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Abstract

We consider a variation of a problem stated by Erdős
and Szekeres in 1935 about the existence of a number
fES(k) such that any set S of at least fES(k) points in
general position in the plane has a subset of k points
that are the vertices of a convex k-gon. In our setting
the points of S are colored, and we say that a (not nec-
essarily convex) spanned polygon is monochromatic if
all its vertices have the same color. Moreover, a poly-
gon is called empty if it does not contain any points of
S in its interior. We show that any bichromatic set of
n ≥ 5044 points in R2 in general position determines
at least one empty, monochromatic quadrilateral (and
thus linearly many).

1 Introduction

Throughout this paper all point sets in the plane are
assumed to be in general position, i.e., no three points
in the set are collinear. When a subset T of a point
set S is the vertex set of a polygon P , we say that S
contains P , that T determines P , or that P is spanned

by points in S.

Erdős and Szekeres [6] asked the following ques-
tion. “What is the smallest integer fES(k) such that
any set of fES(k) points contains at least one con-
vex k-gon?” In the mathematical history this prob-
lem is also known as the ”Happy End Problem”, see
e.g. [3, 11]. Exact values have been known for k ≤ 5
and only very recently the case k = 6 has been settled
by Szekeres and Peters [17] by an exhaustive computer
search. For k ≥ 7 upper bounds exist, but exact val-
ues are unknown. See also Erdős and Guy [5] for the
related problem on the smallest number of convex k-
gons determined by any set of n points in the plane.
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¶Departament de Matemàtica Aplicada II, Universi-
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In a variation raised by Erdős the k-gons are re-
quired to be empty, i.e., to not contain any point of
the point set in its interior. For k ≤ 5 exact lower
bounds on the number of points to guarantee the ex-
istence of an empty k-gon are known: As already ob-
served by Esther Klein, every set of 5 points deter-
mines an empty convex 4-gon, and 10 points always
contain an empty convex pentagon, a fact proved by
Harborth [10]. However, Horton showed that there
exist arbitrarily large sets of points which do not con-
tain any empty heptagon [12]. Until recently the exis-
tence of empty hexagons remained open, but in 2005
Gerken [9] and independently Nicolás [15] proved that
every sufficiently large point set contains a convex
empty hexagon. Valtr [20] gives a simpler version of
Gerken’s proof, but requires more points. As for a
lower bound it is known that at least 30 points are
needed, that is, there exists a set of 29 points without
empty convex hexagons [16].

Several variations on the preceding problems when
the points in S belong to different classes – that are
usually described as colors – were introduced by Dev-
illers et al. [4]. In particular, a polygon spanned by
points in S is called monochromatic if all its vertices
have the same color, and it was proved in [4] that any
bichromatic set of n points in the plane determines at
least ⌈n

4 ⌉ − 2 monochromatic triangles with pairwise
disjoint interiors, which is tight. Later it was shown
in [1] that any bichromatic set of n points contains at
least Ω(n5/4) empty monochromatic triangles (no dis-
jointness is required), and they conjectured that any
bichromatic set of n points in R2 in general position
spans a quadratic number of empty monochromatic
triangles. For values of k larger than 3, Devillers et
al. showed that for k ≥ 5 and any n there are bichro-
matic sets of n points where no empty monochromatic
convex k-gon exists (Theorem 3.4 in [4]).

It is natural to wonder whether similar results are
possible when there are more than two colors. In [4]
(Theorem 3.3) this question has been settled by show-
ing that already for three colors there are sets not even
spanning any empty monochromatic triangle.

Hence, the interesting remaining case is the exis-
tence of empty monochromatic (convex) quadrilat-
erals in bichromatic point sets. Figure 1 shows a
set with 18 points which does not contain an empty
monochromatic quadrilateral, and larger examples
with 20 [2], 30 [7], 32 [21] and most recently 36 [13]
points have been found. However, all these examples
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Figure 1: Example without empty monochromatic 4-
gons

do contain non-convex empty monochromatic quadri-
laterals, while the one in Figure 1 does not.

Notice that every point set that admits an empty
convex heptagon will contain an empty monochro-
matic convex quadrilateral for any bicoloration, be-
cause at least four of the vertices of the heptagon will
have the same color; however, it is known that for
n ≥ 64 any bichromatic Horton set contains empty
monochromatic convex quadrilaterals. These facts led
to Conjecture 3.1 in [4], which states that for suffi-
ciently large n any bichromatic set contains at least
one empty monochromatic convex quadrilateral.

To date this conjecture has not even been settled
for quadrilaterals which are not required to be con-
vex, a weaker conjecture that arose later [8, 14], as
no progress in the original formulation had been ob-
tained. In this paper we show that this relaxed ver-
sion of the conjecture is true: if the cardinality of
the bichromatic point set S is sufficiently large, there
is always an empty (possibly non-convex) monochro-
matic quadrilateral spanned by S. To this goal, we
prove several sufficient conditions and then show that
for large point sets at least one of them must hold.

As already mentioned, throughout this paper we
assume S to be a set of n points in the plane in general
position, that is, no three points of S lie on a common
line. Also, for the sake for brevity, we will use the
term 4-gon instead of quadrilateral for the rest of this
paper. If S = R∪̇B is a two-color partition of a point
set, then we also write S = (R, B), where R is the set
of red, and B the set of blue points, respectively, with
r = |R|, b = |B|, r, b ≥ 0 and n = r + b.

With CH(S) we denote the set of points of S on
the boundary of the convex hull of S (the extreme
points of S), with h = |CH(S)| their number and
with i = n − h the number of points in the interior
of S. Similarly we define CH(R), hr = |CH(R)|, and
ir = r − hr.

2 Preliminaries on uncolored point sets

Let us start with a result on triangulations for (un-
colored) point sets which is of interest on its own.

Lemma 1 Let S be a set of n points in general po-
sition in the plane and let π be a fixed parity (even
or odd). Then there exists a triangulation T (S) of S
such that the parity of the degrees in T (S) of at least
2⌊n−1

4 ⌋ points from S is π.

Proof. Omitted. �

For odd parity the preceding result can be slightly
strengthened to a lower bound of n−1

2 . As the im-
provement is marginal and we believe that a much
better result is possible, we skip the details and for-
mulate the following problem instead:

Open problem 1 Which is the maximum value of
a constant c such that for any set S of n points in
general position there exists a triangulation T (S) in
which at least cn− o(n) points of S have odd degree?

Next we consider a fixed triangulation T (S) of S
and give lower bounds of how many triangles of T (S)
have to be “pierced” (by placing an obstacle in the
interior) so that T (S) does not contain any unpierced
(that is, empty) 4-gon. The number #odd of points of
S with odd degree in T (S) plays a central role, as for
each interior point with degree δ we need to pierce at
least

⌈

δ
2

⌉

incident triangles. Summing over all points
leads to the following lemma.

Lemma 2 If for a triangulation T (S) the number of
pierced triangles is less than n+ #odd−4h−6

6 , then there
exists an unpierced 4-gon in T (S).

Proof. Omitted. �

3 Bichromatic sets with small convex hulls

Now let S = (R, B) be a bichromatic set. We will tri-
angulate R and use the results of the previous section
to get bounds for piercing the resulting red quadri-
laterals with blue points from B. From Lemma 2 we
immediately get:

Lemma 3 Let S = (R, B) be a bichromatic point
set and T (R) a triangulation of R. With #odd(R) we
denote the number of points of R with odd edge degree

in T (R). If b < r +
#odd(R)−4hr−6

6 then there exists at
least one red empty 4-gon consisting of two adjacent
triangles in T (R).

A consequence of Lemma 3 is a relation between the
number of points in R of odd degree in T (R) and the
size of the convex hull of R, namely that if #odd(R) >
4hr +6−6(r− b) then there exists at least one empty
red 4-gon in the triangulation T (R). We can now
combine this fact with the choice of an appropriate
triangulation T (R), with #odd(R) ≥ 2

⌊

r−1
4

⌋

, whose
existence has been proved in Lemma 1, and we get:
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Proposition 4 Let S = (R, B) be a bichromatic

point set. If hr <
⌊ r−1

4 ⌋−3

2 + 3
2 (r− b), then S contains

at least one red empty 4-gon.

Note that for this result the role of R and B can
of course be switched. Proposition 4 also shows that
the worst case occurs if R and B have the same car-
dinality. In this case, or more generally for r ≥ b, we
can simplify the bound to hr < r

8 − 2. In particular,
this proves that if the convex hull of the larger sub-
set has sub-linear size, we immediately get an empty
monochromatic 4-gon.

4 Bichromatic sets with large discrepancy

In this section we consider the case that the cardi-
nalities of the red and the blue set differ significantly.
As a first step we generalize a result of Sakai and Ur-
rutia [18] on convex empty, monochromatic 4-gons to
simple, but not necessarily convex, 4-gons.

Lemma 5 If in a bichromatic point set r ≥ 3
2b + 4

then there exists at least one empty red 4-gon in R.

Proof. The proof is based on induction over b and
follows the lines given in [18]. Details are omitted. �

Let us recall that for a point set with an even num-
ber of extreme points, a quadrangulation is a maximal
planar bipartite graph. If the size of the convex hull is
odd, we allow one triangle. The number of 4-gons in
a quadrangulation of a point set is given in the next
observation in terms of n and h, a fact that will be
used in Lemma 6.

Observation 1 A quadrangulation Q(S) on a point
set S with n points and h extreme points contains
n −

⌈

h
2

⌉

− 1 empty 4-gons.

Notice that Lemma 5 can be rephrased in the form
that b

r−4 > 2
3 is a necessary condition for S to not

contain any empty monochromatic 4-gons. In combi-
nation with Observation 1 this leads to an interesting
iterative relation between the size of a set S = (R, B)
not containing an empty monochromatic 4-gon and
the maximum discrepancy between R and B.

Lemma 6 Let k ≥ 4 be a constant, f(k) = 4
3k(2k −

1), and g(k) = k
k+2 . If for every set S′ = (R′, B′) with

|R′| = r′ ≥ f(k), |B′| = b′ the inequality

b′

r′ − 4
> g(k) (1)

is a necessary condition for S′ to not contain an empty
monochromatic 4-gon, then for every set S = (R, B)
with r ≥ f(k + 1) the inequality

b

r − 4
> g(k + 1) (2)

is a necessary condition for S to not contain an empty
monochromatic 4-gon.

S

R

B
R

i
i

Figure 2: Proof of Lemma 6: red and blue layers.

Proof. The proof is based on the cardinality of
nested red and blue convex layers as depicted in Fig-
ure 2. Details are omitted. �

We are now ready to show that for sets with suf-
ficiently large cardinality the factor of discrepancy
has to be arbitrary small in order to avoid empty
monochromatic 4-gons.

Proposition 7 For l ∈ N, l ≥ 4, a set S = (R, B)
with r ≥ 4

3 l(2l − 1) and b ≤ l
l+2 (r − 4) contains an

empty monochromatic 4-gon.

Proof. For l = 4 the statement follows directly from
Lemma 5. For l > 4 we iteratively apply Lemma 6
for k = 4 . . . l− 1, where the precondition for the first
iteration is given by Lemma 5. Proposition 7 then
follows from the result of the last step. �

5 Putting things together

As a consequence of Proposition 7 we derive a lower
bound on the number of extreme points of the red set,
which guarantees the existence of empty 4-gons.

Lemma 8 For l ∈ N, l ≥ 4 let S = (R, B) be a set

with r ≥ 4
3 (l+1)(2l+1). Then hr ≥ r 2(2l+3)

(l+2)(l+3) + 8l
l+3

implies that S contains an empty monochromatic 4-
gon.

Proof. The proof is based on Proposition 7 and on
the cardinality of nested convex layers, similar to the
proof of Lemma 6. Details are omitted. �

By combining the results of Proposition 4 and
Lemma 8 we finally obtain our main result.

Theorem 9 Every bichromatic set S = (R, B) with
n ≥ 5044 contains an empty monochromatic 4-gon.
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Proof. Without loss of generality, assume that r ≥ b.

From Proposition 4 we know that hr <
⌊ r−1

4 ⌋−3

2 +
3
2 (r − b) is a sufficient condition to obtain an empty
monochromatic 4-gon. This can be simplified to hr <
r
8 − 2. On the other hand, Lemma 8 provides hr ≥

r 2(2l+3)
(l+2)(l+3) + 8l

l+3 for l ≥ 4 and r ≥ 4
3 (l + 1)(2l + 1) as

a second sufficient condition. So if

r

8
− 2 ≥ r

2(2l + 3)

(l + 2)(l + 3)
+

8l

l + 3
(3)

holds, then Theorem 9 follows. Using the inequality
r ≥ (4/3)(l+1)(2l+1) it follows that inequality (3) is
fulfilled for l ≥ 30, and thus for any set with r ≥ 2522;
in other words, for any set with n ≥ 5044 points. �

6 Open problems

The existence of convex empty monochromatic 4-gons
in sufficiently large bichromatic point sets is still open.
It seems that the techniques used in our approach
cannot be generalized to the convex case, as convexity
invalidates several of our lemmas and intermediate
results. Another interesting open question are non-
convex empty monochromatic k-gons for k > 4.

It would also be interesting to establish a 3D version
of these results for hexahedra consisting of two tetra-
hedra sharing a face. Let us recall in this respect that
Urrutia [19] proved that in any 4-colored point set
in R3 in general position there is at least one empty
monochromatic tetrahedron (in fact, a linear number
of them).

Let us finally mention again Open Problem 1, which
asks which is the maximum constant c such that for
any point set there always exists a triangulation where
cn − o(n) points have odd degree.
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