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Abstract
7

Non-linear shooting and Adomian decomposition methods have been proposed to determine the large deflection of a cantilever beam under

arbitrary loading conditions. Results obtained only due to end loading are validated using elliptic integral solutions. The non-linear shooting9
method gives accurate numerical results while the Adomian decomposition method yields polynomial expressions for the beam configuration.

With high load parameters, occurrence of multiple solutions is discussed with reference to possible buckling of the beam-column. An example11
of concentrated intermediate loading (cantilever beam subjected to two concentrated self-balanced moments), for which no closed form solution

can be obtained, is solved using these two methods. Some of the limitations and recipes to obviate these are included. The methods will be13
useful toward the design of compliant mechanisms driven by smart actuators.

� 2008 Published by Elsevier Ltd.15

Keywords: Large deflection beams; Compliant mechanism; Non-linear shooting; Adomian-polynomials

17

1. Introduction

The structural deformation of a single piece flexible member19

is utilized to generate a desired output movement in what is

commonly known as a compliant mechanism. In such a mech-21

anism, one or more segments is/are subjected to various types

of external loadings, which include actuation forces/moments23

and reactions from the surroundings. In the literature on com-

pliant mechanisms, each segment is modeled as a cantilever25

beam. Due to large deflection, the bending displacements are

obtained from the Euler–Bernoulli beam theory taking into ac-27

count the geometric non-linearity. Solution to the resulting non-

linear differential equation has been obtained in terms of el-29

liptic integrals of the first and second kind [1]. Such analyti-

cal solutions are possible only for simple geometry (uniform31

cross-section) and loading conditions like forces at the free end.

Howell and Midha [2] have used this approach for develop-33

ing a pseudo-rigid body model of a compliant cantilever sub-

jected to end forces only. Numerical schemes have also been35

∗ Corresponding author.

E-mail address: atanub@iitk.ac.in (A. Banerjee).

0020-7462/$ - see front matter � 2008 Published by Elsevier Ltd.

doi:10.1016/j.ijnonlinmec.2007.12.020

proposed [3] where the forces along with moments are applied 37

only at the free end. The occurrence of any inflection point

within the beam segment requires special attention. More re- 39

cently, Kimball and Tsai [4] have solved the large deflection

problem under combined end loadings using elliptic integrals 41

and differential geometry. In this method there is no need to lo-

cate the inflection point, if any, within the beam. However, for 43

intermediate loading and beams with varying geometry, obtain-

ing solution using elliptic integral solutions require complex 45

algorithm with iterative procedure.

For a smart compliant mechanism, i.e., a compliant mech- 47

anism actuated by smart materials based actuators, besides

external forces working at the free end of the cantilever beam 49

(typifying the model of a compliant segment), actuators may

apply forces and moments at some intermediate locations. In 51

this paper, two simple methods, one numerical method called

non-linear shooting [5] and another semi-analytical method 53

known as Adomian decomposition [6] have been proposed to

obtain large deflection of a cantilever beam including geometric 55

non-linearity. Both these methods are capable of handling load-

ing at intermediate locations besides end forces and moments. 57

First, the solution procedure is discussed for end loading and

59
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the results are compared with those obtained by using elliptic1

integrals [2]. The convergence of the Adomian decomposition

method, while treating large deflection of an Euler–Bernoulli3

beam, is also discussed. Secondly, the equilibrium equation of

a cantilever beam actuated through self-balanced moments has5

been derived and solved using these two methods. The self-

balanced moment acting within the continuum can be inter-7

preted as the effect of a piezo patch [7–10] attached to the beam.

2. Formulation of large deflection beam problem9

Fig. 1 shows a cantilever beam in deformed configuration

under a non-following end force F and an end moment M011

[2–4], which can be decomposed into horizontal (P ) and ver-

tical (nP) components. The moment acting at any point (x, y)13

on the beam can be written as

M(x,y) = P(a − x) + nP (b − y) + M0, (1)15

where (a, b) is the location of the deflected end point of the

beam. Using the Euler–Bernoulli moment–curvature relation-17

ship

EI
d�

ds
= P(a − x) + nP (b − y) + M0, (2)19

where EI is the flexural rigidity of the beam, assumed to be

constant through out the length of the beam; � is the slope at21

any point (x, y) and s is the distance of that point along the

length of the beam from its fixed end. Total length of the unde-23

formed beam L is assumed to remain same after deformation.

Differentiating Eq. (2) and substituting25

dx

ds
= cos � and

dy

ds
= sin �

we get27

d2�

ds2
= −

P

EI
(cos � + n sin �). (3)

Eq. (3) involves cosine and sine terms of the dependent vari-29

able, hence it is a non-linear differential equation. To solve this

second order differential equation we need two boundary con-31

ditions, which are (�|s=0 = 0) and ( d�
ds

|s=L = M0

EI
).

P

nP

b

a

M0

Y

X

s

(x,y)

Fig. 1. Cantilever beam subjected to non-following force ‘F’.

2.1. Problem definition 33

D.E.
d2�

ds2
= −

P

EI
(cos � + n sin �)

B.C.

{

�|s=0 = 0
d�

ds

∣

∣

∣

∣

s=L

= �

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (4)

where � = 0 if there is no moment acting at the free end. 35

2.2. Existing solutions for end loading

In this section previous analytical and numerical approaches 37

[2–4] are briefly discussed. Eq. (3) can be written as

d

d�

[

d�

ds

]

d�

ds
= −

P

EI
(cos � + n sin �) ⇒

d

d�

[

1

2

(

d�

ds

)2
]

= −
P

EI
(cos � + n sin �). (5) 39

Integrating with respect to � and using the moment boundary

condition at s = L, i.e., EI d�
ds

= M0 one obtains, 41

(

d�

ds

)2

=
2P

EI
(� − sin � + n cos �), (6)

where � = sin �0 − n cos �0 + �0, �0 = M2
0

2PEI
and �0 is the end 43

slope of the beam. Eq. (6) can be written as

√

2P

EI

∫ L

0

ds =
∫ �0

0

√

(� − sin � + n cos �) d� ⇒ �0

=
1

√
2

∫ �0

0

√

(� − sin � + n cos �) d�, (7)
45

where �0 =
√

PL2

EI
. Further modification of Eq. (6) yields

d�

dx

dx

ds
=

√

2P

EI
(� − sin � + n cos �) ⇒

∫ a

0

dx

L

=
1

√
2�0

∫ �0

0

cos � d�
√

(� − sin � + n cos �)
(8)

47

and

d�

dy

dy

ds
=

√

2P

EI
(� − sin � + n cos �) ⇒

∫ b

0

dy

L

=
1

√
2�0

∫ �0

0

sin � d�
√

(� − sin � + n cos �)
. (9)

49

Eqs. (7)–(9) are solved in order to obtain the end point co-

ordinates of the deformed beam under combined end loadings. 51

Howell and Midha [2] solved these equations using Jacobian

elliptic integrals of first and second types by considering only 53

an end force. Saxena and Kramer [3] proposed a numerical in-

tegration scheme for combined end loading. However, the oc- 55

currence of any inflection point within the beam requires spe-

cial consideration. The method proposed by Kimball and Tsai 57

[4] does not need to locate the inflection point. The solutions 59
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are found from Ref. [4, Eqs. (46)–(55)]. However, two different1

sets of equations are required to be used depending on the

presence or absence of an inflection point.3

The use of elliptic integral solutions is straight forward if the

end slope is provided. The end deflection can then be obtained5

from Ref. [4, Eqs. (46)–(55)]. Furthermore, in presence of load-

ings within the beam (besides end loading) one needs to split7

the beam into several cantilevers each having only end loads.

Consequently, a complicated iterative algorithm is needed to9

solve such a problem.

In sections to follow, it is shown that the proposed non-11

linear shooting method can take into account any type of inter-

mediate loading (static, concentrated or discretely distributed)13

in a straight forward and simple manner. The proposed semi-

analytical Adomian decomposition method involves initial al-15

gebraic computation, which can be easily done by Matlab or

Maple. But once the expression for �(s) is obtained, the rest of17

the procedure is simple. These two methods, capable of han-

dling complicated geometry and loading, are discussed below.19

3. Non-linear shooting method

In the non-linear shooting method the boundary value prob-21

lem (BVP) is converted into an initial value problem (IVP)

with an assumed curvature at the fixed end, i.e., d�
ds

|s=0. Using23

the initial conditions the differential equation is solved using

Runge–Kutta method and the assumed initial condition is mod-25

ified till the second boundary condition is satisfied. The method

of non-linear shooting including the proof is available in [5].27

But the problem under investigation requires slight modifica-

tion of the approach given in [5]. This modification is explained29

below.

Here IVP is posed as31

D.E.
d2�

ds2
= −

P

EI
(cos � + n sin �)

I.C.

{

�|s=0 = 0
d�

ds

∣

∣

∣

∣

s=0

= mk

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (10)

where mk is assumed to be the first derivative of the slope at the33

fixed end at the kth iteration step. Thus, the error involved can

be determined as error=[( d�
ds

)s=L−�] which is to be made less35

than a prescribed value, by properly guiding mk . In this paper,

Newton–Raphson method has been followed. Now mk in the37

kth step can be calculated from that of the (k − 1)th step using

mk = mk−1 −
(error)

�

�m

(

d�

ds

∣

∣

∣

∣

s=L

) . (11)

39

The difference between this problem and that used to explain

the shooting method in [5] is, instead of having �|s=L as the41

second B.C., we have its derivative specified. Thus,
�

�m
( d�

ds
|s=L)

is to be calculated instead of
�

�m
[�|s=L]. The term

�

�m
( d�

ds
|s=L)43

can be determined as follows.

Eq. (10) can be written as45

�′′ = f (s, �, �′). (12)

Differentiating Eq. (12) with respect to m we get 47

��′′

�m
= f,s

�s

�m
+ f,�

��

�m
+ f,�′

��′

�m
. (13)

Since s and m are independent, Eq. (13) becomes 49

��′′

�m
= f,�

��

�m
+ f,�′

��′

�m
. (14)

This can be written as 51

�′′ = f,�� + f,�′�′, (15)

where �= ��
�m

, which yields �s=0=0 and �′
s=0≡

�

�m
( d�

ds
|s=0)=1. 53

All these result in another IVP defined as

D.E. �′′ = f,�� + f,�′�′

I.C.

{

�s=0 = 0

�′
s=0 = 1

⎫

⎬

⎭

. (16)
55

Solving Eq. (16) one gets
�

�m
( d�

ds
|s=L), which is nothing but

�′|s=L. 57

Eqs. (10) and (16) are solved simultaneously using fourth

order Runge–Kutta method. The normalized load parameter 59

� = PL2

EI
is used for obtaining numerical results. For given �

and L, P

EI
can be computed and is used to solve Eq. (10). 61

In presence of an end moment, one has to change � to non-

zero, i.e., � = M0

EI
, where M0 is the moment applied at the end 63

of the beam. Now � is expressed in terms of the normalized

moment parameter � = M0L/EI. Versatility of this method al- 65

lows handling of the cantilever configuration with and without

inflection point (for negative and positive end moments, respec- 67

tively) in the same fashion.

4. Adomian decomposition method 69

Numerous BVP have been solved using Adomian decompo-

sition method [11,12]. Here the decomposition method is dis- 71

cussed in a nutshell. Let us consider a non-linear differential

equation in the form: 73

�u + 	u + Nu = g, (17)

where � is an invertible linear operator, 	 is the remaining 75

linear part and N is the non-linear operator. The general solution

is decomposed into u =
∑∞

n=0 un, where u0 is the complete 77

solution of �u = g. Eq. (17) can be written as

�u = g − 	u − Nu. (18) 79

Since � is an invertible linear operator, Eq. (18) is expressed as

u = �−1g − �−1	u − �−1Nu. (19) 81

If � ≡ dn

dtn
with t as an independent variable then �−1 is the

n-fold definite integral with respect to t with limits from 0 to t. 83

Thus, if we have a second order linear operator, Eq. (19) yields

u = u(0) + u′(0)t + �−1g − �−1	u − �−1Nu, (20) 85

Please cite this article as: A. Banerjee, et al., Large deflection of cantilever beams with geometric non-linearity: Analytical and numerical approaches, Int.
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which can be written as1

u = a + bt + �−1g − �−1	u − �−1Nu. (21)

For an IVP a = u(0) and b = u′(0) are specified. On the other3

hand for a BVP a = u(0) is specified but b = u′(0) is to be

determined by satisfying the second boundary condition of u(t).5

Now u0 = a + bt + �−1g and the solution is obtained as

u =
∞
∑

n=0

un. (22)
7

In Eq. (20) Nu can be written as Nu =
∑∞

n=0An(u0, u1, u2,

u3, . . . , un), where An’s elements of a special set of polynomi-9

als determined from the particular non-linear term Nu = f (u),

called Adomian polynomials [6]. An’s are calculated as [13,14]11

A0 = f (u0)

A1 = u1
d

du0
[f (u0)]

A2 = u2
df (u0)

du0
+ (u2

1/2!)
d2f (u0)

du2
0

A3 = u3
df (u0)

du0
+ (u1u2)

d2f (u0)

du2
0

+ (u3
1/3!)

d3f (u0)

du3
0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

· · ·

.

(23)

Thus, the general solution becomes13

u = u0 − �−1	

∞
∑

n=0

un − �−1
∞
∑

n=0

An, (24)

where u0 = 
 + L−1g such that L
 = 0.15

Finally un+1 can be written as [13]

un+1 = −�−1	un − �−1An. (25)17

Using Eq. (25) and known u0, one can calculate u1, u2, . . . , un

and the solution is obtained from Eq. (22). The proof of conver-19

gence is given in [15–18]. Two different approaches of using

this method for the problem under investigation follow.21

4.1. Solving beam problem using Adomian decomposition

4.1.1. Procedure I23

Integrating Eq. (10) twice with respect to s

�(s) = �(0) +
d�

ds

∣

∣

∣

∣

s=L

s +
∫ s

0

∫ t

L

N(�) ds dt , (26)
25

where N(�) = − P

EI
(cos � + n sin �). Applying the B.C.’s de-

scribed in Eq. (4), Eq. (26) yields27

�(s) = �s +
∫ s

0

∫ t

L

N(�) ds dt , (27)

Taking, �0 = 0 all other �n’s are calculated using Eqs. (23),29

(25) and (27). Thus, the solution can be written as �(s) =
∑m

n=1�n, where (m+1)th term onwards will have insignificant31

contribution. Once �(s) is known, the coordinates of any point

on the beam (x(s), y(s)) can be obtained by using dx
ds

= cos �33

and dy
ds

= sin �.

4.1.2. Procedure II 35

Integrating Eq. (10) twice with respect to s one gets

�(s) = �(0) +
d�

ds

∣

∣

∣

∣

s=0

s +
∫ s

0

∫ t

0

N(�) ds dt . (28)
37

Assuming c = d�
ds

|s=0 and following procedure I, �(s) is ob-

tained, from which c is determined satisfying the B.C. 39

d�

ds

∣

∣

∣

∣

s=L

= �.

Though both the procedures satisfy the same D.E. and the same 41

set of B.C. ’s, the second one is more effective for large values

of load parameters as will be discussed later. 43

The expressions for �(s) as a function of c, �, n and � are

computed considering up to the 8th term of the Adomian poly- 45

nomials and the details are given in Appendix A.

5. Cantilever beam under self-balanced moment and 47

external load

The effect of a pair of piezo patches, mounted on two op- 49

posite sides of a cantilever beam driven out of phase is mod-

eled [7–10] as two concentrated self-balanced moment acting 51

at the edge of the piezo patches. The magnitude of the mo-

ments depends on the applied voltage across the piezo and its 53

material properties. In this section, a large deflection cantilever

beam has been modeled under self-balanced moments as well 55

as external forces at the free end and solved using the above

discussed methods. 57

5.1. Non-linear shooting method

Fig. 2 shows the deformed configuration of a cantilever beam 59

subjected to two equal and opposite moments applied at inter-

mediate locations together with a force applied at the free end. 61

The moments are acting at distances l1 and l2 from the fixed

end. Thus, the bending moment at a point (x, y) is given by 63

M(x,y) = P(a − x) + nP (b − y)

+ M1[u(s − l1) − u(s − l2)], (29)

l2

l1

P

nP

b

a

M1

M1

Y

X

Fig. 2. Cantilever beam subjected to self-balanced moment and end loads.
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P
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P

P

P

nP

nP

M2

M3

M4

M5

M1

X

Y

1st Segment

2nd Segment

3rd Segment

Fig. 3. Free body diagram of the three segments of the cantilever beam.

where u(s) is the unit step function defined as u(s) = 0 for1

s < 0 and u(s) = 1 for s�0.

The Euler–Bernoulli beam theory yields3

EI
d�

ds
= P(a − x) + nP (b − y)

+ M1[u(s − l1) − u(s − l2)]. (30)

Differentiating Eq. (30) with respect to s one gets5

d2�

ds2
= −

p

EI
(cos � + n sin �) + M1[�(s − l1) − �(s − l2)],

(31)

where �(s) is the Dirac-Delta function defined as �(s) = 0 if7

s �= 0 and �(s) → ∞ if s = 0. Here, �(s) can be replaced by a

sharply rising continuous function such that
∫ ∞
−∞ �(s) ds = 1 is9

satisfied. The rest of the procedure is same as discussed earlier

in Section 3. First the curvature at the fixed end of the cantilever,11

i.e., d�
ds

|s=0=c is assumed for solving Eq. (31) using fourth order

Runge–Kutta method and c is varied using Newton–Raphson13

method such that the moment boundary condition specified at

the free end is satisfied. The actuating moment M1 is normalized15

as � = M1L

EI
.

5.2. Adomian decomposition method17

While using the Adomian decomposition method, first the

cantilever beam is discretized into three segments as shown in19

Fig. 3, so that the self-balanced moments are acting just on

the end points of the intermediate section. Thus, the length of21

the intermediate segment is same as that of the piezo actuator,

i.e., (l2 − l1) and the first and last segments are of length l123

and (L − l2), where L is the length of the entire beam. The

external forces in each of the segments are clearly depicted in25

Fig. 3. Each of the segments is considered as a beam under-

going large deformation for which the governing equation is27

solved using Adomian decomposition method. Force and mo-

ment equilibrium and the continuity of displacement and slope29

are maintained at every junction.

5.2.1. 1st segment 31

Considering the first segment as a cantilever beam shown in

Fig. 3, the governing equation is obtained from Eq. (28) as 33

�1(s1) = �1(0) +
d�1

ds1

∣

∣

∣

∣

s1=0

s1

+ K

∫ s

0

∫ t

0

(cos �1 + n sin �1) ds1 dt , (32)

where K=(− P

EI
) and �1(s1) is the slope at any point of the first 35

segment at a distance s1 from the fixed end along the length of

the beam. The B.C.’s are 37

�1|s1=0 = 0 and
d�1

ds1

∣

∣

∣

∣

s1=0

= c,

where c is the unknown to be determined. The non-linear terms 39

of Eq. (32) can be expressed in terms of Adomian polynomials

and the solution �1(s1) can be determined as a polynomial of s 41

and c using the decomposition method as illustrated in Section

4.1. 43

5.2.2. 2nd segment

The governing equation for the second segment is obtained 45

from Eq. (28) as

�2(s2) = �2(0) +
d�2

ds2

∣

∣

∣

∣

s2=0

s2

+ K

∫ s

0

∫ t

0

(cos �2 + n sin �2) ds2 dt , (33)
47

where �2(s2) is the slope at any point on the second segment at

a distance s2 from the left end of this particular segment along 49

its length. The B.C.’s are

�2(0) = �1(l1) and
d�2

ds2

∣

∣

∣

∣

s2=0

=
M3

EI
=

d�1

ds1

∣

∣

∣

∣

s1=l1

+
M1

EI
,

51

where l1 is the length of the first segment and M1 is the actu-

ating moment. Solving Eq. (33) using Adomian decomposition 53

method, �2(s2) can be computed as a polynomial of s1, s2, c

and M1. 55

5.2.3. 3rd segment

Similarly the governing equation for the third segment can 57

be written as

�3(s3) = �3(0) +
d�3

ds3

∣

∣

∣

∣

s3=0

s3

+ K

∫ s

0

∫ t

0

(cos �3 + n sin �3) ds3 dt , (34)
59

where �3(s3) is the slope at any point on the third segment

which is at a distance s3 from the left end of this particular 61

segment along its length. The B.C.’s can be written as

�3(0) = �2(l2 − l1) and

d�3

ds3

∣

∣

∣

∣

s3=0

=
M5

EI
=

d�2

ds2

∣

∣

∣

∣

s2=(l2−l1)

−
M1

EI
,

63
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where (l2 − l1) is the length of the second segment. Following1

Adomian decomposition method �3(s) can be determined as a

polynomial of s1, s2, s3, c and M1.3

Thus, �(s), the slope at any point on the entire beam is known

in terms of c and M1. Now c should be such that the moment5

at the end of the beam must be equal to that specified at the

free end. Using this B.C., c is determined and thus �(s) can7

be calculated at any point of the beam as a function of M1,

i.e., the actuating self-balancing moments. Once �(s) is known,9

(x(s), y(s)) is obtained using dx
ds

= cos � and
dy
ds

= sin �.

6. Results and discussion11

The results of non-linear shooting and Adomian decomposi-

tion methods have been compared with the elliptic integral so-13

lution for the end loading conditions. First the end slope of the

beam is computed from the non-linear shooting method for a15

given loading condition and then the same is used in the elliptic

integral solutions to solve for the loading parameter (�0 in Eq.17

(7) which is same as
√

�) and the end coordinates of the beam.

Fig. 4a shows the deformed configuration of the cantilever19

beam due to the combined (force and moment) end loading

computed using non-linear shooting and elliptic integral so-21

lutions. Two cases are considered for comparison—Case A

(�=0.1, �=0.1) and Case B (�=0.5, �=−0.3). The direction23

of forces and moment as shown in Fig. 1 are assumed to be

positive. Each point (X, Y ) on the beam is normalized as (X
L

,25
Y
L

), where L is the length of the unstretched beam. For Case A

in Fig. 4a, the moment within the beam is positive throughout,27

hence the slope of the beam increases monotonically, whereas

for Case B, the end moment is opposing the moment due to end29

forces resulting in an inflection point (a point where moment is

zero) within the beam. Both of the cases have been dealt with31

the same algorithm of the non-linear shooting method. No sep-

arate consideration depending on the absence or presence of33

any inflection point, as required while using the elliptic integral

solution, is necessary.35

In order to show the accuracy of the non-linear shooting

solution, the results obtained by this method and that of the37

analytical solution (elliptic integral solution) are furnished in

Table 1. The numerical results are obtained with a tolerance39

level for the error in the curvature as 10−5. These are seen to

be accurate up to three decimal places and further accuracy can41

be achieved by decreasing the allowable tolerance.

It is well established [19] that to ensure a unique solution to43

a BVP, the parameters involved must satisfy certain conditions.

For the problem under consideration, unique solution is ‘guar-45

anteed’, as shown in Appendix B, if the following condition is

satisfied:47

�
√

1 + n2 �
2

4
. (35)

It may be mentioned that unique solution ‘may exist’ even if49

the above condition is violated. When multiple solutions exist,

one of the possible solutions is yielded by the non-linear shoot-51

ing method depending on the initial estimate of c = d�
ds

|s=0.

To test the occurrence of multiple solutions, the initial es- 53

timate of c was varied in the range (−10 < c < 10) for differ-

ent loading parameters. A case of a multiple solutions is illus- 55

trated in Fig. 4b with condition (35) violated by a wide margin.

It should be mentioned that both the deformed configurations 57

shown in Fig. 4b can be kept in equilibrium under the given

loading. It was seen that the first solution of Fig. 4b can be ob- 59

tained if the loading is increased in small steps starting from a

value satisfying condition (35). Further, it is necessary that the 61

initial estimate of c at each successive loading step is provided

by the final value of c obtained in the earlier step. 63

It is well known that the Euler buckling load (in absence

of any transverse component) of a cantilever column is given 65

by 2EI
4L2 . It is conjectured that multiple solutions are resulted 67

due to buckling of this cantilever beam-column. Buckling is

caused by the horizontal compressive load nP. The magnitude 69

of the compressive load required to cause buckling depends on

the transverse component as well. Non-linear shooting method 71

converges to one of the buckled configurations depending on

the initial estimate of c. 73

The direction and magnitude of the end load are specified

by two parameters, viz., n and �. A larger value of n signifies 75

a smaller ratio of the transverse to the axial load and vice

versa. The sufficiency condition (35) indicates that uniqueness 77

is guaranteed so long the resultant end load is less than the

Euler buckling load. Obviously, this results in a conservative 79

estimate of � to ensure uniqueness when n is finite.

Numerical simulations were carried out for various combi- 81

nations of n� and n required to produce unique solution. The

region below the curve A in Fig. 4c corresponds to necessary 83

conditions on the load parameters to achieve unique solution.

Condition (35) with equality sign is also shown by curve B in 85

Fig. 4c. It may be seen that with n=1 condition (35) is violated 87

for � > 2

4
√

2
≈ 1.745. However, curve A in Fig. 4c suggests

occurrence of unique solution with � < 4.24. As n → ∞, the 89

entire end load becomes compressive and the sufficiency con-

dition (35) tends to ‘necessary’ condition for uniqueness of the 91

solution. The corresponding value of the horizontal load con-

sequently reaches the Euler buckling limit. On the other hand, 93

for smaller values of n, the sufficiency condition (35) becomes

too conservative for the estimate of � ensuring unique solution. 95

Figs. 5a and b show the deformed beam shape, obtained fol- Q1

lowing procedures I and II, respectively, of Adomian decompo- 97

sition method. The results are compared with that obtained us-

ing elliptic integral solutions. Only the effect of end forces has 99

been considered here. From Fig. 5a it can be readily seen that,

for low values of the load parameter (i.e., say up to � < 1.4), the 101

results match pretty well. However, for ��1.4 the difference

starts to become significant and higher the value of �, larger 103

is the deviation. In order to minimize this discrepancy, more

number of terms is to be incorporated in the Adomian polyno- 105

mials while approximating the non-linear terms of Eq. (4). This

obviously increases the computational cost. Fig. 5a is obtained 107

using up to the 8th term of the Adomian polynomials. Using

procedure II and the same number of terms in Adomian polyno- 109

mials, the deflected beam shape shows very little discrepancy
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Fig. 4. (a) Deformed beam shape due to combined end loading; (b) multiple beam configuration obtained using non-linear shooting method; (c) sufficient and

numerically computed necessary conditions for uniqueness.

Table 1

Comparison of numerical accuracy of the solutions obtained from elliptic integral, non-linear shooting and Adomian decomposition method

Loads At s = 1 elliptic solution At s = 1 shooting method At s = 1 Adomian method (up to 8th order terms)

x y x y x y

� = 1.0, � = 0.0, n = 1.0 0.87999 0.42921 0.87988 0.42953 0.88055 0.42764

� = 1.0, � = 0.2, n = 1.0 0.81734 0.51390 0.81715 0.51429 0.81820 0.51204

� = 1.0, � = −0.6, n = 1.0 0.99785 0.04565 0.99784 0.04560 0.99785 0.04586

� = 0.2, � = −0.6, n = 0.5 0.95853 −0.24187 0.95847 −0.24212 0.95887 −0.24063

from the analytical solution up to � = 2.6 (Fig. 5b). Hence, the1

procedure II is computationally more effective than procedure

I. From now onwards, only procedure II will be referred as the3

Adomian decomposition method.

The solutions obtained from Adomian decomposition method5

have been compared numerically with the existing elliptic inte-

gral solutions and are also presented in Table 1. The accuracy7

up to two decimal places can be noted. The convergence of

the Adomian decomposition method for the present problem is9

demonstrated in Table 2. Here, the coordinates of the end point

of the beam are computed for increasing number of terms in 11

the Adomian polynomial. It proves that inclusion up to the 8th

term in the Adomian polynomial is sufficient. 13

The Adomian decomposition method can be used to deter-

mine the deformed beam shape for combined end loading as 15

well. Fig. 5c shows two sets of beam configurations due to com-

bined end loading, one without and the other with an inflection 17

point corresponding to Cases A and B, respectively.

The advantage of the Adomian decomposition method is that 19

once the closed form expression is obtained, it can be used for
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Fig. 5. (a) Beam configuration due to end forces; (b) beam configuration due to end forces; (c) beam configuration due to combined end loading.

Table 2

Proof of convergence of Adomian decomposition method

Number of terms in

Adomian polynomial

At s = 1 for � = 1.4, � = 0.0, n = 1.0

x y

1 0.14866 0.78953

2 0.78308 0.55860

3 0.76760 0.57387

4 0.75247 0.58839

5 0.77050 0.57118

6 0.76326 0.57820

7 0.76471 0.57681

8 0.76454 0.57611

9 0.76461 0.57691

various values of loading parameters without recalling the pro-1

gram each time. However, with increasing load, more number

of terms in the polynomial needs to be retained for the same3

level of accuracy. In this method, the unknown c = d�
ds

|s=0 is

determined satisfying the second boundary condition given in5

Eq. (4). Satisfying the moment boundary condition specified

at the free end, higher order polynomials in ‘c’ is obtained, 7

hence multiple solutions are obvious. Depending on each and

every real value of ‘c’, a beam configuration can be obtained, 9

for which the bending moment (curvature) at the fixed end can

be calculated using Eq. (1). If the calculated value of the cur- 11

vature at s = 0 match with the value of c, then the solution

corresponding to that particular c is valid. Using this algorithm 13

only one valid beam configuration has been obtained.

Figs. 6a and b show the deformed beam configuration ob- 15

tained by using Adomian decomposition and non-linear shoot-

ing methods. In each case, actuating moments are assumed to 17

be acting at l1
L

= 0.25 and l2
L

= 0.35, which implies that the

length of the piezoelectric element, i.e., (l2 − l1) is 10% of the 19

length of the beam. Fig. 6a is obtained for a constant end force

and various values of the positive actuating moments, while 21

Fig. 6b is obtained for a constant negative actuating moment

and various values of the end forces. It can be observed that 23

each of the cases in Fig. 6b incorporates inflection point. For

low values of the load parameters, both methods (non-linear 25

shooting and Adomian decomposition method) yield almost the
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Fig. 6. (a) Beam configuration due to self-balanced moment and end forces;

(b) beam configuration due to self-balanced moment and end forces.

same configuration. But with increasing load parameters, there1

is a significant discrepancy between the two results, which can

be reduced by incorporating more number of terms in Adomian3

polynomials.

All these results reveal that the non-linear shooting method is5

very accurate and is independent of the value of loading param-

eters, but the program is to be recalled every time the loading7

parameters are changed. Whereas for the Adomian decomposi-

tion method once the closed form expression is obtained, it can9

be used for various values of loading parameters; but the maxi-

mum values of loading parameters are limited. Moreover in the11

Adomian method higher the number of discrete loadings, the

larger is the number of segments to be considered (as discussed13

in Section 5.2), thus computational complexity increases. Over-

all, these two methods can be used to solve the large deflection15

problem considering geometric non-linearity under any type of

static loading.17

7. Conclusion

New variation of non-linear shooting and Adomian decompo- 19

sition methods have been developed, used and validated against

elliptic integral solution while determining large deflection of 21

a cantilever beam under arbitrary end loading conditions. The

possibility of multiple solutions with high end loading is dis- 23

cussed in the context of buckling of the beam-column. Further,

the same procedures can handle static, concentrated and/or dis- 25

cretely distributed loadings. These two methods can also be

used to analyze beams with arbitrary variation of geometry (for 27

which no closed form solution is possible) just by treating the

flexural rigidity as a function of the independent variable ‘s’. It 29

is observed that these methods are totally insensitive to the ex-

istence of any inflection point. These procedures are envisaged 31

to be useful for modeling the actuation of compliant mecha-

nisms by discretely distributed smart actuators. In future, these 33

solution procedures will be extended to model multi-link com-

pliant mechanisms driven by smart actuators. 35
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Appendix A 37

The expression of �(s) obtained using Adomian decomposi-

tion method (up to 6th order term) is �(s) =
∑13

p=1cp ∗ s(p−1), 39
where

c1 := 0, 41

c2 := c,

c3 := 1
2�, 43

c4 := 1
6�nc,

c5 := 1
24�2n − 1

24�c2, 45

c6 := 1
40�(−c� + 1

3n2�c) − 1
120�nc3,

c7 := 1
60�(− 1

4�2 + 1
12n2�2) − 11

720�2c2n + 1
720�c4, 47

c8 := 1
252�(− 3

2c�2n + 3
20n�(−c� + 1

3n2�c))

+ 1
1008�(3c3� − 11

5 n2c3�) + 1
5040�nc5,

c9 := 1
336�(− 1

4�3n + 1
10n�(− 1

4�2 + 1
12n2�2))

+ 1
1344�(2c2�2 − 16

5 �2n2c2 − 3
5c�(−c� + 1

3n2�c))

+ 19
13 440�2c4n, 49
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c10 := 1
1728�(− 7

6�3n2c − 2
5c�(− 1

4�2 + 1
12n2�2)

− 3
10�2(−c� + 1

3n2�c) + 1
2c�3

+ 2
21n�(− 3

2c�2n + 3
20n�(−c� + 1

3n2�c)))

+ 1
8640�( 5

42n�(3c3� − 11
5 n2c3�) + 14c3�2n

− 3
2nc2�(−c� + 1

3n2�c) − 5
3n3c3�2),1

c11 := 1
2160�(− 7

48�4n2 − 1
5�2(− 1

4�2 + 1
12n2�2) + 1

16�4

+ 1
14n�(− 1

4�3n + 1
10n�(− 1

4�2 + 1
12n2�2)))

+ 1
10 800�(−nc2�(− 1

4�2 + 1
12n2�2)

− 2�2nc(−c� + 1
3n2�c) + 27

4 �3c2n − 5
3n3c2�3

+ 5
56n�(2c2�2 − 16

5 �2n2c2 − 3
5c�(−c� + 1

3n2�c)

− 10
21c�(− 3

2c�2n + 3
20n�(−c� + 1

3n2�c))),

c12 := 1
13 200�( 5

72n�(− 7
6�3n2c − 2

5c�(− 1
4�2 + 1

12n2�2)

− 3
10�2(−c� + 1

3n2�c) + 1
2c�3

+ 2
21n�(− 3

2c�2n + 3
20n�(−c� + 1

3n2�c)))

− 5
14c�(− 1

4�3n + 1
10n�(− 1

4�2 + 1
12n2�2))

− 5
21�2(− 3

2c�2n + 3
20n�(−c� + 1

3n2�c)) − 25
48n3c�4

− 4
3�2nc(− 1

4�2 + 1
12n2�2)

− 1
2�3n(−c� + 1

3n2�c) + 65
48c�4n),3

c13 := 1
15 840�(− 5

28�2(− 1
4�3n + 1

10n�(− 1
4�2 + 1

12n2�2))

− 1
3�3n(− 1

4�2 + 1
12n2�2) + 13

96�5n − 5
96�5n3

+ 1
18n�(− 7

48�4n2 − 1
5�2(− 1

4�2 + 1
12n2�2) + 1

16�4

+ 1
14n�(− 1

4�3n + 1
10n�(− 1

4�2 + 1
12n2�2)))).

Note: Obtained using Maple.5

Appendix B

Consider the following BVP7

d2�

ds2
= (−� cos � − n� sin �) (B.1)

with B.C.9

�s=� = 0 and
d�

dss=b

= m.

Substituting y(s) = �(s) − m(s − a) one obtains11

d2y

ds2
= (−� cos(y + m(s − a)) − n� sin(y + m(s − a))) (B.2)

with ys=a = 0 and
dy

dss=b
= 0.13

This is a complete homogeneous BVP of second type as

defined in Ref. [19] and its Green’s function is given by 15

H(t, s) =
{

(s − a), a�s� t,

(t − a), t �s�b.
(B.3)

Let, f (s, y(s))=(−� cos(y+m(s−a))−n� sin(y+m(s−a))). 17

thus one gets

�f

�y
= (� sin(y + m(s − a)) − n� cos(y + m(s − a)). (B.4)

19

Eq. (B.4) can be written as

�f

�y
= (A cos � sin(y + m(s − a))

+ A sin � cos(y + m(s − a))

≡ A sin((y + m(s − a)) + �). (B.5) 21

Eq. (B.5) yields the Lipschitz’s constant of the function

f (s, y(s)) w.r.t. y as | �f

�y
|max =A, which finally takes the form 23

A = �
√

1 + n2. (B.6)

Following the arguments in Ref. [19, p. 29, Eq. (3.19)] one 25

obtains the mapping parameter � as � = A maxa � t �b

[ 1
w(t)

∫ b

a
H(t, s)w(s) ds]. If ��1, then the mapping is a con- 27

traction mapping and thus from the principle of contraction

mapping the BVP possess unique solution. In order to obtain 29

w(t) the extreme case has been considered, i.e.,

A

[

1

w0
(t)

∫ b

a

H(t, s)w0(s) ds

]

= 1. (B.7)
31

This function w0(t) is positive in the interval (a, b) and vanishes

at a and b. From the definition of Green’s function one can say 33

that Eq. (B.7) denotes the solution of the following BVP.

D.E. w′′
0(t) + Aw0(t) = 0,

B.C. w0(a) = 0 and w′
0(b) = 0. (B.8) 35

This problem has a non-trivial solution if

√
A(b − a) = (2k + 1)



2
where k = 0, 1, 2, . . . . 37

For the minimum value of k = 0 one obtains
√

A(b − a) = 
2 .

Thus, in order to have ��1 one must have 39

√
A(b − a)�



2
≡ A(b − a)2

�
2

4
. (B.9)

Substituting (B.6) in (B.9) the final form of the condition to 41

ensure uniqueness is obtained as

�
√

1 + n2 �
2

4(b − a)2
. (B.10)

43

For the current problem with a = 0 and b = 1 the final form

becomes 45

�
√

1 + n2 �
2

4
. (B.11)
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