
 Open access  Journal Article  DOI:10.1109/LSP.2020.3025478

Large Database Compression Based on Perceived Information — Source link 

Thomas Maugey, Laura Toni

Institutions: French Institute for Research in Computer Science and Automation, University College London

Published on: 23 Sep 2020 - IEEE Signal Processing Letters (Institute of Electrical and Electronics Engineers (IEEE))

Topics: Data compression, Data compression ratio, Lossy compression and Entropy (information theory)

Related papers:

 Compression Schemes for Mining Large Datasets: A Machine Learning Perspective

 Reproducing the Sparse Huffman Address Map Compression for Deep Neural Networks

 Visual query compression with embedded transforms on Grassmann manifold

 Entropy- and complexity-constrained classified quantizer design for distributed image classification

 Rate-Distortion Optimized Graph Coarsening and Partitioning for Light Field Coding

Share this paper:    

View more about this paper here: https://typeset.io/papers/large-database-compression-based-on-perceived-information-
1gcj9y9cv0

https://typeset.io/
https://www.doi.org/10.1109/LSP.2020.3025478
https://typeset.io/papers/large-database-compression-based-on-perceived-information-1gcj9y9cv0
https://typeset.io/authors/thomas-maugey-3928or6wip
https://typeset.io/authors/laura-toni-1qqtd1qra7
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/university-college-london-269wra00
https://typeset.io/journals/ieee-signal-processing-letters-3npjzmha
https://typeset.io/topics/data-compression-3fp83o4g
https://typeset.io/topics/data-compression-ratio-gds6462g
https://typeset.io/topics/lossy-compression-27cguzwg
https://typeset.io/topics/entropy-information-theory-24966cfi
https://typeset.io/papers/compression-schemes-for-mining-large-datasets-a-machine-3nypf83nue
https://typeset.io/papers/reproducing-the-sparse-huffman-address-map-compression-for-3uriz4vah6
https://typeset.io/papers/visual-query-compression-with-embedded-transforms-on-52ma5noijn
https://typeset.io/papers/entropy-and-complexity-constrained-classified-quantizer-31x6dkl1of
https://typeset.io/papers/rate-distortion-optimized-graph-coarsening-and-partitioning-4bxeu914wk
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/large-database-compression-based-on-perceived-information-1gcj9y9cv0
https://twitter.com/intent/tweet?text=Large%20Database%20Compression%20Based%20on%20Perceived%20Information&url=https://typeset.io/papers/large-database-compression-based-on-perceived-information-1gcj9y9cv0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/large-database-compression-based-on-perceived-information-1gcj9y9cv0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/large-database-compression-based-on-perceived-information-1gcj9y9cv0
https://typeset.io/papers/large-database-compression-based-on-perceived-information-1gcj9y9cv0


HAL Id: hal-02942418
https://hal.inria.fr/hal-02942418

Submitted on 17 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Database Compression Based on Perceived
Information

Thomas Maugey, Laura Toni

To cite this version:
Thomas Maugey, Laura Toni. Large Database Compression Based on Perceived Information. IEEE
Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2020, 27, pp.1735 - 1739.
฀10.1109/LSP.2020.3025478฀. ฀hal-02942418฀

https://hal.inria.fr/hal-02942418
https://hal.archives-ouvertes.fr


1

Large Database Compression Based on Perceived

Information
Thomas Maugey Member, IEEE, Laura Toni Senior Member, IEEE

Abstract—Lossy compression algorithms trade bits for quality,
aiming at reducing as much as possible the bitrate needed to
represent the original source (or set of sources), while preserving
the source quality. In this letter, we propose a novel paradigm of
compression algorithms, aimed at minimizing the information loss
perceived by the final user instead of the actual source quality loss,
under compression rate constraints. As main contributions, we
first introduce the concept of perceived information (PI), which
reflects the information perceived by a given user experiencing
a data collection, and which is evaluated as the volume spanned
by the sources features in a personalized latent space. We then
formalize the rate-PI optimization problem and propose an algo-
rithm to solve this compression problem. Finally, we validate our
algorithm against benchmark solutions with simulation results,
showing the gain in taking into account users’ preferences while
also maximizing the perceived information in the feature domain.

Index Terms—Data compression, Large database, Sampling,
Repurposing.

I. INTRODUCTION

The era of data explosion we live in has led to cutting edge

findings in big data analysis and deep learning algorithms but

at an expensive cost in terms of data storage. Storage growth is

exceeding even the highest estimates with no sign of it slowing

down anytime soon: 2.5 quintillion bytes of data are created

each day at our current pace [1], and it will only accelerate

with the advent of IoTs, volumetric videos, and new sensors.

The storage burden has been partially alleviated by state-of-

the-art compression algorithms, which can substantially reduce

the amount of bits needed to store one or multiple sources,

e.g., end-to-end learning-based image compression algorithms

to minimize the compression rate [2], MPEG standards to

ensure exploitation of spatial and temporal correlation [3],

joint source compression [4], [5], [6], [7]. All these coding

strategies have led to impressive compression ratio, which

however will be scaling always with the number of sources.

However, to contain the upcoming avalanche of data, there is

the need for a much drastic compression rate, which cannot

be reached till the ultimate goal of the compression algorithm

is to represent each original source with high fidelity.

In this letter, we aim at addressing this challenge by

proposing a new paradigm-shift for compression algorithm

aimed instead at preserving a global information perceived

by the final user. We define this information as perceived

information (PI). Sources should be compressed in such a

Thomas Maugey is with Inria Rennes Bretagne-Atlantique, Cam-
pus Universitaire de Beaulieu, 35042 Rennes Cedex, France, e-mail:
thomas.maugey@inria.fr. Laura Toni is with Electronic and Electrical En-
gineering Department at University College London, Gower Street, London,
UK, e-mail: l.toni@ucl.ac.uk.

way that the information of interest for the final user − rather

than per source information − is preserved. With this aim in

mind, we proposed a first solution in the case of the encoder

being a sampling algorithm. To achieve this goal, we first

introduce the PI metric as the volume spanned by the sources

features in a personalized latent space, i.e., feature domain

distorted by the user preferences. Then, we formalize our

PI-based compression problem as a selection of the subset

of sources that maximizes PI under sample size constraints

and we propose an adaptive sampling algorithm to solve it.

The latter selects for each user a subset of sources, which is

the most representative of the original database, in terms of

features most preferable by the user. Finally, we evaluate the

performance of the proposed algorithm via simulation results,

proving its gain against baseline algorithms taking into account

user’s preference or source redundancy disjointly.

To the best of our knowledge, this is the first work that

proposes a compression algorithm in such a way that i) not

all sources are preserved at the decoder side, ii) a global

information about the dataset perceived by the user (PI) is

however preserved during the compression, iii) this informa-

tion is tailored based on users preferences. With respect to

classical sampling strategies [8], [9], [10], which usually aims

at retrieving the input data or at accomplishing a given task,

our goal is different as we do not minimize the per-source

reconstruction error, but rather the perceived information loss

knowing that the entire information will not be reconstructed.

The partial preservation of the original sources is typical of

summarization algorithms [11], [12], [13], [14], which select

sources to provide an overview of the original database. This

means balancing source-quality (relevance of each source to

database overview) and the subset-diversity (source redun-

dancy, i.e., maximization of the feature domain covered by the

subset). Our algorithm has a fundamental difference: the subset

is not used to give an overview of the database content but to

preserve the information spanned by the sampled database in

the latent space. This translates in an algorithm that balances

features-perceived quality (how relevant each feature is to the

user) and features-diversity (how well features are represented

within the selected subsect).

II. PI - BASED COMPRESSION

We now formulate the PI-based compression problem in

its general shape, then we provide the specific formulation

with the encoder being a sampling algorithm of the input

space. Given the set of sources (dataset) X = {X1, . . . , XN}
stored on a given server and consumed by a user u, each user
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(a) Classical Compression

(b) Perceived Information (PI) based Compression

Fig. 1: Comparison between a classical source compressor and

a PI-based compressor.

perceives the same data set differently, based on his/her own

preferences or interests. Let us denote by πu(X ) the perceived

information (PI), which measures the information carried by

X and perceived by user u. Let us then define the encoder

and decoder functions φ and ξ, respectively, as φ : X 7→ z,

and ξ : z 7→ Y , with z being the compressed vector, and

Y = (φ ◦ ξ)(X ) being the set of decoded sources. For user

u, the compression algorithm is defined as follows

(φ, ξ)⋆u : argmin
φ,ξ

{[πu (X )− πu ((φ ◦ ξ)(X ))] + λR (φ (X ))}

(1)

with R(z) being the rate of the encoded vector z, λ the

regularizing term, and [πu (X )− πu (Y)] is the PI-loss. In the

degenerative case in which Y is a distorted version of X and all

user preferences are uniform across features, converging to a

classical compression algorithm or autoencoder that minimizes

the per source distortion loss (Fig. 1(a)). In this letter, we are

interested in the case in which a different source Y is re-

constructed and the user-perceived information is maximized,

Fig. 1(b). As starting point, we propose a sampling algorithm

in which only a subset Y ⊆ X of the source database is

preserved, while minimizing the degradation of the user per-

ception of X 1. Namely, φ represents the sampling algorithm,

z is the subset of selected sources, and Y = ξ(z) = z is an

identity function. For a user u, we seek Y⋆
u

Y⋆
u : arg min

Y⊆X
{[πu (X )− πu (Y)] + λ|Y|} . (2)

The key intuition of the above problem formulation is to create

a different goal for compression algorithms: the encoding rate

can be translated into the subset cardinality |Y| and the tradeoff

between features-quality and features-diversity is now reflected

by the PI loss. While mathematically simple, the optimization

problem in (2) hides two key and unsolved challenges: (i) how

to define the PI explicitly, (ii) how to sample the X space

efficiently with respect to this metric.

III. PERCEIVED INFORMATION

Properties and goals: First, we define the key properties

that the PI should respect:

1Without loss of generality, we focus mainly on the effect of the source
selection on the PI. Therefore coding artifacts are not taken into account in
the following as they would affect equally the database or the subset.

1) πu(Y) is non-decreasing with the size of Y:

For any item X , πu(Y) ≤ πu(Y ∪ {X})

2) PI metric is user dependant:

∃ u 6= u′ such that πu(Y) 6= πu′(Y).

Property 1) states that adding items to a dataset cannot

decrease the PI. Property 2) states that two different users

do not necessarily appreciate equally the same dataset.

Considering the items of Y as continuous random variables

and identifying the PI with the differential entropy of Y is

a natural first choice. The main limitation is however that

the differential entropy would fail in respecting Property 1).

Specifically, the entropy maximization is equivalent to the

maximization of the volume spanned by the covariance matrix

of the items in the dataset. This volume however can be

decreasing with the cardinal of Y (when correlated items

are added for example), as shown in determinantal point

processes (DPP) algorithms [15]. To overcome this limitation,

we propose a metric that reflects the volume spanned by the

covariance matrix of the features (instead of the sources).

The feature matrix has a key role in describing the meta-

information, i.e., the information in the latent space, instead

of the information in the source domain. Finally, the spanned

volume needs to also take into account the users preferences to

be compliant to Property 2). These considerations lead to one

of the key contribution of this paper, which the is the definition

of the PI metric provided in the following subsection.

Proposed PI metric: The items in Y are generally very

complex objects, whose statistical behavior is difficult to

model. We assume that a kernel function, κ : X 7→ b, maps

each of the item X into a D dimensional vector b, living

in the so-called latent space. The vector b thus describes the

item X with a set of D features. In this work, we assume that

such a kernel exists. Depending on applications, several ways

might be considered to define such a function, e.g., source

modeling, distribution parametrization, or even more recently

CNN architectures. We refer readers to [16], [17], [18] for

more details. We consider now that the feature vector b is the

realization of a multivariate random variable B of dimension

D. We model the PI as the differential entropy of the random

variable B, whose distribution pY,u depends on the sample set

Y and the user u:

πu(Y) = h(B) = −

∫

b∈RD

pY,u(b) log2 pY,u(b)db. (3)

We specify the general definition in the equation above

assuming that B follows a multivariate Gaussian distribution

pY,u = N (µ,Σu
Y), where Σ

u
Y is the covariance matrix

corresponding to the subset of source Y and the user u. We

define this personalized covariance matrix as:

Σ
u
Y = UBYB

⊤
YU (4)

where BY is a D×M matrix containing the M feature vectors

of the items in the subset Y ⊂ X , with M = |Y|. Furthermore,

U is a diagonal matrix, with each uj ∈ ]0, 1] reflecting the

user’s preference for feature j, with 0 meaning that the feature

is not interesting for the user and 1 meaning that the feature
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must be preserved in the sampled collection. In this work, we

consider that these scores are a-priori known. This is without

loss of generality as users’ preference can also be learned, e.g.,

in recommendation systems [19], [20], [21]. In the proposed

D×D personalized covariance matrix, each entry depicts the

covariance between the features weighted by the user’s score,

given a sampled set Y .

From (3) and (4), we define the PI metric as:

πu(Y) =
D

2
log

2

(

2πe|Σu
Y |
)

=
D

2
log

2

(

2πe|UBYB
⊤
YU|

)

.

(5)

This formulation is based on the determinant of a covariance

matrix, which can be interpreted as the volume spanned by

the sampled set in the latent space [8] and this volume

is non-decreasing with the sample size given the definition

in (4), thus matching with Property 1). Furthermore, we

consider a personalized covariance matrix, in which the user’s

preferences described by U express the relative importance

of each feature in this volume evaluation. These weights

ensures that the PI metric favors sources with popular features

(i.e., having high features for the ones that are highly scored

by the users). Taking the determinant of this weighted (or

personalized) covariance ensures a penalization when features

are highly represented by multiple sources. Hence, the PI

captures the features-perceived quality and features-diversity

tradeoff, given user’s preference. Therefore, different users

will perceive different PI values, respecting Property 2).

While PI definition in (5) might appear similar to other

sampling formulations such as DPP [22] or max-entropy [8],

there is a fundamental difference. The former formulations

defines the covariance matrix as B
⊤
YBY (or B⊤

YUUBY ) with

dimension |Y|×|Y| (i.e., subset dimension). As a consequence,

the matrix’s dimension grows with the size of the sampled

set, and leads to a null volume when the size is larger than

the rank of the matrix (i.e., M ≥ D), leading to covariance

matrices that would not be compliant to our Property 1). These

properties are a consequence of the covariance quantifying the

quality and diversity tradeoff among the sources of the subset.

Therefore, while DPP-like formulation is fully compatible with

summarization tasks, this is not the case for compression tasks

(given our interpretation of compression). On the contrary, our

formulation considers a covariance with dimension |D|× |D|,
independent on the subset size. Moreover, our matrix reflects

the covariance of each feature across the sampled set instead

of the covariance of each source across the latent space.

IV. PI-BASED COMPRESSION ALGORITHM

In this section, we describe our proposed algorithm aimed

at optimizing the rate-PI compression curve. Specifically,

replacing the PI definition (5) in (2) and imposing the total

subset rate as hard constraint, we get the following problem

formulation2:

Y⋆
u : arg max

Y⊆X

D

2
log

2

(

2πe|UBYB
⊤
YU|

)

s.t. |Y| ≤ M.

(6)

2Under the hard constraint on |Y|, minimizing the PI loss is equivalent to
maximizing the PI.

Algorithm 1 Proposed PI-compression algorithm

Input: X , B, U, K, λ
Output: Y
Y ← ∅
/*Compute the popularity p (of size 1×N ) of item of the database*/

p = diag(B⊤UUB)
/*Initialize the similarity vector s (of size 1×N )*/

s← 0⊤

for k = 1 to K do

/*Set the probability π of the items that is at a tradeoff between the

popularity and and the dissimilarity*/

π ← √p− λs

π ← π/
∑N

j=1 πj

/*Randomly choose one item with the probability π */

l← RandomSelect(X \ Y | πX\Y )
Y ← Y ∪ {l}
/*Adjust the popularity and the similarity */

s← 1
k

(

∑k
i=1 BY(i)

)⊤
B

end for

To maximize the determinant |UBYB
⊤
YU|, items need to be

selected in such a way that UBYB
⊤
YU has the largest diagonal

elements and the minimal off diagonal terms. The diagonal

terms are maximal when most popular items belongs to the

subset Y . The popularity of an item with a feature b is given

by ||Ub||2
2
. The off-diagonal terms depict the correlations

between the features in the subset Y . Said differently, it mea-

sures the correlations between the rows of BY . The proposed

algorithm randomly selects the items of the database. The

probability of each item in X is set as the trade-off between

the popularity of the item and its similarity with the chosen

ones. The proposed algorithm is described in Algorithm 1.

V. EXPERIMENTS AND CONCLUSION

Dataset: We simulate a database of N = 2000 items. With-

out loss of generality, we assume each item is characterized

by features defined into a latent space with dimensionality

D = 20. Items features are generated with a normal distribu-

tion centered around a dominant feature, selected uniformly at

random between 6 possible values. This results in the feature

matrix B depicted in Fig. 2(a). Items can be clustered based

on their mean value, Fig. 2(b). Finally, we assume a final

user with higher a preference toward red and yellow colors,

as shown in Fig. 2(c).

Baseline methods: for further validation, we compare

our algorithm with 3 sampling methods. Max-Proba selects

items based on user’s preferences only (features-perceived

quality) without taking into account the redundancy between

the selected items (features-diversity trade-off). This method

picks the M most popular items, i.e., having the maximum

user’s score measured by the diagonal elements of B⊤
UUB.

Random picks M items randomly, each of them having a

probability given by the corresponding diagonal elements of

B
⊤
UUB. This method also relies on the popularity of each

item. However, the randomness of the selection enables some

dissimilarities between the items. DPP [15][23] is a very

popular sampling algorithm used for summarization. This

algorithm enables to sample M elements that maximize the

log
2
(|B⊤

UUB+δIN |). The role of δ is to guarantee that the

rank of the kernel is greater than M , which is mandatory for

DPP, as already discussed in Sec. III.
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(a) B
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(b) Dominant features
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Fig. 2: Synthetic dataset for experiments. (a) the D×N matrix B containing the features of each item of the dataset (black = 0,

white = 1, color = the dominant feature in the colormap of (b)), (b) the dataset’s embedding and the representation of the

dominant value for each item, (c) the popularity of each item, when features with larger indices (the reddish) are preferred.

(a) Example 1
MSE=0.0006 / PI=−92.8

(b) Example 2
MSE=0.0006 / PI=−95.8

Fig. 3: Two examples of sampled sets Y .

(a) Max-Proba (PI=−75.7) (b) Random (PI=−80.0)

(c) DPP (PI=−66.1) (d) Ours (PI=−65.5)

Fig. 4: Sampled set Y obtained with the different algorithms.

Importance of PI metric: We first show the importance of

the PI metric, compared to metrics widely used in sampling

algorithms. For comparison, we consider the global distortion

(mean squared error, MSE) of the recovered dataset [24], [25],

[26], evaluated with the interpolation algorithm in [27], [28].

We compare the PI and the global distortion on two possible

sampled sets, shown in Fig. 3, with the left one having sources

sampled more uniformly across cluster. If we consider for a

moment that all items are equally popular, Example 1 is a

more representative sampling of the database. However, from

50 100 150 200

Number of samples M

-120

-110

-100

-90

-80

-70

-60

P
I

Max-Proba

Random

DPP

Ours

Fig. 5: (M -PI) comparison.

the figure, we observe that this is reflected by the PI metric

(the higher the better) but not from the global distortion one,

which is the same for both sampled sets.

Results: We consider the dataset described in Fig. 2 with

item popularity depicted in Fig. 2(c) sampled with both the

proposed method and the baseline ones. We depict the sampled

set in Fig. 4 when M = 200 items (10% of the database size)

are sampled and we provide the corresponding PI values in

each subfigure caption. We can visually observe that the items

selected by Max-Proba all correspond to the most popular

features. This favor features-perceived quality but with no

preservation of the features-diversity, leading to poor PI values.

The visual aspect of the features when the items are selected

with the Random approach is similar, but with some improved

diversity aspect respect to Max-Proba, leading to higher a

PI value. More interestingly, the DPP enables to achieve a

good trade-off between diversity and popularity of the selected

items, with the limitation that when M > D the methods

converge to a random sampling (because of the δI term that is

added to the kernel). On the contrary, our method enables

to maintain this good trade-off between features-perceived

quality and diversity even when M >> D. This is reflected

by a higher PI. In Fig. 5, we provide more quantitative

results showing the PI values as a function of the sample

size M (when M > D). The figure confirms the gain of the

proposed algorithm across different values of M . Moreover,

the convexity shape of the (M-PI) curve shows that the PI

is greatly compacted within few samples, potentially enabling

huge compression rate able to cope with data explosion.
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determinantal processes,” in 2017 25th European Signal Processing

Conference (EUSIPCO). IEEE, 2017, pp. 1674–1678.

[24] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE signal processing magazine, vol. 25, no. 2, pp. 21–
30, 2008.

[25] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings

of the IEEE, vol. 98, no. 6, pp. 925–936, 2010.
[26] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
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