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Abs t r ac t 

A transversely-curved finite strip formulation for the static analysis of circular cylindrical 

shells is presented. The finite strip analysis is carried out by using one or two analytical 

modes in the longitudinal direction to determine the response of cylindrical shells sub-

jected to uniform loads. Both linear and quadratic variation of membrane displacements 

in the curved direction are investigated and it is found that the quadratic variation is far 

superior. 

The effect of large deformations is incorporated in the present analysis by including 

the first order non-linearities in the strain-displacement relations. The material behavior 

is assumed to be isotropic elastic-plastic. The plasticity portion uses the von-Mises yield 

criteria, and the associated flow rule. For the examples considered, a bi-linear stress-strain 

relation is assumed. Numerical integration of the virtual work equations is carried out 

using Gaussian Quadrature. The number of integration points in a given direction is 

determined by observing the individual terms in the integration or by past experience. 

The resulting set of non-linear equations is solved iteratively by employing the Newton-

Raphson scheme. 

Numerical investigations of the method are carried out by modelling cylindrical shells 

subjected to self-weight or pressure load. These investigations compare the results for 

laterally loaded cylindrical shells with simply supported or clamped boundaries with 

analytical and numerical results. The results show that employing one bending mode 

and one or two membrane modes is sufficient to yield engineering accuracy for design 

purposes. 
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Chapter 1 

In t roduct ion 

The study of three-dimensional continua constitutes one of the very important depart-

ments in the theory of solid mechanics. W i t h rational simplifications to the three-

dimensional theory of elasticity, the engineering theories of medium-thin plates and of 

thin-shells may be derived and applied to a large class of engineering problems distin-

guished by a characteristically small dimension in one direction. These theories find 

wide application in construction practice, aviation, shipbuilding; machine manufacture 

and other fields of technology. 

It is of present as well as historical interest to recognize that significant structures were 

constructed utilizing the effective load resisting mechanism of doubly curved structural 

members e.g. domes in ancient times. The Pantheon of ancient Rome, constructed of 

cementitious material, has stood for about two thousand years; beautifully tile-covered 

mosques from the Persian Empire survive in Iran. Also, St. Paul's Cathedral remains to 

grace the London skyline. 

Perhaps one reason that several shell structures remain from antiquity is the ability 

of surface structures to survive extreme loading. It was reported that a cooling tower 

shell was among the few surviving structures in the Tanjung, China earthquake of 1976. 

A hyperbolic paraboloid resisted the Mexico city earthquake of 1985 without apparent 

structural damage amid totally destroyed conventional structures. " 

Structurally, a shell may be termed a two-dimensional extensional member. Shells 
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Chapter 1. Introduction 2 

differ from plates in its primary load carrying mechanism. B y virtue of its curvature, 

the shell can develop thrusts to form the primary load resisting mechanism in addition 

to the transverse shears and the bending and twisting moments present in the plate. A 

combination with respect to the plate and the shell which is of considerable practical 

interest and is dealt with in the following chapters, is a form curved in one direction such 

as a cylinder. Although, even the so-called developable surface is generally regarded as 

a shell, the resisting mechanics in the uncurved direction is basically flexural, whereas in 

the curved direction it may be extensional. 

The complicated load-resisting mechanism associated with the interaction of flexural 

and the membrane deformations makes the analysis of cylindrical shells a complex proce-

dure. The analytical solutions used in the earlier analysis suffer with limitations in their 

scope and accuracy. Finite element procedures have been formulated for the analysis 

of cylindrical shells with various boundary conditions and subjected to various types of 

loading — static and dynamic. In the recent past, efforts have been made to simplify 

the finite-element technique to model plates [40] and shells to reduce the computational 

effort while still maintaining engineering accuracy and versatility of the finite-element 

method. 

The Finite Strip method satisfies these requirements. Numerous programs have been 

developed for the analysis of beams, plates, stiffened panels and to a limited extent, 

cylindrical shells. The finite strip method can be used with greater efficiency in the 

analysis of structures with a regular geometric plan and simple boundary conditions, 

where a finite element procedure would be both cumbersome and expensive. The primary 

objective of the present study is to investigate the applicability of the finite strip method 

to the analysis of cylindrical shells. 

In the first stage of the investigation, a linear elastic analysis of laterally loaded 

cylindrical shells is carried out. The deflection of the cylindrical shell for such an analysis 
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is generally small relative to its thickness. However, as the deflections in the structure 

increase, membrane forces become significant and this is accompanied by the stretching 

of the middle plane. The structure may then undergo plastic deformations which may 

exceed the safe design limits. This is a major concern for the structural engineer who is 

always on the lookout for an effective numerical procedure which can accurately predict 

the deformation profiles and stress distribution throughout the structure. 

In the present study, a complete non-linear anatysis of cylindrical shells is carried 

out by incorporating both geometric and material non-linearities. Finally, the accuracy 

of the finite strip solution is tested by employing a single bending mode with one or 

two membrane modes in the finite strip modelling of cylindrical shells. The finite strip 

solution, thus obtained, provides a reasonable estimate of deflections and stresses which 

can then be used by the design engineer. 

Chapter 2 of this thesis covers the analytical techniques which have been used to an-

alyze cylindrical shells. The finite element modelling of shells for geometric and material 

non-linearity is also discussed. Finally, the use of the finite strip method in the analysis 

of cylindrical shells is reviewed. 

Chapter 3 deals with the general problem of the analysis of cylindrical shells. The 

mathematical formulation of the finite strip problem is discussed in detail. Various 

aspects of computer implementation are also discussed. The Newton-Raphson iterative 

scheme and the method of numerical integration is also highlighted. 

Chapter 4 includes the numerical investigations carried out for several example prob-

lems and a complete comparison with analytical or numerical procedures wherever pos-

sible. 

Chapter 5 provides a summary and lists the conclusions drawn from the present 

study. Suggestions for extending the proposed numerical procedure to other problems in 

structural engineering are also included. 



Chapter 2 

Methods of Analysis and Literature 

Review 

2.1 Analytical Methods of Analysis 

2.1.1 Linear Shell Theory 

Recall that a cylindrical shell could be derived from a plate by forming the middle plane 

to a singly curved surface which is circular in cross-section. For a shell of constant 

thickness, the middle plane is defined to be one which lies mid-way between the two 

curved surfaces. 

Another definition with respect to the shell geometry, which is referred in the later 

sections, is Gaussian Curvature. The Gaussian curvature of a shell is dependent on 

shell geometry. For a general shell curved in the two principal directions A r and V", the 

Gaussian Curvature is denned by the fraction D

 :

D where R\ and Rv are the curvatures 
Hxtiy 

in the principal directions. 

If we consider the normal sections corresponding to the principal directions in a 

general shell, the Gaussian curvature could be positive, negative or zero. If the centers 

of curvature in both the principal directions lie on the same side of the surface, the 

Gaussian curvature is positive and is negative if the centers lie in opposite directions. 

4 



Chapter 2. Methods of Analysis and Literature Review 5 

If one of the radii of curvature is equal to infinity the Gaussian curvature is zero. The 

above information is summarized in Table 2.1. A flat plate is a special case of a shell 

with zero Gaussian curvature since both radii are infinite. 

Table 2.1: Gaussian Curvature 

Classification Positive Negative Zero 

Surface Doubly Curved 

Synclastic 

Doubly Curved 

Anticlastic 

Singly Curved 

Examples Sphere Hyperboloid of 

Revolution 

Cylinder 

Developability Non developable Nondevelopable Developable 

Type of Governing 

Differential Equation 

Elliptic Hyperbolic Parabolic 

The mathematical formulation of the linear theory of cylindrical shells is based on the 

three-dimensional theory of elasticity. In developing the theory of thin shells, considerable 

simplification is accomplished by reducing the analysis of cylindrical shells to the study of 

the deformations of the middle surface. The complicated equations of equilibrium, based 

on three-dimensional theory, involving three space variables reduces to a system involving 

two space variables defined at the middle plane of the shell. Further simplifications to 

the governing equations of equilibrium lead to the formulation of the membrane theory 

of shells. 

The membrane or the 'momentless' theory of shells, as the name suggests, assumes 

that shells primarily resist loads by extension or stretching of the middle plane. The 

membrane theory was first postulated by Lame and Clapeyron in the early nineteenth 

century. The main motivation towards the formulation of the membrane theory was to 
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make the analysis of shells a determinate problem. The theory yielded deflections and 

in-plane forces which gave a reasonable estimate of the deformation pattern and the 

internal forces developed in the shell. 

The membrane theory, apparently, can only be used to analyze shells which behave 

like a membrane. The shell is considered to behave like the membrane if the bending 

strains are zero or negligible as compared with the axial strains. The shells which fall in 

this category include: 

1. Flexible shells or membranes, which by virtue of their thinness have negligible 

bending stiffness and as a result are incapable of resisting bending. 

2. Shells that have a finite bending stiffness but they do not develop significant bending 

strains depending on the loading and support conditions. 

The state of stress in a membrane is 'momentless' if the bending stiffness is negligible. 

A cylindrical shell supported by a diaphram on the curved boundaries and supported 

along the longitudinal boundaries, subjected to a uniform pressure falls into the second 

category. The situation is illustrated in Fig.2.1 where it can be seen that the cylindrical 

shell resists transverse loading primarily as a series of arches, which is an implication 

of membrane theory. On the other hand, depending on the length of the shell and the 

longitudinal boundary conditions, e.g. in case of a short shell with free longitudinal 

boundaries, the behavior of the shell resembles that of a beam. As a result, the primary 

load resisting mechanism is flexure. 

Vlasov [1] postulated that the membrane theory yielded a complete finite solution 

for shells with positive Gaussian curvature. However, in case of shells with negative 

curvature, the theory is applicable only in those cases of loading for which the hyperbolic 

equations corresponding to these shells yield completely defined finite values for the 

internal forces. 



Supported Longitudinal Boundary 

Figure 2.1: Longitudinal Boundary Conditions for Cylindrical Shells 
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Given the limitations imposed on the behavior of the shell, its geometry, the type of 

loading and the constraints on the boundary conditions, the need for a general theory of 

shells lead to a systematic approach towards the development of the 'bending' theory of 

shells. 

The simplified bending theories of shells are (in general) based on Love's approxima-

tions. To simplify the strain-displacement relations, Love hypothesized the first-order 

theory. The assumptions underlying the hypothesis are: 

1. The shell thickness, t, is negligible as compared with the least curvature, Rmm, of 

the middle surface i.e. t / R m j „ <C 1. 

2. A l l points normal to the middle surface of the undeformed shell remain normal 

after deformation. 

3. For all kinematic relations, the distance z of a point from the middle surface of the 

shell may be considered unaffected by the deformation of the shell. 

4. The component of stress normal to the middle surface o^, may be considered neg-

ligible as compared with the stress components in the longitudinal and transverse 

directions, o~x and cr^ respectively. 

5. Strains and displacements are small so tha/t the quantities containing second- and 

higher-order terms are neglected in the strain displacement equations. 

The assumptions stated above, when applied to a real shell imply that the transverse 

shear strains ~jxz and ~jyz are smaller than the extension al and in-plane shearing strains. 

Secondly, the strain and the stress in the Z-direction is negligible, where X and Y 

are the longitudinal and the transverse axes of the shell respectively and the Z-axis is 

perpendicular to the XY plane. Obviously, this assumption would be valid for thin 
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shells. The governing differential equations for the analysis of circular cylindrical shells 

were derived by Love [2], Fliigge [3] and Timoshenko [4] based on the moment theory. 

The second-order approximation theory of Fliigge [3] retains the -| term in the stress-

resultant equations and in the strain-displacement relations. The equilibrium equations 

obtained by Fliigge for a general shell were discussed by Kempner [42], who obtained 

them as a special case of a unified shell theory. 

Second-order approximation equations were derived by Vlasov [1] directly from the 

three-dimensional linear elasticity equations for a thick shell. The assumptions e- = 

l<pz
 = 7x0 = 0 is made, where 7^. and 7 ^ are the transverse shear strains and e. is the 

normal strain. The assumptions of zero normal strain and zero transverse strains permits 

a rapid transition from the three-dimensional theory to the two-dimensional equations 

of shell-theor}', but it should not be interpreted in its strict sense as implying a state of 

plane strain. Rather, it is a convenient assumption equivalent to the basic Kirchhoff-Love 

hypothesis that normal lines remain normal and their extensions are negligible [43]. 

In deriving the three governing differential equations for the linear elastic analysis of 

thin cylindrical shells, Timoshenko [4] assumed that the effect of the change in curvature 

of the shell element to bending of the element was negligible and therefore, could be ne-

glected. However, if the in-plane forces Nx, Ny and Nxy were comparable with the critical 

values at which lateral buckling of a shell may occur, this effect would be significant and 

hence, the corresponding terms in the equilibrium equations had to be retained. Further 

2 

simplifications to the derivation was achieved b}' disregarding the terms of O(^). This 

assumption, though not fully justified, was found to give good results for a wide class of 

problems [39]. The suppression of the 0 ( ^ ) terms is equivalent to neglecting the influ-

ence of stress couples on the in-plane equilibrium equation. The final set of simplified 

system of equations used in the analysis of thin C3'lindrical shells could be written as [4]: 
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d2u 1 — v d2u 1 + v d2v v dw 

dx~* +

 2R
2 dcf>2 +

 2R dxdcj) ~ ~R~dx~ 

i + î  d2u 1 - v d2v 1 d2v 1 dw 

2 dxd<f> +

 2 dx2 + Rdfi ~ R~dj> = (2A> 

du dv w t2 ( d4w 2 d4w dA \ Rv 1 

dx Rdcj) R 12 V 5a;4 Rdx2d</>2 R3d<f>4

 J (1 - v2) Et 

where uy v and w are the displacement components in the directions x,(j> and z respec-

tively, v is the Poisson's ratio, E is the modulus of elasticity, R and t are the radius of 

curvature and the thickness of the shell respectively and p is the lateral load on the shell. 

In this set of governing differential equations, x defines the longitudinal axis of the shell, 

0, the transverse axis and z is oriented perpendicular to the x — (j) plane. 

The resulting system of differential equations are the basic solvable equations for 

circular cylindrical shells. To solve the differential equations, four boundary conditions 

should be specified at each point on the edge of the middle plane. For most common 

boundary conditions i.e simply supported, clamped and free, four conditions need to be 

specified along each edge x = constant and y = constant. The}'' are given by: 

1. Simply Supported Edge. Such a hinged edge is not able to transmit a. moment 

Mx needed to enforce the condition = 0. Assuming also that there is no edge 

resistance in the direction x, we arrive at the boundary conditions: 

v = 0, w = 0, Mx = 0 Nx = 0 

2. Built-in Edge. Usually such a support is considered as perfectly rigid, and the edge 

conditions then are: 
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3. Free Edge. Letting all the stress resultants vanish on the edge, we find that the 

conditions characterizing the free edge assume the form: 

Nx = 0, Mx = 0, Sx = 0 Tx = 0 

where Sx = NX(j> + 

and T, = Q, 

R 

Rdc/> 

2.1.2 N o n - L i n e a r She l l Theo ry 

The linear shell theory discussed in Section 2.1.1 is based on Hooke's law and the omis-

sion of non-linear terms in both the equations for strain components and equilibrium 

equations. Once the deflections or the strains become large or it is desired to investigate 

buckling, then non-linear theories are necessary [43]. 

Most of the derivations of shell theories valid for arbitrary large deformations [5] 

are based on the adoption of Kichhoff-Love hypothesis and are formulated in terms of 

the two-dimensional force and moment resultants using variational methods. Tene and 

Epstein [6] used the exact three-dimensional variational expression and used a kinematic 

approach in the analysis. Using Ritz procedure, a set of equations was obtained in terms 

of kinematic unknowns without any reference to quantities like the shear forces and 

bending moments. The development of a variational approach provided the basis for a 

stiffness formulation which has been extensively used in numerical procedures like the 

finite element and the finite strip methods. Wempner [7] derived an approximate method 

for the analysis of elastic-plastic shells. He hypothesized that an inner layer is in an elastic 

state and one or two outer layers in plastic states. By subdividing the thickness at the 

two outer interfaces a simple approximation was obtained. Subsequently, he derived the 

equations of equilibrium, using the Euler's equations of stationary condition, indicated 
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in the work of Hellinger [8] and more explicitly discussed by Hu [9], Washizu [10] and 

Reissner [11]. The incremental form of the Hellinger-Reissner complimentary functionals 

were used in the elastic-plastic analysis. 

The small deflection elastic, large deflection and plastic analyses based on the con-

ventional methods are too cumbersome and often a complete elastic-plastic analysis is 

extremely difficult. Even a complete elastic analysis obtained by solving an eighth order 

differential equation for various boundary conditions and type of loading is quite com-

plex. Therefore, it is essential to employ numerical procedures, especially when large 

deflections are involved. The numerical methods of analysis are discussed in the next 

section. 

2.2 Numerical Methods of Analysis 

2.2.1 Finite Difference Method 

The numerical procedures that can be employed to solve the governing differential equa-

tion of equilibrium include the finite difference method and the finite element method. 

Both methods discretize the continuum and both generate simultaneous algebraic equa-

tions for the nodal degrees of freedom. The finite difference method is well suited for the 

analysis of shells of revolution and also suited to 'pure' continua where there is just one 

medium, such as a homogeneous solid or a fluid [12]. However, for analyzing a structure 

that must be modeled by different forms e.g. a vehicle that combines a bar, beam, plate 

and shell components and for structures modeled by a mixture of materials, the finite 

difference method is too cumbersome. 
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2.2.2 F i n i t e E l e m e n t M e t h o d 

In the finite element method, the continuum is discretized into a finite number of el-

ements or pieces. The nodal displacements are the unknown parameters. A function 

(or functions) is chosen to define uniquely the state of displacement within each finite 

element in terms of the nodal displacements. The strain-displacement relations define 

the unique state of strain within each element and hence, the state of stress throughout 

the element as well as on its boundaries. Finally, by assembling the finite elements to 

form the original structure, a stiffness matrix is formulated in terms of the unknowns. 

The nodal variables could then be solved in terms of the applied loads to complete the 

solution procedure. 

A large number of finite elements with various geometrical shapes and displacement 

functions are available. A vast amount of literature exists on the application of finite 

element method to the analysis of thin shells [13]. Until recently, the ma.jorit3r of the 

work has been related to linear analysis. Such finite element formulations adopt the 

Kichhoff-Love assumptions to formulate the deep shell theories such as due to Koiter 

[14], Budiansky and Sanders [15]. Several finite elements have also been derived by mod-

ifying the continuum elements to comply with the shell-assumptions without adopting 

a. rigorous shell theory. In case of fully non-linear analysis, additional problems arise in 

the formulation of finite elements due to various approximations used in reducing the 

complexity of non-linear theory. 

The earliest finite element solutions for the linear elastic analysis of shells adopted as-

semblages of flat or facet elements. The rigid body modes were correctly represented and 

the technique gave results which were only surpassed by curved elements. Although the 

curved elements derived from KichhofF-Love theory guarantee a high solution accuracy, 

they are complicated by convergence and compatibility requirements. 
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Special elements have also been developed for the analysis of shallow shells. The 

semiloof element [16] was a result of an evolution process dating from the isoparametric 

element [17] and the membrane element [18]. Although the element seemed promising, 

difficulties later appeared due to the degeneration process, as the thickness of the shell 

was reduced. A great improvement of the model was achieved by a reduced-integration 

technique [19]. Martin and Owen [20] used the semiloof element with reduced-integration 

technique to carry out an elastic-plastic and geometrically non-linear analysis. Crisfield 

[13] used the degeneration concept and adopted a 8-noded rectangular element, with five 

degrees of freedom at the corner nodes and 2 in-plane degrees of freedom at the mid-side 

nodes, for the non-linear analysis of cylindrical panels. The formulation was extended 

to incorporate geometric and material non-linearities. Owen and Figueriras [21] used a 

mixed formulation of a 8 noded Serendipity element and a. 9-noded heterosis element for 

the non-linear analysis of cylindrical shells. 

Obviously, finite element methods have found extensive application in a vast range 

of engineering problems. However, for many structures having a regular geometric plan 

and simple boundary conditions, a full finite element analysis is often both extravagant 

and unnecessary [22]. In the non-linear analysis, quite often, it is necessary to use a very 

fine grid to obtain engineering accuracy. The cost of the solutions could be very high 

and sometimes impractical. To overcome these drawbacks in analyzing structures with a 

regular geometry and simple boundary conditions, the finite strip method was developed 

by Cheung [23]. 

2.3 The Finite Strip Method 

The finite strip method is a generalized form of the finite element method which reduces 

the computational effort but still retains some of the versatility of the finite element 
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method. 

In this method, the structure is subdivided into strips or subdomains. The finite strip 

formulation, like its finite element counterpart, adopts a kinematic approach. However, 

unlike the finite element method, which uses polynomial displacement functions in all 

directions, the finite strip method employs simple polynomials in one direction and con-

tinuously differentiable functions in the other. The finite strip method also stipulates 

that these functions should satisfy a priori the displacement boundary conditions at the 

ends of the strip. The lateral displacement, w, of the finite strip, could, therefore, be 

represented by: 

w = J2fp(x)Yp(y) (2.2) 

P =i 

The function fp(x) satisfies the displacement boundary conditions and approximates the 

deflected shape. Yp is a polynomial expression with undetermined constants. 

The performance of the finite strip method in the non-linear analysis of plate struc-

tures was examined by Abayakoon et al [40] and found to be very satisfactory. Cheung 

extended the finite strip method from his initial analysis of flat plates [23] to analyze 

folded plate, structures [22]. Later Cheung extended the theory to analyze cylindrical 

shells using a curved plate strip and subsequent^, a shell strip [22]. Cylindrical shell 

strips for the vibration analysis of panels were also investigated by Cheung and found to 

be satisfactory. In the curved shell formulation, Cheung used linear interpolation poly-

nomials for the in-plane displacements and cubic Hermitian polynomials to represent the 

normal displacement in the transverse direction. In the strip direction a continuously dif-

ferentiable function was used to model the deflected shape and to satisfy the boundary 

conditions. Dawe [25] used a quintic polynomial distribution to represent the circum-

ferential and the normal displacement components and a cubic polynomial distribution 
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to represent the u displacement component in the finite strip formulation, for the static 

analysis of diaphram supported cylindrical shells. To model mixed boundary conditions, 

concentrated loads and continuous spans, the spline finite strip method was developed 

by Cheung et al [26]. In this method each finite strip was divided into a number of sub-

domains. A set of spline functions was used to define the displacement variation inside 

each subdomain. The spline strip method was originally developed for the analysis of 

rectangular plates. Mizusawa [27] extended the application of the spline strip method 

to the vibration analysis of cylindrical shells. The prediction from this method seem to 

agree with the theoretical results. To date, the application of the finite strip method to 

the analysis of cylindrical shells has been mostly linear elastic. The effect of material and 

geometric non-linearities has not been incorporated. In the present work, a large deflec-

tion, elastic-plastic analysis of cylindrical shells has been conducted. The mathematical 

formulation of the problem is presented in the next chapter. 



Chapter 3 

Mathematical Formulation 

3.1 Introduction 

Two formulations of the finite strip suitable for modelling cylindrical shells are developed. 

A flat plate strip element, shown in Fig. 3.1 , is used to approximate the cylindrical 

surface, and a more refined curved strip element, shown in Fig. 3.2 , which models the 

curved cylindrical shell surface exactly, is also developed. 

Section 3.2 introduces the finite strip discretization of the circular cylindrical shell. 

The displacement components involved in both the Flat Plate and the Curved Shell 

element are discussed. The basis for the selection of displacement functions and their 

choice depending on the boundary conditions and the finite element theory is presented in 

Section 3.3. Section 3.4 presents the strain-displacement relations employed in the present 

analysis with a special mention to the differences between the two finite strip models 

and the consequent implications on the choice of shape functions for the displacement 

components. 

The constitutive relations are presented in Section 3.5. The formulation of the stiffness 

matrix using the virtual work principle is presented in Section 3.6. Since the scope 

of the present formtilation includes non-linear effects — both geometric and material 

— the resulting equations are non-linear. The Newton-Raphson iterative procedure is 

employed for the solution of the non-linear equations. The mathematical derivation of 

17 
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the Newton-Raphson procedure is presented in Section 3.7. Some comments on the 

numerical integration used are made in Section 3.8. Important aspects of the computer 

implementation of the finite strip formulation are presented in Section 3.9. 

3.2 Finite Strip Discretization 

x 

Figure 3.1: Flat Plate Discretization 

3.2.1 Flat Plate Model 

The finite strip discretization of a circular cylindrical shell is shown in Fig. 3.1 . The 

global co-ordinate system XYZ is rectangular cartesian. The finite strips are connected 

along common nodal lines. The inter-element compatibility is satisfied by maintaining 

the continuity of the displacement variables. Although there are no restrictions on the 

geometry of the flat plate element in terms of its thickness or width, they will be assumed 



Chapter 3. Mathematical Formulation 19 

to be constant in this formulation. The arrows shown in Fig. 3.1 represent the lateral 

loading on the shell. In this formulation the loading pattern on the shell is taken as either 

a uniform pressure load or the self-weight of the shell. 

3.2.2 Curved Shell Model 

Fig. 3.2 shows the finite strip discretization using curved shell element. In this model 

the global co-ordinate system XYZ is defined in polar co-ordinates. The global A"-axis, 

located a,t the mid-surface, is along the longitudinal or the non-curved direction of the 

shell while the global Y and Z axes of the co-ordinate system are along the transverse 

and the radial directions of the cylindrical shell respectively. Therefore, for a circular 

cylindrical shell of a. constant radius of curvature R, the global Z-co-ordinate at each 

point on the middle surface of the shell will be zero. The circumferential co-ordinate of 

any point will vary as a function of the angle f3 subtended by the shell element at the 

center of curvature. 

Once again, the inter-element compatibility has to be satisfied along the nodal line, 

where the two curved shell elements are connected, by matching the displacement vari-

ables along these lines. The loading on the shell, represented by arrows in Fig. 3.2 , 

represents the the lateral loading. The loading pattern in the shell is assumed to be 

uniform in this formulation. A uniform pressure load or a, self-weight analysis can be 

carried out with relative ease. 

3.2.3 Nodal-Line Variables in Finite Strip Models 

The mathematical formulation used in the analysis of cylindrical shells assumes that the 

variables defined along each nodal line adequately represent the displacement components 

in the real structure. As mentioned in the preceding chapter, the membrane or in-plane 
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X 

Figure 3.2: Curved Shell Discretization 

displacements are significant as compared with the bending displacements in a cylindrical 

shell. Therefore, it is essential to include both in-plane and out-of-plane displacements 

as variables along each nodal line, even for small deflection theory. 

Fig. 3.3 shows an isolated flat plate element with a local co-ordinate system xyz. 

Fig. 3.4 and Fig. 3.5 show two types of curved shell elements, denoted as curved shell 

element I and curved shell element II. 

The variables along each nodal line in all the three cases are defined by the maximum 

modal amplitude of the longitudinal displacement functions for each of the displacement 

components u, v and w. The flat plate element and the curved shell element I, shown in 

Fig. 3.3 and Fig. 3.4 respectively, have two nodal lines 1 and 2. Along each nodal 

line, the displacement components are represented by two in-plane displacements u and 

v, an out-of-plane displacement w and a rotation 9 — |^ . Hence, each finite strip has 8 

variables in this formulation. 
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9 

x 

Figure 3.3: A Flat Plate Element 

The curved shell formulation in Fig. 3.5 has three nodal lines — two external and 

one internal — in each element. In addition to the two external nodal lines there exists 

an internal nodal line where two displacement variables u and v are denned. Hence, in 

this formulation, each curved shell finite strip element has 10 variables. 

3.3 Displacement Functions 

3.3.1 General 

The choice of shape functions for the displacement components of the finite strip in 

the analysis of cylindrical shells assumes considerable significance. The deflection pro-

file needs to be adequately modelled, the displacement boundary conditions need to be 

satisfied exactly and the criteria for convergence needs to be fulfilled. 
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Figure 3.4: Curved Shell Element I 

Bearing these considerations in mind, let us consider the logical options for repre-

senting the displacement components in the longitudinal direction. The displacement 

functions in the longitudinal direction have to satisfy the boundary conditions at the 

transverse ends. In the present study, two types of support conditions are examined — 

simply supported and clamped. The boundary conditions along the straight edges of the 

cylindrical shell could be simply supported, clamped or free. 

The displacement functions for the displacement components u, v and w are defined 

as: 
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Figure 3.5: Curved Shell Element II 

where £ = f and 77 = -|. 

In the longitudinal direction, the variation of the displacement components is denned 

by the functions <?(£). In the y-direction, the variation is represented by polynomials, Yv, 

as in the finite element approach. The displacement functions in the transverse direction 

must satisfy all requirements for convergence according to finite element theory: 

1. The displacement field within the element must be continuous. 
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2. The element must be able to assume a state of constant strain. 

3. All rigid body modes must be present. 

4. Inter-element compatibility must be satisfied. 

3.3.2 Flat Plate Strips 

The displacement functions in the x direction i.e. longitudinal direction for the most 

common displacement boundar}' conditions are given below: 

(a) Simply Supported ends 

1. No axial constraint 

5m ( 0 = c o s m 7 r £ ; m = 1, 3, 5, � � � , 

tfnGO = s i n r a 7 r £ ; n = 1, 3, 5, � � � , (3.2) 

9p U) = smp~C; p = l,3, 5, 

2. Constrained in the axial direction 

S & ( 0 = s i n m T t f ; m = 2,4,6,---, (3.3) 

(b) Clamped ends 

The shape functions for the u displacement remain the same i.e. g^, as in the simply 

supported case above. 

At a common nodal line adjacent flat plate strips are. rotated with respect to one 

another and this leads to an interaction of v and w displacements. In order to satisfy 

compatibility between adjacent finite strips, the variation of v and w displacements in 
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the longitudinal direction must be the same. The longitudinal modes chosen to repre-

sent w displacement are the clamped beam vibration modes, <bp(£,)- Therefore, g^ii), 

i.e. the variation of the v displacement must also be represented by ^>n(£)- Then, the 

displacement functions chosen to represent the tangential and the normal displacement 

components, v and ui respectively, of the clamped cylindrical shell, could be written as: 

9n(0 = </>(£) n = l ,3,5,--- , 

9PU) = <M0 
_ [ctP (sinh/3p£ - sin/?p£) + (cosh/3p£ - cos/3p£)] 

where, 

Ap - ap (smh0.5/3p£ - sin0.5/3PO + (cosh0.5/3p£ - cos0.5/3p£) 

(3.5) 

cos j3p — cosh (3p 

a
 =  

p sinh (3p — sin (3p 

and (3P are the solutions of the transcedental equation cosh/3p = cos/3p. These </>(£) are 

the clamped beam vibration modes. 

The displacement functions in the transverse direction are chosen to be linear for 

in-plane displacements u and v, and cubic shape functions for the normal or the w 

displacement. These are the well known Hermitian polynomials as used in the finite 

element analysis of beam bending. These functions were used for the finite strip analysis 

of stiffened plates by Abayakoon [24]. 

The u, v and w displacement distributions of a single strip can be written in terms of 

nodal displacements by combining the shape functions. For a strip of size L X b: 

P = 1,3, 5,-- - , 

(3.4) 
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u 

v 

[(1 - v)ulm +VU2m}gZl (f) 

[(1 - rj)vln +W2n]g^(() 

and (3.6) 

w [(l - 3TJ 2

 + 2T/ 3) W L P + (77 - 2r/2

 + T / 3 ) fc0lp + 

(3rj2 - 2V

3) u,2p + (v" - V2) be2p\g;(i) 

where £ = f and 77 = ^ 

U i m , V i n , wip etc are the nodal-line variables and the summation convention is used 

for the repeated indices m,n,,p. 

The curved shell strip in Fig. 3.4 resembles the plate strip in that the total number 

of nodal-line variables in a finite strip are identical. The shape functions along both 

directions — longitudinal and transverse will be the same as used in the flat plate finite 

strip formulation. One of the major objectives of using Curved Shell strips I with linear 

interpolation polynomials for the in-plane displacement components was to keep the 

total number of degrees of freedom in every finite strip to be the same as in the flat plate 

formulation. Although this might yield a variable rate of convergence as discussed in 

Section 3.4.3, nevertheless, the possibility of better accuracy, by incorporating the exact 

strain-displacement relations for the cylindrical shell, was investigated. 

The curved shell strip in Fig. 3.5 is a modification of the flat plate and the curved shell 

strip 1. In addition to the two external nodal lines, an internal nodal line is introduced 

at the middle of the finite strip. The displacement variables represented by this nodal 

3 . 3 . 3 C u r v e d S h e l l S t r i p I 

3 .3 . 4 C u r v e d S h e l l S t r i p I I 
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line are the in-plane displacements u and v. 

The displacement functions in the longitudinal direction will remain the same as in 

the other two formulations. However, with the introduction of an internal nodal line the 

variation in the transverse direction changes. The variation of the in-plane displacements 

u and v will be quadratic rather than linear. For a curved shell strip of size L x b, the 

displacement components can now be represented as: 

u = [ ( l-3r ? + 2 r ?

2

) U l m + fa - 4V

2) u2m + (-r, + 2T72) u 3 m] <C ( 0 

v = [ ( l - 377 + 2T7
2

) vin + (477 - 4T7
2

) v2n + (-77 + 2V

2) v3n) g» (£) 

w = [(l - 3v2 + 2v3) wlp + (77 - 2T72+T7 3) 60 l p + 

(ST? 2

 - 2T7
3

) w2p + (77
s

 - 772) b62p] g; (() 

3.4 Strain Displacement Relations 

3.4.1 Flat Plate — Bending Theory 

The well known large deflection strain displacement relations for plate bending are [4]: 

du d2w 1 / d w \ 2 I (dv\2  

6 x = dx" ~Z'0x^ +

 2 [ifoj +

2 \ ^ J 

(3.8) 
dv d2w 1 /dw\2

 1 /dv\2  

€y = ~d^~ZW+2\dy~) +2\dy) 

du dv d2w dw dw dv dv 
-y = 2e = I 2z- ! I 

xy xy dy dx dydx dx dy ' dx dy 

where ex,ey and exy are the non-zero components of strain. ^ x y is termed the engineering 

shear strain, u, v and w are the displacement at the mid-surface of the plate in the 

x,y and z directions respectively. The mid-surface coincides with the xy plane and z is 
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measured perpendicular to this surface. 

The bending component of the strain is represented by the terms varying linearly in z; 

the other components of the strain occur due to stretching of the middle surface. The non-

linear terms due to the displacement component u, have been neglected as they are small 

as compared with the u>-displacement. Since the main philosophy in this formulation 

is to model cylindrical shells by fla,t elements, the strips are oriented at varying angles 

leading to an interaction of the v and w displacements. Therefore, the non-linear terms 

due to displacement component v have been retained in the strain displacement relations. 

3.4.2 Cylindrical shell — bending theory 

The strain displacement relations for the bending of a cylindrical shell including large 

displacement effects are [4]: 

du d2w 1 (dw\2 

~dx dx2 2 \dx J 

dv w (d2w 1 dv\ 1 / d w \ 2

 / , Q | 

€ y = dy + R~Z\dyJ~Rdy) + 2 

du dv I d2w 1 dv \ dw dw 

Ixy xy Qx -y QyQx R dx) dx dy 

Here ex,ey and exy are referred to the polar co-ordinate system and R is the radius of 

curvature. Once again, the bending components of the strain vary linearly with z. which 

is the radial distance from the middle surface of the shell. Compared with the flat plate 

equations, if we examine the tangential component of the strain, we observe the 

term which represents the stretching of the middle surface due to a radial displacement 

w. The non-linear terms due to u and v displacements, being relatively smaller than the 

w displacements, are neglected. These assumptions of retaining the non-linear terms due 
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to w while neglecting the terms due to in-plane displacements u and v are consistent with 

Donell's [44] approximations in the derivation of a simplified non-linear shell theory. 

3.4.3 Order of Accuracy Analysis 

As mentioned in Section 3.3, the choice of shape functions for the various formulations 

is dependent on the strain displacement relations. The criteria for finite element con-

vergence has to be satisfied. Given the strain-displacement relations and the criteria for 

convergence, it is possible to predict the order of strain-energy convergence as the finite 

strip grid is refined. 

Let us examine the terms in the strain energy expression for a cylindrical shell for 

a better appreciation of the choice of shape functions in the tangential direction for the 

two Curved Shell formulations. The expression for-the strain energy of a cylindrical shell 

[32] for the linear case in polar co-ordinates, is given by: 

U = 
D fb fa ( 

~2 Jo Jo >• 
w 2

 + 2vwxxwyy + 2 ( l - i / ) w xy 

12 

1? 
2 2 1 — V

 I \2 
' ' "' ' ' ' — [Uy + Vx) Ul + V

y + 1vUxVy + 

+Y2 [va

v + +2(l-u)vl] (3.10) 

1 

+5 
24 

— (Vy + UU^W - 2Vy (Wyy 4" VW XX) 

-4(1 - u)wxyvx} dxdy 

where D = ufi-u 2)  1S

 rigidity modulus, v is the Poisson's ratio R is the radius of 

curvature and t is the thickness of the shell a.nd the subscripts denote derivatives. 
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The terms in the strain energy expression involving derivatives with respect to x need 

not be examined as the shape functions in the longitudinal direction in all formulations 

remain the same and are sufficiently differentiable. Let us examine the terms in the 

tangential direction in the two Curved Shell formulations: 

1. Curved Shell I 

(a) v
2 : Since v is linear in the tangential direction 

Taylor series error in vy = 0(1) 

Strain Energy error = 0(Z2) 

(b) u2 : Since u is linear in the tangential direction, 

Taylor series error in uy — 0(1) 

Strain Energy error = 0(l
2

) 

(c) wyy : Since ui is cubic in the tangential direction, 

Taylor series error in wyy = 0(/ 2) 

Strain Energy Error = 0(/ 4) 

where I is the width of the element, in the tangential direction. 

The minimum order of convergence of strain energy varies from quadratic for mem-

brane components to fourth order for bending and is, therefore, not consistent. 

2. Curved Shell II 

(a) v2 : Since v is quadratic in the tangential direction, 

Taylor series error in vy = 0(Z2) 

Strain Energy error = 0(/ 4) 
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(b) u
2

y : Since u is quadratic in the tangential direction, 

Taylor series error in uy — 0(/ 2) 

Strain Energy error = 0(/ 4) 

(c) Wyy : Since w is cubic in the tangential direction, 

Taylor series error in wyy = 0(/ 2) 

Strain Energy Error = 0(Z4) 

where / is the width of the element in the tangential direction. 

Therefore, from considerations of finite element formulation, a consistent order of 

convergence is expected in this formulation by assuming a quadratic variation of the 

in-plane displacements in the tangential direction. 

3.5 Constitutive Relations 

The assumed stress-strain relationship for the shell material under uniaxial loading is 

represented in Fig. 3.6 

o0 and eQ are the uniaxial yield stress and the uniaxial strain respectively. E and ET 

are the slopes of this bilinear representation. In carrying out an elastic-plastic analysis of 

a given structure, three major aspects of the material behavior need to be specified. One 

needs to know when the first yield occurs, what is the governing flow rule i.e. behavior of 

the material after yielding has taken place and finally, how does the yield criteria change 

when plastic flow occurs. This is summarized below: 

1. The shell material remains elastic till the stresses exceed a pre-defined value of stress 

called the yield stress. The combination of multiaxial stresses which contribute to 

the yield stress is determined by the choice of a. suitable yield criterion. 
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yield s t r e s s 

yield s t ra in 

e last ic s t ra in 

p last ic s t ra in 

Figure 3.6: Stress-Strain relationship 
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2. Once the shell material has yielded, the behavior of the structure i.e. the direction 

of strain-increments is determined by flow rules which need to be denned. 

3. The yield criteria of the shell material varies with the plastic flow. To define this 

variation, a suitable hardening rule needs to be chosen. 

The yield of ductile metals has been successfully predicted by the von-Mises' crite-

rion. The von-Mises criterion is based on the assumption that yielding occurs when the 

distortion or the shear strain energy equals the distortion strain energy at yield in simple 

tension. 

The distortion energy Ud is written as: 

where G is the shear modulus of the material and 

(3.11) 

is the second invariant of the stresses. 

At the yield point in simple tension 

° i = ° o i

 a n d o~2 = <x3 = 0; 

Therefore, 

Hence, the yield condition, as per von-Mises theory is given theory is given by 

(3.12) 
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where < T i , <T2 and a3 are the principal components of the three dimensional stress. 

The behavior of the material after yielding is governed by the plastic stress-strain 

relationships. The generalized stress-strain relations to include both elastic and plastic 

components of strain is due to Prandtl and Reuss which correspond to an associated flow 

rule using the von-Mises yield function [28]. In this formulation, an associated flow rule 

is assumed. 

At the time of first yield, the yield surface is defined by K which represents the 

initial yield surface. If the material is perfectly plastic, plastic flow occurs and the yield 

surface remains fixed. However, for a material which strain hardens, the yield surface 

must change as further plastic loading occurs. This is referred to as strain hardening. In 

isotropic hardening, the yield surface will expand with stress and strain history but will 

retain the same initial shape as shown in Fig. 3.7 (b). 

The assumption of isotropic hardening is simple to handle mathematically but it does 

not account for the Bauschinger effect. The implication of the Bauschinger effect is that 

the initial shape of the yield surface, or the symmetry with respect to the origin in the 

stress space, is not retained in subsequent plastic deformations. The Bauschinger effect 

would tend to reduce the size of the locus on one side as that on the other side is increased. 

To incorporate the Bauschinger effect, a kinematic hardening model is introduced. 

The initial yield surface translates without deforming while maintaining the total elastic 

range constant. This model accounts for the Bauschinger effect but somewhat over-

corrects it by maintaining the total elastic range constant. In the present study, the 

elastic-plastic response of cylindrical shells is investigated only for the case of monotoni-

cally increasing load and the Bauschinger effect is not important. Therefore, an isotropic 

hardening model will be used in this formulation. 

The finite strip formulation of the elastic-plastic constitutive relations is described 

below: 
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Figure 3.7: Hardening Models 
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Figure 3.8: Stress-plastic strain Relationship 
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where, 

anc 

{do} = [DT]{de} 

[DT] = [D] - [D] {V} {Vf [D] [A + {V}
T

 [D] {V} 

{de} dex 

(3.13) 

(3.14) 

(3.15) 

In Eq.( 3.14 ) [D] is the elasticity matrix, {V} is a vector defined by the derivative of 

the yield function {V} = {^fy} and A is the slope of the stress-plastic strain relationship 

in a uniaxial test. Fig. 3.8 shows the stress-plastic strain relationship for the assumed 

bilinear variation shown in Fig. 3.6 . Then, 

A 

E 

(3.16) 

The elasto-plastic matrix replaces the elasticity matrix in incremental analysis. The 

finite strip analysis gives the stress increment for any given strain increment. The stress 

vector {a} is then computed at the end of the current iteration. This stress vector is 

subsequently used to calculate an equivalent effective stress a given by: 

°2 = °l - °xO-y + <?l + 3r;y (3.17) 

This effective stress <r, is the two-dimensional representation of J 2 given in Eq.( 3.11 ). 

Initial yield takes place when a exceeds o~0 for the first time, where a0 is the yield stress 

in uniaxial loading. As soon as the first yield occurs, the stresses are scaled down to 
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coincide with the yield surface and plastic constitutive relations are employed from that 

point. The unloading or loading of the material is dependent on whether u has been 

decreased or increased. If unloading takes place, the iterative procedure is repeated with 

the elastic constitutive relations until yielding occurs again. If loading occurs while in 

the plastic region, the iteration is repeated with plastic constitutive relations. 

3.6 Stiffness Formulation 

3.6.1 Flat Plate Element 

3.6.1.1 Shape Functions 

Variations of the u, v and w displacements within the flat plate finite strip have been 

discussed in Section 3.3. For a one mode approximation in the longitudinal direction, 

the shape functions could be written as: 

u = N?Ui; i=l,2 

v = Nl'vi- i = l,2 

and (3.18) 

w
 = m'Wi; i = 1.3 

= N?b6i; i = 2,4 

where 
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#i u = (1 "17)^1 ( 0 

= V9
V

A£) 

N? = ( l - 3 r ?

2 + 2 7 7

3 ) 5 r (0 

= ( 7 ? - 2 r /

2 + r 7

3 ) 6 9 r (0 

iVs» = (3T?2 - 2r /-
3)< (£) 

JV" = ( r 7 3 - T 7 2 ) 6 ^ ( 0 

and U u , 1 * 2 1 ) ^ 1 1 ) ^ 2 1 ) ^ 1 1 ) ^ 1 1 ) ^ 2 1 ) $ 2 1

 m equation ( 3.6 ) are replaced by Ui,u2, 

vuv2,w1,91,w2,62. 

In matrix notation Eq.( 3.19 ) can be represented by 

(3.19) 

u 

w 

> = [N]{6e} 

where {<̂ e} is the nodal displacement vector given by 

(3.20) 
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Wl 

0i 

Un 

W2 

6, 

and [N] is a matrix of shape functions given by 

(3.21) 

[JV] 

N? 0 

0 0 

0 

0 N% 0 0 

0 0 JV2" 0 

0 0 N£ N? 

(3.22) 

0 N? N? 

Substituting Eq.( 3.20 ) into the strain-displacement relations of the plate given in 

Eq.( 3.8 ), we obtain an explicit relation between strains and the nodal displacements. 

Denning 

(3.23) 



Chapter 3. Mathematical Formulation 41 
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where i,j = 1,2,3,4 and k,l = 1,2. 

3.6.1.2 Virtual Work Principle 
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(3.24) 

From the strain displacement relations in Eq.( 3.24 ) it can be seen that the virtual 

strains are related to the virtual displacements by 

{*} = [[*] + [ £ ] ] { £ } (3.25) 

where, {e} is the vector of virtual strain and |^e} is the virtual displacement vector; 
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It can easily be observed that the [73] matrix is independent of the nodal displacements 

while the [C] matrix is a linear function of {8}. Using the principle of virtual work, the 

equation of equilibrium of a single flat plate finite strip can be written as 

jv{i}
T{a}dvol = {8e}

T

{p} (3.27) 

wnere 

(3.28) 

and {p} is a consistent load vector calculated from the shape functions [Ar]. 

Substituting Eq.( 3.25 ) into the virtual work equation given by by Eq.( 3.27 ) results 

in the equilibrium equation for a single finite strip given by 

[[B] + [Cf M dvol = {p} (3.29) 

The equilibrium equation given by Eq.( 3.29 ) for a single finite strip represents 

the stiffness matrix and the corresponding load vector in a local co-ordinate system. 

Proceeding in the same manner a local stiffness and a 'consistent' load for each strip can 

be formulated. However, for the final analysis, the stiffness matrix and the load vector 

need to be transformed from the local to the global system. 

Transforming the element displacement and the element load vector from the global 

to the local co-ordinates 

{8Ly = [Te] {SG}
e

 (3.30) 

and 
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{pLy = [Te){pGy (3.31) 

where, 

[Te} = 

1 0 0 0 0 

0 cos# sin0 0 0 

0 

0 

0 

0 

0 

0 

smB cos9 0 0 

0 

0 

0 

0 

0 

0 1 0 

0 0 1 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 cos# sin e 0 

0 0 0 -sm6 cos (9 0 

0 0 0 0 0 1 

(3.32) 

and 9 is the angle between the local and the global co-ordinate axis of the element. 

The stiffness matrix is formulated in the local co-ordinate system. Transforming from 

the local to the global co-ordinates 

{PGY = [TeV'iPLy 

= [Te]-l{kLy[Te]{sGy 
(3.33) 

Therefore, 

{kGy = [Te}-i{kLy [Tt 
(3.34) 

Since the work done in the two co-ordinate systems must be the same, the transformation 

matrix [Te] must be orthogonal, i.e. 

(3.35) 
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Hence 

{kGy = [Tef {kLy [Te] (3.36) 

Similarly, the load vector after transformation will be given by 

{pGy = [T.r'iPeY 

= [Te} T{pLy 

(3.37) 

Assembling the stiffness matrix for each element in this manner, a structural stiffness 

matrix can be obtained. Then, the equilibrium equation for the whole structure can be 

represented by 

3.6.1.3 Load Vector 

In the assumed finite strip discretization of a cylindrical shell using flat plate elements, an 

attempt has been made to model a continuously curved surface by small, flat elements. 

It is very important to model the loading on the shell surface appropriately. To represent 

a uniformly distributed load e.g. the self-weight of the shell, Zienkiewicz [29], argues that 

it is more consistent, with the physical aspect of replacing a curved surface by a collection 

of planes, to concentrate the distributed load as statically equivalent nodal forces. In the 

present formulation, the self-weight of the shell is modelled as being concentrated along 

the nodal lines, therefore, in the transverse direction, the load is lumped. The load vector 

is integrated in closed form with the appropriate shape functions in the longitudinal 

direction. Therefore, a pseudo-consistent load vector is generated for each element which 

is subsequently transformed by the transformation matrix given in Eq.( 3.37 ) to obtain 

the global load vector. 

allstrips allstrips (3.38) 
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3.6.2 Curved Shell Strip I 

3.6.2.1 Shape Functions 

The shape functions used in this formulation are identical to those used in the flat 

plate formulation. Substituting the shape functions from Eq.( 3.19 ) into the strain-

displacement relations of the cylindrical shell given by Eq.( 3.9 ) gives 

to 
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3.6.2.2 Virtual Work Principle 

As in the flat plate formulation, the virtual strains are related to the virtual displacements 

as in Eq.( 3.25 ) where, 
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Proceeding in the same manner as in the flat plate formulation, the equilibrium 

equation for a single finite strip is given by Eq.( 3.29 ). However, in this formulation, 

the local and the global co-ordinate systems coincide. Therefore, there is no need for a 

transformation of co-ordinates. By satisfying inter-element compatibility along the nodal 

lines, the equilibrium of the cylindrical shell can be represented by 

1 / dNJ^dNJ^ ^ dNV' dNV' 
WA 

£ Jv[[B} + [Cf{a}dvol 
allstrips 

£ (Pe> 
allstrips 

{P} 

(3.40) 

where P is the structural load vector. 

3.6.2.3 Load Vector 

In this formulation, the cylindrical shell has been represented exactly relative to its 

geometry and from considerations of strain-displacement relations. The load vector is 
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consequently, 'consistent'. 

3.6.3 C u r v e d Shel l II 

3.6.3.1 Shape Functions 

The variations of the u, v and w displacements within the curved shell finite strip for-

mulation are given by Eq.( 3.7 ). 

For a. one mode approximation in the longitudinal direction, the shape functions can 

be written as: 

u = N?Ui] 1 = 1,2,3 

v = NVvi- i = 1,2,3 

and (3.41) 

w = Nfwi] i = l,3 

= Nfbdi] t = 2,4 

where 
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N? = (1-3T/ + 2T7

2)^(0 

7V2" = (4i7-4i7 2)tf(0 

iV3" = ( - i / + V ) # ( 0 

/V- = (1-3T7 + 2T7

2)^(0 

TV" (4 i 7 -4 i /

2 ) f l ry (0 

= (-i/ + V ) t f ( 0 

(3.42) 

7Vr = ( i _3 ,
2 + 2 ^ ) ^ ( 0 

N? = (l-2n
2+V

3)bgr(0 

(v3-r,2)bg?(Z) 

and uu,u2i,u31,vu,v21,v31,w1i,0ii,w21,621 iii equation ( 3.7 ) are 

replaced by u1,u2,u3,v1,v2,v3,w1,61,w2,62. 

In matrix notation Eq.( 3.42 ) can be represented by 
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u 

v \ = [N]{6e) 

w 

(3.43) 

where {Se} is the nodal displacement vector given by 

{6e} = 

Ui 

02 

(3.44) 

and [JV] is a matrix of shape functions given by 

[N) = 

N? 0 0 

0 iV" 0 

0 JV2" 0 JV3" 0 0 

0 0 N* 0 J V J 0 

0 0 N? JV™ 0 0 0 0 JV™ JV4

l 

(3.45) 
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Substituting Eq.( 3.43 ) into the strain-displacement relations of the plate given in 

Eq.( 3.9 ), we obtain an explicit relation between strains and the nodal displacements 

given by 

+ 

dNV 

dx 

0 C1 + i) 

8N_ 

~9y 

8N* 

dx 

V
 +

 RJ dy 

(i + s) H2-
dN™ dNV' 

i J 

2 dx dx 

9NV dNV 

-dt-dtW

>
W

3 

a
2

Nv d
2

NV' 

dx
2 dx 

dNV NV' 9
2

NV' A T d
2

N™ 

dy R ~
 Z

 dy
2

 R ~
 Z

 dy
2 

V ^ RJ dx 

1 / a A ^ a j v ™ 3 A 7 awj ' 

2 \ 9a: 9y 9a? dy 

dxdy 
�2z 

d
2

NV.' 

dxdy 

3y i l 

d
2

NV' 

dx
2 

d
2

N™ 

dNV 

dx 
-2z^*-

dxdy 

h3 = 1,2,3,4, 

dNV 

r d
2

Nl" 
'~dx~

2

~ 

NV' a2

NV' 
' dy

2 

d
2

 N
w 

dxdy 

{*«} 

(3.46) 

3.6.3.2 Virtual Work Principle 

As in the Curved Shell I formulation, the virtual strains are related to the virtual dis-

placements as in Eq.( 3.25 ) where, 
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Assembling the equilibrium equation for each finite strip given by Eq.( 3.28 ) and satis-

fying inter-element compatibility, the equilibrium of the cylindrical shell will be given by 

Eq.( 3.40 ). As in the formulation of Curved Shell I, there is no need for a transformation 

as the local and the global co-ordinate systems coincide. 

3.6.3.3 Load Vector 

In this formulation, the shape functions along the transverse direction have been up-

graded from linear to quadratic for the in-plane displacements u and v. Consequently, a 

consistent load vector is obtained by replacing the linear shape functions in the Curved 

Shell I formulation by quadratic ones and integrating in closed form. 

The terms in the load vector for a self-weight analysis are given in Appendix A. 

The resulting equilibrium equations are non-linear in the nodal displacements and need 

to be solved using an iterative procedure. 

Let us represent the equilibrium of a finite strip as 

3.7 Newton-Raphson Iterative Procedure 

{ / (A)}=P (3.47) 

Expanding / in Taylor series around a known solution A 0 , we obtain 

{/(Ao)} + 9 if} ({A} -{Ao}) + ..-={p} (3.48) 
d{A} { A } = { A „ } 
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Rearranging terms, we get 

[K}{8AQ}=P-{f(A0)} (3-49) 

where, [K] is the tangent stiffness matrix given by 

[*] = f j g (3.50) 

and {£Ao} is the incremental nodal displacement vector. 

From Eq.( 3.50 ) the tangent stiffness matrix is determined at each iteration by 

differentiating the equilibrium function / with respect to the nodal displacement vector 

{A}; at the end of the ith iteration. 

Differentiating, 

U * ~ 1 {[B) + [C]]T{o}dvol 
8 {A} fl{AWv ( 3 5 1 ) 

= J v a m m + [ c ] ] T { * } i v o 1 

Assuming that the differentiation with respect to the nodal displacement vector can be 

interchanged with the integration over the volume, we then obtain, 

d 

d{A} 
[[B] + 

9 \[B] + [C]f 

d{A} 

9 [Cf 

{a} + [[B] + [C}f 
9 {a} 

d{A} 

d{A} 
{a} + {[B] + [C]] 

,Td{*} d{e} 
(3.52) 

9{e}9{A} 

since [B] is independent of {A}. 
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The first term on the right hand side of Eq.( 3.52 ) can be expressed as: 

(d[C]
T

" 

W = [Q] (3-53) 

w here 

3 d(C
T

) 

The derivation of Qij is presented in Appendix B. 

From Eq.( 3.52 ) 

^ = [DT] (3-55) 

and, 

| ~ = [[B] + [C]] ' (3.56) 

Rewriting Eq.( 3.52 ) by substituting Eqs.( 3.55 ), ( 3.56 ) and ( 3.53 ), we obtain 

[K] = Jv{[[B] + [C]]
T

[PT)[[B) + [C] + [Q]]}dvol (3.57) 

The Newton-Raphson iterative scheme is now carried out as follows: 

1. Calculate / (A 0 ) from the previous iteration or load step. (For the first load incre-

ment, / ( A 0 ) is calculated from the known stiffness matrix and the linear displace-

ment vector in local co-ordinates). 
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2. Compute the tangent stiffness ma.trix [K] from Eq.( 3.57 ). 

3. Using Eq.( 3.49 ) solve for {£A;}. 

4. Then { A } i + 1 at the (z + l)th iteration will be given by 

= {&}. + 6 Ai (3.58) 

5. Repeat Steps 1-4 till the desired convergence is achieved. 

3.8 Numerical Integration 

The volume integral in Eq.( 3.57 ) cannot be integrated analytically in closed form as the 

stress-strain relationship is not known explicitly. Consequently, a numerical integration 

procedure needs to be adopted. In the present analysis, Gaussian Quadrature is used. 

The Gaussian Quadrature formulae can integrate a polynomial function f (x) of degree 

(2n — 1) exactly as a weighted mean of its n particular values at specified locations. The 

number of points necessary in any one direction is dependent on the complexity of the 

function f (x). 

Transforming the co-ordinates in the three directions to their non-dimensional form, 

the integral given by Eq.( 3.57 ) will be evaluated using Gaussian Quadrature as 

/ = f f f fti,V,C)dtdr,dC 

(3.59) 

i j k 

where W^VKj and Wk are the weighting factors and (i,rjj and (k denote the sampling 

points. The number of integrating points in the three directions are i,j and k respectively. 

In the longitudinal direction, the displacement variations consist of circular and hy-

perbolic functions. In the integration of the function f (x) a typical higher order term 
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that will be encountered will look like sin2

 7r£, C O S 2 7T£, sinh2 /3£ or cosh f3( sinh /3£ in elastic 

small deflection analysis and sin4 TT(, sinh /3£ cosh j3( etc in elastic large deflection anal-

ysis for a one mode solution. From an investigation carried out by Abayakoon [24], it 

was found that by using 5 integration points in the longitudinal direction, the error in 

numerical integration in the elastic large deflection analysis was only about 0.5%. 

The displacement variations in the Flat Plate formulation are linear for u and v and 

cubic for w in the transverse direction. Therefore, in Eq.( 3.57 ), the terms will be 

quadratic polynomials in elastic small or large deflection analysis. Therefore, a 2-point 

Gaussian integration will be sufficient in the transverse direction. In the cylindrical shell 

theory, the terms in the corresponding integral will be of order 4 due to the presence of 

an extra term in the strain displacement relations i.e. ^. Therefore, a 3 point Gaussian 

integration in the transverse direction is adopted. A 2-point Gaussian integration is used 

in the elastic analysis through the thickness of the cylindrical shell. 

When the shell material becomes non-linear, yielding of the material extends through 

the thickness. From a study conducted by Wu and Witmer [30], for thin beams of 

rectangular cross-section, it was found that a 4-point Gaussian integration was sufficient 

to give an accurate representation of the non-linear stress distribution. In the present 

study, a 4-point Gaussian integration scheme through the thickness is adopted in the 

elastic-plastic analysis. 

3.9 Computer Implementation 

The finite strip formulation for the flat plate and the curved shell models is implemented 

on the mainframe AMDHAL 5850 computers. The program is written in FORTRAN 

and test runs are carried out to verify the accuracy of the procedure. 
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The user has the option to specify the number of modes to be chosen for the displace-

ment components u, v and w. The number of Gaussian integration points are chosen by 

the program depending on the type of analysis — elastic or plastic and on the number 

of modes chosen. The final set of equations is solved using Gaussian elimination. The 

convergence of the solution algorithm is determined by one of two criteria as follows: 

1. In the maximum norm criterion, the solution is converged if, 

I -r1 L«* < TOLERy (3.60) 

where A; is the displacement solution for the nodal variable i, and 6A; is the 

correction for that variable in the present iteration. TOLERi is the acceptable 

level of tolerance specified by the user for this criterion. 

2. In the Euclidean norm criterion, the solution is converged if, 

^ I = Y , < TOLERi (3.61) 

E!=f (A.) - y ' 

where N is the total number of nodal variables and TOLERi is acceptable 

level of tolerance for this criterion. 
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Numerical Investigations 

4.1 Introduction 

In Chapter 3, the three finite strip formulations were developed. To investigate the 

accuracy and viability of each formulation, several example problems have been 

tested. The mode shapes in the longitudinal direction of the strip are identified by 

indices m, (n,k) and p introduced in Eq. ( 3.2 ),( 3.3 ) and ( 3.4 ). In this chapter, 

the following notation has been employed while illustrating the example problems. 

(2,1,1) one mode analysis m=2, n=l, p=l 

(1,1,1) one mode analysis m=l, n=l, p=l 

(1,1,1) + (3,_,_) two modes for the u displacement m=l and m=3 

one mode for the v displacement, n=l 

one mode for the w displacement, p= 1 

two modes for the u displacement m=2 and m=4 

one mode for the v displacement, n=l 

one mode for the w displacement, p=l 

one mode for the u displacement m=2 

two modes for the v displacement, n=l, k=l 

one mode for the w displacement, p=l 

60 
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The first stage of the investigation was to carry out test runs on beam problems 

of inclined cross-sections for which the analytical solutions could easily be worked 

out. Such an investigation would reveal the correctness of the transformation matrix 

used in the flat plate finite strip formulation. The results from the finite strip 

analysis are compared with the analytical solutions in Section 4.2. 

The shallow shell roof problem has been frequently used to test particular shell 

finite elements. The configuration of the test shell-roof problem is illustrated in 

Fig. 4.2 . In all the finite strip formulations the analysis was carried out for 2 

different boundary conditions at the curved edges — simply supported and clamped. 

In Section 4.3, various aspects of the flat plate finite strip analysis are discussed 

with respect to the shell-roof problem. The problem is initially examined for the 

linear elastic case. Effect of large displacements is also investigated. The vertical 

displacements at the mid-span of the free edge and at the crown and the strain 

energy, are compared with the analytical and numerical solutions. In addition, the 

stress and moment distributions at critical sections are compared with the results 

of finite-element procedures. Some comments on the accuracy of the flat plate 

formulation have also been made in this Section. 

Section 4.4 includes the numerical investigations of the shell-roof problem using 

Curved Shell strips I. In addition to the comparison of the vertical displacements at 

the crown and the mid-span of the free edge, with other numerical procedures, the 

investigation extends to the determination of the number of finite strips required 

to adequately model the cylindrical panel under consideration. The accuracy of 

displacements and convergence of strain energy with the increase in the number 

of finite strips is also investigated. This section concludes with a discussion of the 
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results and some comments regarding the performance of the Curved Shell strip I 

vis-a-vis the Flat Plate formulation. 

In Section 4.5, the shallow shell-roof problem is analyzed using Curved Finite 

strips II. A detailed analysis is carried out to investigate the convergence of strain 

energy for the linear case. The conclusions based on the analysis enable us to 

determine the number of finite strips necessary to model the cylindrical panel with 

a reasonable accuracy. 

In the next stage of the investigation, a linear elastic analysis of a cylindrical shell 

loaded symmetrically with respect to its axis is carried out. Section 4.6 includes 

the results of the linear elastic analysis of a circular cylindrical shell subjected to 

uniform internal pressure are presented. The response of the shell is compared 

with the anatytical solutions to obtain an estimate of the accuracy of the finite 

strip formulation. A detailed parametric study is also carried out to determine the 

range of applicability of the finite strip formulation to the analysis of cylindrical 

shell problems. Further investigations of the shell-roof problem were carried out by 

incorporating the effect of geometric and material non-linearities. 

In Section 4.7, a detailed numerical investigation is carried out to analyze the 

shallow shell-roof problem using Curved Shell strips II for linear, elastic non-linear 

geometry, and non-linear material behavior. The vertical displacements at the mid-

span of the free edge and at the crown are compared with the results from other 

numerical procedures. 

The succeeding sections include the analysis of the shell-roof problem with 

clamped boundary conditions at the curved edges. Section 4.8 presents the results 

of the shallow shell-roof problem with clamped curved boundaries. The results for 

the linear elastic case are compared with the results other finite-element procedures. 
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Section 4.9 consists of the results of a detailed analysis of the clamped-shell 

problem discussed in Section 4.8 for the linear elastic, non-linear geometry and 

non-linear material. Some features of the investigation are also discussed with 

respect to the results of the classical shallow shell-roof problem in the absence of any 

comparisons for the non-linear analysis. The effect of clamping all the boundaries of 

the cylindrical shell panel is investigated in Section 4.10. The panel is subjected to 

uniform radial pressure. The linear elastic response is compared with the available 

results from finite element procedures. The effect of incorporating geometric non-

linearities is also investigated. 

As discussed in Chapter 3, the longitudinal displacement modes of the finite 

strip are represented by continuously differentiable functions. Most of the analyses 

in Sections 4.2 to 4.9 have been carried out by using one mode of these functions 

for each of the displacement components u,v and w. The effect of adding another 

in-plane mode is also investigated where it is considered necessary. 

4 .2 Analysis of a Rectangular Beam 

The behavior of a simply supported rectangular beam with an inclined cross-section 

at 45°, subjected to a uniformly distributed load, was studied using a one-mode 

finite strip analysis. Only one displacement mode was employed for each of the 

three displacement components in the longitudinal direction. Therefore, in our 

notation, the analysis is (1,1,1). 

A Rayleigh-Ritz analysis can be carried out to obtain the modal solutions for 

this problem by minimizing the total potential energy. The potential energy of the 

beam can be represented by 
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EI 
d2w' 

dx2 
— 2pw dx 

where, 

x is the distance measured along the length of the beam, 

L is the length of the beam, 

p is the uniformly distributed load, 

EI is the flexural rigidity of the beam, and 

w is the lateral deflection. 
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Then, minimizing the potential energy of the beam with respect to the central 

deflection wc, we obtain 

ALAp 

382.5246E7 

This result is slightly higher than the central deflection obtained from the exact 

analysis i.e. 

A comparison of the central deflection and strain energy from analytical methods 

is made with the results of the finite strip method in Table 4.1. The cross-sectional 

and material properties of the beam are also provided. A schematic sketch of the 

beam cross-section is also depicted in Fig. 4.1 

Table 4.1: Linear Elastic Response of a Simply Supported Beam 

L = 500mm 

b = 10mm 

t = 10m?n 

E = 220000/V/mm2 

V = 0.0 

p = 0.1/V/mm2 

Beam Theory One mode One mode 

analytical Finite Strip 

Central Deflection (mm) -3.1388 -3.1509 -3.1508 

Strain Energy (Nmm) 999.11 1002.93 1002.93 

The obvious conclusion which can be drawn from the one-mode linear elastic 
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analysis of the beam problem is that the displacement components and the strain 

energy can be accurately predicted using a flat plate finite strip. Secondly, the 

numerical integration scheme is correct for this linear problem. Thirdly, the trans-

formation matrix generated in Eq.( 3.32 ) for the transformation of co-ordinates 

from the local to global cartesian axes is correct. 

4.3 Analysis of the Shell-Roof problem 

using Flat Plate strips 

The shell-roof problem shown in Fig. 4.2 has been frequently used to test shell 

finite-elements. The curved edges of the cylindrical shell are diaphram supported 

while the straight edges are free. X 

Figure 4.2: Shell-Roof problem 
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The diaphram supports at the curved edges imply that the v and w displace-

ments are restrained i.e. v = w = 0 while the u displacement is unrestrained i.e. 

u / 0. The in-plane force JVX and the moment Mx must also vanish along the 

diaphram supports. 

In the flat plate approximation, the u-displacement at the curved edge has to 

be unconstrained. The choice of a cosine function satisfies this condition. The v 

and w components of the displacement are zero by virtue of the choice of a sine 

function as a mode shape. The in-plane force Nx and the bending moment Mx 

vanish at the diaphram supports for the linear analysis. However, by virtue of the 

choice of shape functions in the present analysis, the axial in-plane force is non-zero 

at the boundary for the large deflection case. Therefore, for the given shell-roof 

problem, the kinematic and the natural boundary conditions at the curved edges 

are satisfied exactly in the linear ca.se but the natural boundary conditions are not 

completely satisfied in the non-linear case. 

The loading on the shell is its own gravity load in the negative Z direction of 

the global cartesian co-ordinate system. The load vector is of a pseudo-consistent 

formulation as described earlier. 

A symmetric half of the shell is analyzed using up to 12 strips of equal widths i.e 

a 24 strip discretization for the whole shell. The results of the one mode finite-strip 

solution are compared with the analytical solutions of Scordelis and Lo [31], and 

with numerical procedures approximating the shell using triangular finite elements 

[32]. Table 4.2 summarizes the results of the linear elastic analysis. 

The finite-strip results, using flat-plate elements do not converge monotonically 

in energy from below to the exact value. The central displacement of the free edge 

(WB) and the strain energy seem to be converging from above. 

http://ca.se
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Table 4.2: Linear Elastic Response of the Shell-Roof ProblemUsing Flat Strips 

Number of 

Finite Strips 

10uA 

(in) 

w
B 

(in) (in) 

10wc 

(in) 

Strain Energy 

(K-in) 

12 -1.374 -3.752 1.977 5.537 58.956 

18 -1.4089 -3.7054 1.955 5.473 58.18 

24 -1.4214 -3.6911 1.948 5.453 57.856 

Finite Element [32] -1.5105 -3.69 1.955 5.226 58.65 

EXACT [31] -1.513 -3.703 1.963 5.249 58.828 

The use of a pseudo-consistent load vector in the finite strip analysis violates 

the finite-element criteria for a monotonic convergence to the exact solution from 

below. Also, it must also be noted that we are approximating a curved surface using 

flat plate strips. Refining the grid from 12 to 18 or 18 to 24 results in an entirely 

different structure, in other words, a 24 strip grid does not necessarily include a 

12 strip grid. Therefore, we cannot expect the exact solution to provide a upper 

bound for the strain energy. It is also seen that the strain-energy and the displace-

ment components for a 24-strip approximation are lower than the corresponding 

exact values. In addition, since only a single mode is used for approximating the 

displacement components, Ave do not expect the finite strip solution to converge to 

the exact. Rather, it should converge to a one-mode analytical solution. 

Even with a coarse grid of 12 finite strips, the one-mode solution is within 1.5% 

of the exact solution in the central vertical displacement of the free edge and within 

0.5% in strain energy. Therefore, it is evident that a 12-strip approximation can 

be used in the linear elastic analysis of the shell-roof problem subjected to gravity 
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Table 4.3: Analysis of membrane and bending stresses in the Shell-Roof 

Problem Using Flat Plate strips 

Number of 

Finite Strips 
NxB 

Kips /in 
MxC 

Kips-in/in Kips-in/in 

12 5.989 -0.0809 -2.00 

18 6.445 -0.0917 -2.025 

24 6.685 -0.095 -2.034 

Finite Elemental] 6.5016 -0.1284 -2.0871 

EXACT [32] 6.4124 -0.0927 -2.056 

load to obtain an accurate prediction of displacements and strain-energy. 

Table 4.3 compares the membrane and bending stresses with the exact values ob-

tained from the shallow shell theory. Both the membrane and the bending stresses 

compare very well with the exact values. The choice of continuously differentiable 

functions in the longitudinal direction apparently leads to a better convergence of 

stresses than earlier finite element analysis [20],[32],[38]. 

Since a 12 strip model of a cylindrical shell gives a reasonable prediction of 

deflections, strain energy and stresses in the linear elastic case, all further analysis 

has been carried out using a. grid of 12 finite strips. Fig. 4.3 shows the effect of 

large deformations on the response of the cylindrical shell when compared with the 

lineax elastic response. Based on a finite-element analysis of the shell-roof problem, 

Bergan et al [33] concluded that incorporating geometric non-linearities leads to a 

relative stiffening in both displacements and strain-energy. However, in the present 

analysis, we observe that the central vertical displacement of the free edge is on the 
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flexible side of the linear analysis up to a load level of 0.625psi. Reversing the load 

leads to a stiffer solution for all values of the load. This result can be justified by 

arguing that when the load is applied in the negative Z direction of the global co-

ordinate system, membrane compression in the V-direction leads to softening and 

hence, a more flexible solution. Conversely, when the load is reversed, membrane 

tension occurs in the Y"-direction, which leads to stiffening. 

The flat plate model of the cylindrical shell, although appropriate for the pre-

diction of the linear elastic response of the cylindrical shell, does not provide a 

reliable tool when the effect of geometric non-linearities is incorporated. These 

limitations have also been highlighted by Fliigge [3], wherein he observed that the 

membrane and bending theory of barrel vault roof using flat elements is subject 

to severe limitations. To overcome these limitations, another attempt at modelling 

the cylindrical shell using curved shell strips I was investigated. The results of the 

analysis are presented in the next section. 

4.4 Analysis of the Shell-Roof problem using 

Curved Shell strips I 

The same shell as was analyzed using flat plate strips is now modelled using Curved 

Shell strips I. As described in Section 3.6.2, the following aspects of the model need 

to be emphasized: 

(a) The shape functions across the width of the shell strip for the in-plane dis-

placements u and v are linear polynomials while those for the out-of-plane 

displacement w are cubic. 



Figure 4.3: Vertical Displacement of the free edge 
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(b) In this formulation, the strain-displacement functions for a cylindrical shell 

are used as opposed to the strain displacement relations of a plate in the Flat 

Plate formulation. 

(c) The load vector generated for this formulation is consistent i.e. the gravity 

load on the shell is integrated exactly with the appropriate shape functions in 

both the longitudinal and the transverse directions. 

One of the objectives for modelling the cylindrical shell using Curved shell strips 

I was to keep the number of degrees of freedom of the problem to be a minimum. 

Each finite strip in this formulation has 8 degrees of freedom as in the flat plate 

case. Only one mode is used to represent the displacement components u, v and 

w, (1,1,1) in our notation. Table 4.4 summarizes the results of the present linear 

elastic analysis and compares the displacement components and strain energy with 

the results of the analytical and finite-element analysis. 

It is apparent that the finite strip solution using Curved Shell strips I is ex-

tremely stiff. Comparing the strain energy and the vertical displacement of the free 

edge at its mid-span for a 24 strip approximation using flat plate strips, with the 

respective values obtained using Curved Shell strips I, we observe that the Curved 

Shell I model is 48% in error as compared with the exact strain energy and 63% 

stiffer in the displacement. Even when the grid is refined further, the convergence 

of strain energy and the displacement components to the exact solution is very 

slow. 

Obviously, we don't expect the finite strip solution to converge to the exact 

solution as only a single mode is used to represent the displacement components 

in the longitudinal direction. However, we do expect it to converge to a one mode 

solution. Fig. 4.4 shows a plot of the relative error in strain energy, AU, with 
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Table 4.4: Linear Elastic Response of the Shell-Roof Problem Using 

Curved Shell Strips I 

Number of 

Finite Strips 
10uA 

(in) 
WB 

(in) 
l0vB 

(in) 

I0wc 

(in) 

Strain Energy 

(K-in) 

12 -0.737 -0.6213 -2.75 -2.023 20.71 

18 -0.839 -0.974 -3.471 -1.1316 25.32 

24 -0.9267 -1.356 -4.183 -0.196 29.78 

30 -1.004 -1.728 -4.844 0.656 33.85 

36 -1.071 -2.064 -5.426 1.392 37.85 

42 -1.128 -2.356 -5.924 2.01 40.52 

72 -1.294 -3.25 -7.42 3.18 49.64 

78 -1.313 -3.35 -7.59 4.02 50.65 

Finite Element [32] -1.5105 -4.08388 -8.73995 5.2258 58.65 

EXACT [31] -1.513 -4.099 -8.761 5.249 58.828 

the number of finite strips used in the analysis, N. The order of convergence of the 

strain energy lies between O(N) and 0(N~2), which is rather slow. 

The order of accuracy analysis carried out in Section 3.4 reveals that the choice 

of linear polynomials to represent the in-plane displacements in the transverse di-

rection does not predict a consistent rate of convergence. The order of convergence 

expected due to the presence of terms like v2 and u2 is of O(N) while the corre-

sponding order due to terms in the strain energy expression like w2

y is of 0(N~4). 

Thus, it is not very surprising that the convergence of strain-energy to the exact 
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value lies between 0(N) and 0(N~
2

). The above analysis conclusively proves that 

the Curved Shell I model is inadequate from a practical standpoint to represent the 

cylindrical shell. By upgrading the shape functions for the in-plane displacements 

from linear to quadratic, the order of accuracy analysis in Section 3.4 predicts a 

consistent order of convergence. 

4.5 Analysis of the Shell-Roof Problem 

using Curved Shell strips I I 

The same shell as was analyzed using flat plate and Curved Shell strips I is now 

modelled using Curved Shell strips II. Some salient features of this formulation are: 

(a) The shape functions are upgraded from linear to quadratic polynomials for 

the in-plane displacement components in the transverse direction requiring 

the introduction of an internal nodal line. 

(b) The numerical integration across the width of each finite strip is carried out 

at 3 Gauss points so as to integrate a fourth order polynomial exactly. 

(c) The load vector for gravity load in the negative Z direction is integrated in 

closed form to obtain a consistent load vector. 

Table 4.5 summarizes the results of the linear elastic response of the Shell-Roof 

problem subjected to gravity load. The analysis employs a. single mode for each of 

the displacement components: u,v and w. 

The radial displacement at the mid-span of the free edge for a 24-strip approx-

imation is within 0.3% of the exact, while the radial displacement of the crown 
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Table 4.5: Linear Elastic Response of the Shell-Roof Problem Using 

Curved Shell Strips II 

Number of 

Finite Strips 

10uA 

(m) 

w
B 

(in) 

l0vB 

(in) (in) 

Strain Energy 

(K-m) 

6 -1.306 -3.4 -7.577 3.88 47.84 

12 -1.435 -4.03 -8.708 5.323 54.34 

24 -1.446 -4.087 -8.798 5.439 54.81 

Finite Element [32] -1.510 -4.08388 -8.73995 5.2258 58.65 

EXACT [31] -1.513 -4.099 -8.761 5.249 58.828 

is 3.5% more flexible than the corresponding exact solution. The strain energy is 

6.8% in error as compared with the exact solution but is converging monotonically 

from below. The fact that the radial displacement at the mid-span of the crown is 

more flexible than the exact value while the strain energy is on the lower side of the 

exact value is a result of using a one mode approximation and was also observed 

in Abayakoon's work [24] on unstiffened plates. The error in strain energy might 

seem to be large as compared with the exact value, but it must be noted that only 

one bending mode is employed in the present analysis. The cost of computation 

is minima] compared to other finite-element procedures [20],[32] and an accurate 

prediction of displacements and strain energy is still obtained. 

Fig. 4.5 represents the plot of the relative error in strain energy as the finite 

strip grid is refined. From the plot it can be inferred that the strain energy con-

vergent rate is of the order of T V
- 4

. Therefore, it can be concluded that the curved 

shell strip II models the geometry of the cylindrical panel as well as its linear elastic 
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behavior exceptionally well. 

The membrane and bending stresses in the cylindrical shell have been computed 

at several points. Table 4.6 summarizes the results of the present analysis. Com-

parisons with the finite element procedures and analytical results is also presented. 

Table 4.6: Analysis of membrane and bending stresses in the Shell-Roof 

Problem Using Curved Shell strips II 

Number of 

Finite Strips 
NxB 

Kips /in 
MxC 

Kips-in/in 
MyC 

Kips-in/in 

6 4.245 0.161 -1.308 

12 5.23 -0.072 -2.008 

24 5.65 -0.094 -2.111 

Finite Element [31] 6.5016 -0.1284 -2.087 

EXACT [32] 6.412 -0.0927 -2.056 

From the results it is evident that both the membrane and bending stresses 

compare very well with the respective analytical results and are not much different 

from the results of the flat plate representation. 

The numerical investigations of the shell-roof problem have revealed that the 

Curved Shell II model is superior to the Curved Shell I model. It can also be 

seen thai the displacements and stresses are predicted with good accuracy using 

a flat plate formulation. However, a monotonic convergence in strain energy is 

not achieved. In the Curved Shell II formulation, the strain energy is converging 

monotonically to a one mode solution. All requirements of the classical finite ele-

ment theory are also satisfied in this formulation. Even with a single mode in the 



Chapter 4. Numerical Investigations 78 

Figure 4.5: Relative Error in Strain Energy Using Curved Shell strips II 
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longitudinal direction, the displacements, stresses and strain-energy have been pre-

dicted reasonably accurately. The accuracy of the one-mode solution in modelling 

an axisymmetric cylindrical shell subjected to a uniform internal pressure using 

Curved Shell strips II is now examined. 

4.6 Analysis of a Cylindrical Shell Loaded 

Symmetrically with Respect to Its Axis 

The linear elastic response of a simply supported cylindrical shell subjected to 

uniform pressure is investigated to test the applicability and accuracy of the finite 

strip formulation. The geometry of the problem is depicted in Fig . 4.6 . 

2R 
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O 

U l l l l l l l l l l l 

Figure 4.6: Axisymmetric Cylindrical Shell 

The boundaries of the shell are simply supported i.e. the deflection w and the 
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moment Mx vanish at the supported ends. Further from symmetry, the membrane 

shearing forces Nxy = Nyx and the twisting moments Mxy = Myx vanish in this 

case, and the circumferential membrane forces Ny and the bending moments My 

are functions only of a;. 

The analytical solution has been obtained by solving the equations of equilib-

rium and is discussed in detail in Timoshenko [4]. The origin of co-ordinates is taken 

at the middle of the cylinder. The final expression for the normal displacement, w, 

for the general case is given by: 

-PL
4

 ( 2 sin 7 sinh 7 . . 

w = ———- 1 sin ipx sinh wx 

64D 7

4 \ cos 27 + cosh 27 

(4.4) 
2 cos 7 cosh 7 cos ipx cosh ii>x 

lA Et 3(1 -v2) 

cos 27 + cosh 27 

FA. 3d 

where tb = 
9 4R2D RH2 

and 7 is a non-dimensional quantity dependent on the shell geometry and is given 

by: 

At the middle of the shell i.e. x = 0, the normal deflection is given by: 

W 0 = ^ I f l - i ^ L ) (4.6) 
V ; x = 0 64£>7

4 V cos 27 + cosh 2 7 /
 V ; 

The expressions for the moment Mx and the strain energy U can easily be 

obtained by differentiation and integration of the expression for deflections respec-

tively and subsequent substitution in the appropriate formula. The expressions are 
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given by: 

and. 
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2 2 

The finite strip analysis is carried out using a one strip discretization to model 

a quarter of the cylindrical shell. The analysis is carried out using a single mode 

for each of the displacement components u, v and w i.e. (1.1,1) in our notation. 

The shell is subjected to uniform internal pressure. The shell is analyzed for six 

values of the parameter Rt/L
2

 i.e. 0.004, 0.01, 0.02, 0.04, 0.0625 and 0.11. Typical 

numerical results are presented in Table 4.7 for the radial displacement at the center 

and the strain energy for a linear elastic analysis. 

The deflection profiles of the cylindrical shell are plotted in Fig. 4.7. It is obvious 

that as the parameter Rt/L
2 increases, the one-mode finite strip solution compares 

very well with the analytical solution. However, the smaller the value of the non-

dimensional parameter, Rt/L
2

, the greater is the discrepancy between the finite 
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Table 4.7: Linear Elastic Response of an Axisymmetric Cylindrical Shell 

Using Curved Shell Strips II 

E = 3.0 x 10
6

psi 

v = 0.3 

p = 1.5psi 

Rt/L
2 Effective Boundary 

Layer Width 

(m) 

Radial Displacement 

(in) 

Strain Energy 

(K-in) 

Rt/L
2 Effective Boundary 

Layer Width 

(m) Finite Strip Exact Finite Strip Exact 

0.004 L/15 0.0190 0.0150 1.933 2.386 

0.01 L/10 0.0190 0.0149 1.288 1.590 

0.02 L/7 0.0190 0.0150 0.908 1.125 

0.04 L/5 0.0188 0.0162 0.635 0.795 

0.0625 L/4 0.0184 0.0169 0.498 0.636 

0.11 L/3 0.0172 0.0166 0.348 0.477 

strip and the analytical solution. This can be explained by a closer examination of 

the parameter, Rt/L
2

. The investigations of the spherical cap problem subjected 

to uniform pressure and freely supported boundaries by Cowper et al [32] revealed 

that the parameter Rt/L
2 corresponds to an effective boundary layer width in a 

shell which can algebraically be written as: 

Wef} = y/Rt (4.9) 

It was also found that as the value of the parameter approached zero the spherical 

shell exhibited membrane behavior. In the axisymmetric cylindrical shell problem, 

it is apparent that as the parameter Rt/L
2 decreases, the effective boundary layer 
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width decreases and the behavior of the shell away from the edges approaches that 

of a shell with free edges. For such a case, the internal pressure, p, produces a hoop 

stress o~0 given by 

<r. = f (4-10) 

and a resulting radial deflection, S, given by 

Et 

However, when the parameter Rt/L
2

 increases, i.e. when 7 is very small, the 

midspan deflection approaches a value of 57 2/6 which approximates the solution of 

a uniformly loaded simply supported beam. 

From the analysis, it can therefore be concluded that the one mode solution is 

capable of representing the axisymmetric solution only for cylindrical shells with 

large effective boundary layer widths. From the deflection profiles along the span, 

it can be seen that the finite strip solution provides a good approximation to the 

analytical solution for a value of the parameter Rt/L
2

 not less than 0.04. This 

corresponds to an effective boundary layer width of L/5. Beyond this value i.e. for 

a smaller effective boundary layer width, it is necessary to use additional bending 

modes to model the axisymmetric solution. In the present analysis, the first bending 

mode is a half sine wave. By superposing higher modes like sin37r£, sin57r£ etc., 

the deflection profile will tend to flatten out both at the mid-span and close to 

the boundaries which would be a much better approximation to the analytical 

solution. A plot of moment distribution along the span of the cylindrical shell in 

Fig. 4.8 seems to corroborate the earlier comments on the accuracy of the one 

mode solution to the analysis of the axisymmetric cylindrical shell problem. 
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- FINITE STRIP - (1,1,1) 

- ANALYTICAL SOLUTION 

Figure 4.7: Radial Displacement 
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Figure 4.7: Radial Displacement 



Chapter 4. Numerical Investigations 86 

o 
IO 

o . 
d 
l 

I 

q> o 

E 
o 
2 

o 

o . 

Rt/L 2 = 0 . 0 0 4 

i 80.0 120.0 180.0 240.0 

D i s t a n c e - i n 

—i—=5—� * = 1 

Rt/L 2 = 0.01 

r , 

o 

I 

I 

-t-> 
c 
a) 
E 
o 

� tfrO.Q — 

D i s t a n c e - i n 

240 o 

FINITE STRIP - (1,1,1) 

ANALYTICAL SOLUTION 

Figure 4.8: Moment Distribution 



Chapter 4. Numerical Investigations 87 

- FINITE STRIP - (1,1,1) 

- ANALYTICAL SOLUTION 

Figure 4.8: Moment Distribution 
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Thus in axisymmetric problems, the one-mode solution is limited in its applica-

tion to those cases with an effective boundary layer width exceeding L/5 and even 

here the moments are not in good agreement. As the effective boundary layer width 

decreases, the limitations of the one-mode solution are obvious. These limitations 

can be overcome by using additional bending modes. 

4.7 Non-Linear Analysis of the Shell-Roof 

Problem 

4.7.1 L i n e a r E l a s t i c - P l a s t i c A n a l y s i s 

The shell-roof problem is now analyzed by assuming an elastic-perfectly plastic 

material. The material behavior of the shell is determined by the following param-

eters: 

Elastic modulus E = 21000 xlO 3

 kN/m
2 

Plastic modulus ET = 0.0 kN/m
2 

Poisson's Ratio v — 0.0 

Yield Stress o-0 = 4.1xl0 3

 kN/m
2 

Maximum Load Level p = -3.0 kN/m
2 

where Ei is the slope of the plastic segment of the bi-linear stress-strain curve. A 

12-strip discretization for the symmetric half of the cylindrical shell using Curved 

Shell strips II is used in the investigation. 

The results for the vertical displacement of the free edge are plotted in Fig. 4.9 , 

and are compared with the results of the linear elastic-plastic analysis of the shell 

using degenerate iso-parametric shell elements carried out by Chven et al [21] who 
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discretized a quarter of the shell using 6 such shell elements. 

Initial yield takes place at a load level of 1.2 kN/m
2 but the displacements 

remain quite linear up to a load of 2 kN/m
2

. The mid-span deflections by the 

finite strip method are on the flexible side of the Owen et al [21] analysis for most 

of the load range but are nearly identical at high load levels. 

Fig. 4.10 shows a plot of load versus work done by the load for the finite strip 

analysis for varying number of strips. There appears to be a monotonic convergence 

of work done by the load with mesh refinement, and the small difference between 

the 12 and 24 strip results verifies that 12 strips are adequate for this problem. 

4.7.2 L a r g e D e f l e c t i o n E l a s t i c A n a l y s i s 

The results of the large deflection elastic analysis of the shell-roof problem are 

now compared. The finite strip solution is obtained by using 12 strips in the 

symmetric half of the shell. The results from a finite element analysis utilizing a 

3(axial) x4(circumferential) mesh of rectangular shell elements for a quarter of the 

shell by Crisfield [13] are plotted for comparison. 

Fig. 4.11 shows the vertical displacement at the center of the free edge for dif-

ferent methods of analysis. At lower loads and for linear solutions, good agreement 

is obtained between the one-mode finite strip and the two finite element analyses. 

The non-linear finite strip solution is, however, on the stiff side of the finite element 

analyses. 

Abayakoon [24] found that for problems where the non-linear geometrical terms 

became important a second u mode was required to model the uniform axial mem-

brane force in the A'-direction. By adding a second u mode, (1,1,1) + (3,_,_) in our 
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Figure 4.9: Vertical Displacement of the free edge 



Figure 4.10: Variation of Work Done by the Load for the Shell-Roof Problem 
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Figure 4.11: Vertical Displacement of the free edge 
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notation, the displacement at higher load levels increased giving good agreement 

between the results of the finite strip and the finite element solution. 

The variation of strain energy as the finite strip grid is refined is depicted in 

Fig. 4.12 . Monotonic convergence is apparent and again it is clear that 12 strips 

axe sufficient for this problem. 

4.7.3 L a r g e D e f l e c t i o n E l a s t i c - P l a s t i c A n a l y s i s 

The effect of incorporating the geometric and material non-linearities on the vertical 

deflection of the free edge in the finite strip analysis of the shell-roof problem is 

depicted in Fig. 4.13 . The results from a finite element analysis utilizing a 4x4 

mesh of curved degenerate isoparametric shell elements for a quarter of the shell by 

Bergan et al [33] and using curved degenerate isoparametric shell elements by Owen 

et al [21] have also been plotted. The results of Heppler [41], who used bi-cubic 

displacement trial functions in his finite element formulation for shell elements, are 

also shown. 

At lower load levels, the results of the one-mode finite strip solution compare 

very well with all the finite element results but is very stiff at higher load levels. It 

is clear that adding a second u mode makes some improvement but the results are 

still not satisfactory. What is surprising is the apparent stiffness of the finite strip 

analysis at high load levels, especially in view of good agreement for the separate 

analysis of elastic-nonlinear geometry and plastic-linear geometry. 

The variation of the work done by the load with grid refinement is depicted in 

Fig. 4.14 . 
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Figure 4.12: Variation of Strain Energy for the Shell-Roof problem 
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Figure 4.14: Variation of Work Done by the Load for the Shell-Roof problem 
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4.8 Clamped Cylindrical Shell — Analysis of 

the Shell-Roof problem with Clamped 

boundaries using Curved Shell strips II 

The cylindrical shell- roof problem where the curved edges are clamped and the 

straight edges are free is now investigated. Fig. 4.15 depicts the problem configu-

ration. The loading on the shell is its own weight. X 

Clamped Boundary 

Free 

Edge 

Free Edge 

Clamped 

Boundary 

E = 3.0 x 10
6

 psi 

t = 3.0 in 

R = 300.0 in 

L = 600.0 in 

6 = 40° 

SHELL WEIGHT = 90 lb/sq.ft 

Figure 4.15: Clamped Shell problem 

The longitudinal variation for the displacement components u}v and w, for the 

clamped end conditions is given by: 
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5m (0 = smmiri; m = 2, 4, 6, � � � , 

9
V

A() = <M0; 71 = 1,3,5,--., 

(4.12) 

3fc (0 = sinfcTr^; = 1, 3, 5, - - - . , 

5p(0 = ^(0; p = l ,3,5,--- , 

where </>n(£) represent the free vibration modes of a clamped-clamped beam. 

These displacement functions satisfy the boundary conditions at the clamped 

ends of the shell which are: 

u = 0 

= 0 

w = 0 

dw 

dx 

The suitability of the v mode is investigated by: 

(a) allowing v and w to vary as </>(£)� 

(b) allowing the v displacement to var}' independently of w 

(4.13) 

9™ (t) = <h (0 
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It is evident that by choosing </3(£) as the longitudinal mode for v, in addition to 

satisfying zero displacement we would also satisfy |^ = 0 at the clamped ends. Since 

u is zero along the curved boundary, |^ would also be identically zero and hence, 

the mid-surface shear strain would vanish at the clamped ends of the shell. By 

satisfying all displacement boundary conditions and a forced boundary condition 

at the clamped edges, we would overconstrain the problem. 

The second choice of employing sin 7r£ as a displacement mode for v satisfies 

only the displacement boundary conditions and hence, is more acceptable. Obvi-

ously, by using both the displacement modes for v, we would be satisfying only 

the displacement boundary conditions. Test runs on the clamped cylindrical roof 

problem are carried out to determine the applicability of an appropriate mode. 

Numerical investigations for the linear elastic analysis of the clamped shell were 

carried out by employing 

(a) one mode for each of the displacement components u, v and w i.e. 

<tf(0 = sin27r£ 

9 ? ( t ) = <M0 
In our notation, this analysis is referred to as (2,1,1). 

(b) two u modes, one mode for v and w 

9\ (0 >9i (0 a n d g™ 00 are the same as in Eq. ( 4.14 ) 

is given by 

g»(() = sin 4 ^ 

The second u mode 

(4.15) 
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This analysis, in our notation, would be referred to as (2,1,1) + (4,_,_). 

(c) two v modes, one mode for u and w 

9i (0 >9i ( 0 a n d 9\ (£) a r e t n e same as in Eq.( 4.14 ). The second v mode is 

given by 

9
V

2 (0 = s i n ^ (4.16) 

This analysis, in our notation, would be referred to as (2,1,1) + (_,1,_). 

(d) two modes for the in-plane displacements, u and v, and one bending mode, w. 

9i ( 0 > 5 i ( 0 a n d 9i iO a r e t n e s a m e a s in Eq. ( 4.14) . The second u and 

v modes are the same as in Eq. ( 4.15 ) and Eq. ( 4.16 ) respectively. This 

analysis, in our notation, would be referred to as (2,1,1) + (4,1,_). 

Table 4.8 presents the results of the linear elastic response of the clamped cylin-

drical shell where the finite strip analysis uses 12 strips for modelling the symmetric 

half of the shell. The finite strip solutions are compared with the results of the finite 

element analysis using a flat shell triangular element which couples the membrane 

action of the AUman element [34] with the bending action of Razzaque plate bend-

ing element [35]. A grid of 450 flat shell elements is used to model a quarter of the 

cylindrical panel. The results of the analysis for the vertical displacement of the 

free edge are plotted in Fig. 4.16 . 

In the finite element analysis, each flat shell element has 18 degrees of freedom. 

At the clamped end of the shell, all six nodal degrees of freedom are zeroed in the 

global co-ordinate system. This might contradict the boundary conditions at the 

clamped ends where it is expected that the rotation about the normal to the shell 6Z 

is non-zero in the element co-ordinate system. To simulate the boundary conditions 

at the clamped ends, the local 8Z degree of freedom should not be restrained. 
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CURVED SHELL STRIPS II 

Deflection—in 

Figure 4.16: Vertical displacement of the free edge 
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Table 4.8: Linear Elastic Response of the Clamped Shell Problem Using 

Curved Shell Strips II 

Number of I0wc 
Strain Energy 

modes (in) (in) (in) (K-in) 

(2,1,1) -1.785 1.0 2.77 19.25 

(2,1,1) + -1.78 1.0 2.74 19.56 

(2,1,1) + (4,.,_) -1.907 1.06 3.02 20.74 

(2,1,1) + (4,1,.) -1.90 1.08 2.97 21.20 

Finite Element -1.76 0.98 2.82 22.0 

In the present investigations, it is revealed that by not restraining the global 8z, 

the results of the linear elastic analysis did not change significantly. The vertical 

displacement at the mid-span of the free edge remains unaffected while the change 

in strain-energy is within 1%. These results indicate that, the effect of zeroing the 

dz degree of freedom is negligible and can therefore, be neglected. 

The one mode finite strip solution compares very well with the results of the 

finite element analysis. The vertical displacement of the free edge is very slightly 

overpredicted, while the deflection at the top is underpredicted. This is consistent 

with other results that show a one mode approximation for w overpredicts the 

central displacement, choice of the w mode as in a clamped-clamped beam case. 

By adding an extra u or v mode and subsequently two in-plane modes, the strain 

energy obtained from the finite strip analysis tends to approach the corresponding 

finite element solution. 



Chapter 4. Numerical Investigations 103 

The justification of allowing the first v mode to vary as w in the longitudinal 

direction would be apparent if we examine the mid-surface strain-displacement 

relations of the cylindrical shell given by: 

du 
^X ~o 

OX 

dv w 

C

> = dy
 +

 R <
417

> 

du dv 

l x y =

 ~dy
+

~fo 

In the one-mode analysis, i.e.(2,1,1), the axial strain would vary as A\ cos 2IT( ; 

the tangential strain would vary as A24>((); and the shear strain would vary as 

y4 3sin27r£ (since | ^ ~ sin27r£); where A^,A2 and A3 are arbitrary constants. 

Depending on the shape of the shell and the boundary conditions, the defor-

mation of the shell may be nearly inextensional in some directions and extensional 

in other. For instance, if the shell is long and not supported along its straight 

edges, there is little membrane force in the tangential direction, and the load is 

carried through overall bending causing high membrane forces in the longitudinal 

direction. On the other hand, if the straight edges are supported, most of the load 

is carried through membrane forces in the tangential direction. For this reason it is 

necessary that the mid-surface or the membrane strains are able to represent both 

extensional and inextensional deformation. 

Eq. ( 4.17 ) shows the mid-surface strain displacement relations. Since ex 

depends on u there are no restrictions on the form of u. However, it is noted that 

ey depends on both v and w, as does ^ x y depend on u and v. Thus, if ey is to be 

inextensional we must have the same longitudinal variation of |^ and w. This then 
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requires that = g™ (£)� Similarly if ^ x y is to be inextensional (or zero), we 

must have 5 m = 

To allow for extensional modes, while at-the same time keeping the inextensional 

capacity in place, a second v mode is introduced that has a different shape (in the 

longitudinal direction) than the first mode. Thus if g\ (£) = 4>i (£), then g
v

2 (£) = 

sin 7r£. 

For the shell just considered, there is probably not much membrane force in 

the tangential direction and so the introduction of a second v mode does not have 

much effect. Since most of the load is carried b}' membrane forces in the longitudinal 

direction, the introduction of a second u mode makes a much larger change to the 

deflections, (see Table 4.8). 

A plot of the variation of the displacement patterns of v and w in the longitudinal 

direction is shown in Fig. 4.17 along with the results from the finite element 

analysis. 

4 . 9 Non-Linear Analysis of the Clamped-Shell 

problem 

4.9.1 Linear Elastic-Plastic Analysis 

The effect of material non-linearities on the response of the clamped cylindrical 

panel was investigated. The shell material was assumed to be elastic-perfectly 

plastic. The analysis was carried out using 2 v modes and a single mode for u and 

w, (2,1,1) + (-,1,-) in our notation. 
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Figure 4.17: Variation of v and w displacements for the Clamped-Shell Problem 
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Fig. 4.19 depicts the plot of load level, p, versus the displacement, WB- Initial 

yield takes place at the clamped edge at a load of 0.2 psi. This is consistent with 

the formation of the first plastic hinge at the clamped end of a fixed-fixed beam. 

For a maximum load level of 0.625 psi, the response curve has a finite slope. A 

comparison with the response of the shell-roof problem in Fig. 4.9 indicates that 

considerable yielding of the shell material had occurred in that shell i.e. when the 

curved edges were diaphram supported. However, the response curve in the case of 

clamped boundaries shows that the shell material is still largely elastic. 

4.9.2 L a r g e D e f l e c t i o n E l a s t i c A n a l y s i s 

Using the same modes and strips as above the load-deflection response of the cylin-

drical panel is depicted in Fig. 4.18 . From the curve, it can be seen that the vertical 

displacement of the free edge is 3% stiffer than the corresponding displacement for 

the linear elastic case at a load level of 0.625ps2. Apparently, the effect of large 

deformations is not very pronounced at such a low load level because the maximum 

displacement is only about one-half of the thickness. By increasing the maximum 

load level to l.Qpsi, the effect of large deformations is obvious. A relative stiffening 

of strain energy of about 10% shows a similar trend as the diaphram supported 

shell-roof problem. 

4.9.3 L a r g e D e f l e c t i o n E l a s t i c - P l a s t i c A n a l y s i s 

The effect of incorporating both,material and geometric non-linearities, in the anal-

ysis of the clamped cylindrical shell is now investigated. The finite strip analysis 

could be represented as (2,1,1) + (-,1,-) in our notation. Fig. 4.19 depicts a plot of 
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the vertical displacement of the free edge versus the load. Initial yield takes place 

at a load of 0.23psi at the clamped boundary. Due to the non-availability of any 

comparisons the response curve is compared with the corresponding response of 

the diaphram supported shell. An examination of the two curves shows a similar 

trend. 

4.10 Analysis of a Cylindrical Shell 

Clamped along all Boundaries 

In the last example problem, the boundary conditions along the straight edges of 

the shell were free. The curved edges were clamped. The effect of clamping the 

straight edges of the shell is now investigated. Fig. 4.20 shows the configuration of 

the problem. This shell is very flat, square in developed plan form, and very thin 

with an R/t ratio of 800. A uniform pressure load is applied on the cylindrical shell 

radially inwards. 

Finite element analyses of the cylindrical shell were carried out by Hughes et 

al [37] using a degeneration concept of reducing a 3-D continuum element by sat-

isfying the shell approximations and by Owen et al [20]. The linear and large 

deflection elastic analyses were carried out up to a load of 1379 N/m
2 (0.2 psi). 

Noor [36] analyzed the same problem using a reduction method — which in essence, 

is a technique to limit the deformation modes of the discretized structure to some 

known modes. The anahyses wras carried out up to a load level of 2715 N/m
2 (cor-

responding to a load parameter, of 7.0 X 10~4) both for the linear and the large 

deflection elastic case. In the finite element analysis Noor [36] used 7 basis vectors 

or displacement modes. 
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t = 0.003175 m 

6 = O.lrad 

E = 3.10275 x 10
9 N/m 2 

v = 0.3 

All edges are clamped 

UNIFORM EXTERNAL PRESSURE LOADING 

Figure 4.20: Clamped-Clamped Shell 

The finite strip analysis, using a 12 strip discretization for the symmetric half of 

the shell, has been carried out up to a load level of 2715/V/m 2 = 7.0 x 10~ 4). As 

before, the displacement modes in the longitudinal direction could be represented 

as (2,1,1) + (-,1,-) in our notation. The results of the linear elastic analysis were 

found to be in very good agreement with the finite element solutions [36],[37],[20]. 

In the finite strip analysis, it was seen that for the two v modes, the sine mode 

dominated the (j) mode by about a factor of 5 indicating that extension in the 

tangential direction was important. The response of the cylindrical panel is plotted 

in Fig. 4.21 for the linear elastic as well as the large deflection elastic case. A 

non-dimensional displacement parameter — is plotted against a non-dimensional 

R 
pR 

load parameter, —- where, wc is the vertical displacement of the crown and p is 
Et 

the load level. It is apparent from the plot that the non-linear response of the shell 
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is on the flexible side of the corresponding linear response at nearly all load levels 

for both the finite strip and Noor's analysis. Since the extensional mode dominates 

in the tangential direction, it seems that at lower load levels most of the load is 

carried by membrane forces in this direction. Also, membrane softening seems to 

occur until at high load levels, membrane stiffening in the longitudinal direction 

prevents eventual collapse of the shell. 

The finite strip solution follows the same trend as the finite element solutions. 

However, the finite strip solution is slightly stiffer than the corresponding finite 

element solution [36]. Obviously the finite element analysis leads to a more com-

prehensive solution and is more accurate than the finite strip solution which is 

essentially only a one mode (for bending) solution. 



Chap te r 5 

Summary, Conclusions and 

Suggestions for Future Research 

5.1 Summary and Conclusions 

A scientific study of living things provides innumerable examples where nature has 

evolved efficient structural forms with maximum economy relative to the forces 

resisted by the structure. The availability of new structural materials has brought 

about a revolution in structural design and the practicability of these materials 

is currently being investigated. However, the strength of a structure is not only 

determined by the material used, but is also dependent on the structural form. It 

has been concluded by researchers that structural materials are generally far more 

efficient in an extensional mode rather than a flexural mode [39]. Shell structures 

fall into this category of structures. The efficient load resisting mechanism in shell 

structures results from developing an extensional mode through an initial curvature. 

The analytical methods of analysis of cylindrical shells are too cumbersome and 

it is impractical to obtain a complete non-linear solution. Therefore, numerical 

procedures have to be adopted for the prediction of the complete non-linear response 

of cylindrical shells. In the preceding chapters, a numerical procedure based on the 

113 
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finite strip method, has been developed for the non-linear analysis of cylindrical 

shells. 

In the finite strip method, the cylindrical shell is discretized into several finite 

strips with the strip direction parallel to the shell axis. The variation of the displace-

ment components along the strip direction is determined by employing one or two 

modes of continuously differentiable functions. These modes satisfy the boundary 

conditions at the ends of the strip. Polynomial functions represents the variation 

of displacements in the transverse direction. Numerical integration of the equilib-

rium equations necessary for obtaining the stiffness matrices and the load vector is 

carried out by adopting Gaussian quadrature. Equilibrium equations for a single 

finite strip are obtained by using the virtual work principle. The global equilibrium 

equations are subsequently obtained by assembling the equilibrium equations for 

each finite strip. The resulting set of equations is solved by Gauss elimination. For 

the non-linear analyses, the resulting set of non-linear equations is solved via the 

Newton-Raphson iterative scheme, starting with the linear solution. 

Various example problems were tested to verify the practicability of the finite 

strip modelling of the cylindrical shell panels. In the first stage of the investiga-

tion, the linear elastic response of the axisymmetric cylindrical shell problem was 

compared with the analytical solution. From a parametric study conducted to de-

termine the accuracy of the finite strip solution, it was found that the finite strip 

solution obtained by employing one bending mode yields reasonable accuracy for 

shells with an effective boundary layer width exceeding L/5. For a smaller value of 

the effective boundary layer width, it was felt that additional bending modes were 

necessary to approximate the analytical solution. The classical shell-roof problem 

was analyzed by employing a single mode for the displacement components and 
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a very good estimate of deflections and strain-energy was obtained. For a small 

deflection analysis, both elastic and elastic-plastic, good agreement of results was 

observed between the finite strip and the finite element and analytical solutions. 

However, when the effect of large deflections was incorporated, it was found neces-

sary to employ an additional u mode. 

The effect of clamping the boundaries of the shell was also investigated. The 

finite strip solutions were obtained by employing two v modes and a single u and 

w mode. The additional v mode was necessary to represent the inextensional 

deformations of the shell. The inextensible v mode was found to dominate when the 

straight edges of the shell were free, i.e. the flexural action serves as a primary load 

carrying mechanism. The second v mode dominated when the straight edges of the 

shell were clamped, i.e the arch action serves as a primary load carrying mechanism. 

The finite strip solutions for both types of boundary conditions along the straight 

edges — free or clamped, were in very good agreement with the respective finite 

element solutions for the linear elastic analysis. 

A complete large deflection, elastic-plastic analysis of the cylindrical shell-roof 

problem with clamped curved boundaries and free longitudinal boundaries was 

also carried out. The resulting variation of displacement components was rela-

tively stiffer as compared with the response of the diaphram supported shell. For 

elastic-plastic analysis, it was apparent that the first yield occurs at the clamped 

boundaries. 

The finite strip solution for the case of a cylindrical shell clamped along all edges 

was compared with the finite element solution for a large deflection elastic analysis. 

The displacement results were found to be in reasonably good agreement. 
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5.2 Suggestions for Future Research 

A numerical procedure based on the finite strip method has been presented for the 

static analysis of cylindrical shells in the preceding chapters. It would be worthwhile 

to determine the response by employing additional bending modes, especially when 

the boundaries of the cylindrical shell are clamped. The finite strip analysis should 

also be extended to determine the dynamic response of cylindrical shells. 

The analysis could easily be extended to analyze longitudinally stiffened shells 

which are being used extensively in ship structures, aircraft and submarines. To 

keep pace with the modern trend of using lighter composite materials from consid-

erations of economy, the finite strip analysis should be extended to these materials 

as well. 



Appendix A 

Load Vector for Curved Shell II 

Formulation 

In Chapter 3, it was stated that the consistent load vector for a self-weight analysis 

for the Curved Shell strip II is obtained by integrating the load with the shape 

functions in both, the longitudinal and transverse direction, in closed form. 

The uniformly distributed vertical load will be resolved into tangential and 

ra.dial directions and then integrated with the respective shape functions in the two 

directions. Therefore, the element load vector for the jth strip in the tangential 

direction will be written as: 

where i = 1, 2, 3. 

The element load vector for the jih strip in the radial direction is given by: 

where i = 1, 2, 3, 4. 

The shape functions N{" and N™ are given in Eq.( 3.42 ). After integration in 

closed form, the terms in the element load vector for the j th strip in the tangential 
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direction are written as: 

— RLp f cos (n — i) a,- 1 —- 1 — cos (n — i'. -\- 1) a,- <j 1 r 

4- sin (n — z) aj i — \ — sin (n — i + 1) aj | 
a,-

( ? 2 ) e
 = -RLp (cos{n - i)aj j - J - cos (n - z 4- l)a,-

-f sin (n — i) a.j < > — sin (n — z + 1) aj 
CKj | I QL-J 

(p3) e = -RLp ^cos(n-i)aj^l | — cos (n — i + 1) aj | — ^ | 

-f sin (n — i) a,- I — 1 — sin (n — i + 1) a,- < > | 

K' J I «i J / 
The element load vector in the radial direction for the j th strip is written as: 

-121 f -12* ' 
4- cos (n — i) dj < —— > — cos (n — i �+ 1) a 

1 a? j 1 a] 

2 / . f 2 1 f - 4 

(p™)e = —RLbp I sin (n — i) ctj < —^ \ — sin (n — i + 1) a.,- < —^ 

4- cos (ra — 11 a,- < — — > — cos (n — i + l a,-< r 

(PsJe = | f i i P ^sin(n - i)<Xj | - 1 - -̂ j - sin (TI - t! + I)**,- j-^ 

f 121 . ' . . f 1 2 " 
4- cos (n — ijctj g | — cos (n — i 4- 1) OLJ ^—g 

2 / , f 4 1 . , . _ [ - 2 
(p™)e = —RLbp sin (n — i) ctj < — > — sin (n- — i 4- 1) 

^ \ — \ /̂ ̂  i \ � / J i „ 2 

7T \ I a j J I a j 
4- cos (n — i j c t i < 5 > — cos (n — i + 1) a,- < — 5 -
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where n is the total number of finite strips used in modelling the symmetrical half 

of the shell, ctj is the angle subtended by j th finite strip at the center of curvature 

measured with respect to the vertical, R is the radius of curvature of the cylindrical 

shell and L and b are the length a.nd the width of the strip respectively. 



Appendix B 

Derivation of the Q matrix 

In Chapter 3, the Q matrix was defined as: 

- (§$)<'> 

Let us derive the [Q] matrix for a. one-mode solution for the Curved Shell strips 

II. Then the [C] matrix would be a 3 x 10 matrix while {A} would be a column 

( d \C}
T

\ 
—?—r would result in a 
d{A}J 

three-dimensional array A of size 10 x 10 X 3. The elements of A are given by, 

_ d [Clkf 

d{A3} 

with i,j = 1,2-�� , 10 and k — 1,2,3. Hence, the [Q] matrix could be written as: 

[Q] = M M 

where, 

3 d(C
T

) 

k-1 
5{A}, 
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The terms in the Q matrix are as follows: 

[Q] = 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 An Ai2 0 0 0 0 Ai3 An 

0 0 An A22 
0 0 0 0 A23 

A24 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 A
3
1 A32 0 0 0 0 A33 A 34 

0 0 ,44 1 A42 0 0 0 0 A43 A4i 

where, 

4-• = JV™ N
w a- 4- N™ N

w a + (N
w

 N
w 4- N™ N

w

 ) T 7 7 - 1 2 3 4 

and 

j \ i
w

 =

 1 

dx ' 

N
w

 = 
1,2/ dy 
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