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LARGE CHARACTER SUMS

ANDREW GRANVILLE AND K. SOUNDARARAJAN

Dedicated to John Friedlander

Introduction

A central problem in analytic number theory is to gain an understanding of
character sums ∑

n≤x
χ(n),

where χ is a non-principal Dirichlet character χ (mod q). It is easy to show that
such character sums are always ≤ q in absolute value, while G. Pólya and I.M. Vino-
gradov (see [3]) improved this to≤ √q log q around 1919, and H.L. Montgomery and
R.C. Vaughan [13] to � √q log log q in 1977, assuming the Generalized Riemann
Hypothesis (GRH). Up to the constant this is “best possible” since R.E.A.C. Pa-
ley [14] had shown, in 1932, that there exist character sums (with real, quadratic
characters) that are � √q log log q.

In many applications one is interested in when the above character sum is o(x)
with x substantially smaller than q

1
2 +o(1), that is,∣∣∣∣∑

n≤x
χ(n)

∣∣∣∣ = o(x).(1)

In 1957, Burgess [2] used ingenious combinatorial methods together with the “Rie-
mann Hypothesis for hyperelliptic curves” to establish (1) whenever x > q

1
4 +o(1),

for any quadratic character mod q, with q prime (and subsequently generalized
this to any non-principal character χ (mod q) when q is cubefree; with the smaller
range x > q

3
8 +o(1) otherwise). Recently Friedlander and Iwaniec [4] have supplied

a different proof of Burgess’s result, and Hildebrand [9] observed that one can “ex-
trapolate” Burgess’s bound to the range x > q

1
4−o(1). However, Burgess’s range

has not been substantially improved over the last forty years although it is widely
believed that such an estimate should hold for x�ε q

ε.
In this paper we investigate the distribution of the size of character sums, and in

particular in what range the estimate (1) should hold. For example on this question
we prove:
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366 ANDREW GRANVILLE AND K. SOUNDARARAJAN

Corollary A. Assuming that the Riemann Hypothesis is true for L(s, χ), the es-
timate (1) holds if log x/ log log q → ∞ as q → ∞. This is “best possible” in the
sense that, for any given A > 0, for every prime q there exists a non-principal
character χ (mod q) such |

∑
n≤x χ(n)| �A x, where x = logA q.

The proof of the first part of this result is inspired by Montgomery and Vaughan’s
paper mentioned above. In fact, modifying and refining their argument we will get
upper bounds on character sums in all ranges, assuming GRH, which we believe
are close to the truth — we will discuss a more refined conjecture below.

To believe one’s upper bounds are close to the truth, one wants to show that
there are character sums of comparable magnitude. Previous arguments showing
that such sums exist, as in Paley’s work described above, have relied in part on using
the law of quadratic reciprocity and Dirichlet’s theorem for primes in arithmetic
progression to find discriminants for which many of the small primes are quadratic
residues. Such an argument seems unlikely to generalize to characters of high
order, and might make one suspicious that perhaps one can only obtain particularly
large character sums (for instance, � √q log log q) when the character is real and
quadratic. However this is not so, as we shall show below with a very different
proof, involving high moments of character sums.

In the large character sums that we exhibited to prove Corollary A, we showed
that they are large by establishing, for those characters, that the character sum
over “smooth integers” is particularly large. Here “smooth” refers to integers with
only small prime factors, and we define

Ψ(x, y; f) :=
∑
n≤x

p|n =⇒ p≤y

f(n),

for any arithmetic function f . Our work on upper and lower bounds motivates our
belief that character sums can only be large because of extraordinary behaviour of
the values of χ(p) for small primes p. We formalize this as the following conjecture:

Conjecture 1. There exists a constant A > 0 such that for any non-principal
character χ (mod q) and for any 1 ≤ x ≤ q we have, uniformly,∑

n≤x
χ(n) = Ψ(x, y;χ) + o(Ψ(x, y;χ0)),

where y = (log q + log2 x)(log log q)A.

The function Ψ(x, y) := Ψ(x, y; 1), the well-known counting function for smooth
numbers, has been extensively investigated. For any fixed u > 0, we know that
limx→∞Ψ(x, x1/u)/x exists and equals ρ(u), where ρ(u) = 1 for 0 ≤ u ≤ 1 and
is the real continous function satisfying the differential-delay equation ρ′(u) =
−ρ(u − 1)/u for all u > 1. We note that ρ(u) = 1/uu+o(u) as u → ∞. In §3b
we will discuss several further estimates for Ψ(x, y), though see [10] for a survey.

Note that Conjecture 1 implies the results of Corollary A, and, in fact, further
that if

∆(x, q) := max
χ6=χ0

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣,

then ∆(x, q) ∼ Ψ(x, log q) whenever log x = o((log log q/ log log log q)2), for any
prime q.
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LARGE CHARACTER SUMS 367

Assuming the GRH it is known that there exists n � log2 q with (n, q) = 1 for
which χ(n) 6= 1; assuming Conjecture 1 this would be improved to n ≤ log1+o(1) q
(see [5] for the latest unconditional work on this problem).

In the wider range x ≤ exp(
√

log q), Conjecture 1 implies that∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣ ≤ Ψ(x, (log q)1+o(1)) =

x

uu+o(u)
, where u =

log x
log log q

,(2)

for any non-principal character χ (mod q).
We shall establish lower bounds on character sums by various different methods

in this paper (and in [6] and [7]). These will imply that, in most ranges of x, the
value of y needs to be at least roughly as large as the value for y given in Conjecture
1.

We shall establish that Conjecture 1 holds with y = log2 q log2 x(log log q)O(1),
assuming GRH, by extending the method of [13]. This implies the upper bound
� x/uu/4+o(u) in (2), as well as the first part of Corollary A.

We shall also establish that Conjecture 1 holds for “almost all” characters χ
(mod q) when x ≤ exp((log log q)O(1)). More generally we shall show that Conjec-
ture 1 with y = log q log x(log log q)O(1) holds for almost all non-principal characters
χ (mod q).

Rather than the size distribution, one might be interested in the “angle distribu-
tion” of large character sums (mod q). For example, if a character sum
is “large”, in what directions can it point? Below we show, unconditionally,
that for any fixed A > 0, for any given angle θ, there are non-principal char-
acters χ modulo any prime q for which the character sum up to logA q equals
{eiθ + o(1)}ρ(A) logA q. In [7] we show the complementary result that there are
non-principal characters χ modulo any prime q for which the character sum up to
q/2 equals {eiθ + o(1)}(eγ/π)

√
q log log q.

We shall also consider analogues of our results for real characters, when appro-
priate; that is,

∆R(x, q) = max
q≤|D|≤2q

∣∣∣∣∑
n≤x

(
D

n

)∣∣∣∣,
where D runs over fundamental discriminants. We establish similar and, in some
cases, stronger versions of the results for ∆(x, q).

In the next section we give a more technical description of our results. In partic-
ular our results mostly apply to characters modulo any integer q, not just primes,
and with various complicated error terms.

1. Statement of results

We begin with an unconditional, weak version of Conjecture 1 which works for
“almost all” characters χ (mod q).

Theorem 1. Let 1 ≤ x ≤ q be given. For all but at most q1− 1
log x characters χ

(mod q) we have∑
n≤x

χ(n) = Ψ(x, y;χ) +O

(
Ψ(x, y)

(log log q)2

)
, whenever y ≥ log q log x(log log q)5.
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368 ANDREW GRANVILLE AND K. SOUNDARARAJAN

For all but at most q1− 1
(log log q)2 characters χ (mod q) we have∣∣∣∣∑

n≤x
χ(n)

∣∣∣∣ ≤ Ψ(x, (log q + log2 x)(log log q)5).

Remark. Let ω(q) denote the number of distinct prime factors of q. Tenenbaum [16]
showed that Ψ(x, y;χ0) � (ϕ(q)/q)Ψ(x, y) whenever log y � (log 2ω(q))(log log x).
Since 1 ≥ ϕ(q)/q � 1/ log log q we see that the error term in Theorem 1 can be
rewritten as O(Ψ(x, y;χ0)/ log log q) in this range.

Assuming the GRH we can establish results similar to (but weaker than) The-
orem 1, but valid for all non-principal characters. The prototype for our result
appears as Lemma 2 in [13]. There, Montgomery and Vaughan show that if χ
(mod q) is non-principal and the GRH holds, then∑

n≤x
χ(n) = Ψ(x, y;χ) +O(xy−

1
2 log4 q),

when log4 q ≤ y ≤ x ≤ q. Their objective was not to establish this in as wide a
range as possible; however, ours is, so we modify and refine their method to obtain
the following result.

Theorem 2. Let χ be any non-principal character (mod q), and assume the Rie-
mann Hypothesis for L(s, χ). If 1 ≤ x ≤ q and y ≥ log2 q log2 x(log log q)12, then∑

n≤x
χ(n) = Ψ(x, y;χ) +O

(
Ψ(x, y)

(log log q)2

)
.

Further ∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� Ψ(x, log2 q(log log q)20),

and so the estimate (1) holds when log x/ log log q →∞ as q →∞.

Remarks. To compare this with Montgomery and Vaughan’s result, the error term
in the first part of Theorem 2 could have been written as the rather more com-
plicated O(Ψ(x, y) log q log x(log log q)4/

√
y). Similarly, the error term in the first

part of Theorem 1 can be considerably sharpened.
As in Theorem 1 the error term can be rewritten as O(Ψ(x, y;χ0)/ log log q) when

log y � (log 2ω(q))(log log x).

We now proceed to the problem of finding large character sums, beginning with
the range x ≤ exp((log log q)2−ε). Here we get large character sums, pointing in
any given direction.

Theorem 3. Let q be large, and suppose log x ≤ (log log q)2

(log log log q)2 . For all |θ| ≤ π there

are at least q1− 2
log x characters χ (mod q) for which∑

n≤x
χ(n) = eiθ Ψ(x, log q;χ0) +O

(
Ψ(x, log q)

(
1

log x
+

log x(log log log q)2

(log log q)2

))
.

If q has no prime factors less than log q, then we may write the above as∑
n≤x

χ(n) = xeiθ ρ

(
log x

log log q

)(
1 +O

(
1

log x
+

log x(log log log q)2

(log log q)2

))
.
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This implies the second part of Corollary A.
Theorem 3 is not useful when q has many prime factors less than log q. We next

deduce, by a very different method, lower bounds of more or less the same strength
for these cases.

Theorem 4. Suppose x = (10 log q)B = qo(1) for some B ≥ 1. Then

max
χ6=χ0

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� x

1
2 + [B]

2B

(4 logx)[B]
.

If, in addition, q has less than (log q)B/(B+1)−ε distinct prime factors, then

max
χ6=χ0

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� x

(4 logx)[B]+1
.

Applying Theorem 4 appropriately, we can deduce the following corollaries.

Corollary 1. If log x ≥ (log log q)2, then

max
χ6=χ0

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� x exp

(
−(1 + o(1)) log x

log log x
log log q

)
.

If, in addition, q has less than (log q)1−ε distinct prime factors, then this bound
holds in the extended range log x/ log log q →∞.

Remark. There are � q/ exp((log q)1−ε) integers q ≤ x failing the restriction “q
has less than (log q)1−ε distinct prime factors”.

Corollary 2. Fix σ in the range 1
2 ≤ σ < 1. If

(log q)
1

1−σ ≤ x ≤ exp((log q)1−σ+o(1)),

then

max
χ6=χ0

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� xσ.

If, in addition, ω(q) ≤ (log q)
1
2−ε, then this bound holds whenever x ≥ (log q)1+ε.

In any case we have

max
x≥1

max
χ6=χ0

1
xσ

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� exp

(
(log q)1−σ

14 log log q

)
.

So far we have dealt with the range x ≤ exp((log q)
1
2−ε). We now proceed to the

range when x is larger, dealing first with the range log logx = (1
2 + o(1)) log log q.

Theorem 5. Suppose that log x = τ
√

log q log log q with τ = (log log q)O(1), and
let η = τ + 1/τ . There exists a constant c > 0 such that for any sufficiently large
q, there exists a non-principal character χ (mod q) for which

1√
x

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� exp

(
c
1 + log(ητ)

η

√
log q

log log q

)
.

As a consequence we get Corollary 3 below, which improves Corollary 2 in the
case σ = 1

2 .
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Corollary 3. There exists a constant c > 0 such that for all integers q

max
χ6=χ0

max
x≥1

1√
x

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� exp

(
c

√
log q

log log q

)
.

Next we consider the range when logx/
√

log q log log q is large, but x is smaller
than qε.

Theorem 6. Suppose both log q/ log x and log x/
√

log q log log q → ∞. There ex-
ists a non-principal character χ (mod q) for which

1√
x

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣� (

log x√
log q log log q

)(1+o(1)) log q
log x

.

When x is as large as a power of q we obtain:

Theorem 7. Let k ≥ 2 be an integer and suppose exp( log q
log log q ) ≤ x < q

1
k . Then

there exists a non-principal character χ (mod q) for which

1√
x

∣∣∣∣∑
n≤x

χ(n)
∣∣∣∣�k (log q)

(k−1)2

2k +o(1).

Once x ≥ q
1
2 , Theorem 7 reduces to the bound ∆(x, q) ≥ √x(log q)o(1) which

follows immediately from the mean square of
∑
n≤x χ(n). However it is possible

to obtain non-trivial information here by appealing to (essentially) the Poisson
summation formula. We quote Pólya’s Fourier expansion (see Lemma 1 of [13])∑

n≤x
χ(n) =

τ(χ)
2πi

H∑
h=−H
h 6=0

χ(h)
h

(1 − e(−hxq )) +O(1 + qH−1 log q),(3)

where χ is primitive and τ(χ) is the usual Gauss sum. Since |τ(χ)| =
√
q, (3)

suggests a relation of the type ∆(x, q)‘=’ x√q∆( qx , q); now q
x ≤ q

1
2 so that applying

the ideas behind our earlier theorems should lead to a good lower bound for ∆(x, q).
While we cannot show such a result for every x, using (3) we can obtain good bounds
for ∆(t, q) for some t ≤ x. Naturally one would expect ∆(t, q) to be an increasing
function of t (at least most of the time) but we don’t know how to prove this.
For convenience, we state this result only for primes q, so that every non-principal
character is primitive.

Theorem 8. Let q be a large prime. Given exp(c
√

log q) ≥ N ≥ 2 (for a small
positive constant c) we have

max
t≤q/N

max
χ6=χ0 (mod q)

∣∣∣∣∑
n≤t

χ(n)
∣∣∣∣� √q 1

N
Ψ
(
N,

log q
(log log q)10

)
.

When logN = τ
√

log q log log q with τ = (log log q)O(1) we have (for a small positive
constant c and η = τ + 1/τ)

max
t≤q/N

max
χ6=χ0 (mod q)

∣∣∣∣∑
n≤t

χ(n)
∣∣∣∣�√

q/N exp
(
c
1 + log(ητ)

η

√
log q

log log q

)
.
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LARGE CHARACTER SUMS 371

If both log q/ logN and logN/
√

log q log log q →∞, then

max
t≤q/N

max
χ6=χ0 (mod q)

∣∣∣∣∑
n≤t

χ(n)
∣∣∣∣�√

q/N

(
logN√

log q log log q

)(1+o(1)) log q
logN

.

Lastly if exp( log q
log log q ) ≤ N ≤ q 1

k−ε for an integer k ≥ 2, then

max
t≤q/N

max
χ6=χ0 (mod q)

∣∣∣∣∑
n≤t

χ(n)
∣∣∣∣�k

√
q/N (log q)

(k−1)2

2k +o(1).

Several different authors (for example [1]) gave the same explicit version of Pa-
ley’s result: There are infinitely many non-square, positive integers q and integers
x = xq for which ∣∣∣∣ ∑

1≤n≤x

( q
n

)∣∣∣∣ & eγ

π

√
q log log q,(4)

where γ ≈ 0.5772156649 . . . is the Euler-Mascheroni constant. We can prove
that there are many characters χ (mod q) for which

∑
n≤q/2 χ(n) is of such large

magnitude, and points in any given direction, for any given prime q. Further,
whenever q(log q)−A ≤ x ≤ q we can show that ∆(x, q) � ρA

√
q log log q, where

ρA = 1/AA+o(A) as A → ∞. The proofs of these results will appear in [7], be-
cause they are more closely related to the methods of that paper. Note, though, in
Theorem 11 below we obtain some results of this type for real characters.

We now turn our attention to getting bounds for ∆R(x, q); that is, exhibiting
large character sums for real characters. We begin by showing that the lower bound
implicit in Conjecture 1 holds in a very wide range for real characters.

Theorem 9. Suppose q is large and that 1 ≤ x ≤ exp(
√

log q). Then

max
q≤|D|≤2q

∣∣∣∣∑
n≤x

(
D

n

)∣∣∣∣ ≥ Ψ(x, 1
3 log q).

Consequently for a fixed real number B there are fundamental discriminants D in
the range q ≤ |D| ≤ 2q with∑

n≤x

(
D

n

)
≥ (ρ(B) + o(1))x�B x, where x = (1

3 log q)B.

Theorem 9 is the analogue of Theorems 3 and 4 above. From Theorem 9 we can
deduce the analogues of Corollaries 1 and 2 for real characters.

It seems to have been widely believed that
∑
N<n≤N+x(Dn )=o(x) when x/ log2D

→∞ (see, for instance, page 379 of [11]), perhaps in analogy with the known result∑
p≤x(Dp ) = o(π(x)) in this range, assuming GRH. However Theorem 9 shows

that this widely held view is false. It seems safe to hazard the guess that, for all
non-principal characters χ (mod q), we have, uniformly,

N+x∑
n=N

χ(n)� x1−1/ log log q.

Set

α(B) = lim sup
|D|→∞

1
(log |D|)B

∑
n≤(log |D|)B

(
D

n

)
.
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Clearly α(B) = 1 for 0 ≤ B ≤ 1, and from Theorem 9 we know that α(B) ≥ ρ(B).
If the GRH is true, then α(B) ≤ ρ(B2 ), by Theorem 2. Conjecture 1 predicts that
α(B) = ρ(B) but this is not known for any B > 1. In Theorem 3 we obtained
large character sums pointing in any given direction. Mark Watkins asked us if the
analogue for real character sums holds; that is, can one get real character sums to
be large and negative? Precisely, what can one say about

β(B) := lim inf
|D|→∞

1
(log |D|)B

∑
n≤(log |D|)B

(
D

n

)
?

Interestingly β(B) can never be as small as −1. Indeed in [6] we have shown that
β(B) ≥ δ1 = −0.656999 . . . (see Theorem 1 of [6] for a definition of δ1) for all B,
and in fact β(B) = δ1 for 0 ≤ B ≤ 1. Answering Watkins’ question we also show
there that β(B) < 0 for all B, but it is an open problem to determine β(B) and
α(B) for B > 1.

We obtain the following analogue of Theorems 5, 6 and 7, but in a much wider
range.

Theorem 10. Suppose that q is large and exp((log q)
1
2 ) ≤ x ≤ q/ exp((log q)

1
2 ).

Then there exist fundamental discriminants D in the range q ≤ |D| ≤ 2q with

1√
x

∑
n≤x

(
D

n

)
� exp

(
(1 + o(1))

√
log q

log log q

)
.

Notice that Theorem 10 is much stronger than the bounds of Theorems 6 and 7,
as soon as log x ≥

√
log q(log log q)2. This difference is especially noticeable when

x is like a small power of q, and suggests that Theorems 6 and 7 are unlikely to be
“best possible”.

In the next result we use Poisson summation (as discussed after (3)) to get lower
bounds for character sums when x is very large, in terms of smooth numbers. This
suggests that we should be able to make another conjecture like Conjecture 1 for
large x, which takes this natural symmetry into account. We have not yet felt able
to formulate this appropriately.

Theorem 11. Let q be large. For any exp(
√

log q) ≥ N ≥ 2 there exists a funda-
mental discriminant D with q ≤ |D| ≤ 2q such that∣∣∣∣ ∑

n≤|D|/N

(
D

n

)∣∣∣∣� √q 1
N

Ψ
(
N,

1
9

log q
){

1 +
log log q

log(A+ 2)

}
,

where N = (1
9 log q)A. In particular if exp((log log q)2) ≥ N ≥ 2, then there exists

a fundamental discriminant D with q ≤ |D| ≤ 2q such that∣∣∣∣ ∑
n≤|D|/N

(
D

n

)∣∣∣∣� ρ(A)
log(A+ 2)

√
|D| log log |D|.

2. The plan of attack

We define complex, multiplicative random variables Xn as follows: Xn is multi-
plicative; that is, if n =

∏
i p
ai
i , then Xn =

∏
iX

ai
p1

. For primes p, Xp is equidis-
tributed on the unit circle, and for different primes p and q, Xp and Xq are inde-
pendent. Thus E(XmXn) = 1 if m = n, and E(XmXn) = 0 otherwise. Here, and
below, E(·) denotes the expectation.
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Let f be any arithmetical function, and let k and n be integers. Below we shall
put

dk,f (n, x) =
∑

m1...mk=n
mi≤x

f(m1) . . . f(mk),

so that (∑
n≤x

χ(n)f(n)
)k

=
∑
n≤xk

dk,f (n, x)χ(n)

and (∑
n≤x

Xnf(n)
)k

=
∑
n≤xk

dk,f (n, x)Xn.

We shall abbreviate dk,f (n, x) to dk(n, x) when f is the function f(n) = 1.

Lemma 2.1. Let x, q, and k be integers with xk ≤ q, and let f be any arithmetic
function. Then

1
ϕ(q)

∑
χ (mod q)

∣∣∣∣∑
n≤x

χ(n)f(n)
∣∣∣∣2k =

∑
n≤xk

(n,q)=1

|dk,f (n, x)|2 = E
(∣∣∣∣ ∑

n≤x
(n,q)=1

Xnf(n)
∣∣∣∣2k).

Proof. This is immediate from the definition of Xn and the orthogonality of the
characters (mod q):

1
ϕ(q)

∑
χ (mod q)

χ(a)χ(b) =

{
1 if a ≡ b (mod q), (ab, q) = 1,
0 otherwise.

Our plan (see §4 and §6) is to obtain large lower bounds for the quantity in
Lemma 2.1 (in the case f(n) = 1) so as to obtain large non-trivial character sums.
In order to do this, we need to eliminate the principal character term (which is
often large for trivial reasons) which is included in the sum in Lemma 2.1.

For any arithmetic function f we define

∆f (x, q) := max
χ6=χ0 (mod q)

∣∣∣∣∑
n≤x

χ(n)f(n)
∣∣∣∣.

Proposition 2.2. Let q be large, x ≥ log q, and suppose k is an integer with xk ≤
q. For any arithmetic function f we have

∆f (x, q)2k � 1
ϕ(q)

∑
χ (mod q)

∣∣∣∣∑
n≤x

χ(n)f(n)
∣∣∣∣2k.

Proof. Write ∆ = ∆f (x, q), and define

∆0 :=
∑
n≤x

χ0(n), ∆1 :=
∣∣∣∣∑
n≤x

χ0(n)f(n)
∣∣∣∣ and ∆2 :=

∑
n≤x

χ0(n)|f(n)|2.
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Note that the Cauchy-Schwarz inequality gives ∆2
1 ≤ ∆0∆2. A straightforward

computation, using the orthogonality relations for characters, gives that

∆2 =
1

ϕ(q)

∑
χ (mod q)

∣∣∣∣∣∣
∑
n≤x

χ(n)f(n)

∣∣∣∣∣∣
2

,

and thus

(
∆2 −

∆2
1

ϕ(q)

)k
≤
(

1
ϕ(q)

∑
χ (mod q)
χ6=χ0

∣∣∣∣∑
n≤x

χ(n)f(n)
∣∣∣∣2k)( 1

ϕ(q)

∑
χ (mod q)
χ6=χ0

1
)k−1

≤ ∆2k,

by Hölder’s inequality. This then implies

∆2
1

(
1− ∆0

ϕ(q)

)
= ∆2

1 −
∆0∆2

1

ϕ(q)
≤ ∆0

(
∆2 −

∆2
1

ϕ(q)

)
≤ ∆0∆2.

If k ≥ 2, then x ≤ √q and so (1−∆0/ϕ(q))k = 1 + o(1), which, combined with the
line above, implies that ∆2k

1 . ∆k
0∆2k. Therefore

1
ϕ(q)

∑
χ (mod q)

∣∣∣∣∣∣
∑
n≤x

χ(n)f(n)

∣∣∣∣∣∣
2k

≤ ∆2k
1

ϕ(q)
+

(ϕ(q) − 1)∆2k

ϕ(q)
. ∆2k

(
∆k

0

ϕ(q)
+ 1
)
.(2.1)

By the small sieve we know that for x ≥ log q

∆0 =
∑
n≤x

(n,q)=1

1 ≤ cϕ(q)
q

x

for some absolute constant c > 0. Hence

∆k
0 ≤ xk−1∆0 ≤ c

ϕ(q)
q

xk ≤ cϕ(q)

and the proposition follows upon inserting this estimate in (2.1).

We cannot expect to get good lower bounds for ∆f (x, q) for all arithmetic func-
tions f , since there may be a good deal of cancellation in determining the sum
dk,f (n, x), making

∑
n |dk,f (n, x)|2 small. We shall focus on a large class F of

arithmetic functions defined as follows: f ∈ F if f(n) = g(n)h(n), where g is a
multiplicative function with |g(n)| = 1 for all n, and h(n) ≥ 0 for all n. Note that
F includes µ(n) (the Möbius function), ω(n) (the number of distinct prime divisors
of n), d(n) (the divisor function), and nit (for a real number t) among others.

Lemma 2.3. Suppose f and g are arithmetic functions with f(n) ≥ g(n) ≥ 0 for
all n. Then for all integers k ≥ 1

E
(∣∣∣∣∑

n≤x
Xnf(n)

∣∣∣∣2k) ≥ E(∣∣∣∣∑
n≤x

Xng(n)
∣∣∣∣2k).

If f ∈ F with |f(n)| ≥ θ for all squarefree n, then

E
(∣∣∣∣∑

n≤x
Xnf(n)

∣∣∣∣2k) ≥ θ2k
∑
N≤xk

µ(N)2dk(N, x)2.
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Proof. If f(n) ≥ g(n) ≥ 0, then dk,f (n, x) ≥ dk,g(n, x) and so the first assertion
follows from Lemma 2.1. If f ∈ F and |f(n)| ≥ θ for all n, then for squarefree
N we have |dk,f (N, x)| ≥ θkdk(N, x) and so the second statement follows from the
first part of the lemma.

In §3 we collect together several results from multiplicative number theory;
chiefly on smooth numbers (integers not having large prime factors), and round
numbers (integers having many prime factors). We shall use these in §4 to estimate
the 2k-th moments of

∑[
n≤xXn, where the flat “[” indicates that the sum is over

squarefree n coprime to q; and in §6 to get good estimates for large moments of∑
n≤xXn. We show in §5 how the estimates of §4 lead to the large character sums

given in Theorems 4 through 7, and Corollaries 1, 2, and 3. We note that these
results depend only on the lower bounds for

∑[
N≤xk dk(N, x)2 given in Theorems

4.1 and 4.2. In view of Lemma 2.3 we may thus generalize these results for ∆f

when f ∈ F with |f(n)| ≥ 1.

Theorems 4–7, Corollaries 1–3 Revisited. Let f ∈ F be any arithmetic func-
tion with |f(n)| ≥ 1 for all n. Then Theorems 4–7 and Corollaries 1–3 all hold for
∆f (x, q) in place of ∆(x, q).

In §7 we derive Theorems 1 and 3 as consequences of the analysis of §6. In §8 we
obtain the conditional result Theorem 2. The case of real characters (Theorems 9–
11) are dealt with in §9. Lastly, Theorem 8, which is a consequence of the “Fourier
flip” x→ q

x , is proved in §10.

3. Smooth and round numbers

3a. Integers with a specified number of prime factors. Estimating π(x, y),
the number of integers up to x with exactly y distinct prime factors, has long been
a central topic of additive number theory. Hardy and Ramanujan [8] established
the famous upper bound

π(x, y)� x

log x
(log log x+O(1))y−1

(y − 1)!
,

uniformly for all y. However good lower bounds, even on the order of magnitude
for π(x, y), when y � log log x were not known until recently. In 1984, Pomerance
[15] made an important breakthrough in showing that

π(x, y) =
x

log x
Ly+O( yL )

y!
, where L = log

(
log x
y log y

)
,(3.1)

in the range

log log x ≤ y ≤ log x
3 log log x

.(3.2)

Pomerance only claimed to have proved this result in the narrower range with
y ≥ (log log x)2. However he gives a slightly worse error term in one place in his
proof than is necessary, with the resulting loss in the range of applicability. This
mistake is corrected in the proof of Theorem 3.1 below; taking m = 1 there implies
the lower bound in (3.1). The upper bound in the missing range follows from Hardy
and Ramanujan’s result.
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Although it appears that we have imposed some rather severe extra restrictions,
it turns out that we can obtain the following result with minor modifications to
Pomerance’s proof. Here

∑[ indicates that the sum is over squarefree arguments.

Theorem 3.1. Given integers x, y and m, let z = max(y2, ω(m)). If (3.2) holds
and, in addition,

y2 ≤ z ≤ x
2
3y ,(3.3)

then

∑[

n≤x, ω(n)=y
(n,m)=1

1 ≥ x

log x
Ly+O( yL )

y!
, where L = L(x, y, z) := log

(
log x

y log
√
z

)
.

(3.4)

To prove this theorem we require the following lemma.

Lemma 3.2. Let I be any interval, and let s ≥ 2 be an integer. Then

(∑
p∈I

1
p

)s
− s(s− 1)

2

(∑
p∈I

1
p2

)(∑
p∈I

1
p

)s−2

≤
∑

p1,p2,... ,ps∈I
pi distinct

1
p1 . . . ps

≤
(∑
p∈I

1
p

)s
.

Proof. The upper bound is immediate, and the lower bound follows by induction
on s, after noting that∑

p1,... ,ps∈I
pi distinct

1
p1 . . . ps

=
∑

p1...ps−1
pi distinct

1
p1 . . . ps−1

(∑
p∈I

1
p
− 1
p1
− . . .− 1

ps−1

)

≥
(∑
p∈I

1
p

) ∑
p1...ps−1
pi distinct

1
p1 . . . ps−1

− (s− 1)
∑
p∈I

1
p2

∑
p1...ps−2
pi distinct

1
p1 . . . ps−2

.

Proof of Theorem 3.1. If m is an integer with exactly k distinct prime factors and
pk is the kth smallest prime, then∑[

n≤x, ω(n)=y
(n,m)=1

1 ≥
∑[

n≤x, ω(n)=y
p|n =⇒ p>pk

1.(3.5)

This is evident from noting that if q1, . . . , ql are the distinct prime factors of m
that are > pk, and r1, . . . , rl are the primes ≤ pk that do not divide m, then each
integer q1q2 · · · qlt counted in the sum on the right side of (3.5) corresponds to a
distinct integer r1r2 · · · rlt counted in the sum on the left side.

Note that L ≥ log 3, and put s = [ y−1
L+20 ] and J = [log(L + 20)] − 2. We define

the intervals I−1 = (z, x
2
ey ] and Ij = (x

2ej−1
y , x

2ej
y ] (for 0 ≤ j ≤ J − 1). We get

a lower bound on the right side of (3.5) by counting only those integers n of the
form n = n−1n0 . . . nJ−1p, where n−1 consists of exactly y− 1− sJ distinct primes
from I−1, nj (for 0 ≤ j ≤ J − 1) consists of exactly s distinct primes from Ij , and
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x
2eJ−1
y < p ≤ x

n−1n0...nJ−1
is prime. Hence using the prime number theorem

(3.5) ≥
∑

n−1,n0,... ,nJ−1

∑
x

2eJ−1
y ≤p≤ x

n−1n0...nJ−1

1 ≥ x

2 logx

J−1∏
j=−1

(∑
nj

1
nj

)
.

Appealing to Lemma 3.2 we determine that∑
n−1

1
n−1

=
(L+O(1))y−1−sJ

(y − 1− sJ)!

(
1 +O

(
y2

z log z

))
,

and that for 0 ≤ j ≤ J − 1∑
nj

1
nj

=
(1 +O(L−1))s

s!

(
1 +O

(
s2

x
2ej−1
y log z

))
.

It follows that

(3.5) ≥ x

2 log x
Ly−1−sJ

(y − 1− sJ)!s!J
eO( yL+ 1

log y ),

and Theorem 3.1 follows upon using Stirling’s formula, keeping in mind that y ≥ L
in our range.

Lemma 3.3. Let ` be a positive integer, and suppose y ≥ 2`2. For all x ≥ y`,∑
n≤x,Ω(n)=`
p|n =⇒ p>y

1� x

log y
(log log x+O(1))`−1

(`− 1)!
.

Proof. Given a squarefree integer m with exactly j (≤ `) distinct prime factors all
larger than y, there are ≤ j`−j integers n with Ω(n) = ` and having exactly the
same prime factors as m. Moreover if n ≤ x, then m ≤ n/y`−j ≤ x/y`−j. Thus the
sum we seek is

≤
∑̀
j=1

j`−j
∑

m≤x/y`−j
ω(m)=j

µ(m)2.

By the Hardy-Ramanujan upper bound this is

� x

log y

∑̀
j=1

j`−j

y`−j
(log log x+O(1))j−1

(j − 1)!
≤ x

log y
(log log x+O(1))`−1

(`− 1)!

∑̀
j=1

(j`)`−j

y`−j
,

and the result follows as y ≥ 2`2.

3b. Smooth numbers. Given real numbers x ≥ y ≥ 1 and an integer ` we define
S`(x, y) to be the set of integers ≤ x having exactly ` prime factors (counted with
multiplicity) larger than y. We denote the cardinality of S`(x, y) by Ψ`(x, y). The
case ` = 0 gives rise to smooth numbers; that is, integers free of large prime factors,
and we write S(x, y), Ψ(x, y) in place of S0(x, y), Ψ0(x, y). Estimating Ψ(x, y) has
been the focus of much attention, and we quote below the best results known.
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Theorem 3.4. Let x ≥ y ≥ 2 be real numbers, and put u = log x
log y . For any fixed

ε > 0 the asymptotic formula

Ψ(x, y) = xρ(u)
(

1 +O

(
log(u+ 1)

log y

))
(3.6)

holds uniformly in the range 1 ≤ u ≤ exp((log y)
3
5−ε). The weaker relation

log
Ψ(x, y)
x

=
(

1 +O
(

exp(−(log u)
3
5−ε)

))
log ρ(u)(3.7)

holds uniformly in the range 1 ≤ u ≤ y1−ε. Lastly, as u→∞,

log ρ(u) = −u
(

log u+ log log(u+ 2)− 1 +O

(
log log(u+ 2)

log(u+ 2)

))
.(3.8)

Proof. See Theorems 1.1 and 1.2 and Corollary 2.3 of [10].

We next give a bound for Ψ(x/z, y) in terms of Ψ(x, y).

Proposition 3.5. There is an absolute constant c such that for all 1 ≤ z ≤ x and
y ≥ 2,

Ψ(xz , y)� (c log x)
log z
log y

Ψ(x, y)
z

.

Proof. We prove this when 1 ≤ z ≤ y; the general case follows by repeated applica-
tion of this result. From Corollary 1.7 of [10] we obtain Ψ(xz , y)≤c1Ψ(x, y)z−α(x/z,y)

where c1 > 0 is some absolute constant and α = α(x/z, y) is the unique positive
solution to log(x/z) =

∑
p≤y log p/(pα − 1). Notice that

log x ≥ log(x/z) ≥
∑
n≤y

Λ(n)
nα

≥ 1
yα

∑
n≤y

Λ(n) ≥ y

4yα
.

This shows that y−α ≤ 4(log x)/y so that z−α ≤ (4 logx)
log z
log y /z. The result

Ψ(x/z, y) ≤ c1(4 log x)log z/ log yΨ(x, y)/z follows for 1 ≤ z ≤ y, and repeated appli-
cations of this result give Ψ(x/z, y) ≤ c1(4c1 log x)log z/ log yΨ(x, y)/z in general.

We note here a useful corollary of this result:

Corollary 3.6. Let 0 ≤ κ < 1, and let c be as in Proposition 3.5. Suppose y ≥
e(c logx)

1
1−κ . Then∑

n∈S(x,y)

1
nκ
� log y

1− κ
Ψ(x, y)
xκ

and
∑

n∈S(x,y)

1
nκ

log
x

n
� log y

(1− κ)2

Ψ(x, y)
xκ

.

If y ≥ (c log x)2, then ∑
n∈S(x,y)

log
x

n
� Ψ(x, y).

Proof. By partial summation∑
n∈S(x,y)

1
nκ

=
∫ x

1−

1
tκ
dΨ(t, y) =

Ψ(x, y)
xκ

+ κ

∫ x

1

Ψ(t, y)
t1+κ

dt.
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Using Proposition 3.5 the second term above is

� κ
Ψ(x, y)
x

∫ x

1

1
tκ

(c log x)
log(x/t)

log y dt = κ
Ψ(x, y)
x

∫ x

1

x
log(c log x)

log y

tκ+ log(c log x)
log y

dt,

and using our hypothesis on y this is

≤ κ log y
1− κ

Ψ(x, y)
xκ

.

The first part of the corollary follows. The other two assertions are proved similarly.

Lemma 3.7. Let x ≥ y ≥ (log x)1+ε, and put u = log x
log y . Then

Ψ(x, y log y)
Ψ(x, y)

= exp
(
u

log log y
log(y log y)

(log u+O(log log(u + 2)))
)
.

Proof. By Lemma 2.2 and Corollary 2.4 of [10] we get

ρ( log x
log(y log y) )

ρ( log x
log y )

= exp
(
u

log log y
log(y log y)

(log u+O(log log(u+ 2)))
)
.

The lemma follows upon combining this with (3.6) when u ≤ exp((log y)
3
5−ε), and

(3.7) for larger u.

Lemma 3.8. Suppose y ≥ (log x)
3
2 and that x ≥ z ≥ xy− 1

3 . Then

Ψ(x+ z, y)−Ψ(x, y)� z
Ψ(x, y)
x

.

This follows from Theorems 5.1 and 5.2 of [10]. The next result is an immediate
consequence of Corollary 2.4 of [10].

Lemma 3.9. ρ(u− v) � ρ(u) if |v| � 1/ log 2u, for u, u− v ≥ 1.

4. The 2k-th moment of

∑[
n≤xXn

In this section we prove upper and lower bounds on the 2k-th moment of∑[
n≤xXn, where (throughout this section) the [ indicates that the sum is over

squarefree n coprime to q. These bounds will be useful in deducing many of our
large character sums results.

Theorem 4.1. Let k ≥ 1 be an integer, and put K = max(k, ω(q)). Uniformly for
all x ≥ Kek we have

E
(∣∣∣∣∑

n≤x

[
Xn

∣∣∣∣2k) 1
2k

≤ E
(∣∣∣∣∑

n≤x
Xn

∣∣∣∣2k) 1
2k

≤ x 1
2

(
log x
k

) (k−1)2

2k

eO(k)(4.1)

and

E
(∣∣∣∣∑

n≤x

[
Xn

∣∣∣∣2k) 1
2k

≥
( ∑
N≤xk

[
dk(N, x)2

) 1
2k

≥ x
1
2

(log x)1− 1
2k

(
log x
k logK

) k
2
(

log
(

log x
k logK

))O(k)

.(4.2)
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Proof of the upper bound (4.1). Observe that

E
(∣∣∣∣∑

n≤x
Xn

∣∣∣∣2k) =
∑
N≤xk

dk(N, x)2

= #{b1, b2, . . . , bk, B1, B2, . . . , Bk ≤ x : b1 . . . bk = B1 . . . Bk}.

To each solution above we associate a k × k “g.c.d.-matrix” of integers A = (ai,j)
defined as follows: Put a1,1 = (b1, B1), and then define (using induction on i+ j)

ai,j =
(

bi∏
`<j ai,`

,
Bj∏
`<i a`,j

)
,

so that, for 1 ≤ i ≤ k,

bi =
k∏
`=1

ai,` and Bi =
k∏
`=1

a`,i.

We will bound the number of k × k integer matrices A = (ai,j) with all row
and column products

∏k
`=1 ai,`,

∏k
`=1 a`,i less than x, which thus implies an upper

bound in our original problem. The number of choices for ak,k is

≤ min
(

x∏k−1
i=1 ai,k

,
x∏k−1

i=1 ak,i

)
≤ x∏k−1

i=1 (ai,kak,i)
1
2

.

Next we sum over the possibilities for ai,k, ak,i (1 ≤ i ≤ k − 1). Notice that
ai,k ≤ x/

∏k−1
j=1 ai,j and ak,i ≤ x/

∏k−1
j=1 aj,i, and so∑

ai,k

1
√
ai,k
≤ 2

√
x∏k−1

j=1 a
1
2
i,j

,
∑
ak,i

1
√
ak,i
≤ 2

√
x∏k−1

j=1 a
1
2
j,i

.

Thus given ai,j (1 ≤ i, j ≤ k − 1), the number of possibilities for the last row and
column of A is

≤ 22k−2xk∏
1≤i,j≤k−1 ai,j

.

We now sum this over all the possibilities for ai,j (1 ≤ i, j ≤ k − 1). Keeping in
mind that

∏k−1
j=1 ai,j ≤ x for all 1 ≤ i ≤ k − 1, we see that this is

≤ 22k−2xk
k−1∏
i=1

( ∑
ai,1...ai,k−1≤x

1
ai,1 . . . ai,k−1

)
= 22k−2xk

(∑
n≤x

dk−1(n)
n

)k−1

.

Now for any α > 0∑
n≤x

dk−1(n)
n

≤ xα
∑
n≤x

dk−1(n)
n1+α

≤ xαζ(1 + α)k−1 = xα
(

1
α

+O(1)
)k−1

.

Choosing (optimally) α = k/ logx we obtain (since k ≤ log x)∑
n≤x

dk−1(n)
n

≤
(

log x
k

)k−1

eO(k).
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To sum up, we have shown that

E
(∣∣∣∣∑

n≤x
Xn

∣∣∣∣2k) ≤ 22k−2xk
(∑
n≤x

dk−1(n)
n

)k−1

≤ xk
(

log x
k

)(k−1)2

eO(k2),

and (4.1) follows.

Proof of the lower bound (4.2). We bound

E
(∣∣∣∣∑

n≤x

[
Xn

∣∣∣∣2k) ≥ ∑
N≤xk

[
dk(N, x)2

by focussing only on special values of N for which we expect dk(N, x) to be large.
Specifically, we let y denote an integer parameter to be chosen later, and consider
only those N ≤ xk which are squarefree, coprime to q, and have ky distinct prime
factors. Using Cauchy’s inequality, we find that∑

N≤xk

[
dk(N, x)2 ≥

( ∑
N≤xk

ω(N)=ky

[
dk(N, x)

)2 1
π(xk, ky)

.(4.3)

We shall choose y = [kL0], where L0 = log( log x
k logK ). Using (3.1) (after checking

that the constraint (3.2) is met) we find that

π(xk, ky) =
xk

k log x
Lky+O( kyL )

(ky)!
, where L = log

(
log x

y log(ky)

)
.

Since L0 − L = log y
k + log log(ky)

logK � logL0, we conclude that

π(xk, ky) =
xk

k log x
Lky0

(ky)!
exp
(
O

(
ky

logL0

L0

))
.(4.4)

Next observe that ∑
N≤xk

ω(N)=ky

[
dk(N, x) ≥

∑
m1,... ,mk≤x
ω(mi)=y

∗
1,

where the ∗ indicates that the sum is over squarefree m1 coprime to q, and pairwise
coprime. We deduce from (3.5) that this is

≥
( ∑
n≤x, ω(n)=y
p|n =⇒ p>p`

µ(n)2

)k
, where ` = (k − 1)y + ω(q).

Now we use Theorem 3.1 to bound this quantity. Our assumption that k logK ≤
e−1 log x ensures that the criteria (3.2) and (3.3) are met. Hence, with z =
max(`, y2),

∑
n≤x, ω(n)=y
p|n =⇒ p>p`

µ(n)2 ≥ x

log x
L
y+O( y

L1
)

1

y!
, where L1 = log

(
log x

y log
√
z

)
.
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Since L0 − L1 � logL0, we obtain

∑
N≤xk

ω(N)=ky

[
dk(N, x) ≥ xk

(log x)k
Lky0

y!k
exp
(
O

(
ky

logL0

L0

))
.(4.5)

Using (4.4) and (4.5) in (4.3) we deduce( ∑
N≤xk

[
dk(N, x)2

) 1
2k

≥ x
1
2

(log x)1− 1
2k

L
y
2
0 (ky)!

1
2k

y!
exp
(
O

(
y logL0

L0

))
,

and the lower bound (4.2) follows upon using Stirling’s formula, and recalling the
definitions of y and L0.

Next we give lower bounds on the 2k-th moment of
∑[

n≤xXn when x is small
(roughly, x = KA for some integer A).

Theorem 4.2. Let k and A be positive integers, and put K = max(k, ω(q)). For
all x ≥ (4(Ak +K) log(Ak +K))A we have, uniformly,

E
(∣∣∣∣∑

n≤x

[
Xn

∣∣∣∣2k) 1
2k

≥
( ∑
N≤xk

[
dk(N, x)2

) 1
2k

� x
1
2

(
k

log x

)A
2

.(4.6)

Proof. Plainly

E
(∣∣∣∣∑

n≤x

[
Xn

∣∣∣∣2k) =
∑
N≤xk

[
dk(N, x)2 ≥

∑
N≤xk

(N,q)=1

∗
dk(N, x)2,

where the ∗ indicates that we sum over only those N that are squarefree and
composed of exactly Ak prime factors, all less than x1/A. Note that for such N ,
dk(N, x) is at least the number of k-tuples m1, . . . , mk whose product is N , where
each mi is the product of exactly A primes. Thus dk(N, x) ≥ (Ak)!/A!k, and so∑

N≤xk

[
dk(N, x)2 ≥ (Ak)!

(A!)k
∑
N≤xk

(N,q)=1

∗
dk(N, x) ≥ (Ak)!

(A!)k
1

(A!)k
∑

p1,... ,pAk≤x
1
A

pi 6=pj ,pi-q

1

≥ (Ak)!
(A!)2k

Ak∏
j=1

(
π(x

1
A )−

∑
p|q

p≤x
1
A

1− j + 1
)
.(4.7)

By the prime number theorem, and our lower bound for x, we get

π(x
1
A )−

∑
p|q

p≤x
1
A

1−Ak ≥ π(x
1
A )−Ak −K ≥ Ax

1
A

log x
−Ak −K ≥ Ax

1
A

2 logx
.

Using this, and Stirling’s formula, in (4.7) we get Theorem 4.2.
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5. Applications to large character sums

In this section, we use Theorems 4.1 and 4.2 to deduce many of our results on
large character sums. We split these results in two parts: when

log log x ≤ (
1
2

+ o(1)) log log q,

where we use Theorem 4.2, and when

log log x ≥ (
1
2

+ o(1)) log log q,

where Theorem 4.1 is most useful.

5a. Large character sums when log log x ≤ (1
2 + o(1)) log log q.

Proof of Theorem 4. Recall that x = (10 log q)B for some B ≥ 1. We take k =
[ log q
log x ] and A = [B]. Notice that K = max(k, ω(q)) ≤ (1 + o(1)) log q

log log q , and so
kA+ K ≤ 5

2
log q

log log q . We check now that the condition of Theorem 4.2 is met, and
so

∆� x
1
2

(
k

log x

) [B]
2

≥ x
1
2 + [B]

2B

(4 log x)[B]
.

This gives the portion of Theorem 4 not having any restriction on q.
For our next application we suppose that ω(q) ≤ (log q)

B
B+1−ε. Here, we take

A = [B]+1 and k = [x
1
A /(10 logx)]. Our bound on ω(q) ensures that the condition

of Theorem 4.2 is met, and so

∆� x1/2

(
k

log x

) [B]+1
2

≥ x

(4 log x)[B]+1
.

This gives the second part of Theorem 4. Corollaries 1 and 2 are immediate conse-
quences.

5b. Large character sums when log log x ≥ (1
2 + o(1)) log log q.

Proof of Theorem 5. We take k = [ cη
√

log q
log log q ] for a fixed but sufficiently small

positive constant c. Since K ≤ log q, one can verify that the condition x ≥ Kek of
Theorem 4.1 is met. Hence by (4.2) we get

∆� x
1
2

(log x)1− 1
2k

(
log x

k log log q

) k
2
(

log
log x

k log log q

)O(k)

=
x

1
2

(log x)1− 1
2k

(
ητ

c

) k
2
(

log
ητ

c

)O(k)

.

The result follows if c is sufficiently small.

Proofs of Theorems 6 and 7. Both these results follow upon using (4.2) with k =
[ log q
log x ]: the hypotheses in the theorems ensure that x ≥ (log q)ek ≥ Kek.
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6. The 2k-th moment of

∑
n≤xXn

Here we explore more finely the 2k-th moment of
∑

n≤xXn. Put

Ψ`(x, y;Xn) =
∑

n∈S`(x,y)

Xn.

Our aim in this section is to show that
∑

n≤xXn behaves like Ψ0(x, y;Xn) most of
the time, for an appropriately chosen y.

Theorem 6.1. Suppose k ≥ 2 is an integer and that y ≥ C log2 x for a large
absolute constant C. Then

E
(∣∣∣∣∑

n≤x
Xn −Ψ0(x, y;Xn)

∣∣∣∣2k) 1
2k

� Ψ(x, y)
(
k log y log2 x

y

) 1
2

exp
(
O

(
k log2 x log log x

y

))
.

Proof. Put u = log x
log y . By Minkowski’s inequality

E
(∣∣∣∣∑

n≤x
Xn −Ψ0(x, y;Xn)

∣∣∣∣2k) 1
2k

= E
(∣∣∣∣ [u]∑

`=1

Ψ`(x, y;Xn)
∣∣∣∣2k) 1

2k

≤
[u]∑
`=1

E
(
|Ψ`(x, y;Xn)|2k

) 1
2k .(6.1)

Observe that

E(|Ψ`(x, y;Xn)|2k) =
∑

m1...mk=m′1...m
′
k

mi,m
′
i∈S(x/y`,y)

∑
n1...nk=n′1...n

′
k

ni≤x/mi,n′i≤x/m
′
i

Ω(ni)=Ω(n′i)=`
p|ni,n′i =⇒ p>y

1.

Now, given N = n1...nk, the number of factorizations N = n′1...n
′
k with each

Ω(n′i) = ` is ≤ (k`)!/`!k, and so the inner sum over ni, n′i is

≤
∑

n1,... ,nk
ni≤x/mi
Ω(ni)=`

p|ni =⇒ p>y

(k`)!
`!k

� kk`

`(k−1)/2

k∏
i=1

∑
ni≤x/mi
Ω(ni)=`

p|ni =⇒ p>y

1.

Using Lemma 3.3 (note that y ≥ C log2 x ≥ 2`2) this is

≤ xkkk`

m1 . . .mk

(log log x+O(1))k(`−1)

(`− 1)!k

(
c

log y

)k 1
`(k−1)/2

� xk

m1 . . .mk

(2k log log x)k`

(`! log y log log x)k
.

Now ∑
m1...mk=m′1...m

′
k

mi,m
′
i∈S(x/y`,y)

1
m1 . . .mk

= E
(∣∣∣∣ ∑

n∈S(x/y`,y)

Xn√
n

∣∣∣∣2k) ≤ ( ∑
n∈S(x/y`,y)

1√
n

)2k

,
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and, by Corollary 3.6 and Proposition 3.5,∑
n∈S(x/y`,y)

1√
n
� log y

Ψ(x/y`, y)
(x/y`)

1
2
� log y(c log x)`

Ψ(x, y)√
xy`

.

Therefore, combining the bounds above, we get

E
(
|Ψ`(x, y;Xn)|2k

) 1
2k � Ψ(x, y)

(
log y

`! log log x

)1/2(
ck log2 x log log x

y

)`/2
for some constant c > 0. Therefore, substituting this into (6.1), we get

E
(∣∣∣∣∑

n≤x
Xn −Ψ0(x, y;Xn)

∣∣∣∣2k) 1
2k

� Ψ(x, y)
(

log y
log log x

)1/2 [u]∑
`=1

1
`!1/2

(
ck log2 x log log x

y

)`/2

� Ψ(x, y)
(
k log2 x log y

y

) 1
2

exp
(
O

(
k log2 x log log x

y

))
,

since
∑∞

j=0 ξ
j
2 /j!

1
2 � eξ for all ξ ≥ 0. This proves the theorem.

We now derive a good lower bound for the 2k-th moment of
∑

n≤xXn. This is
a considerable refinement of Theorem 4.2, in the case that q = 1.

Theorem 6.2. Let k ≥ 2 be an integer. Then for all y ≥ 2 we have

E
(∣∣∣∣∑

n≤x
Xn

∣∣∣∣2k) 1
2k

≥ Ψ(x, y) exp
(
−2y log log x

k log y
+O

(
1

log x

))
.

Proof. Using Lemma 2.3 with f(n) = 1 and g(n) = the characteristic function of
S(x, y) we have

E
(∣∣∣∣∑

n≤x
Xn

∣∣∣∣2k) ≥ E(∣∣∣∣ ∑
n∈S(x,y)

Xn

∣∣∣∣2k).
We bound the right side above by picking only those Xn for which | arg(Xp)| ≤
π(log x)−2 for all p ≤ y (where arg is defined to lie between −π and π). The
probability of this happening is clearly (logx)−2π(y). For such a choice of Xp’s note
that ∣∣∣∣ ∑

n∈S(x,y)

Xn −Ψ(x, y)
∣∣∣∣ ≤ ∑

n∈S(x,y)

|Xn − 1| �
∑

n∈S(x,y)

Ω(n)
log2 x

� Ψ(x, y)
log x

.

Hence

E
(∣∣∣∣ ∑

n∈S(x,y)

Xn

∣∣∣∣2k) ≥ Ψ(x, y)2k exp
(
−2π(y) log log x+O

(
k

log x

))
,

and the result follows.

Combining Theorems 6.1 and 6.2 we get good upper and lower estimates for
large moments of

∑
n≤xXn; and in fact, we get an asymptotic formula for very

large k.
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Corollary 6.3. If k ≥ C log x is an integer, then

Ψ(x, k log5 k log x)
(

1 +O

(
1

log x

))
≥ E

(∣∣∣∣∑
n≤x

Xn

∣∣∣∣2k) 1
2k

≥ Ψ(x, k log x
log5 k

)
(

1 +O

(
1

log x

))
.(6.3)

If log k/
√

log x log log x→∞, then

E
(∣∣∣∣∑

n≤x
Xn

∣∣∣∣2k) 1
2k

= (1 + o(1))Ψ(x, k).(6.4)

Proof. From Theorem 6.2 we get

E
(∣∣∣∣∑

n≤x
Xn

∣∣∣∣2k) 1
2k

≥ Ψ(x, k log x
log3 k

) exp
(
O

(
1

log x
+

log x
log3 k

))
.

The lower bound of (6.3) now follows upon appealing to Lemma 3.7. Using
Minkowski’s inequality and Theorem 6.1 (with y = k log4 k log x) we get, since
|Ψ0(x, y;Xn)| ≤ Ψ(x, y),

E
(∣∣∣∣∑

n≤x
Xn

∣∣∣∣2k) 1
2k

≤ E(|Ψ0(x, y;Xn)|2k)
1
2k

+O

(
Ψ(x, y)

(
log x
log3 k

) 1
2

exp
(
O

(
log x
log3 k

)))
≤ Ψ(x, k log4 k log x) exp

(
O

(
log x
log3 k

))
.

The upper bound of (6.3) follows from this and Lemma 3.7. By Lemma 3.7 we
deduce that if k > exp(

√
log x), then

Ψ(x, k(log k)O(1)) = Ψ(x, k) exp
(
O

(
log x

(log log x)2

log2 k

))
.

Therefore (6.4) follows from (6.3).

7. Implications for character sums: Proofs of Theorems 1 and 3

Observe that for any integer k ≤ log q
log x and any y, we have

1
ϕ(q)

∑
χ (mod q)

∣∣∣∣∑
n≤x

χ(n)−Ψ(x, y;χ)
∣∣∣∣2k ≤ E(∣∣∣∣∑

n≤x
Xn −Ψ(x, y;Xn)

∣∣∣∣2k).
Using Theorem 6.1 we deduce that if y ≥ C log2 x, then

1
ϕ(q)

∑
χ (mod q)

∣∣∣∣∑
n≤x

χ(n)−Ψ(x, y;χ)
∣∣∣∣2k

≤ ckΨ(x, y)2k

(
k log y log2 x

y

)k
exp
(
O

(
k2 log log x log2 x

y

))
,(7.1)

for some constant c > 0.
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Proof of Theorem 1. We choose k = [ log q
log x ]. It follows from (7.1) that for any A > 1

there are fewer than qA−2k characters χ (mod q) not satisfying∣∣∣∣∑
n≤x

χ(n)−Ψ(x, y;χ)
∣∣∣∣

� AΨ(x, y)
(

log q log x log y
y

) 1
2

exp
(
O

(
log q log x log log x

y

))
.

Taking y ≥ log q log x(log log q)5 and A = 10 above, we obtain the first assertion
of Theorem 1.

Next, take y = (log q + log2 x)(log log q)4 and A = exp( log x
(log log q)2 ). We deduce

that with at most q1− 1
(log log q)2 exceptions∣∣∣∣∑

n≤x
χ(n)

∣∣∣∣� Ψ(x, y) exp
(
O

(
log x

(log log q)2

))
� Ψ(x, y log y),

using Lemma 3.7. This gives the second part of Theorem 1.

We now move towards the proof of Theorem 3. We begin with a lemma which
may be of independent interest.

Lemma 7.1. Let f(n) be any completely multiplicative function with |f(n)| = 1
for all n. Let 2 ≤ x ≤ exp((log q)

1
2 ), and let y = log q/(log x(log log q)8). There are

at least q1− 1
(log log q)2 characters χ (mod q) with∑

n∈S(x,y)

χ(n) =
∑

n∈S(x,y)
(n,q)=1

f(n) +O

(
Ψ(x, y;χ0)
(log log q)2

)
.

Proof. Note that for any integer k ≤ log q
log x

1
ϕ(q)

∑
χ (mod q)

∣∣∣∣ ∑
n∈S(x,y)
(n,q)=1

χ(n)f(n) + 1
2

∣∣∣∣2k = E
(∣∣∣∣ ∑

n∈S(x,y)
(n,q)=1

Xn + 1
2

∣∣∣∣2k).(7.2)

We give a lower bound for the right side of (7.2) by the argument of Theorem 6.2.
We pick only those Xn with |arg(Xp)| ≤ π

log q for all p ≤ y. This happens with
probability ≥ (log q)−π(y) ≥ exp(−3y), and for such a choice∑
n∈S(x,y)
(n,q)=1

Xn + 1
2

= Ψ(x, y;χ0) +O

( ∑
n∈S(x,y)
(n,q)=1

Ω(n)
log q

)
= Ψ(x, y;χ0)

(
1 +O

(
log x
log q

))
.

It follows that

1
ϕ(q)

∑
χ (mod q)

∣∣∣∣ ∑
n∈S(x,y)
(n,q)=1

χ(n)f(n) + 1
2

∣∣∣∣2k ≥ Ψ(x, y;χ0)2ke−3y

(
1 +O

(
log x
log q

))2k

.
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We deduce immediately that there are at least ϕ(q)e−4y(1 +O( log x
log q ))2k characters

χ (mod q) with∣∣∣∣ ∑
n∈S(x,y)
(n,q)=1

χ(n)f(n) + 1
2

∣∣∣∣ ≥ Ψ(x, y;χ0)e−
2y
k

(
1 +O

(
log x
log q

))
.

Choosing k = [log q/(log x(log log q)4)] we conclude that there are ≥ q
1− 1

(log log q)2

characters χ (mod q) for which∣∣∣∣ ∑
n∈S(x,y)
(n,q)=1

χ(n)f(n) + 1
2

∣∣∣∣ = Ψ(x, y;χ0)
(

1 +O

(
1

(log log q)4

))
.(7.3)

Let α = (
∑

n∈S(x,y), (n,q)=1 χ(n)f(n))/Ψ(x, y;χ0), so that |α| ≤ 1, and (7.3) states
that |α+ 1| = 2 +O(1/L4) where L = log log q. By the triangle inequality we have
2 ≥ 1+|α| ≥ |α+1| = 2+O(1/L4), and so |1−α|2 = 2(1+|α|2)−|α+1|2 = O(1/L4).
Thus |1− α| = O(1/L2) and the lemma follows.

Proof of Theorem 3. We suppose that log x ≤ (log log q)2

(log log log q)2 . Let y be as in Lemma
7.1, and put y1 = log q(log log q)7. Using Theorem 1 and Lemma 3.7, we get that
with at most q1− 1

log x exceptions∑
n≤x

χ(n) = Ψ(x, y1;χ) +O

(
Ψ(x, y1)

(log log q)2

)

= Ψ(x, y;χ) +O(|Ψ(x, y1)−Ψ(x, y)|) +O

(
Ψ(x, log q)
(log log q)2

)
= Ψ(x, y;χ) +O

(
Ψ(x, log q)

log x(log log log q)2

(log log q)2

)
.(7.4)

Given any angle θ, we take f(n) = n
iθ

log x in Lemma 7.1. We deduce that there
are at least q1− 1

log x characters χ (mod q) with

Ψ(x, y;χ) =
∑

n∈S(x,y)
(n,q)=1

n
iθ

log x +O

(
Ψ(x, y;χ0)
(log log q)2

)

= eiθΨ(x, y;χ0) +O

( ∑
n∈S(x,y)
(n,q)=1

log(x/n)
log x

+
Ψ(x, y;χ0)
(log log q)2

)

= eiθΨ(x, y;χ0) +O

(
Ψ(x, log q)

log x

)
by Corollary 3.6 and Lemma 3.7. Theorem 3 follows by combining this with (7.4).

8. Results conditional on GRH: Proof of Theorem 2

We begin with two standard lemmas which we shall use to prove the conditional
Theorem 2.
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Lemma 8.1. Let s = σ + it with σ > 1
2 and |t| ≤ 3q. Let 1

2 ≤ σ0 < σ, and
suppose that there are no zeros of L(z, χ) inside the rectangle {z : σ0 ≤ Re(z) ≤
1, |Im(z)− t| ≤ 3}. Then

| logL(s, χ)| � log q
σ − σ0

.

Proof. First note that if σ ≥ 2, then | logL(s, χ)| � 1 and there is nothing to
prove. We may hence assume that σ < 2. Consider the circles with centre 2 + it
and radii r := 2− σ < R := 2− σ0, so that the smaller circle passes through s. By
our hypothesis, logL(s, χ) is analytic inside the larger circle. For a point z on the
larger circle we use the estimate |L(z, χ)| ≤ 2q|z| ≤ q3, so that

Re logL(z, χ) = log |L(z, χ)| ≤ 3 log q.

The Borel-Carathéodory theorem precisely states that for any point on the smaller
circle (and so for s in particular) we have

| logL(s, χ)| ≤ 2r
R− r max

|z−2−it|=R
Re logL(z, χ) +

R+ r

R− r | logL(2 + it, χ)|

� 1
σ − σ0

log q +
1

σ − σ0
� log q

σ − σ0
.

Lemma 8.2. Let s = σ + it with σ > 1
2 and |t| ≤ 2q. Let y ≥ 2 be a real number,

and let 1
2 ≤ σ0 < σ. Suppose that there are no zeros of L(z, χ) inside the rectangle

{z : σ0 ≤ Re(z) ≤ 1, |Im(z)− t| ≤ y + 3}. Put σ1 = min(σ+σ0
2 , σ0 + 1

log y ). Then

logL(s, χ) =
y∑

n=2

Λ(n)χ(n)
ns logn

+O

(
log q

(σ1 − σ0)2
yσ1−σ

)
.

Proof. Without loss of generality we may assume that y ∈ Z + 1
2 . By Perron’s

formula (see [3]) we obtain, with c = 1− σ + 1
log y ,

1
2πi

∫ c+iy

c−iy
logL(s+ w,χ)

yw

w
dw =

y∑
m=2

Λ(m)χ(m)
ms logm

+O

(
1
y

∞∑
n=1

yc

nσ+c

1
| log(y/n)|

)

=
y∑

m=2

Λ(m)χ(m)
ms logm

+O(y−σ log y).(8.1)

We move the line of integration from the line Re(w) = c to the line Re(w) =
σ1 − σ < 0. Our hypothesis ensures that the integrand is regular over the region
where the line is moved, except for a simple pole at w = 0 with residue logL(s, χ).
Hence the left side of (8.1) equals logL(s, χ) plus

1
2πi

(∫ σ1−σ−iy

c−iy
+
∫ σ1−σ+iy

σ1−σ−iy
+
∫ c+iy

σ1−σ+iy

)
logL(s+ w,χ)

yw

w
dw � log q

(σ1−σ0)2
yσ1−σ,

using Lemma 8.1 to estimate logL(s + w,χ) in the above integrals. The result
follows.

If we assume the GRH for L(s, χ), then the hypotheses of Lemmas 8.1 and 8.2
are met with σ0 = 1

2 , and so the conclusions drawn there are valid. The advantage
of these formulations is that they can be used unconditionally for many characters χ
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(mod q) by appealing to zero-density estimates; we exploit this to get large values
of L(σ, χ) in [7].

We now assume the Riemann Hypothesis for L(s, χ), and proceed to prove The-
orem 2. Define

L(s, χ; y) = L(s, χ)
∏
p≤y

(
1− χ(p)

ps

)
,

so that L(s, χ; y) is regular in the whole plane. Note that

logL(s, χ; y) = logL(s, χ) +
∑
p≤y

log
(

1− χ(p)
ps

)

= logL(s, χ)−
y∑

m=2

Λ(m)χ(m)
ms logm

+O

(∑
p≤y
m≥2

1
mpmRe(s)

)
,

and so if Re(s) ≥ 1
2 + 1

log y and |Im(s)| ≤ 2q, we get by Lemma 8.2

| logL(s, χ; y)| ≤ C log q log2 y,(8.2)

where C > 0 is some constant.
Assume, without loss of generality, that the fractional part of x is 1

2 . Let u = log x
log y

and put c = 1 + 1
log x . By Perron’s formula

∑
n≤x

χ(n)−Ψ(x, y;χ) =
1

2πi

∫ c+i∞

c−i∞

(
L(s, χ)−

∏
p≤y

(
1− χ(p)

ps

)−1)
xs

s
ds

=
1

2πi

∫ c+i∞

c−i∞

∏
p≤y

(
1− χ(p)

ps

)−1

(exp(logL(s, χ; y))− 1)
xs

s
ds

=
[u]∑
`=1

1
`!

∑
n∈S(x/y`,y)

χ(n)
2πi

∫ c+i∞

c−i∞
(logL(s, χ; y))`

(
x

n

)s
ds

s
.(8.3)

Now note that (logL(s, χ; y))`/`! =
∑∞
m=1 a`(m, y)m−s, where |a(m, y)| ≤ 1 for

all m. Hence, by the lemma of section 17 of [3],

1
2πi`!

∫ c+i∞

c−i∞
(logL(s, χ; y))`

(
x

n

)s
ds

s

=
1

2πi`!

∫ c+ix/n

c−ix/n
(logL(s, χ; y))`

(
x

n

)s
ds

s
+O

( ∞∑
m=1

1
mc

1
| log(x/mn)|

)

=
1

2πi`!

∫ c+ix/n

c−ix/n
(logL(s, χ; y))`

(
x

n

)s
ds

s
+O(log x).

We move the line of integration to the line segment from κ− ix/n to κ+ ix/n where
κ := 1

2 + 1
log y . Using (8.2) we obtain

1
2πi`!

∫ c+i∞

c−i∞
(logL(s, χ; y))`

(
x

n

)s
ds

s
�
(
x

n

)κ (C log q log2 y)`

`!
log

x

n
+ log x.
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Using this in (8.3) we obtain∣∣∣∣∑
n≤x

χ(n)−Ψ(x, y;χ)
∣∣∣∣

�
[u]∑
`=1

(C log q log2 y)`

`!

∑
n∈S(x/y`,y)

xκ

nκ
log

x

n
+

u∑
`=1

Ψ( xy` , y) log x.

Using Proposition 3.5 and Corollary 3.6 we deduce that (keeping in mind y �
log2 x)

Ψ( xy` , y)�
(
c log x
y

)`
Ψ(x, y)

and ∑
n∈S(x/y`,y)

xκ

nκ
log

x

n
� `(c logx)` log2 y

Ψ(x, y)
y`(1−κ)

.

Hence ∣∣∣∣∑
n≤x

χ(n)−Ψ(x, y;χ)
∣∣∣∣

� Ψ(x, y)
[u]∑
`=1

(
log2 y

(C log q log x log2 y)`

(`− 1)!y
`
2

+
(
c log x
y

)`
log x

)

� Ψ(x, y)
log q log x log4 y

y
1
2

exp
(
O

(
log q log x log2 y

y
1
2

))
.(8.4)

It is of interest to compare (8.4) with the bound of Theorem 6.1.

Deduction of Theorem 2. The first assertion follows by taking

y = log2 q log2 x(log log q)12

in (8.4). Next, taking y = log2 q(log log q)14 in (8.4) we get∑
n≤x

χ(n)� Ψ(x, y) exp
(
O

(
log x

(log log q)3

))
,

and using Lemma 3.7 this is � Ψ(x, log2 q(log log q)20), as desired.

9. Large character sums for real characters

9a. Proofs of Theorem 9 and Theorem 10 for “small” x. Let y ≥ 2 be
a parameter to be chosen later and put b = b(y) = 4

∏
p≤y p. Choose a (mod b)

such that a ≡ 1 (mod 8), and (ap ) = 1 for every odd p ≤ y. Note that a squarefree
integer D ≡ a (mod b) is a fundamental discriminant satisfying (Dp ) = 1 for all
p ≤ y. We obtain the lower bounds of Theorems 9 and 10 by averaging over
fundamental discriminants of this special type, and choosing y appropriately.
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Write n ≤ x as n = rs, where p|r =⇒ p ≤ y and p|s =⇒ p > y. Note that if
D ≡ a (mod b), then (Dn ) = (Ds ). Thus∑

q≤D≤2q
D≡a (mod b)

µ(D)2
∑
n≤x

(
D

n

)
=

∑
r∈S(x,y)

∑
s≤x/r

p|s =⇒ p>y

∑
q≤D≤2q

D≡a (mod b)

µ(D)2

(
D

s

)
.(9.1)

If s is not a square, then using µ(D)2 =
∑

α2|D µ(α)∑
q≤D≤2q

D≡a (mod b)

µ(D)2

(
D

s

)
=

∑
α≤A

(α,b)=1

µ(α)
∑

q≤D≤2q
α2|D

D≡a (mod b)

(
D

s

)

+O

( ∑
√

2q>α>A

(
q

α2b
+ 1
))

,

and by (a modification to the proof of) the Pólya-Vinogradov inequality this is

� A
√
s log s+

√
q +

q

Ab
� √q +

√
q√
b
s

1
4 log s,(9.2a)

upon choosing A =
√
q/(b

1
2 s

1
4 ). If s is a square, say s = t2, then we see similarly

that

∑
q≤D≤2q

D≡a (mod b)

µ(D)2

(
D

s

)
=

∑
q≤D≤2q

D≡a (mod b)
(d,t)=1

µ(D)2 =
q

b

ϕ(t)
t

∏
p>y
p-t

(
1− 1

p2

)
+O(

√
qtε).

(9.2b)

Note that (9.2b) with s = t = 1 counts the number of fundamental discriminants
q ≤ D ≤ 2q with D ≡ a (mod b).

Using (9.2a,b) in (9.1) we deduce that∑
q≤D≤2q

D≡a (mod b)

µ(D)2
∑
n≤x

(
D

n

)
=
q

b

∑
r∈S(x,y)

∑
t2≤x/r

p|t =⇒ p>y

ϕ(t)
t

∏
p>y
p-t

(
1− 1

p2

)

+O

(
√
qx1+ε +

√
qx

5
4 +ε

√
b

)
.

It follows that there is at least one fundamental discriminant D ≡ a (mod b) be-
tween q and 2q with∑

n≤x

(
D

n

)
≥

∑
r∈S(x,y)

∑
t2≤x/r

p|t =⇒ p>y

∏
p|t

p

p+ 1
+O

(
b
√
q
x1+ε +

√
b
√
q
x

5
4 +ε

)
.(9.3)

We first use (9.3) to prove Theorem 9. Take y to be the smallest prime > 1
3 log q,

so that b(y) = q
1
3 +o(1). Since x ≤ qo(1) we see, by counting only the t = 1 terms on

the right side of (9.3), that there is a fundamental discriminant q ≤ D ≤ 2q with∑
n≤x

(
D

n

)
≥

∑
r∈S(x,y)

1 + o(1) ≥ Ψ(x, 1
3 log q).

This proves Theorem 9.
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To prove Theorem 10 in the range exp(
√

log q) ≤ x ≤ q1/2, we take y =
(1

2 − 2ε) log q
x so that b(y) ≤ ( qx )

1
2−ε. By (9.3) there is a fundamental discrimi-

nant q ≤ D ≤ 2q such that∑
n≤x

(
D

n

)
≥

∑
r∈S(x,y)

∑
t2≤x/r

p|t =⇒ p>y

∏
p|t

p

p+ 1
+O(x

1
2 ).(9.4)

We get a lower bound on the right side by counting only those r ≤ R (≤ x
4y2 ) for

some parameter R to be chosen soon. The prime number theorem and the small

sieve show that for such r the sum over t is �
√
x/r

log y . Hence the right side of (9.4)
is

�
√
x

log y

∑
r∈S(R,y)

1√
r
�
√
x

log y
Ψ(R, y)√

R
.

Choose R = exp(2
√
y) so that by Theorem 3.4 this is � √x exp((2 + o(1))

√
y

log y ), as
needed.

9b. Proofs of Theorem 11 and Theorem 10 for “large” x. We shall consider
negative fundamental discriminants D, so that ( D−1 ) = −1 and τ(χD) = i

√
|D|.

Pólya’s Fourier expansion (see (3)) gives

π

2
√
|D|

∑
n≤|D|/N

(
D

n

)
=

1
4

H∑
h=−H
h 6=0

(Dh )
h

(1− e(−h/N)) +O

(
1√
D|

+

√
|D|
H

log |D|
)

=
H∑
h=1

(Dh )
h

sin2(πh/N) +O

(
1√
|D|

+

√
|D|
H

log |D|
)
.(9.5)

Let y be a parameter to be chosen later, and let b = b(y) and a be as in §9a. We
average (9.5) over fundamental discriminants q ≤ −D ≤ 2q with D ≡ a (mod b).
Arguing exactly as in the proof of (9.3), we deduce that there is a fundamental
discriminant D with q ≤ −D ≤ 2q such that

π

2
√
|D|

∑
n≤|D|/N

(
D

n

)
≥

∑
r∈S(H,y)

1
r

∑
t2≤H/r

p|t =⇒ p>y

sin2(πrt2/N)
t2

∏
p|t

p

p+ 1

+O

(
1
√
q

+
√
q

H
log q +

b
√
q
Hε +

√
b
√
q
H

1
4 +ε

)
.

Choosing H = q
4
5 /b

2
5 we deduce that for some fundamental discriminant D with

q ≤ −D ≤ 2q we have

π

2
√
|D|

∑
n≤|D|/N

(
D

n

)

≥
∑

r∈S(H,y)

1
r

∑
t2≤H/r

p|t =⇒ p>y

sin2(πrt2/N)
t2

∏
p|t

p

p+ 1
+O

(
qε
(
b
√
q

+
b

2
5

q
3
10

))
.(9.6)
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We now get a bound on the right side of (9.6) for various ranges of N . Through-
out we shall take y = 1

3 log q so that b ≤ q
1
3 +ε. Then H ≥ √q, and the error term

in (9.6) is O(q−
1
7 ).

We begin with the range
√

log q ≥ N ≥ 2. (Note that by taking N = 2, the right
side above is &

∑
r≤H 1/r, where the sum is over those odd r whose prime factors

are all ≤ y, which is & (eγ/2) log y, and we thus recover Paley’s bound (4).)
We count only the terms for which t = 1 and r ≤ y with 1

4 ≤ {r/N} ≤
3
4 in

(9.6). Thus

(9.6) ≥
∑
r≤y

sin2(πr/N)
r

+O(q−
1
7 ) ≥

y/N∑
k=0

∑
(k+1/4)N≤r≤(k+3/4)N

sin2(πr/N)
r

+O(1)

≥
y/N∑
k=0

1
N(k + 1)

1
2

[
N

2

]
+ O(1) ≥ 1

8
log(y/N) +O(1) ≥ 1

16
log log q +O(1).

Next we consider the range exp(
√

log q) ≥ N ≥
√

log q. Here we bound (9.6) as
follows: Let θ = 1/ log(6 logN/ log y).

(9.6) ≥
∑

r∈S(Nyθ,y)

sin2(πr/N)
r

+O(q−
1
7 )

≥
yθ∑
k=0

1
N(k + 1)

∑
(k+1/4)N≤n≤(k+3/4)N

p|n =⇒ p≤y

1
2

+O(q−
1
7 ).

First we focus on the range N < exp((log log q)2). Appealing to the “smooth
numbers in short intervals estimate”, Lemma 3.8, and Theorem 3.4 this is

�
yθ∑
k=0

1
N(k + 1)

Nρ

(
log(N(k + 1

4 ))
log y

)
� θρ

(
logN
log y

+ θ

)
log y,

which gives the result since ρ(u+ 1/ log(6u)) � ρ(u) by Lemma 3.9.
Next if exp(

√
log q) ≥ N ≥ exp((log log q)2) we use Lemma 3.8, and ignore all

but the k = 0 term. This gives

(9.6)� 1
N

Ψ
(
N

4
, y

)
� 1

N
Ψ(N, y).

The result follows from Lemma 3.9, completing the proof of Theorem 11.
To prove Theorem 10 in the range q1/2 ≤ x ≤ q/ exp(

√
log q), we consider the

range
√
q ≥ N ≥ exp(

√
log q). Let R ≤ N/(4y2) be a parameter to be chosen

shortly. We bound (9.6) by considering only r ∈ S(R, y), and then summing over
values where t = p is prime in the range

√
N/(2

√
r) ≤ p ≤

√
3N/(2

√
r). Thus,

using the prime number theorem,

(9.6) ≥
∑

r∈S(R,y)

1
r

∑
√
N

2
√
r
≤p≤

√
3N

2
√
r

sin2(πr/Np2)
p2

�
∑

r∈S(R,y)

1
r

√
r/N

log q
� 1√

N log q
Ψ(R, y)√

R
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LARGE CHARACTER SUMS 395

TakingR = exp(2
√
y) and using Theorem 3.4, this is� (1/

√
N) exp((2+o(1))

√
y

log y ),
as needed.

10. Proof of Theorem 8

We consider only primitive characters χ with χ(−1) = 1. Note that for a twice
continuously differentiable function Φ the Poisson summation formula gives

∞∑
n=−∞

χ(n)Φ
(
n

X

)
=
Xτ(χ)
q

∞∑
a=−∞

χ(a)Φ̂
(
aX

q

)
.

Define Φ1 to be the characteristic function of [−1, 1], and let Φr be the r-fold
convolution of Φ1. Note that Φr(t) is supported in [−r, r], Φr(−t) = Φr(t), and
that Φr(t) increases for t ∈ [−r, 0) and decreases for t ∈ (0, r]. Lastly, note that

Φ̂r(ξ) = Φ̂1(ξ)r =
(

sin(2πξ)
πξ

)r
if ξ 6= 0, and = 2r if ξ = 0. We shall use the Poisson

summation formula above with X = q/(rN) and Φ = Φr for an even value of r ≥ 4,
so that the Fourier transform Φ̂r is always non-negative.

On the one hand, we have

∞∑
n=−∞

χ(n)Φr

(
n

X

)
= 2

q/N∑
n=1

χ(n)Φr

(
n

X

)

= −2
∫ q/N

0

1
X

Φ′r

(
t

X

)∑
n≤t

χ(n) dt

≤ 2Φr(0) max
t≤q/N

∣∣∣∣∑
n≤t

χ(n)
∣∣∣∣ ≤ 2r max

t≤q/N

∣∣∣∣∑
n≤t

χ(n)
∣∣∣∣.(10.1)

On the other hand, the right side of the Poisson sum formula has size (since |τ(χ)| =√
q, and χ(−1) = 1)

2
√
q

rN

∣∣∣∣ ∞∑
a=1

χ(a)Φ̂r

(
a

rN

)∣∣∣∣ =
2
√
q

rN

∣∣∣∣(rN)
r
r−1∑

a=1

χ(a)
(

sin(2π a
rN )

πa
rN

)r∣∣∣∣
+O

(√
q

rN

∑
a>(rN)

r
r−1

(
rN

πa

)r)

=
2
√
q

rN

∣∣∣∣(rN)
r
r−1∑

a=1

χ(a)
(

sin(2π a
rN )

πa
rN

)r∣∣∣∣+O

(√
q

rN

)
.(10.2)

Now observe that for integers k ≤ (r−1) log(q/2)
r log(rN) we have

2
ϕ(q)

∑
χ (mod q)
χ(−1)=1

∣∣∣∣(rN)
r
r−1∑

a=1

χ(a)
(

sin(2π a
rN )

πa
rN

)r∣∣∣∣2k

= E
(∣∣∣∣(rN)

r
r−1∑

h=1

Xh

(
sin(2π h

rN )
πh
rN

)r∣∣∣∣2k).
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Since r ≥ 4 is even, note that sinr(2π a
rN )/( πarN )r ≥ 0 for all a, and ≥ c2r for all

a ≤ N , for some absolute constant c. Hence we get from Lemma 2.3 that

E
(∣∣∣∣(rN)

r
r−1∑

h=1

Xh

(
sin(2π h

rN )
πh
rN

)r∣∣∣∣2k) ≥ (c2r)2kE
(∣∣∣∣ N∑

a=1

Xa

∣∣∣∣2k).
Combining the above statements thus gives

max
t≤q/N

∣∣∣∣∑
n≤t

χ(n)
∣∣∣∣� √qrN

(
E
(∣∣∣∣ N∑

a=1

Xa

∣∣∣∣2k) 1
2k

+O(1)

)
.(10.3)

We may obtain a lower bound from this by appealing to the results of §4 and
§6, taking k = [(r − 1) log(q/2)/r log(rN)] in the first three parts, choosing r ap-
propriately and replacing x in those arguments by N here. Thus the first part of
the theorem is a consequence of Corollary 6.3 with r = 4. The remaining parts of
the theorem follow by choosing r to be an even integer around log log q, and then
applying Theorem 4.1 as in the proofs of Theorems 5, 6, and 7.
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