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Abstract. We study the problem of finding large cuts in d-regular triangle-free graphs.
In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected
size (1/2 + 0.177/

√
d)m, where m is the number of edges. We give a simpler algorithm

that does much better: it finds a cut of expected size (1/2 + 0.28125/
√
d)m. As a

corollary, this shows that in any d-regular triangle-free graph there exists a cut of at
least this size.

Our algorithm can be interpreted as a very efficient randomised distributed algo-
rithm: each node needs to produce only one random bit, and the algorithm runs in
one synchronous communication round. This work is also a case study of applying
computational techniques in the design of distributed algorithms: our algorithm was
designed by a computer program that searched for optimal algorithms for small values
of d.ar
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1 Introduction

We study the problem of finding large cuts in triangle-free graphs. In particular, we are
interested in the design of fast and simple randomised distributed algorithms.

1.1 Random Cuts

Let G = (V,E) be a simple undirected graph. A cut is a function c : V → {a, b} that
labels the nodes with symbols a and b. An edge {u, v} ∈ E is a cut edge if c(u) 6= c(v).
We use the convention that the weight w(c) of a cut c is the fraction of edges that are
cut edges; that is, the weight of the cut is normalised so that it is in the range [0, 1].
See Figure 1 for an illustration.
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Figure 1: A cut c : V → {a, b} of weight w(c) = 10
12
.

While the problem of finding a maximum cut (or a good approximation of one)
is NP-hard [4, 5, 7, 12, 16], there is a very simple randomised algorithm that finds a
relatively large cut: for each node v, pick c(v) ∈ {a, b} independently and uniformly at
random. We say that c is a uniform random cut.

In a uniform random cut, each edge is a cut edge with probability 1/2. It follows
that the expected weight of a uniform random cut is also 1/2.

1.2 Regular Triangle-Free Graphs

In general graphs, we cannot expect to find cuts that are much better than uniform
random cuts. For example, in a complete graph on n nodes, the weight of any cut is at
most 1/2 +O(1/n).

However, there is a family of graphs that makes for a much more interesting case
from the perspective of the max-cut problem: regular triangle-free graphs. Erdős [2]
raised the problem of estimating the minimum possible size of a maximum cut in a
high-girth graph, and especially the case of triangle-free graphs attracted much interest
from the research community [1, 13, 15].

Accordingly, from now on, we assume that G is a d-regular graph for some constant
d ≥ 2, and that there are no triangles (cycles of length three) in G. While focusing on
regular triangle-free graphs may seem overly restrictive, our algorithm can be applied
in a much more general setting; we will briefly discuss extensions in Section 3.
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1.3 Shearer’s Algorithm

In triangle-free graphs, it is easy to find cuts that are (in expectation) larger than
uniform random cuts. Nevertheless, a uniform random cut is a good starting point.

Shearer’s [15] algorithm proceeds as follows. Pick three uniform random cuts c1, c2,
and c3. For each node v, let

ℓ(v) =
∣

∣{v, u} ∈ E : c1(v) = c1(u)}
∣

∣

be the number of like-minded neighbours in c1. Then the output of a node v is

c(v) =























c1(v), if ℓ(v) < d/2,

c1(v), if ℓ(v) = d/2 and c3(v) = 0,

c2(v), if ℓ(v) = d/2 and c3(v) = 1,

c2(v), if ℓ(v) > d/2.

(1)

Put otherwise, a node follows c1 if it seems that there are many cut edges w.r.t. c1 in
its immediate neighbourhood, and it falls back to another cut c2 otherwise. The value
c3(v) is just used as a random tie-breaker.

Shearer [15] shows that the expected weight of cut (1) is at least

1

2
+

√
2

8
√
d

≈ 1

2
+

0.177√
d

(2)

in d-regular triangle-free graphs.

1.4 Our Algorithm

Shearer’s algorithm can be characterised as follows: take a uniform random cut c1 and
then improve it with the help of a randomised rule described in (1). In this work, we
show that we can do much better with the help of a simple deterministic rule.

In our algorithm we pick one uniform random cut c1. Again, each node v counts
the number of like-minded neighbours

ℓ(v) =
∣

∣{v, u} ∈ E : c1(v) 6= c1(u)}
∣

∣.

We define the threshold

τ =

⌈

d+
√
d

2

⌉

. (3)

Now the output of a node v is simply

c(v) =

{

c1(v), if ℓ(v) < τ,

−c1(v), if ℓ(v) ≥ τ.
(4)

Here −c1(v) is the complement of c1(v), that is, −a = b and −b = a. In the algorithm
each node simply changes its mind if it seems that there are too many like-minded
neighbours.

It is not obvious that such a rule makes sense, or that this particular choice of τ is
good. Nevertheless, we show in this work that the expected weight of cut (4) is at least

1

2
+

9

32
√
d

=
1

2
+

0.28125√
d

, (5)
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which is much larger than Shearer’s bound (2), at least in low-degree graphs. As a
corollary, any d-regular triangle-free graph admits a cut of at least this size.

Our algorithm can be implemented very efficiently in a distributed setting: each
node only needs to produce one random bit, and the algorithm only requires one
communication round. In Shearer’s algorithm each node has to produce up to three
random bits.

Perhaps the most interesting feature of the algorithm is that it was not designed by
a human being—it was discovered by a computer program. Indeed, cuts in triangle-
free graphs serve as an example of a computational problem in which computer-aided
methods can be used to partially automate algorithm design and analysis (this process
is also known as “algorithm synthesis” or “protocol synthesis”). There is a wide range
of other graph problems in which a similar approach has a lot of potential as a shortcut
to the discovery of new distributed algorithms.

In Section 2, we outline the procedure that we used to design the algorithm, and
then present an analysis of its performance. In Section 3 we discuss how to apply the
algorithm in a more general setting beyond regular triangle-free graphs.

2 Algorithm Design and Analysis

We begin this section with an informal overview of so-called neighbourhood graphs.
The formal definitions that we use in this work are given after that.

2.1 Neighbourhood Graphs in Prior Work

In the context of distributed systems, the radius-t neighbourhood N(t, v) of a node v
refers to all information that node v may gather in t communication rounds. Depending
on the model of computation that we use, this may include all nodes that are within
distance t from v, the edges incident to these nodes, their local inputs, and the random
bits that these nodes have generated. The idea is that whatever decision node v takes, it
can only depend on its radius-t neighbourhood—any distributed algorithm A that runs
in t communication rounds can be interpreted as a mapping from local neighbourhoods
to local outputs.

A neighbourhood graph Nt is a graph representation of all possible radius-t neigh-
bourhoods that a distributed algorithm may encounter. Each node N ∈ V (Nt) of the
neighbourhood graph corresponds to a possible local neighbourhood: there is at least
one communication network in which some node has a local neighbourhood isomorphic
to N . We have an edge {N1, N2} ∈ E(Nt) in the neighbourhood graph if there is some
communication network in which nodes with local neighbourhoods N1 and N2 are
adjacent; see Figure 2 for an example.

Neighbourhood graphs are a convenient concept in the study of graph colouring
algorithms, both from the perspective of traditional algorithm design [3, 6, 9–11] and
from the perspective of computational algorithm design [14]. The key observation is
that the following two statements are equivalent:

• A : V (Nt) → {1, 2, . . . , k} is a proper colouring of the neighbourhood graph Nt,
• A is a distributed algorithm that finds a proper k-colouring in t rounds.

To see this, consider any graph G. If nodes u and v are adjacent in G, then their local
views N(t, u) and N(t, v) are adjacent in Nt, and by assumption A assigns a different

3



N1

N2

(a) (b)

Figure 2: In this example, we study the family F of 3-regular triangle-free graphs that are
labelled with two colours, black and white. (a) A small part of neighbourhood graph Nt for
t = 1. (b) There exists a graph G ∈ F in which local neighbourhoods N1 and N2 are adjacent;
hence nodes N1 and N2 are adjacent in the neighbourhood graph.

colour to N(t, u) and N(t, v). Hence distributed algorithm A finds a proper k-colouring
of G. Conversely, if algorithm A finds a proper colouring in any communication network,
it defines a proper k-colouring of Nt.

In summary, colourings of the neighbourhood graph correspond to distributed
algorithms for graph colouring, and vice versa. In general, a similar property does not
hold for arbitrary graph problems. For example, there is no one-to-one correspondence
between maximal independent sets of Nt and distributed algorithms that find maximal
independent sets [14, Section 8.5].

However, as we will see in this work, we can use neighbourhood graphs also in the
context of the maximum cut problem. It turns out that we can define a weighted version
of neighbourhood graphs, so that there is a one-to-one correspondence between heavy
cuts in the weighted neighbourhood graph, and randomised distributed algorithms that
find large cuts in expectation.

2.2 Model of Distributed Computing

Next, we formalise the model of distributed computing that is sufficient for the purposes
of our algorithm. Fix the parameter d; recall that we are interested in d-regular
triangle-free graphs. Let G = (V,E) be such a graph, and let c be a uniform random
cut in G. The local neighbourhood of a node v is Nc(v) = (c(v), ℓc(v)), where

ℓc(v) =
∣

∣{v, u} ∈ E : c(v) = c(u)}
∣

∣

is the number of neighbours with the same random bit. Note that there are only 2d+2
possible local neighbourhoods.

A distributed algorithm is a function A that associates an output A(N) ∈ {a, b}
with each local neighbourhood N . For any d-regular triangle-free graph G = (V,E),
function A defines a randomised process that produces a random cut c′ as follows:

1. Pick a uniform random cut c.
2. For each node v, let c′(v) = A(Nc(v)).

We use the notation A(G) for the random cut c′ produced by algorithm A in graph
G. In particular, we are interested in the quantity E[w(A(G))], the expected weight of
cut c′.

A priori, we might expect that E[w(A(G))] would depend on G. However, as we
will soon see, this is not the case—it only depends on parameter d and algorithm A.
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(b, 0) (b, 1) (b, 2) (b, 3)

(a, 3) (a, 2) (a, 1) (a, 0)

Figure 3: Weighted neighbourhood graph N for d = 3. Edge weights are denoted by line
widths; missing edges have weight 0. Note that the digraph is symmetric; however, we prefer
the directed representation so that we do not need special treatment for self-loops.

2.3 Weighted Neighbourhood Graph

A weighted digraph is a pair D = (V,w) with w : V × V → [0,∞). Here V is the set
of nodes, and w associates a non-negative weight w(x, y) ≥ 0 with each directed edge
(x, y) ∈ V × V . Let c : V → {a, b} be a cut in weighted digraph D. The weight of cut c
is

w(c) =
∑

(u,v)∈V×V,
c(u) 6=c(v)

w(u, v),

the total weight of all cut edges.
The weighted neighbourhood graph N = (VN , wN ) is a weighted digraph defined as

follows (see Figure 3 for an illustration). The set of nodes

VN =
{

(k, i) : k ∈ {a, b}, i ∈ {0, 1, . . . , d}
}

consists of all possible neighbourhoods that we may encounter in d-regular triangle-free
graphs. We define the edge weights as follows:

wN

(

(k1, i1), (k2, i2)
)

=



















1

4d

(

d− 1

i1

)(

d− 1

i2

)

if k1 6= k2,

1

4d

(

d− 1

i1 − 1

)(

d− 1

i2 − 1

)

if k1 = k2.

We follow the convention that
(

n
k

)

= 0 for k < 0 and k > n.
Note that the weights are symmetric, and the total weight of all edges is 1. The

following lemma shows that the weight of the edge (N1, N2) in the neighbourhood
graph equals the probability of “observing” adjacent neighbourhoods of types N1 and
N2; see Figure 4. Note that the probability does not depend on the choice of graph G
or edge {u, v}.
Lemma 1. Let G be a d-regular triangle-free graph, and let {u, v} be an edge of G.
Consider a uniform random cut c of G. Then for any given neighbourhoods N1, N2 ∈ VN

we have
Pr

[

Nc(u) = N1 and Nc(v) = N2

]

= wN (N1, N2).
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(b, 0)

(b, 1)

(a, 2)

(a, 1)

(b, 1)(b, 0)

∅

u

v

u1 u2

v1 v2

u

v

u1 u2

v1 v2

u

v

u1 u2

v1 v2

u

v

u1 u2

v1 v2

u

v

u1 u2

v1 v2

Figure 4: Selected examples of edge weights in the weighted neighbourhood graph N (see
Figure 3). We have wN ((b, 0), (b, 1)) = 0, wN ((a, 2), (b, 0)) = 1/64, and wN ((a, 1), (b, 1)) = 1/16.
It is not possible to have a graph in which we have adjacent neighbourhoods of types (b, 0)
and (b, 1). Adjacent neighbourhoods of types (a, 2) and (b, 0) are fairly rare, while adjacent
neighbourhoods of types (a, 1) and (b, 1) are much more common.

Proof. In what follows, we will denote the neighbours of u by u1, u2, . . . , ud where
ud = v. Similarly, the neighbours of v are v1, v2, . . . , vd where vd = u. As G is triangle-
free, sets Su = {u1, u2, . . . , ud−1} and Sv = {v1, v2, . . . , vd−1} are disjoint. In particular,
the random variables c(x) for x ∈ Su ∪ Sv are independent.

Let N1 = (k1, i1) and N2 = (k2, i2). There are two cases. First assume that k1 = k2.
Then

Pr
[

Nc(u) = N1 and Nc(v) = N2

]

= Pr
[

c(u) = k1 and c(v) = k2
]

·
Pr

[

|{y ∈ Su : c(y) = k1}| = i1 − 1
]

·
Pr

[

|{y ∈ Sv : c(y) = k2}| = i2 − 1
]

=
1

4
· 1

2d−1

(

d− 1

i1 − 1

)

· 1

2d−1

(

d− 1

i2 − 1

)

= wN (N1, N2).

Second, assume that k1 6= k2. Then

Pr
[

Nc(u) = N1 and Nc(v) = N2

]

= Pr
[

c(u) = k1 and c(v) = k2
]

·
Pr

[

|{y ∈ Su : c(y) = k1}| = i1
]

·
Pr

[

|{y ∈ Sv : c(y) = k2}| = i2
]

=
1

4
· 1

2d−1

(

d− 1

i1

)

· 1

2d−1

(

d− 1

i2

)

= wN (N1, N2).
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2.4 Cuts in Neighbourhood Graphs

Any function A : VN → {a, b} can be interpreted in two ways:

1. A cut of weight wN (A) in the weighted neighbourhood graph N .

2. A distributed algorithm that finds a cut in any d-regular triangle-free graph: the
algorithm picks a uniform random cut c, and then node v outputs A(Nc(v)).

The following lemma shows that the two interpretations are closely related: if A is a
cut of weight w in neighbourhood graph N , then it immediately gives us a distributed
algorithm that finds a cut of expected weight w in any d-regular triangle-free graph.

Lemma 2. If A : VN → {a, b} is a cut in neighbourhood graph N , and G is a d-regular
triangle-free graph, then E[w(A(G))] = wN (A).

Proof. Fix a graph G and an edge {u, v} of G. By Lemma 1 we have

wN (A) =
∑

A(N1) 6=A(N2)

wN (N1, N2)

=
∑

A(N1) 6=A(N2)

Pr
[

Nc(u) = N1 and Nc(v) = N2

]

= Pr
[

A(Nc(u)) 6= A(Nc(v))
]

.

The claim follows by summing over all edges {u, v} of G.

2.5 Computational Algorithm Design

Now we have all the tools that we need. Lemma 2 gives a one-to-one correspondence
between large cuts of the neighbourhood graph and distributed algorithms that find
large cuts. For any fixed value of d, the task of designing a distributed algorithm is
now straightforward:

1. Construct the weighted neighbourhood graph N .
2. Find a heavy cut in N .

See Figure 5 for an example. For d = 3, the heaviest cut Aopt of N is

Aopt((k, i)) =

{

k if i < 3,

−k if i ≥ 3.
(6)

This is also the best possible algorithm for this value of d, for the model of computing
that we defined in Section 2.2.

Remark 1. The reader may want to compare (6) with Section 1.4. For d = 3, the
algorithms are identical, albeit with a slightly different notation. Note that τ3 = 3.

Of course finding a maximum-weight cut is hard in the general case. However, in
this particular case neighbourhood graphs are relatively small (only 2d+ 2 nodes).
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b b b a

b a a a

(b, 0) (b, 1) (b, 2) (b, 3)

(a, 3) (a, 2) (a, 1) (a, 0)

Figure 5: Maximum-weight cut in the weighted neighbourhood graph for d = 3.

d: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
τopt: 2 3 3 4 5 5 6 6 7 7 8 9 9 10 10 11 11 12 12 13 14 14 15 15 16 16 17 17 18 18 19

Table 1: Optimal threshold τopt for small values of d.

While the smallest cases could be easily solved with brute force, slightly more
refined approaches are helpful for moderate values of d. We took the following approach.
First, we reduced the max-weight-cut instance N to a max-weight-SAT instance φ in a
straightforward manner:

• For each node u ∈ VN we have a Boolean variable xu in formula φ.

• For each edge (u, v) of weight wN (u, v) we have two clauses in formula φ, both of
weight wN (u, v):

xu ∨ xv and ¬xu ∨ ¬xv
Note that at least one of these clauses is always satisfied, while both of them are
satisfied if and only if xu and xv have different values.

Now it is easy to see that a variable assignment x of φ that maximises the total weight
of satisfied clauses also gives a maximum-weight cut A in N : let A(u) = a iff xu is true.
More precisely, the total weight of the clauses satisfied by x is W + wN (A), where W
is the total weight of all edges.

With this reduction, we can then resort to off-the-self max-weight-SAT solvers. In our
experiments we used akmaxsat solver [8]; with it we can solve the cases d = 2, 3, . . . , 32
very quickly (e.g., the case d = 32 on a low-end laptop in less than 5 seconds).

Surprisingly, in all cases the max-weight cut has the following simple structure:

Aτ ((k, i)) =

{

k if i < τ,

−k if i ≥ τ.
(7)

The exact values of τ for the heaviest cuts are given in Table 1; note that all values are
slightly larger than d/2.
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0 10 20 30 40
τ

0.44

0.46

0.48

0.50

0.52

0.54

0.56

α(τ, 39)

Figure 6: α(τ, 39) for τ = 0, 1, . . . , 40.

2.6 Generalisation

Now it is easy to generalise the findings: we can make the educated guess that algorithms
of form (7) are good also in the case of a general d. All we need to do is to find a
general expression for the threshold τ , and prove that algorithm Aτ indeed works well
in the general case.

To facilitate algorithm analysis, let us define the shorthand notation

α(τ, d) = wN (Aτ ) = E[w(Aτ (G))]

for the performance of algorithm Aτ . It is easy to see that α(0, d) = α(d+ 1, d) = 1/2,
as the threshold value of τ = d+ 1 simply means that algorithm Aτ outputs a uniform
random cut, while τ = 0 means that Aτ outputs the complement of the uniform random
cut. The general shape of α(τ, d) is illustrated in Figure 6.

We are interested in the region τ > d/2, where α(τ, d) ≥ 1/2. In the following, we
derive a relatively simple expression for α(τ, d) in this region—the proof strategy is
inspired by Shearer [15].

Lemma 3. For all d and τ > d/2 we have

α(τ, d) =
1

2
+

1

4d−1

(

d− 1

τ − 1

) τ−1
∑

i=d−τ+1

(

d− 1

i

)

.

Proof. Fix a triangle-free d-regular graph G = (V,E). Recall that c is a uniform random
cut, Nc(v) = (c(v), ℓc(v)) is the local neighbourhood of node v ∈ V , and A(Nc(v)) is
the output of algorithm A at node v ∈ V .

Consider an edge {u, v} of G. We will calculate the probability that e is a cut edge.
To this end, define

p = Pr
[

c(u) 6= c(v) and ℓc(u), ℓc(v) ≥ τ
]

,

q = Pr
[

c(u) 6= c(v) and ℓc(u), ℓc(v) < τ
]

,

r = Pr
[

c(u) = c(v) and either ℓc(u) < τ ≤ ℓc(v) or ℓc(v) < τ ≤ ℓc(u)
]

.

9



These are precisely the cases in which A(Nc(u)) 6= A(Nc(v)); hence {u, v} is a cut edge
with probability p+ q + r. For each x ∈ {u, v}, let

px = Pr
[

ℓc(x) ≥ τ | c(u) 6= c(v)
]

,

qx = Pr
[

ℓc(x) < τ | c(u) 6= c(v)
]

,

rx = Pr
[

ℓc(x) ≥ τ | c(u) = c(v)
]

.

Now we have the following identities:

p =
1

2
pupv, q =

1

2
quqv, r =

1

2
(rv(1− ru) + ru(1− rv)).

By definition, qx = 1− px, and by symmetry, pu = pv, qu = qv, and ru = rv. Hence the
probability that {u, v} is a cut edge is

p+ q + r =
1

2
p2u +

1

2
q2u + ru(1− ru) =

1

2
+ pu(pu − 1) + ru(1− ru)

=
1

2
− puqu + ru(pu + qu − ru) =

1

2
+ (ru − pu)(qu − ru).

(8)

An argument similar to what we used in Lemma 1 gives

pu =
1

2d−1

d−1
∑

i=τ

(

d− 1

i

)

, qu =
1

2d−1

τ−1
∑

i=0

(

d− 1

i

)

, ru =
1

2d−1

d−1
∑

i=τ−1

(

d− 1

i

)

.

Recall that we assumed that τ > d/2; hence τ − 1 ≥ d− τ and

2d−1(ru − pu) =

(

d− 1

τ − 1

)

,

2d−1(qu − ru) =

τ−1
∑

i=0

(

d− 1

i

)

−
d−τ
∑

i=0

(

d− 1

i

)

=

τ−1
∑

i=d−τ+1

(

d− 1

i

)

.

From (8) we therefore obtain

p+ q + r =
1

2
+

1

4d−1

(

d− 1

τ − 1

) τ−1
∑

i=d−τ+1

(

d− 1

i

)

.

Now we can easily find an optimal threshold τ for any given d: simply try all d/2
possible values and apply Lemma 3. Figure 7 is a plot of optimal τ for d = 2, 3, . . . , 1000.
At least for small values of d, it appears that

τ ≈ d+ 1

2
+ 0.439

√
d

is close to the optimum. For notational convenience, we pick a slightly larger value

τ =

⌈

d+
√
d

2

⌉

.

Now we have arrived at the algorithm that we already described in Section 1.4.
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What remains is a proof of the performance guarantee (5). Figure 8 gives some
intuition on how good the bounds are.

Theorem 4. Let d ≥ 2 and

τ =

⌈

d+
√
d

2

⌉

.

Then

α(τ, d) ≥ 1

2
+

9

32
√
d
.

Proof. See Appendix A.

3 Conclusions

In this work, we have presented a new randomised distributed algorithm for finding
large cuts. The key observation was that the task of designing randomised distributed
algorithms for finding large cuts can be reduced to the problem of finding a max-weight
cut in a weighted neighbourhood graph. This way we were able to use computers to find
optimal algorithms for small values of d. The general form of the optimal algorithms
was apparent, and hence the results were easy to generalise.

Our algorithm was designed for d-regular triangle-free graphs. However, it can be
easily applied in a much more general setting as well. To see this, recall that α(τ, d) is
not only the expected weight of the cut, but it is also the probability that any individual
edge e = {u, v} is a cut edge. The analysis only assumes that u and v are of degree d
and they do not have a common neighbour. Hence we have the following immediate
generalisations.

1. Our algorithm can be applied in triangle-free graphs of maximum degree d as
follows: a node of degree d′ < d simulates the behaviour of d − d′ missing
neighbours. We still have the same guarantee that each original edge is a cut
edge with probability α(τ, d). The running time of the algorithm is still one
communication round; however, some nodes need to produce more random bits.

2. Our algorithm can also be applied in any graph, even in those that contain
triangles. Now our analysis shows that each edge that is not part of a triangle will
be a cut edge with probability α(τ, d). This observation already gives a simple
bound: if at most a fraction ǫ of all edges are part of a triangle, we will find a cut
of expected size at least (1− ǫ) · α(τ, d).
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A Proof of Theorem 4

We need to prove a lower bound on

α(τ, d) =
1

2
+

1

4d−1

(

d− 1

τ − 1

) τ−1
∑

i=d−τ+1

(

d− 1

i

)

in the region τ ≈ d/2 +
√
d/2. Our general strategy is as follows:

1. Verify cases d = 2, 3, . . . , 3000 with a computer.
2. Prove a closed-form lower bound for d > 3000.

The first part is easily solved with a simple Python script or with a short calculation
in Mathematica (see Figure 8 for examples of the results for d = 2, 3, . . . , 50). We
will now focus on the second part; for that we will need various estimates of binomial
coefficients.

The proof given here is certainly not the most elegant way to derive the bound, but
it is self-contained and gets the job done. Proving the claim for a “sufficiently large” d
would be straightforward. However, we need to show that already a concrete relatively
small d such as d > 3000 is enough.

We will first approximate binomial coefficients with the normal distribution. Let
J = {1, 2, 3, 4}, and define

δj(n) =
⌊

j
√

n/32
⌋

, gj = e−j2/32

for each j ∈ {0} ∪ J .

Fact 5. For any n ≥ 1500 we have

0.999√
πn

<
1

4n

(

2n

n

)

<
1√
πn

.

Lemma 6. For any j ∈ J , δ = δj(n), and n ≥ 1500 we have

(

2n

n+ δ

)

> 0.995 · gj ·
(

2n

n

)

Proof. We can estimate

(

2n

n+ δ

)

/

(

2n

n

)

=
n!

(n+ δ)!
· n!

(n− δ)!

=
n− δ + 1

n+ 1
· n− δ + 2

n+ 2
· · · n

n+ δ
>

(

1− δ

n

)δ

≥ hj(δ),

where

hj(δ) =

(

1− j2

32δ

)δ

.

Now hj(δ) → gj as δ → ∞. For each j ∈ J we can verify that hj(δ) > 0.995 · gj when
δ ≥ δj(1500).
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Lemma 7. For δ = δ4(n) and n ≥ 1500 we have

1

4n

δ
∑

i=−δ+1

(

2n

n+ i

)

> 0.6088,
1

4n

δ−1
∑

i=−δ+1

(

2n

n+ i

)

> 0.5975.

Proof. Here we could apply the Berry–Esseen theorem, but the following simple piece-
wise estimate is sufficient for our purposes. As

δj(n) > j
√

n/32− 1,

we have

4
∑

j=1

(

δj(n)− δj−1(n)
)

· gj >
( 4
∑

j=1

gj
√

n/32

)

− g1 > 0.5680
√
n− 0.9693.

Hence using Fact 5 and Lemma 6 we have

1

4n

δ
∑

i=1

(

2n

n+ i

)

≥ 1

4n

4
∑

j=1

(

δj(n)− δj−1(n)
)

(

2n

n+ δj(n)

)

≥ 0.995 · 1

4n

(

2n

n

) 4
∑

j=1

(

δj(n)− δj−1(n)
)

gj

> 0.995 · 0.999√
πn

·
(

0.5680
√
n− 0.9693

)

> 0.3185− 0.5436/
√
n > 0.3044.

The claim follows from the observations

1

4n

δ
∑

i=−δ+1

(

2n

n+ i

)

>
2

4n

δ
∑

i=1

(

2n

n+ i

)

> 2 · 0.3044 = 0.6088,

1

4n

δ−1
∑

i=−δ+1

(

2n

n+ i

)

>
(

2− 1

δ

) 1

4n

δ
∑

i=1

(

2n

n+ i

)

> 1.9629 · 0.3044 > 0.5975.

Now we have the estimates that we will use in the proof of Theorem 4. We will
consider the odd and even values of d separately.

Odd d. Assume that d = 2n+ 1, n ≥ 1500. Let

δ = τ − n =
⌈

√

n/2 + 1/4 + 1/2
⌉

, δ′ = δ4(n),

and observe that
√

n/2 <
√

n/2 + 1/4 + 1/2 <
√

n/2 + 1.

It follows that
δ′ + 1 ≤ δ ≤ δ′ + 2.
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Therefore

α(τ, d) =
1

2
+

1

4d−1

(

d− 1

τ − 1

) τ−1
∑

i=d−τ+1

(

d− 1

i

)

=
1

2
+

1

42n

(

2n

n+ δ − 1

) δ−1
∑

i=−δ+2

(

2n

n+ i

)

≥ 1

2
+

1

42n

(

2n

n+ δ′ + 1

) δ′
∑

i=−δ′+1

(

2n

n+ i

)

=
1

2
+

n− δ′

n+ δ′ + 1
· 1

4n

(

2n

n+ δ′

)

· 1

4n

δ′
∑

i=−δ′+1

(

2n

n+ i

)

>
1

2
+ 0.964 · 0.995 · g4 ·

0.999√
πn

· 0.6088 >
1

2
+

0.2823√
d− 1

>
1

2
+

9

32
√
d
.

Even d. Assume that d = 2n, n > 1500. Let

δ = τ − n =
⌈

√

n/2
⌉

, δ′ = δ4(n).

Now we have
δ′ ≤ δ ≤ δ′ + 1.

For any k < n we have the identity

k
∑

i=−k

(

2n

n+ i

)

=

k
∑

i=−k

((

2n− 1

n+ i− 1

)

+

(

2n− 1

n+ i

))

=

k
∑

i=−k

((

2n− 1

n− i

)

+

(

2n− 1

n+ i

))

= 2
k

∑

i=−k

(

2n− 1

n+ i

)

.

We can use it to derive

α(τ, d) =
1

2
+

1

4d−1

(

d− 1

τ − 1

) τ−1
∑

i=d−τ+1

(

d− 1

i

)

=
1

2
+

1

42n−1

(

2n− 1

n+ δ − 1

) δ−1
∑

i=−δ+1

(

2n− 1

n+ i

)

≥ 1

2
+

1

42n−1

(

2n− 1

n+ δ′

) δ′−1
∑

i=−δ′+1

(

2n− 1

n+ i

)

=
1

2
+

1

42n−1
· n− δ′

2n

(

2n

n+ δ′

)

· 1
2

δ′−1
∑

i=−δ′+1

(

2n

n+ i

)

=
1

2
+

n− δ′

n
· 1

4n

(

2n

n+ δ′

)

· 1

4n

δ′−1
∑

i=−δ′+1

(

2n

n+ i

)

>
1

2
+ 0.982 · 0.995 · g4 ·

0.999√
πn

· 0.5975 >
1

2
+

0.2822√
d

>
1

2
+

9

32
√
d
.

This completes the proof of Theorem 4.
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