To test how the performance of this al-

gorithm degrades in the presence of noise, we performed 1000

trials with randomly generated scenes and motions. For each

trial, the essential matrices computed by the six-point algorithm

were decomposed into their respective rotation and translation

representation. Even though the proposed six-point algorithm

degrades in the presence of noise, we show in [20] that a large

number of estimates will be close to the true motion. This sug-

gests that the algorithm can be used effectively in a RANSAC

context where it is reasonable to expect that there will be point

combinations yielding an essential matrix close to the true one

and will explain a large fraction of the correctly matched points.

2) Outlier Rejection (RANSAC): To eliminate outliers (cor-

respondences inconsistent with the motion model) an essential

matrix between the two images is estimated using RANSAC

[30]. The basic steps for outlier rejection based on RANSAC are

augmented to include checking for physically realizable point

configurations. The added robustness comes at the expense of

additional computation, though this is incurred only when a pro-

posed essential matrix seems superior to the current “best” esti-

mate. To be physically realizable, a configuration of points and

relative pose must do the following:

• place all points in front of both cameras (cheirality con-

straint) [10, ch. 20];

• the scene points lie only a few meters in front of the camera

because the attenuation lengths underwater for the visible

spectrum are in the range of 5–25 m [1];

• the 3-D points must not lie between both cameras since the

ocean floor is a “solid surface” and both cameras must be

on the same side of it.

Enforcing these constraints resolves many cases of ambiguities

but does not resolve all ambiguous pairs. It is important to bear

in mind that during the RANSAC stage we are mainly interested

in determining matches that are consistent with an essential ma-

trix. If the inliers support multiple motion interpretations, the

ambiguity is resolved when determining the final motion esti-

mate, as described in Section III-B6.

3) Reprojection Error: Given a set of measured cor-

respondences , under the assumption of

isotropic Gaussian noise corrupting the interest point locations,

it can be shown [10, ch. 10] that the maximum-likelihood esti-

mate (MLE) for the fundamental matrix mini-

mizes the sum of squared reprojection errors

(14)

where represents the Euclidean distance and and

are the estimated ideal correspondences (i.e., before corruption

with Gaussian noise) that exactly satisfy .

The reprojection errors are used to rank the quality of the es-

sential matrices proposed in the RANSAC loop. The number

of inliers for a proposed essential matrix is determined by the

number of correspondences with reprojection errors below a

threshold . This threshold is set based on the expected noise in
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Fig. 11. Epipolar geometry and correspondences. The given image pair illus-
trates the MAP refined image-based epipolar geometry. RANSAC determined
398 consistent inliers designated “x,” from the putative set of 405 matches. The
rejected outliers are designated “o.” Scene dimensions � 2.5 m � 2 m.

feature locations and with some testing on actual images. Cal-

culating the reprojection error requires triangulating the ideal

feature points [36]. We use Kanatani’s fast iterative method

[37]. Fig. 11 shows the resulting image-based points consid-

ered inliers by RANSAC. The epipolar geometry in the figure

is a refinement by MAP estimation from the RANSAC inliers

(Section III-B6). Fig. 12 illustrates the triangulated correspon-

dences and the cameras in the frame of the first camera.

4) From the Essential Matrix to Motion Estimates: The es-

sential matrix that best explains the data according to RANSAC

is decomposed into a rotation and translation using singular

value decomposition (SVD) [10, ch. 10]. This approach has a

fourfold ambiguity on relative pose. To determine which is the

correct solution we check that triangulated points are in front of

both cameras.

5) Two-View Critical Configurations: Planar or nearly planar

scenes are frequently encountered in surveys of the ocean floor.

For the uncalibrated case, there is a continuum of fundamental

matrices consistent with the data. In the case of a calibrated

camera, two views of an unknown plane will have at most two

valid essential matrices [38]. The ambiguity can be resolved by

requiring all points to be in front of both cameras except in the

case where all points are closer to one camera than the other.

Fig. 12. Triangulated inliers for the pair in Fig. 11. Coordinates in meters, in the
reference frame of the first camera. (a) 3-D feature locations. (b) Interpolated
surface, shaded by depth from the first camera. The camera frames are as a
three-axis frame connected by the baseline (wider line).

This situation can happen when the vehicle motion has a signif-

icant component toward or away from the bottom.

Planar scenes are a particular case where scene points and the

camera centers fall on a ruled quadric [39], [40]. In the general

case of ruled quadrics, there will be up to a threefold ambiguity

in motion and structure for the uncalibrated case. For the cali-

brated case, the number of interpretations is two. Each interpre-

tation will place the scene points and camera centers on distinct

ruled quadrics. A dense set of points (hundreds) from a natural

scene is unlikely to fall on a ruled quadric, but in cases of low

overlap (tens of points), this could happen. In Section III-B6,

we use the motion prior from navigation instruments to disam-

biguate image-based solutions.

6) Final Motion Estimate: The previous section recognizes

that the output of the RANSAC stage is a set of inliers associ-

ated with one of possibly several interpretations of motion. The

six-point algorithm can be used with more than six points and

in fact we use it with all inliers to generate possible essential

matrices. In cases of multiple interpretations, we must rely on

additional information. We choose the relative pose encoded in

the essential matrix that is closest to the relative pose prior from

navigation sensors. More specifically, the image-based relative

pose with the smallest Mahalanobis distance ,

with the covariance of the prior, is selected as the initial

estimate

(15)

where are the translation and orientation

parameters (as Euler angles) for the th essential matrix, and

is the similarly defined relative pose from the navigation

sensors. Since relative pose is recovered only up to scale from
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images, the baseline magnitude is normalized to unit length and

the covariance is constrained to be zero in the direction of mo-

tion. The baseline of the image-based solution is then scaled

according to the projection of the prior baseline

(16)

7) Bundle Adjustment: The final relative pose estimate is

based on a bundle adjustment of pose and 2-D feature locations.

From Bayes rule, we have

(17)

which in terms of parameter estimation states that the posterior

distribution of a vector of parameters (associated with

a model) , given observations , is proportional to the likeli-

hood of the data, given the parameters and the prior .

The MAP estimate maximizes the total posterior probability

of the model given the observations and prior knowledge. We

choose to refer to the MLE when using only image-based mea-

surements (uniform prior) and MAP estimation when including

navigation sensor measurements, though in practice, the navi-

gation information is included as additional observations.

We assume conditionally independent measurements. The

MLE is then

(18)

For image-based measurements given the relative pose

and structure , the measurements can be con-

sidered to have Gaussian distributions centered around the true

reprojections

(19)

Taking the negative log-likelihood, we express the MLE

problem as a minimization of the cost function

(20)

Since the measurements are assumed to be independent, the

measurement covariance is diagonal and the cost function can

be expressed as

(21)

where is the measurement on camera for feature , and

is the relative pose estimate from imagery and is the es-

timate of the position of the th 3-D feature point. For MAP

estimation, the pose sensors provide a relative pose prior. The

initial estimate close to the navigation-based pose together with

the extra cost term that penalizes large deviations from the nav-

igation-prior provide a robust two-view relative pose estimate.

The cost function being minimized then takes the form

(22)

with the additional term accounting for the relative pose prior,

which has the form of a Mahalanobis distance similar to (15)

with being the relative pose vector estimate from imagery.

8) Robust Estimation: The minimization of squared resid-

uals is optimal in the maximum-likelihood sense for zero mean

Gaussian noise. A Gaussian noise model has a distribution with

small tails, reflecting that large errors are unlikely. But in prac-

tice large errors occur more often than the Gaussian distribution

suggests (i.e., from poor feature localization or from incorrect

correspondences that satisfy two-view but not multiview con-

straints). When this is ignored (and noise is assumed Gaussian),

the minimization of squared residuals is strongly affected by

outliers.

Least squares minimizes

(23)

where is the weighted residual for the

th measurement.

M-estimators [41] reduce the sensitivity to outliers by re-

placing the with a that grows more slowly for large

while remaining symmetric, positive definite, and having a

minimum at zero

(24)

Several choices of have been proposed. The Cauchy

M-estimator [42] weighs the residuals in a manner that assumes

a Cauchy distribution rather than a Gaussian, which allows for

a larger proportion of large errors

(25)

We use this estimator in all bundle adjustment calculations

throughout this paper. The soft outlier threshold

achieves 95% asymptotic efficiency on the standard normal dis-

tribution [41].

C. Growing Submaps in the Three-View Case

In cases where scene elements are viewed in three (or more)

views the algorithm attempts to obtain the pose of the third view

by a modified version of robust resection [30] (Fig. 13), other-

wise the two-view essential matrix estimation is used. The re-

section stage produces the approximate pose of the camera that

is most consistent with the proposed correspondences between

image points and 3-D structure. The approach in [22] considers

the bundle adjustment problem of the latest three views while

reducing the free parameters to the latest camera pose and the

feature points it views. It takes advantage of points seen in the

three views as well as those in the last two views. Though ef-

ficient, this technique does not handle uncertainty and prior in-

formation in a consistent fashion. We have prior information of

the relative pose between the first and second cameras as well

as between the second and third cameras. We choose to fix the

origin on the frame of the first camera and leave the second and

third cameras to be adjusted. In essence, we solve the MAP es-

timate of the trifocal tensor as a way to produce an estimate of

the latest pose and the uncertainty in pose and structure.

Given three views 0, 1, and 2 and the measured (noisy) cor-

respondences between the views , and

the correspondences between pairs of views ,

, , under the assumption of isotropic
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Fig. 13. Illustration of growth of a submap based on resection. Images (a) and (b) have corresponding features marked by dots. The structure and motion implied
by those correspondences is illustrated in (d) with units in meters. Images (b) and (c) have correspondences marked by circles. The features viewed by the three
images are marked by both a dot and a concentric circle. (e) These features are used in resection to initialize the pose of the third camera. (f) Then, the additional
correspondences between (b) and (c) are triangulated and the poses refined. Scene dimensions � 1 m � 0.8 m.

Gaussian noise corrupting the interest point locations, the MLE

for the poses and structure minimizes the sum of squared repro-

jection errors

(26)

where represents the Euclidean distance, are the

estimated ideal correspondences (i.e., before corruption with

Gaussian noise) for camera , and is the index into the corre-

spondence set. The role of the structure is implicit in (26). More

explicitly, we have that the projection of a 3-D point onto a

camera with pose is

(27)

Using the camera projection (27), we expand (26)

(28)

The MAP estimate adds cost terms based on relative pose

prior (from pose sensors) similar to the ones used in the relative

pose MAP estimation, which biases the solution to the scale

implied by the navigation sensors

(29)
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where using the composition notation from [43] the discrepancy

between vision- and navigation-based relative pose is given by

(30)

where is the head-to-tail frame composition and is the in-

verse frame composition. The weighted error is

, where corresponds to the estimated covariance

of propagated from the covariance of .

D. Submap Size

We have proposed using reconstructions of subsequences

as the basic unit from which to derive the network of images

and feature points for a final global adjustment. An important

issue in this approach is setting the size of submaps. The size

(or number) of submaps affects the complexity of multiple

bundle adjustments, the reliability of matching submaps, and

the complexity of the resulting network of submaps. We dis-

cuss these points and suggest that it suffices to close submaps

based on the number of features they contain, with improved

performance arising from smaller submaps. Thus, we choose to

create submaps with at least three images and up to 2000 3-D

features.

1) Bundle Adjustment Complexity: Each step in a sparse

bundle adjustment of features and views has complexity

associated with the inversion of the sparse

normal equations [44]. If we break down the problem into

submaps with no overlap, then each submap bundle adjusts

with complexity assuming that the

features and the views are evenly distributed in each submap.

The complexity for the total sequence (the bundle adjustment

of submaps) is . Therefore, smaller

bundle adjustments reduce the overall complexity in proportion

to . In the presence of overlap between submaps, the com-

plexity grows linearly with the overlap fraction and number

of submaps . The complexity of processing

one submap does not change but the overall complexity is

. If a sequence is to be split

into submaps and each submap bundle adjusted, then there are

significant computational savings to be had by using smaller

maps.

2) Uncertainty in Structure and Motion: An incremental re-

construction can drift relative to the “true” structure because the

imaging process only relates features that are spatially close to

each other. We choose to use the estimate of covariance in 3-D

feature positions as an indication of possible drift, given that

ground truth is not typically available. Our local bundle adjust-

ment procedure fixes part of the gauge (scale) implicitly through

the relative pose prior provided by navigation sensors. The ref-

erence frame origin and orientation are coincident with the first

camera [45]. But for registration purposes the uncertainty (and

weight) of reconstructed 3-D points should reflect the quality

of the triangulation rather than an arbitrary choice of reference

frame. Therefore, we choose to express the uncertainty of 3-D

points with six gauge freedoms (orientation and translation).

This is achieved by simply eliminating the rows in the Jaco-

bian corresponding to the equations that fix the origin to the

first camera before calculating the covariance of the poses and

structure by using the pseudoinverse (zeroing the six smallest

singular values) [46].

3) Submap Matching and Network Complexity: To propose

putative matches based on similarity between submaps and

takes time where and are the number of fea-

tures in each submap. Since , we realize that reg-

istering submaps by similarity is . But

matching all submaps to all submaps is with the lower

cost of matching smaller maps offset by the need to match more

maps. However, for a sparse network where most nodes have

edges to a few adjacent nodes, as in a survey with a moving

vehicle, we can expect that edges exist and that a rea-

sonable matching technique will also perform matches.

The overall complexity of matching for the sparse network case

is with more (smaller) submaps saving effort at the

submap matching stage.

E. Submap Closing

Once a submap contains enough 3-D features, it is closed and

a new submap is started. The structure associated with the most

recent half of the cameras in the map being closed is used to start

the new submap. This provides a good balance between number

of maps and improved matching.

We perform a final bundle adjustment using all poses and

prior pose information on the submap before closing it. A sparse

bundle adjustment routine [10, Appendix 4], [42] is used to min-

imize the cost function

(31)

where is the pose estimate from imagery for the th camera,

is the residual vector between the relative pose estimate

from navigation sensors and imagery (30), and the estimate

of the position of the th 3-D feature point. This is the same

procedure used on the triplets (after resection) but it considers all

views. The initial guess is provided by the incremental submap.

Fig. 14 contains two views of the 3-D structure of a submap at

this stage.

The relative pose between the new submap and the previous

submap corresponds to the pose (in the reference frame of the

submap being closed) of the camera that becomes the origin of

the new submap.

IV. GLOBAL REPRESENTATION

The temporal sequence of images is processed into a set of

3-D submaps with estimates of coordinate transformations be-

tween temporally adjacent submaps. This can be viewed as a

graph where each node is the origin of a submap and the edges in

the graph are the coordinate transformations between submaps

(Fig. 15). Our algorithm attempts to establish additional spatial

relationships between submaps (corresponding to overlap from

parallel tracklines or loop closures).

A. Submap Matching

While additional edges in the graph could be determined

at the image level using the two-view algorithm, we propose

that spatial overlap is more easily resolved at the submap

level (Fig. 17). Submaps must be matched to establish new
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Fig. 14. Two views of the MAP bundle adjustment of an example of an incre-
mental reconstruction consisting of 12 images and close to 3000 points. Cam-
eras are represented as three-axes frames. The temporal sequence is from left to
right. Temporally adjacent frames are connected by a wider line. Spatially ad-
jacent frames (determined through resection) are linked with lines. (a) The dots
represent the estimated position of 3-D points in the reference frame defined by
the first camera. (b) For ease of interpretation, a surface has been fit through the
points using a Delaunay triangulation. The surface is shaded according to the �
coordinate. Axes and color bar units are in meters.

Fig. 15. Placing nodes (gray circles) in a globally consistent frame. From rel-
ative transformations (black links) in a temporal sequence (a), to proposing and
verifying new additional links (b) to a network with nodes consistent with the
relative transformations (c).

edges in the graph. Registering two sets of 3-D points with

unknown correspondences is traditionally performed with

iterative closest point (ICP) techniques [47]. In its strictest

sense, ICP is only a refinement of the transformation between

two sets of 3-D points that are already relatively well aligned

and in which all points in one set have a match in the other.

Given the fairly sparse set of 3-D points that make up a submap

and the potentially poor initial alignment, ICP is not adequate

for our application, and therefore, it is not used. However, the

very fact that 3-D points are created from visual information

Fig. 16. Multiple views of a 3-D feature: (left column) the image and the feature
neighborhood extracted as described in Section II-C and (right column) a detail
of around the feature point. The top two rows correspond to images that belong
to a submap on the first trackline of the survey. The bottom two rows are from a
submap from the second trackline. Left-hand-side column scene dimensions�
2.5 m � 2 m. Right-hand-side column scene dimensions� 0.32 m� 0.25 m.

implies that their appearance in multiple views (Fig. 16) is char-

acteristic enough to effectively establish correspondences and

be triangulated. Therefore, we extend the feature description

and similarity-based matching between images to matching

submaps by relying on the appearance of 3-D points to propose

corresponding features between submaps. The underlying as-

sumption is that a similarity measure that was effective to match

3-D points along track will also be effective when matching

across submaps. Corresponding 3-D points are proposed based

on appearance and a robust registration using RANSAC with

Horn’s algorithm [48] is used to determine which points are in

correspondence and the transformation parameters (Fig. 17).

1) 3-D Feature Descriptors: For similarity-based matching

purposes, we propose to describe a 3-D feature by the average of
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Fig. 17. Views of the registered low overlap submaps that contain the images in
Fig. 16. The dots correspond to 3-D features of the submap on the first trackline
of Fig. 16. The “x” symbols correspond to a submap on the second trackline of
Fig. 16.

all acquired 2-D views of the neighborhood around the feature.

We assume that for each view the neighborhood is represented

in a canonical frame as described in Section II (i.e., an affine

invariant region mapped onto a circle with orientation known to

a few degrees from navigation).

Due to superposition and linearity the moment of an average

image patch corresponds to the average of the moments. Thus,

for a 3-D feature viewed by cameras, with an extracted

2-D region from the th camera, and associated feature de-

scriptor (Section II-C), we construct a descriptor for the

3-D feature as the average of all 2-D descriptors

(32)

2) Similarity Measure: Putative 3-D feature correspon-

dences between different submaps are proposed based upon

similarity of descriptors. The measure of Section II-C (which

approximates the cross correlation between patches in the

invariant frame) is used to propose matches.

3) Robust 3-D to 3-D Matching: Given putative correspon-

dences between 3-D points from two submaps, we seek to reg-

ister the two sets of 3-D points. The goal is to find the simi-

larity transformation (translation, rotation, and scale) that aligns

the 3-D points from source submap onto , the corre-

sponding points on the target submap .

To support robust outlier rejection, we utilize RANSAC

based on a minimal set of three points (with Horn’s algorithm

[48]). This determines the inliers in the putative correspon-

dence set and an initial approximation to the transformation.

A second pass with a limited search range based upon the

estimate from the first pass typically produces more proposals

and correct matches. The RANSAC loop is modified to include

prior knowledge regarding the transformation scale between

submaps. As the scale of the submaps is derived from the

same instruments, registered submaps should have a similarity

transformation with a scale close to unity. This helps speed up

the RANSAC loop by allowing us to only evaluate the support

of transformations with scale such that .

For simplicity, we ignore the estimated covariance of 3-D

points in the RANSAC loop. In this case, the solution from

Horn’s algorithm is equivalent to an unweighted least squares.

Then, we refine this solution using the uncertainties of all cor-

responding structure points, which corresponds to minimizing

the sum of Mahalanobis distances

(33)

(34)

with the covariance of the error approximated by the first-order

propagation of the covariance of the points being registered

(35)

We assume that the estimates of structure points between

submaps are uncorrelated, which is a valid assumption for

submaps that do not share any cameras (e.g., across-track

submaps). The covariance of the transformation parameters

can be estimated to first order from the Jacobian of the cost

function being minimized in (34) evaluated at the optimum.

B. Edge Proposal or Topology Refinement

Starting from a temporal sequence, we wish to establish ad-

ditional links between overlapping submaps (which will lead

to establishing additional links between overlapping imagery).

This can be viewed as a refinement of a graph where each node

is a submap reference frame and each edge (or link) is a relative

transformation. Since submaps can be linked only to spatially

neighboring submaps, the graph is expected to be sparse. This

would require verifying only links if the node positions

were well known. Yet as links are added, we expect the spatial

relationships between nodes to change, possibly requiring addi-

tional link checks. Verifying edges (Section IV-A) is computa-

tionally expensive, so our approach must concentrate on likely

links by considering uncertainty in the node positions and by

updating node position estimates as links are added.

Possible approaches to estimating links include the following:

• estimating relative transformations from current global es-

timates: ;

• estimating relative transformations from composition of

relative transformations: .
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Fig. 18. Two views of the reconstruction of poses and structure for the Johns
Hopkins University (JHU) tank. The camera poses are connected by a line to
suggest the trajectory followed by the ROV. A Delaunay triangulation interpo-
lates a surface between 3-D feature points. The structure is shaded according to
height. Units are in meters.

If estimates of the node poses are maintained in a global ref-

erence frame, then additional links can be inferred by measuring

distances and uncertainties between nodes. Though the proposal

process is simple, maintaining nodes in a common frame re-

quires enforcing consistency among the cycles that may form

as additional edges are included in the graph. It should be noted

that while consistency is important before attempting a bundle

adjustment (Section IV-C) it is not essential when attempting to

establish edges in a sparse graph.

The alternative approach is to remain in relative frame space

and use composition of relative transformations to express the

relative pose between nodes that do not have a direct link. Be-

cause there may be multiple paths between nodes, an approxi-

mate solution is to use a shortest path algorithm such as Dijk-

stra’s algorithm. The Atlas framework advocates this approach

for map matching [49]. In this case, the proposal process is more

complex since it must place nodes relative to a base node by

composition along the shortest path. As more edges become

available more paths must implicitly be considered. We apply

this approach to the 6-DOF problem of submap transformations.

After estimating relative transformations between a pair of

submaps it is necessary to determine which submaps are likely

to overlap. This depends on several factors such as camera field

of view and altitude. A simple approach is to calculate the dis-

tance and uncertainty between the centroids of the structure of

each submap according to the relative transformation and its un-

certainty. A maximum allowable distance for overlap can be es-

timated based on the camera field of view and the altitude of

the cameras. For overlap calculations, we model the submap as

a disc with diameter equal to the width of the camera footprint.

This is a simple and conservative measure since submaps tend

to be longer than their width.

The proposal stage calculates a 99% confidence interval for

the distance between submaps. If the maximum distance for

overlap is within the interval (or greater), then overlap is consid-

ered possible. The most likely link is the one that has the highest

proportion of the confidence interval within the maximum dis-

tance for overlap. By proposing the most likely link within the

range, the graph tends to “zipper up” nodes, closing loops last.

Alternatively, the least likely link within range of overlap could

be verified first. Because there is a lower probability that the

nodes actually do overlap this strategy can lead to a high pro-

portion of unsuccessful matching attempts.

The proposal and verification steps are repeated until a user-

defined maximum number of allowable links is achieved. A

good choice is eight times the number of submaps which, on

average, allows maps to connect to the previous and next maps

in the temporal sequence and up to six other nearby maps.

C. Node Estimation: Global Poses From Relative Poses

Once relative poses are determined we must place nodes in

a global frame such that they remain consistent with all the

measured relative poses. This can be formulated directly as

an optimization problem to yield batch or recursive nonlinear

least squares solutions [50], [51]. These approaches suffer from

requiring to maintain the cross covariances between submap

frames. Sharp et al. [52] proposed a cycle consistency approach

that operates in relative space but produces consistent global

estimates without having to estimate or store cross covariances.

The graph can be seen as a distributed network and consistent,

conservative global estimates can be generated through fusion

by covariance intersection [53].

1) Nonlinear Weighted Least Squares: We seek to determine

the global poses that best explain all the relative pose measure-

ments and consider the navigation-based prior. By defining a

cost function associated with these discrepancies we can then

optimize an initial guess.

We define as the disparity pose vector between the compo-

sition of the estimates of global transformations and and

the measured relative transformation . Throughout this dis-

cussion, we use to represent an estimate of . In Smith, Self,

and Cheeseman’s (SSC) [43] notation, the relative pose vector

implied by the estimates of pose is obtained from a tail-to-tail

operation

(36)

where the transformation/pose parameters are related to the ho-

mogeneous transformation as . The disparity be-

tween the relative pose measurement (the MAP estimate
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Fig. 19. (a) Color-coded order in which links across track were added to the graph. The “zipper” effect in parallel tracklines is apparent as links close in time are
established before more distant ones. (b) Color-coded number of matching features between submaps. The loop closure can be seen in the relatively high number
of common features between the first and last submaps. (c) The plane view of the submap origins according to the shortest path algorithm: the temporal sequence
(fine black), the additional links (dotted–dashed), and the shortest uncertainty path from the origin node (wide gray).

from imagery and navigation) and the relative pose from

the tail-to-tail composition of estimates and is the error

measure we seek to minimize

(37)

can be thought of as the residual transformation in a short

cycle formed by the tail-to-tail estimate of the transformation

and the measured transformation by map matching

. Ideally the residual transformation should be the identity

(corresponding to no rotation and no translation). We use the

rotation vector representation (where the direction of the vector

specifies the axis of rotation and the magnitude of the vector

corresponds to the angle of rotation) for the orientation param-

eters of the residual transformation [54]

(38)

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 20, 2009 at 09:08 from IEEE Xplore.  Restrictions apply.



PIZARRO et al.: LARGE AREA 3-D RECONSTRUCTIONS FROM UNDERWATER OPTICAL SURVEYS 165

Fig. 20. (a) The reprojection errors (both � and � coordinates) for all reconstructed features. Some outliers are present though their effect is reduced by using
an M-estimator in the bundle adjustment. (b) A histogram of the same errors. For visualization purposes, 95% of the features with lowest associated reprojection
errors are displayed in the reconstructions of Fig. 18.

We also define the disparity between the global pose ac-

cording to navigation and our estimate of global pose

(39)

or directly in SSC notation

(40)

In a similar fashion to [50], we seek a set of global transfor-

mations of all submaps that mini-

mizes this error over all links. We formulate this as a weighted

nonlinear least squares optimization

(41)

where corresponds to the estimated covariance of prop-

agated from the covariance of , and corresponds to the

estimated covariance of propagated from the covariance of

.

An alternative to minimizing the discrepancy between the

composition of global poses is to directly minimize the 3-D dis-

tances between corresponding points of submaps, though it is

computationally more intensive because the number of equa-

tions is proportional to the number of corresponding points in-

stead of to the number of measured edges. However, this reduces

the sensitivity to poorly triangulated networks [55] where the

error in the frame transformations might appear small at the ex-

pense of large errors in the structure. The error measure becomes

(42)

(43)

In cases where the frame-based refinement is unsatisfactory

(i.e., the reprojection errors for the implied camera poses are

large or have strong biases), we switch to this cost function.

2) Camera Poses From Submaps: Once submaps are placed

in a global frame it is then possible to place the cameras that

form the submaps in the same global frame. These camera poses

are used as the initial estimate for the bundle adjustment of the

complete data set. By construction the pose of each camera in

a submap is in the frame of the first camera. The transforma-

tion from the node to the global frame can be composed with

the transformation of the camera pose to the node origin. Since

temporally adjacent submaps share cameras there is more than

one way of mapping the cameras that are common between

submaps. We use the geometric mean [56] of the pose estimates

according to each submap (in the global frame) to obtain an ini-

tial estimate of the camera poses.

D. Bundle Adjustment

Once camera poses are in the global frame the same sparse

bundle adjustment routine used to close the submaps is used on

the entire data set. We obtain the MAP estimate by including

cost terms associated with the navigation measurements, as de-

scribed in Section III-E.

V. RESULTS AND VALIDATION

A. JHU Tank Structure Ground Truth

To illustrate the submap matching process we present in

Fig. 18 the resulting structure from a pose-instrumented re-

motely operated vehicle (ROV) survey (using the Seabed

camera system) performed at the Johns Hopkins University

(JHU) Hydrodynamics Test Facility (Baltimore, MD). We

draped a carpet over the bottom of the tank and placed real and

artificial rocks of varying sizes on the bottom to simulate an
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Fig. 21. (a) Height map from the SFM reconstruction. Surface based on a De-
launay triangulation. The labeled points were manually selected for the initial
alignment with the laser scan. (b) Height map from the laser scan. The outline
of the registered SFM reconstruction is shown as a segmented line. Color bar
units are in meters.

underwater scene with considerable 3-D structure. The evolu-

tion of the submap graph for that reconstruction is conveyed

in Fig. 19 while the reprojection errors for the structure are

presented in Fig. 20.

For validation purposes, the tank used in Fig. 18 was drained

and scanned with an HDS2500 laser scanner (serial number

P24, Leica Geosystems, St. Gallen, Switzerland). The registered

model of the tank has more than 3.8 million points with an esti-

mated accuracy of 1.2 mm. The surface area was approximately

41 m resulting, on average, in nine range measurements for

each cm .

We initially aligned SFM reconstruction with the laser data

by selecting easily recognizable landmarks (Fig. 21) and then

refined through ICP. Not all points could be used for registration

since parts of the carpet moved (after the tank was drained the

carpet settled under its own weight). We attempted two registra-

tion strategies to overcome the nonrigid transformation between

surfaces: using points belonging only to rocks to register (seg-

Fig. 22. Distance map from SFM 3-D points to the laser scan after ICP registra-
tion. Areas of large discrepancies tend to correspond to the carpet being buoyant
for the visual survey. An outlier in the reconstruction produced the large error
visible at approximate � � 1.4 m and � � 0.8 m. Color bar units are in meters.

Fig. 23. Distribution of minimum distances to the laser scan from each recov-
ered 3-D point. Because of the moving carpet only the points below the me-
dian error where used to calculate the registration transformation. The simi-
larity-based registration results in a root mean square (RMS) distance of 3.6 cm.
The scale is recovered to within 2%.

menting by height under the assumption that the rocks in the

scene did not move), and performing ICP based on the points

with registration errors below the median error (under the as-

sumption that at least half the points remained fixed). Results

were very similar for both strategies and we present the me-

dian-based approach since it highlights regions where the carpet

moved.

Figs. 22 and 23 indicate that the registration errors are of the

order of centimeter level with a 2% change in scale. These re-

sults suggest that the approach is capable of delivering reason-

able estimates of scene structure.
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Fig. 24. Points below the median error (x) and above (dots). Registration pa-
rameters where calculated using points below the median error. By referring to
Fig. 21, outliers tend to group around the smooth, raised folds of the carpet,
which clearly do not correspond to the drained carpet surface.

Fig. 25. Two views of the reconstruction as a surface through the recovered
3-D points. The camera trajectory is also presented as a black line (seen above
the seafloor reconstruction on the right-hand side view). Strong swell signifi-
cantly perturbed the vehicle trajectory yet the consistency of the reconstruction
is apparent in features such as the sand ripples on the bottom.

By using points below the median error to calculate the sim-

ilarity transformation to register the SFM and laser data we ef-

fectively segment the data into two halves, one of which was

allowed to deform while the other was not. It is interesting to

note from Fig. 24 that most of the outliers correspond to the

broad carpet waves.

Fig. 26. (a) Plan view of the camera trajectory (dark gray) and common features
between cameras (light gray links). (b) The 99% confidence ellipses for the ��
position of the cameras. Every tenth camera is numbered on both figures to
suggest the temporal sequence.

B. Bermuda Survey

In August 2002, the SeaBED AUV performed several tran-

sects on the Bermuda shelf as well as some shallow-water engi-

neering trials. This section presents results from a shallow-water

(20 m approximately) area survey programmed with several par-

allel tracklines for a total path length of approximately 200 m

and intending to cover 200 m . Due to very strong swell and

compass bias the actual path deviated significantly from the as-

sumed path. This data set illustrates the capabilities to infer links

in the graph of submaps to yield a consistent reconstruction.

A section of 169 images demonstrates matching and recon-

struction along the temporal sequence and across track with

multiple passes over the same area. Fig. 25 presents Delaunay

triangulated surfaces through the reconstructed points and the

camera trajectory. Plan views of the camera trajectory, the links

(common 3-D features) between views, and the uncertainty in

the position of the cameras are shown in Fig. 26.

Fig. 27 shows feature points and the convex hull of the

submaps. Spatial overlap between temporally adjacent submaps

is consistent while across-track overlap is a function of the

trajectory followed by the vehicle.

VI. CONCLUDING REMARKS AND FUTURE WORK

We have presented a brief overview of an underwater struc-

ture from motion algorithm that takes advantage of vehicle nav-
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Fig. 27. (a) Plan view of the features for each submap. (b) Convex hull of the
3-D features of each submap. The varying degrees of spatial overlap between
submaps are apparent in these figures.

igation estimates to constrain the image-based solution. This

work will be extended to provide dense 3-D reconstructions of

the ocean floor, which in turn can lead to improved imagery by

range-based compensation of absorption [57]. Additional work

will also exploit the resulting self-consistent pose-and-structure

solution to detect and compensate for some navigation sensor

biases [31].
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