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Large carbon sink potential of secondary forests in
the Brazilian Amazon to mitigate climate change
Viola H. A. Heinrich 1✉, Ricardo Dalagnol2, Henrique L. G. Cassol 2, Thais M. Rosan3,
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Stephen Sitch 3, Tristram C. Hales5, Marcos Adami 6, Liana O. Anderson 7 & Luiz E. O. C. Aragão2,3

Tropical secondary forests sequester carbon up to 20 times faster than old-growth forests.

This rate does not capture spatial regrowth patterns due to environmental and disturbance

drivers. Here we quantify the influence of such drivers on the rate and spatial patterns of

regrowth in the Brazilian Amazon using satellite data. Carbon sequestration rates of young

secondary forests (<20 years) in the west are ~60% higher (3.0 ± 1.0Mg C ha−1 yr−1)

compared to those in the east (1.3 ± 0.3Mg C ha−1 yr−1). Disturbances reduce regrowth rates

by 8–55%. The 2017 secondary forest carbon stock, of 294 Tg C, could be 8% higher by

avoiding fires and repeated deforestation. Maintaining the 2017 secondary forest area has the

potential to accumulate ~19.0 Tg C yr−1 until 2030, contributing ~5.5% to Brazil’s 2030 net

emissions reduction target. Implementing legal mechanisms to protect and expand secondary

forests whilst supporting old-growth conservation is, therefore, key to realising their potential

as a nature-based climate solution.
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G
lobal forests are expected to contribute a quarter of the
pledged mitigation under the 2015 Paris Agreement, by
limiting deforestation and by encouraging forest

regrowth1. The Brazilian Amazon biome (Amazonia) is the lar-
gest continuous tropical forest on Earth, occupying 3% of ter-
restrial land. It stores ~10% of the global forest carbon
(120,000 Tg C)2,3 and between 2000 and 2010 sequestered
~150 Tg C yr−1 through natural growth (5% of global land sink),
while emitting ~143 ± 56 Tg C yr−1 through deforestation (~1.4%
of global carbon emissions)4–6. As part of their Nationally
Determined Contributions (NDC) to the Paris Agreement, Brazil
has pledged to restore and reforest 12 million hectares of forests
by 2030 to contribute to net emission reductions7. Part of this
reduction can be achieved by the natural regeneration of sec-
ondary forests on abandoned land, which are already regrowing
on ~20% of deforested land in Amazonia8–10.

Previous estimates of average net carbon uptake in young
(<20 years old) secondary forest range between 2.95 ± 0.4 and
3.05 ± 0.5 Mg C ha−1 yr−1, 11–20 times larger than old-growth
primary forests11,12. These estimates, which are based on limited
field data across the Neotropics, are unable to capture the dif-
ferent spatial patterns and rates of secondary forest carbon
sequestration, which are influenced by several drivers. This
includes environmental drivers such as shortwave radiation,
precipitation, soil fertility and forest water deficit, as well as
anthropogenic disturbances like fire and repeated deforestation
cycles prior to regrowth11,13–16. The secondary forest carbon
stock of regions with very high-water deficit (−1200 mm yr−1)
can be up to 85% lower compared to no water deficit (0 mm yr−1)
regions in the Neotropics11. The effects of these drivers are nei-
ther limited to secondary forest growth, nor are they static over
space and time, affecting the magnitude of forest carbon
sequestration and stocks17. A recent study showed that rising
annual mean temperatures and drought reduced tree growth in
Amazonian old-growth forests4. This effect, coupled with ongo-
ing deforestation suggests that the sink in these forests peaked in
the 1990s and is now steadily declining4. Considering these
changes, it is important to obtain a wider spatial and temporal
understanding of drivers affecting the magnitude and sustain-
ability of secondary forest regrowth.

Remote sensing products can be used to study these effects,
offering broad spatial and temporal coverage. With the avail-
ability of nearly four decades of Landsat data (30 m spatial
resolution), it is now possible to track the fate of deforested areas
over time, which includes the changing demography of secondary
forests across Amazonia10,18. According to satellite-based analy-
sis, secondary forests are typically part of a 5–10 year cycle of
clearance and abandonment since they are currently not pro-
tected by national policies aimed at curbing deforestation19,20.
These repeated deforestations are expected to decrease the carbon
sink of future regrowth forests. Deforestation of secondary forests
amounted to ~70% of total Amazonian forest loss between 2008
and 201421. However, the relationship between secondary forest
regrowth and environmental and disturbance drivers has never
been explored spatially explicitly using global remote sensing
products.

The primary aim of this study is to provide key advances in
understanding the spatial variation of secondary forest regrowth
in the Brazilian Amazon, a large and geographically complex
region. Previous studies have already provided the first steps to
understanding regrowth on a biome scale, influenced by some
driving variables11,14,22. Here we introduce additional environ-
mental and anthropogenic disturbance drivers that affect
regrowth, including local-scale drivers, and for the first time,
disaggregate their effects using a spatially explicit
approach11,14,22. We map secondary forests annually from 1985

to 2017, determine their ages10,18, and provide the first applica-
tions of these maps to analyse secondary forest regrowth in terms
of Aboveground Carbon (AGC)23–25. We present a map of
Amazonian secondary forest regrowth rates with the quantifica-
tion of the contemporary secondary forest carbon sink con-
sidering the impact of different drivers on AGC accumulation.
We use this to model the future carbon sequestration potential of
secondary forests relative to the Brazilian NDC targets.

We find that secondary forest regrowth and associated carbon
sequestration varies across regions within Amazonia, due to both
large-scale environmental drivers such as shortwave radiation and
local-scale drivers such as fire. Overall, secondary forests in the
North-West regrow up to twice as fast (3.0 ± 1.0 Mg C ha−1 yr−1)
compared to eastern regions (1.3 ± 0.3 Mg C ha−1 yr−1); however,
the impact of disturbances such as fire and repeated deforesta-
tions prior to regrowth only reduces the regrowth by 20% in the
North-West (2.4 ± 0.8 Mg C ha−1 yr−1) compared to 55% in the
North-East (0.8 ± 0.8 Mg C ha−1 yr−1). We find that the 2017
area of secondary forest, which occupies only ~4% of Amazonia,
can contribute significantly (~5.5%) to Brazil’s net emissions
reduction targets as stated in their NDC, accumulating ~19.0 Tg
C yr−1 until 2030 if the current area of secondary forest is
maintained (13.8 Mha). However, this value reduces rapidly to
less than 1% if only secondary forests older than 20 years are
preserved (2.2 Mha). We conclude that preserving the remaining
old-growth forest carbon stock and implementing legal
mechanisms to protect and expand secondary forest areas are key
to realising the potential of secondary forest as climate change
mitigation solutions.

Results
Impact of drivers on secondary forest regrowth. We used the
land-cover product MapBiomas (Collection 3.1)25 to identify
secondary forests and their ages from 1985 to 2017 and used the
European Space Agency Climate Change Initiative (ESA-CCI)
Aboveground Biomass product to model the regrowth of sec-
ondary forests across Amazonia23 (Supplementary Notes 1–3;
Supplementary Figs. 1–6). Based on these two products, we
identified and tested the effects of six key drivers on secondary
forest regrowth and AGC accumulation: (1) Average annual
shortwave (SW) radiation26; (2) Average annual precipitation27;
(3) Forest water deficit using the Maximum Cumulative Water
Deficit index (MCWD)28,29; (4) Soil fertility using the Soil Cation
Concentration (SCC) as a proxy30; (5) Burned area31 and (6) the
number of deforestations since the start of the data in 1985 prior
to the most recent regrowth, hereon simply termed “repeated
deforestations” (see Methods; Supplementary Table 1). Our ana-
lysis reveals significant differences in AGC accumulation in sec-
ondary forests considering these different drivers (Fig. 1;
Supplementary Tables 2–7). After forest age, SW radiation is the
most important variable influencing AGC (Fig. 1g). In areas of very
low annual SW radiation (<170Wm−2), the overall regrowth rate is
almost three times greater compared to areas of high SW radiation
(>187Wm−2), ~3.4 ± 0.6 and ~1.3 ± 0.4Mg C ha−1 yr−1, respec-
tively (Fig. 1a, Supplementary Table 7). SCC is the second most
important environmental driver (Fig. 1g). However, there is no
statistical difference in carbon accumulation under different SCC
conditions, furthermore the expected trend, increased carbon accu-
mulation with increased soil fertility, is reversed, probably due to the
dominant effect of other environmental drivers, which act on larger-
regional scales32–34 (Fig. 1d; Supplementary Table 4). Areas with
very low MCWD (>−180mmyr−1) assimilate almost double the
carbon compared to areas with very high MCWD (<−350mmyr−1)
in the first 20 years of regrowth (2.7 ± 0.7MgC ha−1 yr−1 and 1.5 ±
0.2MgC ha−1 yr−1, respectively) (Fig. 1b, Supplementary Table 2).
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Similar differences in the regrowth rates can be observed under
conditions of low mean annual precipitation (<1920mmyr−1)
compared to moderate and high conditions (1920–2210mmyr−1

and >2210mmyr−1, respectively) (Fig. 1c, Supplementary Table 6).
For most of our modelled regrowth curves, secondary forests

were able to reach AGC levels equivalent to those of old-growth
forests; however, the time taken to reach these levels is generally
more than a century (Supplementary Table 8). Our results also
show that in areas of anthropogenic disturbance such as fires and
repeated deforestations, the carbon accumulation rate was up to
75% lower and even plateaued within 11–40 years, thus
potentially never recovering to old-growth forest AGC values
(Fig. 1e and 1f; Supplementary Table 8). Our results showed that
fire occurrence, a predominantly anthropogenic disturbance35,
has a similar importance ranking as the most important
environmental driver influencing AGC (Fig. 1g), despite only
affecting 29.2% of secondary forest plots (Supplementary Fig. 8b).
Repeated deforestations were the least important of the drivers
assessed for modelling AGC regrowth across the entire biome
(Fig. 1g). However, regrowth rates in secondary forests exposed to
3+ deforestations prior to regrowth were 40% lower compared to
secondary forest plots only experiencing one deforestation in the
study period (Supplementary Table 8). The overall low impor-
tance may be linked to the small number of secondary forest plots
being exposed to repeated deforestations (26.3%) (Supplementary
Fig. 8a).

Mapping the spatial patterns of regrowth. To analyse the spatial
variation of regrowth rates in our models, we identified different
regions of Amazonia according to the three climate drivers: SW
radiation, annual precipitation and MCWD (Fig. 2a). For each
spatially explicit climate region we calculated the AGC value of
old-growth forest (Supplementary Table 9) and modelled how
secondary forest regrowth was further affected by different types
of disturbances: fire and deforestation (Fig. 3). Our analysis shows
distinct regrowth regimes emerging in these four heterogeneous
climate regions (Fig. 3), with regrowth in some regions condi-
tioned largely by natural, environmental drivers, and others by
anthropogenic disturbance drivers (Fig. 2b–e). In the North-
West, a region with generally high precipitation (mean of 2049
mm yr−1), low SW radiation (mean of 163.6Wm−2), little to no
water deficit (MCWD mean of −64.4 mm yr−1) and low SCC
(0.29 cmol (+)kg−1; Supplementary Fig. 7), regrowth rates were
generally the highest and hardly influenced by any kind of dis-
turbance. Here regrowth rates ranged between 2.4 ± 0.9 and 3.0 ±
1.0 Mg C ha−1 yr−1 in the first 20 years of regrowth (Fig. 3a;
Supplementary Table 9). In contrast, the North-East and South-
East regions have lower overall regrowth rates (1.3 ± 0.3 and 1.8 ±
0.3 Mg C ha−1 yr−1, respectively in the first 20 years) with fire
and deforestation disturbances reducing their regrowth by around
50% to as low as 0.6 Mg C ha−1 yr−1 in the North-East in the first
20 years (Fig. 3b–d). In the South-West and South-Eastern
regions fire disturbance is, respectively, the first and second most

Fig. 1 Secondary forest carbon accumulation with increasing age under different driving conditions. Drivers are a Annual mean downward shortwave

(SW) radiation (Wm−2), b Maximum Cumulative Water Deficit (MCWD; mm yr−1), c Annual mean precipitation (mm yr−1), d Soil Cation Concentration

(SCC; cmol(+) kg−1), e Fire occurrences between 2001 and 2017, and f Number of deforestations prior to regrowth between 1985 and 2017, where 1 refers

to areas that have only experienced the original conversion from old-growth forest to secondary forests during the period 1985–2017 with no subsequent

deforestation events. The bar graph g shows the average importance ranking of the drivers (a–f), as well as Forest age, in influencing Aboveground Carbon

(AGC) accumulation. The average ranking was calculated following 30 iterations of a conditional random-forest model. The importance has been ranked

from least important (1) to most important (7) and the vertical dotted line separates environmental drivers (left) from anthropogenic disturbance drivers

(right). Shading in a–f denotes the 95% confidence interval of the models, based on the median value of the initial data for each age—dots in figures. The

error bars in g denote the 95% confidence interval.
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important driver to influence AGC accumulation, after forest age
(Fig. 2d, e).

We validated our models with field AGC estimates of
secondary forests collected across Amazonia (284 samples across
33 locations) and found that our AGC estimates are statistically
similar (p > 0.01) within the four regions identified in Fig. 2a
(Supplementary Note 4; Supplementary Fig. 10). We also
compared the regional models with basin-wide models used in
previous studies and within the Brazilian Greenhouse Gas
Inventory (GHGI), which do not consider different environ-
mental or anthropogenic disturbance drivers21,36,37. In the
western regions, during the first 10 years of growth, our models
of ‘no disturbance’ were visually very similar to the other models
(Supplementary Fig. 11). We found no significant difference to
AGC estimates from the model used in previous research (p >
0.01; Supplementary Table 11). Estimates using the equation from
the GHGI were significantly higher across the 40 years modelled

in all four regions with disturbed areas having significantly lower
regrowth rates (p < 0.01; Supplementary Table 11; Supplementary
Fig. 11). This highlights the potential importance of being able to
disentangle the drivers influencing regrowth in different regions
and suggests that the regrowth sink as calculated in the GHGI
may be overestimated.

Modelling the 2017 and future secondary forest sink. We
quantify the net AGC change for the year 2017 by explicitly
considering the changes in secondary forest area from 2016 to
2017 and then apply the relevant regrowth model (Fig. 3) based
on the four climate regions and the disturbances these forests
experienced. Our results show that new regenerating forests and
existing secondary forests combined resulted in a carbon sink of
28.0 Tg C yr−1, while 16.1 Tg C yr−1 was emitted from the
reduction in secondary forest area due to deforestation, resulting

Fig. 2 Importance ranking of environmental and disturbance drivers on secondary forest regrowth grouped by climatological regions. a Regions are

grouped according to similarities in Maximum Cumulative Water Deficit (MCWD), annual average downward shortwave (SW) radiation and annual

average precipitation. See Supplementary Table 9 for quantitative interpretations of the regions. The average importance ranking for each of the six

variables, as well as Forest age, is shown for b the North-West region, c the North-East and Central-North region, d the South-West and Central region,

and e the South-East and North region. The average ranking was calculated following 30 iterations of a conditional random-forest model. The importance

has been ranked from least important (1) to most important (7) and the vertical dotted line separates environmental drivers (left) from anthropogenic

disturbance drivers (right). The error bars in b–e denote the 95% confidence interval. The abbreviation SCC in b–e refers to Soil Cation Concentration.
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in a net secondary forest carbon sink of 11.9 Tg C yr−1

(Fig. 4a–c). We find the total carbon stored in all Amazonian
secondary forests in 2017 to be 293.7 Tg C (Fig. 4d). We also
estimate that the potential carbon stock if all secondary forests
had regrown without experiencing any disturbances since the
beginning of the study period, could have reached 319.7 Tg C in
2017 (Fig. 4d).

Finally, to quantify the potential of the existing 2017 secondary
forests to contribute to reducing future net carbon emissions
according to Brazil’s NDC, we modelled future potential stocks
and the annual carbon sink for the decade ahead by considering
various levels of preservation (Fig. 5). Until 2030 we project a 90%
difference in carbon accumulation between the most ambitious
preservation plan (preserving all 13.8 Mha of secondary forest
areas) and the least ambitious plan (preserving 2.2 Mha including
only secondary forests older than 20 years in 2017; Fig. 5b), with
~19.0 ± 2.4 Tg C yr−1 and 2.0 ± 0.2 Tg C yr−1 being accumulated
for the two plans, respectively.

Discussion
In this study, we quantified the impact of environmental and
anthropogenic disturbance drivers on carbon accumulation in

Amazonian secondary forests. SW radiation was the most
important driving variable influencing secondary forest regrowth
(Fig. 1), with the areas of lowest SW radiation observed in wes-
tern Amazonia (~163.6Wm−2) having the highest regrowth rates
ranging between 3.0 ± 1.0 and 3.2 ± 0.6 Mg C ha−1 yr−1, con-
sidering no disturbances (Supplementary Figs. 7 and 9; Supple-
mentary table 9). These estimates of carbon accumulation in the
western regions are similar to previous estimates of 2.95 ± 0.4 and
3.05 ± 0.5 Mg C ha−1 yr−1 11,12, but this is the first time it has
been explored spatially explicitly considering environmental dri-
vers such as SW radiation. The higher estimated regrowth rates in
areas of lower SW radiation (Figs. 1 and 3a) are likely linked to
higher cloud cover resulting in more diffuse radiation and lower
vapour pressure deficit. Diffuse radiation can penetrate deeper
into closed forest canopies than direct shortwave radiation and
enhance productivity and thereby carbon sequestration13,38, while
a lower vapour pressure deficit encourages leaf stomata to remain
open, maximising productivity and thereby regrowth39.

There are synergies, or spatial correlations, between the drivers
that influence the regrowth of secondary forests (Fig. 1; Supple-
mentary Note 5 and Supplementary Fig. 13). For example, in the
South-East and North-East regions, regrowth rates are approxi-
mately 50% lower compared to both the two western regions,

Fig. 3 The effect of disturbance on region-specific regrowth models of carbon accumulation in secondary forests. The secondary forest regrowth

models are shown for the regions identified in Fig. 2a. In each region, the climatological variables of Maximum Cumulative Water Deficit (MCWD), annual

average shortwave radiation and annual average precipitation are: a North-West region, b North-East and Central-North region, c South-West and Central

region, d South-East and North region. The legend colours represent percentage of secondary forests that are affected by the type of disturbance in each

region prior to regrowth, namely: blue—No disturbance (“Single deforestation, Not burnt”), green—Only fire disturbance (“Single deforestation, Burnt”),

orange—Only deforestation disturbance (“Repeated deforestation, Not burnt”), purple—Both disturbances (“Repeated deforestation, Burnt). Shading

denotes the 95% confidence interval of the models based on the median value of the initial data for each age—dots in figures. See Supplementary Table 9

for quantitative interpretations of the qualitative definitions given here, for example “Low precipitation”. The abbreviation SCC in a–d refers to Soil Cation

Concentration.
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likely due to the hydro-climatic conditions which reduce growth
(low precipitation, ~1913 mm yr−1; very high MCWD, ~−325.5
mm yr−1; moderate SW radiation, ~181.7Wm−2). Furthermore,
this drier environment is more susceptible to burning, which
reduces regrowth rates even further (Fig. 3d) and causes loss of
carbon stocks through emissions from burning and post-fire
mortalities.

Previous field-based studies have estimated the reduction in
regrowth due to fire to be 50% (reducing from 3.2 to 1.7Mg C ha−1

yr−1)16, which is similar to the average reduction estimated in our

study (40%). With our method we were able to provide additional
information disaggregated by regions, showing that the regrowth
rates in the North-West and South-West regions, were 20% and
60% lower, respectively, for secondary forests exposed to fire
compared to those that were non-disturbed (Supplementary
Table 9). We might expect a higher impact of burning in the
North-West, where the forest species are not adapted to burning
and therefore mortality might be higher and regeneration lower.
However, the lower overall impact of fire disturbance on the
regrowth rate seen in the North-Western region is likely linked to

Modelled
2017 stock

Net change 
2016 - 2017

Both 
disturbances

Deforestation
disturbance

Fire
disturbance

a

b

c

d

Net change:
+11.9 Tg C

Losses:
-16.1 Tg C

Gains:
+28 Tg C

2 x 104

-2 x 104

0.0

M
g
 C

 y
r
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Fig. 4 The net change in secondary forest carbon stock between 2016 and 2017 and the potential 2017 carbon stock without disturbance. This shows

a the Aboveground Carbon (AGC) gains from secondary forest growth and recruitment of new secondary forests, and b the losses from reduction in

secondary forest area due to deforestation, to provide c a net change in the carbon stock between 2016 and 2017 per 0.1° grid. In Panel d the bottom bar

shows the total carbon stock in 2016 (dark blue) with the net gain in carbon stock in 2017 (light blue). Panel d top bar shows the total carbon stock in 2017

(dark blue) and the potential carbon stock that would have been accumulated in secondary forests from their initial establishment (post the start of the

study period in 1985) up until 2017 assuming none of the forest experienced any kind of disturbance (burning or repeated deforestation cycles prior to

regrowth), using the region-specific regrowth models from non-disturbed secondary forests developed in this study.

Fig. 5 The potential carbon stock and annual carbon accumulation in Brazilian Amazonian secondary forests from 2017 to 2030 based on different

levels of protection of the 2017 secondary forest area. The changes to a the carbon stock, and b the annual carbon accumulation, are estimated for the

coming decade, considering different scenarios of preservation of secondary forest area. Calculated using the region-specific regrowth models developed in

this study. Shading denotes the 95% confidence interval of the regrowth model.
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the wet climate in this region (Supplementary Fig. 9b), which
reduces the intensity and occurrence of the burning itself
(Fig. 3a). This would explain why the regrowth rate is hardly
affected by fire, and why it is identified as the least important
driver in this region (Fig. 2b). The distinct regrowth rates con-
sidering the interactions between the drivers highlights the
complexity of secondary forest regrowth regimes that cannot be
represented by single biome-wide regrowth models. Additionally,
the spatial extent of fire disturbance is likely to be more wide-
spread than presented in our study, as the remote sensing pro-
duct, based on automatic detection, used in this study
underestimates burnt area by ~25% compared to manual pho-
tointerpretation methods40.

Previous research has shown that young secondary forests in
the central and North-Eastern Amazon have a higher wood
density compared to secondary forests in the North-West, which
results in a higher overall carbon stock in the long term34,41

(Supplementary Table 9). Indeed, in our study, the highest
median AGC of old-growth forests were in the North-East
(135.5 Mg C ha−1). While this pattern is similar, the absolute
values are up to 30% lower compared to other studies (up to
200Mg C ha−1)42,43. Conversely, the lower wood density sec-
ondary forest in the North-West have a larger carbon assimilation
rate34, which is reflected in the high regrowth rates calculated in
our study for this region. Wood density, and by extension species
composition may therefore be a hidden driver of regrowth rates,
influenced by the climate variables used in our study. We expect
this pattern to become clearer in future studies, which explore
secondary forest regrowth rates across the entire Amazon
rainforest.

Across Amazonia, we found fire was one of the most important
drivers affecting secondary forest regrowth. Other studies have
also shown the importance of fire in influencing regrowth16,44,45,
but they have not quantitatively assessed the relative importance
by region. Fire is most important in the Southern, drier, regions,
including the so-called Arc of deforestation, an area prone to land
clearing by fires (Fig. 2d, e). The other anthropogenic driver,
repeated deforestations, was evaluated as the least important
driver affecting secondary forest regrowth across Amazonia
(Figs. 1g; 2b–e). The low importance estimated in our study may
be a local-scale artefact which our model cannot account for in
the large climate regions identified in this study (Fig. 2a).
Environmental drivers act on regional scales and influence forest
type and species physiology. Both fire and deforestation typically
act on the local scale. In recent decades, the scale at which
deforestation events occur has decreased even further, with more
very small-scale (<1 ha) deforestation events being observed46. If
the scale of deforestation is smaller than the resolution of our
deforestation detection method, the event may not be accounted
for, but will still be reflected in the AGC signature.

We observe the combined effect of fire and repeated defor-
estation to reduce the regrowth rates the most (Fig. 3; Supple-
mentary Table 9). Both disturbances negatively impact secondary
forest regrowth by reducing the seed bank, natural biodiversity,
soil nutrient and water availability, which can cause arrested
succession (a disturbance preventing the natural successional
growth)47. We see evidence of arrested succession in the slow
growth (up to 80% lower) and early plateau in AGC (12–25 years)
in some regions that experienced successive disturbance and sub-
optimal environmental conditions (Fig. 3b, d; Supplementary
Table 9).

Given that our study consisted of 32 years of secondary forest
data and one year of AGC data, each of which has associated
uncertainties, we take caution with the regrowth rates modelled
much beyond this period (Supplementary Note 3). However, the
results highlight the potential threat that an alternative stable state,

of low AGC in older secondary forests, could arise if they are not
managed sustainably and experience successive disturbance48,49.
Even in the regions of no disturbance and favourable environ-
mental conditions, where secondary forest AGC recovered to
old-growth forest levels up to 4 times more rapidly, we estimated
the minimum time taken to reach old-growth forest AGC to be
~100 years (Supplementary Tables 8 and 9). Secondary forests
will therefore not replace old-growth forests on policy-relevant
timescales, stressing the continued need to conserve existing
old-growth forests (Supplementary Table 9)50.

Undisturbed, old-growth forests not only serve to maintain the
current carbon sink but also act as key sources of seeds for
regeneration. However, disturbances to both old-growth and
secondary forests have increased the proportion of low wood
density and small-seeded tree species51. Identifying the proximity
of secondary forests to disturbed versus undisturbed forests could
potentially be another driving variable impacting the regrowth
rates we have calculated in this study. Datasets that differentiate
disturbed from non-disturbed forests are only becoming available
now52. At present it is estimated that just 13% of Amazonian
secondary forests are within 1 km proximity to areas with >80%
old-growth forest53, but whether these forests are disturbed
remains unclear. Recent research has shown that proximity to
young forests also results in faster forest-cover recovery and more
species rich regeneration54. This would suggest that the overall
success of secondary forest regeneration may in part be linked to
preserving surrounding (regrowth) forests too. The assessment of
secondary forest proximity to both other secondary forests as well
as disturbed and undisturbed old-growth forests goes beyond the
scope of the current study, but could be applied in future analysis,
highlighting the potential of the method used in this study.

Fragmentation of forests increases their vulnerability to fire and
other climate extremes such as drought55 and is exacerbated by
additional land-use changes, which increase fragmentation even
further56,57. This is problematic for two reasons. Firstly, the
majority of current secondary forests are fragmented, isolated from
other forested landscapes53. Secondly, the threat of forest water
deficit and, consequently, drought-induced fire disturbances are
predicted to increase into the 21st Century due to ongoing climate
change35. Research has shown that drought increases stem and
seedling mortality, reducing regrowth and regeneration,
respectively56. This threat is highest during early succession, when
the low, open canopy of the forest area makes them susceptible to
higher temperatures and drying56. If the predicted 21st Century
climate-scenario arises, the reduced regrowth rate of secondary
forests as seen in the already dry (1913mm yr−1 precipitation) and
water deficient (−328.5 mm yr−1 MCWD) South-East region in
our analysis is likely to be more widespread and severe (Figs. 1–3).
Moreover, there has been a slow shift to more dry-affiliated
Amazonian tree genera58, which have a lower biomass and are
more savannah-like in nature59 as some species reach their
adaptive limits to ongoing drier conditions60. Such a shift would
threaten the permanence of the carbon sequestration potential of
secondary forests as we have calculated in this study, especially if
changes in tree communities lag substantially behind climatic
changes17,58.

Given that some degree of 21st century climate change is now
already inevitable, it is imperative to limit anthropogenic dis-
turbances, such as fire and deforestation in order to avoid further
reductions in forest regrowth and forest carbon stocks. Overall,
we estimate these disturbances to have contributed to an 8%
reduction in the total potential 2017 carbon stock since 1985
(Fig. 4d), with the highest relative reduction (11%) in North-
Eastern Amazonia (Supplementary Fig. 12). This has implications
for policies concerning human-induced burning regimes and
deforestation of secondary forests. Our analysis has shown that
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avoiding these actions increases the regrowth potential of sec-
ondary forests.

Secondary forest regrowth can help Brazil to achieve its NDC
goals of reducing net national emissions by 37% in 2025 and 43%
in 2030 compared to 2005 levels (2.1 GtCO2e yr−1)7. These tar-
gets are equivalent to net emissions of 361 Tg C yr−1 (1.3 GtCO2e
yr−1) and 326 Tg C yr−1 (1.2 GtCO2e yr−1) in the year 2025 and
2030, respectively. We model the future carbon sequestration rate
by preserving all standing secondary forests and find that the
annual carbon accumulation would be equivalent to providing an
additional ~5.5 ± 0.7% reduction to the 2025/2030 emissions
target (Fig. 5b). Conversely, if only secondary forests older than
20 years in 2017 were preserved, the additional mitigation
potential would reduce to less than 1% (Fig. 5b). The modelling
shows that various levels of secondary forest preservation can
contribute significantly to Brazil reaching its NDC targets,
regardless of any changes made to future NDC revisions. How-
ever, these estimates assume that future rates of deforestation in
secondary and old-growth forests remain sustainable.

In recent years, emissions from deforestation in Amazonia
have accelerated to levels approximately equal to the beginning of
the 21st century (170 Tg C yr−1 in 201915,61). Assuming all sec-
ondary forests standing in 2017 still stood in 2019, the annual
secondary forest carbon accumulation would have offset 14 ± 1%
of the gross carbon emissions from Amazonian deforestation in
that year. The climate mitigation potential of secondary forests
within the Brazilian NDC for the next decade can therefore only
be realised if a sustainable management of all forests is achieved
now. This highlights the carbon benefits of urgent actions to
implement legal mechanisms that protect secondary forests on a
national scale20, which would bring with it multiple co-benefits
such as enabling biodiversity recovery62.

The models developed in our study provide a new assessment
of the carbon sink potential of secondary forests in the Brazilian
Amazon, considering age, persistence, local and regional drivers.
This type of approach using regional and global remote sensing
products has not been attempted before to such a high spatial
resolution. The models have the potential to benefit both the
carbon modelling and carbon-policy communities to help
understand the regional variations of regrowth under different
drivers. The carbon modelling community will benefit from the
ability to spatially monitor carbon dynamics, which can be
incorporated into models and scenarios of land cover and climate
change. Our models provide a new, detailed quantification of the
naturally regrowing secondary forest carbon sinks. This will
benefit carbon-policy communities by helping to assess locations
for restoring and reforesting 12Mha of forests, as proposed by
Brazil’s NDC, that would maximise regrowth and thereby be most
beneficial to mitigating climate change. This includes areas with
limited anthropogenic disturbances, which will minimise forest
restoration and thereby costs of implementation and conserva-
tion. However, the success of naturally regrowing secondary
forests as means for restoration can only be realised by legally
designating land for restoration, monitoring and protection.
Additionally, the results can be used to improve monitoring
under the Reducing Emissions from Deforestation and Degra-
dation (REDD+) scheme. This approach would not be limited to
Amazonia and could be applied in other countries where field
data may be limited.

The drivers used in this study to assess regrowth potential can
be developed further to include other important variables that
influence regeneration and regrowth. This includes variables such
as the proximity to other forest landscapes, both young and old
and disturbed and undisturbed51,54 as well as the type of previous
land-use practices (livestock, agriculture and forestry) and the
period of active land use before abandonment53. For instance,

secondary forests regrow 38% faster on land used for agriculture
than those for cattle pastures44,63. Our method has provided an
initial steppingstone to assessing the drivers impacting secondary
forest regrowth in a spatial manner and shown the potential of
utilising a combination of remote sensing products in a space-for-
time substitution approach.

Our study has quantified the varied and complicated regrowth
rates of secondary forests by multiple drivers across Amazonia.
Given the uncertain and potentially threatened status of old-
growth forest sinks due to ongoing climate change4, it is
imperative to limit human-induced fire and deforestation dis-
turbance in both old-growth and secondary forests. By preserving
the remaining old-growth forest stock and sustainably managing
secondary forests we can maintain and increase the carbon sink of
this globally important biome and help it to achieve its climate
mitigation potential.

Methods
Identifying areas of secondary forest and their ages. The underlying product
for this research was the land-use and land-cover product (MapBiomas Collection
3.1), available for the whole of Brazil for the years 1985–201725. The dataset is
based on Landsat image classification, mapping annual land use and land cover at
30 m spatial resolution. We follow a very similar methodology applied by recent
studies10,18,53,64 to identify areas of secondary forests and determine their
respective ages. We reclassified forest land and all land under human use to values
of 1 and 0, respectively, and tracked, when a conversion from anthropogenic (0) to
forest land (1) took place. Consecutive years following this transition in which a
forest remained forest, were classed as secondary forest and used to estimate their
respective ages (in years). Ages ranged from 1 to 32 years since the MapBiomas
product (v3.1) is available for 1985–2017. Any forest land pixels that did not
undergo a transition during this period were considered an old-growth forest. A
limitation is therefore that this method cannot classify forests as secondary forest
that were deforested and regrew before 1985. If an area of secondary forest was
deforested during the period of analysis, we disregarded the secondary forest area
and only began calculating the age again if a conversion from 0 to 1 took place.
From this we also calculated the number of times an area of secondary forest was
deforested prior to the most recent regrowth (termed ‘repeated deforestations’
throughout the text) during the period 1986–2016.

Previous research has shown that the MapBiomas product misclassifies
perennial crops such as oil palm plantations10 and other plantation forests as
natural forests (Supplementary Fig. 2). To remove misclassified areas, we used the
latest land-cover data of another, widely used Brazilian land-cover product,
TerraClass-20149. Finally, we excluded areas of secondary forest (within a 3 km
radius) that overlay field inventory sites of secondary forest for cross validation of
our method (Supplementary Fig. 10; Supplementary Table 10).

Modelling carbon sequestration with different drivers. To model the regrowth
of secondary forests we applied a space-for-time substitution method. Instead of
tracking the associated Aboveground Carbon (AGC) regrowth over time, the
regrowth was estimated by considering the available ages of the standing secondary
forest area in 2017 and the associated AGC at the same time. Here we explain the
methods used to determine secondary forest AGC using the ESA-CCI Above-
ground Biomass (AGB) product (100-m) for the year 201723 (see Supplementary
Notes 1 and 2). All analysis was carried out in the original product units (AGB) but
expressed as AGC by assuming a 2:1 ratio of biomass to carbon24.

The ESA-CCI AGB product was only released in late 2019 and was in its early
phases of development at the time of use. However, given that its spatial resolution
was high enough to separate areas of only secondary forest and its recent
acquisition warranted its use for this research. Only areas of secondary forest
greater than 9000 m2 were considered for further analysis, an area approximately
equal to 1 pixel of the ESA-CCI product. Despite limiting the study to these larger
secondary forest polygons, we were still left with just under 2.5 million polygons of
secondary forest to analyse. The secondary forest map was laid over the AGC data
and the modal AGC was extracted for each secondary forest polygon using the
“zonal_stats” function available in the “rasterstats” module for the programming
language “Python” (v3.6). We then aggregated the AGC values by the age of
secondary forest and used the median AGC value for each age in further analysis.
We applied a bias correction to the median AGC values, subtracting the smallest
median value from all values to shift the data to begin at or near 0Mg C ha−1 AGC
for a 1-year-old secondary forest.

Following this, we used six remote sensing products of driving variables widely
accepted to influence regrowth of forests. The data products included four
environmental drivers (1–4) and two anthropogenic disturbance drivers (5–6): (1)
Mean annual downward shortwave radiation (for the period 1985–2017)26, (2)
Mean annual precipitation (for the period 1985–2017)27, (3) the mean Maximum
Cumulative Water Deficit (MCWD) (for the period 1985–2017)65,66, (4) Soil
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Cation Concentration30, (5) Annual burned areas (between 2001 and 2017)31 and
(6) Number of times a secondary forest area was deforested between 1987 and 2017
(repeated deforestations) (this study). These products all have different spatial
resolutions (Supplementary Table 1) and so had to be resampled to the size of
secondary forest pixels (30-m spatial resolution) using the “resample” package in
the Geographic Information System programme, ArcMap10.6. We calculated the
key zonal statistics of these variables such as the mean value of the driver affecting a
specific area of secondary forest, again using the “zonal_stats” function in Python.

The drivers were then grouped according to numerical limits, such as the 25, 50
and 75th percentiles. We then modelled the AGC for the age of secondary forest
under these groupings using the commonly used Chapman-Richard model for
regrowth67:

Yt ¼ A 1� e�kt
� �c

± ε;A; k and c > 0 ð1Þ

where Yt refers to the AGC at age t; A is the AGC asymptote or the AGC of the old-
growth forest; k is a growth rate coefficient of Y as a function of age; c is a
coefficient that determines the shape of the growth curve; and ε is an error term.
We applied the “nls” function available in the “nlstools” package for the statistical
software R (v4.0.2)68,69. We assumed that after a given amount of time, the AGC
could return to levels equivalent to old-growth forests, and reach a pre-calculated
asymptote. As such, we extracted the median, bias-corrected AGC value of old-
growth forests under each variable condition from the ESA-CCI AGC product to
represent the value of the asymptote (Supplementary Fig. 6 and Supplementary
Tables 8 and 9). From this, we could also determine if and when the modelled AGC
of secondary forest regrowth would reach those equivalent to old-growth forest
levels. Forcing the models to “fit” to an expected value for the asymptote value
naturally increases the error of our model, partly due to heterogeneity in old-
growth forest values within each variable condition.

Determining the importance of each driver. We used an ensemble machine
learning algorithm, the so-called “random forest” model to assess which of the
drivers used in this research were the most important in influencing the regrowth
of secondary forests. We carried out all analysis using the conditional random-
forest model “cforest” available in the predictive model package “caret” in R. The
“cforest” random-forest model provides more accurate importance estimates
compared to more traditional random-forest models such as “randomForest” when
the dataset includes both continuous (e.g. precipitation) and categorical data (e.g.
burnt, not burnt) data70.

Additionally, the variable importance assessed using the conditional random-
forest model better reflects the true impact of each variable, regardless of any
correlation between the variables, compared to more traditional random-forest
models71,72. In any geospatial analysis such as in this study, the variables are likely
to be spatially correlated (Supplementary Note 5; Supplementary Fig. 13). It was
therefore important to use a model that is not biased towards correlated variables.
An important consideration when applying the conditional random-forest analysis
on such big data is finding the balance between accuracy and computational
efficiency. We follow the approach by Behnamian et al.73 and apply the random-
forest model over a smaller but multiple (30) randomly selected sample sizes, and
using a smaller number (500) of decision trees. This approach has been found to
result in a stable mean importance analysis, and is more computationally efficient
than running a single random-forest model over a larger sample size or using a
higher number of decision trees73.

We applied a stratified random sample equating to 0.1% of the data into the
random-forest model (n= 2500). This sample size was more than the minimum
number of samples needed (1000= 0.04%) to ensure results would be within the
95% confidence interval with a sampling error of 5% using a multinomial
function74. We used 80% of the sampled data for training the model and the
remaining 20% to test the model. From this analysis we estimated the “conditional
permutation importance” for each variable. Following all the iterations, we take the
average importance across the model runs and express the importance of each
variable as a ranking. This is because the interpretation of the results should be
limited to the rankings and not the absolute values of the importance assessment71.

Representing spatial patterns of secondary forest regrowth. We created a
regional classification based on the three climate variables driving regrowth (SW
radiation, precipitation, and MCWD). We used an unsupervised K-means cluster
analysis to group Amazonia into regions based on similarities between the sec-
ondary forests in terms of the drivers’ variability. We then subclassified each region
based on the type of disturbance (fire and/or deforestation) experienced by the
secondary forest. The aim of this was to show areas of secondary forest that
experience similar conditions and the effect this has on regrowth in a spatially
explicit manner. We developed 16 regional models of regrowth and included the
median, bias-corrected AGC value for old-growth forest in each of the regions as
the asymptote of the models. Using the random-forest model, we again determined
the importance of drivers in each region, as described in the previous section, this
time using a sample size of 1500 in each region.

Estimating 2017 carbon stock and future carbon sinks. We estimated the 2017
carbon stock by applying the corresponding regional models to all pixels initially

identified as secondary forest with respect to the pixel age, and whether the pixel
experienced any disturbances. From this we were able to estimate the carbon stock
in 2017 for all secondary forests and the net carbon change from 2016 to 2017. We
also considered an alternative scenario in which no forest disturbance occurred
during regrowth by applying the no-disturbance models to the corresponding
regions. In this alternative scenario, we were able to calculate the resulting potential
2017 carbon stock and associated reduction due to disturbances. Finally, we applied
a similar approach as Chazdon et al.14 and aged the standing secondary forest in
2017 to model the carbon stock and annual carbon accumulation for the next
decade considering different scenarios of secondary forest preservation: (1) all
forests; (2) forest with ages 5+; (3) forest with ages 10+; (4) forest with ages 15+;
(5) forest with ages 20+ years.

Data availability
The original data used in this study are all publicly available from their sources:

MapbiomasV3.1 (https://mapbiomas.org/); ESA-CCI Aboveground Biomass for the year

2017 (https://catalogue.ceda.ac.uk/uuid/bedc59f37c9545c981a839eb552e4084); CHIRPS

precipitation data: Funk et al.27—https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/

fews/web/global/monthly/chirps/final/downloads/monthly/); Soil Cation Concentration

data: Zuquim et al.30—https://doi.pangaea.de/10.1594/PANGAEA.879542; Shortwave

radiation data: TerraClimate, Didan31, http://www.climatologylab.org/terraclimate.html.

The MCWD data can be produced using data from Funk et al. combining with code

available from Campanharo and Silva Junior66—https://zenodo.org/record/2652658#.

X9CV-aFxdPY. The processed data and products produced in this research are available

on the following repository: https://zenodo.org/record/4479234#.YBVdBHNxdPY75. The

regrowth models can be built by users using Equation 1 in the methods section and

information provided in Supplementary Tables 8 and 9 and the shapefiles corresponding

to the four climate regions are available in the aforementioned repository. Additional

map data, namely the Amazon biome region and country vector shapefiles are available

from the following two sources, respectively: http://terrabrasilis.dpi.inpe.br/en/home-

page/ and https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-

land/. Finally, the TerraClass land-cover dataset is available from: https://www.terraclass.

gov.br/. Source data are provided with this paper.

Code availability
The code used to extract secondary forest age and extent is available from Silva Junior

et al. (2020)18. The code used to calculate the MCWD index is available here: https://

zenodo.org/record/2625903#.X701CulxdPY. The code that was developed in this study is

available on GitHub and has a DOI repository with Zenodo: https://github.com/

heinrichTrees/secondary-forest-regrowth-amazon-public (https://doi.org/10.5281/

zenodo.4479398)76.
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