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Abstract
In this paper, the use of the node-dependent kinematics concept for the geometrical nonlinear analysis of composite one-
dimensional structures is proposed With the present approach, the kinematics can be independent in each element node.
Therefore the theory of structures changes continuously over the structural domain, describing remarkable cross-section
deformation with higher-order kinematics and giving a lower-order kinematic to those portion of the structure which does not
require a refinement. In this way, the reliability of the simulation is ensured, keeping a reasonable computational cost. This is
possible by Carrera unified formulation, which allows writing finite element nonlinear equilibrium and incremental equations
in compact and recursive form. Compact and thin-walled composite structures are analyzed, with symmetric and unsymmetric
loading conditions, to test the present approach when dealing with warping and torsion phenomena. Results show how finite
element models with node-dependent behave as well as ones with uniform highly refined kinematic. In particular, zones which
undergo remarkable deformations demand high-order theories of structures, whereas a lower-order theory can be employed
if no local phenomena occur: this is easily accomplished by node-dependent kinematics analysis.

Keywords Geometrical nonlinear analysis · Node-dependent kinematics · Unified 1D model · Composite structures

1 Introduction

In the last decades, new challenges demanded by aerospace,
automotive and other engineering fields require the adop-
tion of sophisticated and eventually lightweight structures.
For this reason, composite materials, thanks to their out-
standing structural performances in terms of strength and
stiffness properties compared to metal alloys, have encoun-
tered great success. Zhang et al. [1] reported how the usage
of laminated components has drastically grown, especially
in the aerospace field. However, the correct design of com-
posite components generally requires enhanced calculation
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techniques to account for anisotropy coupling effects, inter-
face phenomena, and 3D stress states, for example. The need
for a high level of accuracy and reliability from the struc-
tural simulation pushed engineers to use high-performing
three-dimensional (3D) models, with a high effort in terms
of computational cost. In order to cut down this draw-
back, scientists and researchers have been encouraged to
develop lighter one-dimensional (1D) and two-dimensional
(2D) models, with the goal of maintaining the same level of
accuracy when compared to heavier 3D tools.

A comprehensive review of the modeling of laminated
materials for 1D structures can be found in Kapania and Rac-
iti [2,3]. Classical theories such as the Euler-Bernoulli beam
[4] is widely applied in numerical simulations, although it
lacks the ability to accurately predict the transverse shear
over the cross-sections of beams, for which the shear effects
play a crucial role in their mechanical behavior. To overcome
this problem,many other models were developed to carry out
reliable results, especially in the case of composite structures.
Based on the Timoshenko beam theory [5], which considers
a constant distribution of the shear stress along the cross-
section, the First-order Shear Deformation Theory (FSDT)
was built. This model was adopted by engineers for their
studies about laminated structures for many decades. Gupta
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et al. [6] presented a formulation for the post-buckling behav-
ior of composite beams with axially immovable ends. Lanc
et al. [7] discussed a beam Finite Element (FE) model for the
post-buckling analysis of composite laminated structures in
the framework of an updated Lagrangian incremental formu-
lation.

Even though the FSDT ensures reliable accuracy for a
wide range of problems, it has some limitations. In fact, when
dealing with thin-walled structures, whose cross-sectional
deformation plays a crucial role, an accurate evaluation of
the stress distribution is necessary, to accurately describe the
higher-order phenomena. For this reason, advanced structural
theories must be considered, because classical approaches
might be inappropriate and lead towrong conclusions, see the
classical book by Novozhilov [8]. For instance, Stephen and
Levinson [9] developed a higher-order theory starting from
the Timoshenko beam equation and taking into account the
shear curvature, through the introduction of new coefficients.
As further examples of higher-order beam models proposed
in the past, Vlasov [10] introduced warping functions to cap-
ture the deformations of beam cross-sections. This approach
found a great success between scientists, see the works by
Ambrosini et al. [11], Mechab et al. [12] and Friberg [13],
who made use of warping functions for thin-walled struc-
tures. A combination of the refined Vlasov model and the
classical Euler-Bernoulli model was adopted by Kim and
Lee [14] to analyze thin-walled beams made of functionally
graded materials. The so-called Generalized Beam Theory
(GBT) was suggested by Schardt [15]. This theory allows
the displacement field to be expressed as a linear combina-
tion of cross-sectional deformationmodes. GBT foundmany
applications in the literature, for example, by Peres et al. [16]
for the analysis of curved thin-walled beams, and by Silvestre
[17] for buckling problems. GBT was also adopted for the
analysis of laminatedmaterials, as presented by Silvestre and
Camotim [18,19].

Particular attention must be given to local phenomena
when structures are subjected to large deformation, e.g., large
displacements and large rotations. In fact, for an accurate
design of structures undergoing extreme loading conditions,
a geometrical nonlinear analysis must be carried out. The
contributions of scientists to the nonlinear analysis of 1D
structures are uncountable.Most of the geometrical nonlinear
models developed in the past are based on the Timoshenko
beam theory, see, for example, Refs. [20–22]. The works
by Hodges [23] and Chia [24] presented an overview of
the geometrically nonlinear behaviour of composite beams
and plates, respectively. The literature of works about the
behaviour of composite structures in the large displacement
and rotation field is vast, indeed. As an example, the work by
Zhang and Kim [25] is mentioned. It proposes a quadrilat-
eral plate element for the geometrical nonlinear analysis of
laminated composite plate. The model is based on FSDT and

Foppl-von Kármán geometrical nonlinearities, within a total
Lagrangian approach.With the sameassumptions, Zhang and
Liew [26] analyzed the geometrical nonlinear behaviour of
carbon nanotube-reinforced composite plates.

In many real applications, local phenomena and large
cross-sectional deformations occur in particular areas of the
structure, for example, in the nearby of external loads or
constraint conditions. In such cases, it would be needed to
build a model with variable kinematics, namely, capable of
refining only the portions of the structurewhich undergo high
deformation or rotation. In this way, the accuracy is still guar-
anteed, with a drastic decrease in the number of degrees of
freedom and, subsequently, of the computational cost. When
models with different kinematics have to be coupled, the con-
tinuity of the displacements between the two regions has to
be guaranteed. The issue of coupling incompatible structural
models was widely investigated in modern scientific liter-
ature. Wenzel [27] proposed an exhaustive state-of-the-art
about this topic. For instance, the compatibility between dif-
ferent domains can be reached bymaking use of the Lagrange
multipliers, see for instance the work by Prager [28] and
Carrera et al. [29]. Another solution to this problem is the
adoption of the global-local technique. Basically, thismethod
consists of a multi-step procedure, where, at first, a “global”
analysis is carried out using a coarse mathematical model
of the structure. Then, a refined FE model is applied sepa-
rately in specific and more deformable subregions, and the
compatibility is ensured by enforcing the continuity of the
displacement in the interfacial or overlapping zones. Noor
[30] proposed a review on the global-local approaches for
the nonlinear analysis of composite panels. The global-local
approach found application in many engineering fields. For
instance, Hanganu et al. [31] applied this method in the
analysis of civil structures, for an accurate evaluation of the
damage within the structure.

The present work intends to assess the benefits of adopt-
ing variable kinematics on composite beam structures in
the geometrical nonlinear analysis. The proposed solution
is the adoption of the Node-Dependent Kinematics (NDK)
approach in a FE framework based on the Carrera Unified
Formulation (CUF) [32,33]. Thanks to the scalable nature
of CUF, any arbitrary expansion of the FE unknowns can
be used to achieve the desired theory of structures. In other
words, the primary unknowns of a given problem (that, for
a 1D problem, are the displacement along the beam axis),
are expanded using arbitrary cross-section functions. The
novelty of the NDK approach consists in adopting different
expansion functions over the beam length for the kinematic
description of the cross-sections. Since the Finite Element
Method (FEM) is used for the beam axis approximation,
no problems about coupling different expansion functions
arise. NDK was used and validated in the past years by
Carrera and Zappino [34] and applied to composite struc-
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tures [35,36], 2D plate [37,38] and shell problems [39]. The
geometrical nonlinear 1D governing equations of the beam
theory are obtained by means of the so-called fundamental
nuclei, which allow the automatic employment of low- to
higher-order theories, arbitrarily. This geometrical nonlinear
solution was validated for isotropic and composite materials
[40,41] and, then, further extended to the dynamic [42,43]
and 2D plate [44] and shell cases [45,46]. A deep analysis
of the role of cross-sectional deformations in the geometri-
cal nonlinear field is proposed in [47,48], for isotropic and
composite structures, respectively. In [49], the capability of
the NDK approach in the CUF framework was tested for
the geometrical nonlinear analysis of thin-walled isotropic
structures. In this work, the investigation is further extended
to deal with compact and thin-walled composite structures.

This paper is organized as follows: (i) Section 2 reports
the present model, including the FE arrays calculation adopt-
ing the NDK approach in the geometrical nonlinear analysis;
(ii) then, numerical results are discussed for both compact
and thin-walled laminated beams in Sect. 3, with symmet-
ric and asymmetric loading conditions; (iii) finally, the main
conclusions are drawn.

2 Unified laminated beam element with
node-dependent kinematics

2.1 Kinematics approximation

Consider a generic one-dimensional (1D) laminated struc-
ture, as depicted in Fig. 1. A Cartesian coordinate system is
adopted, in away that x and z are the coordinates of the cross-
section and y is orthogonal and lays along the beam axis
(in blue). In this work, the three-dimensional (3D) displace-
ment field u(x, y, z) = {

ux uy uz
}T as well as its variation

(denoted by δ), is expressed in the framework of the Carrera
Unified Formulation (CUF) and reads:

u(x, y, z) = Fτ (x, z) uτ (y), τ = 1, 2, ...., M
δu(x, y, z) = Fs(x, z) δus(y), s = 1, 2, ...., M

(1)

where Fτ and Fs are the expansion functions of order M of
the cross-section with coordinate x and z and us is the gener-
alized displacement vector. The choice of Fτ and Fs and M
is arbitrary and they define the theory adopted to model the
structure. Many options are available for the expansion func-
tions, i.e. Taylor polynomials [50], Chebyshev polynomials
[51], Lagrange expansion [52] and Legendre polynomials
[53], among the others. In this work, both Lagrange and Tay-
lor polynomials are adopted to discretize the displacement
field over the cross-section and they allow the employment
of the Layer-wise (LW) and Equivalent Single Layer (ESL)
approaches, respectively.

2.1.1 LWmodels

As far as the LW approach is concerned, the cross-section of
the laminated beam is discretized with a set of Lagrange
Points (LPs), opportunely subdivided into Lagrange Ele-
ments (LE). The degree of the interpolation is defined by the
number of the LPs; for instance, a 4 points LE (L4) ensures
a linear interpolation, a 9 points LE (L9) a quadratic interpo-
lation and a 16 point LE (L16) a cubic interpolation. When
dealing with composite structures, each layer may be mod-
eled independently by using a dedicated Fτ polynomial set,
as shown in Fig. 1, bringing to an LW description of the lam-
inate. A comprehensive review about LW theories was made
by Carrera [54]. This theory treats each layer individually
and both displacement and transverse shear stress continu-
ity may be satisfied between each layer; therefore, it yields
results compatible with 3D elasticity solutions.

Multiple Lagrange polynomials can be assembled above
the cross-section imposing the displacement continuity at the
interface nodes, so any type of cross-section, from compact
to thin-walled shapes, can be analyzed. For completeness
purpose, the complete expression of the displacement field of
a generic point “A” of coordinates (x, y, z) within the cross-
section, using an L9 polynomial, is reported hereafter:

ux (x, y, z) = F1(x, z)ux1(y) + F2(x, z)ux2(y)

+ · · · + F9(x, z)ux9(y)

Fig. 1 Generic composite
structure with equivalent single
layer (Taylor) and layerwise
(Lagrange polynomials)
approaches
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uy(x, y, z) = F1(x, z)uy1(y) + F2(x, z)uy2(y)

+ · · · + F9(x, z)uy9(y)

uz(x, y, z) = F1(x, z)uz1(y) + F2(x, z)uz2(y)

+ · · · + F9(x, z)uz9(y) (2)

where the Fτ are not fully reported here for the sakeof brevity,
but can be found in in [33].

2.1.2 ESL models

The ESL approach, as depicted in Fig. 1, allows the treat-
ment of the multi-layered structure as a single-layered one,
through an appropriate homogenization of the cross-section
properties. The complete expression for a TE of order two
(TE2) is reported in Eq. (3):

ux (x, y, z) = ux1(y) + x ux2(y) + z ux3(y)
+x2 ux4(y) + xz ux5(y) + z2 ux6(y)

uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y)
+x2 uy4(y) + xz uy5(y) + z2 uy6(y)

uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y)
+x2 uz4(y) + xz uz5(y) + z2 uz6(y)

(3)

where xA, yA and zA are the coordinates of a generic point
“A” of coordinates (x, y, z). The number of the Degrees Of
Freedom (DOFs) is equal to the displacement and derivatives
of the TE and, for the case of a TE2, they are 18.

2.2 Finite element approximation

As far as the displacements along the beam axis are con-
cerned, the Finite Element Method (FEM) is adopted to
approximate the vector uτ (y) and its variation δus(y), as
follows:

uτ (y) = Ni (y)qτ i i = 1, 2, . . . , Nn

δus(y) = N j (y)δqs j j = 1, 2, . . . , Nn
(4)

where Ni (y) and N j (y) stand for the i, j-th 1D shape func-
tion, Nn is the number of the structural nodes, i indicates
summation and qτ i is the vector of the FE nodal parameters
{
qxτ i qyτ i qzτ i

}T
. Interested readers can refer to Bathe [55]

and to Carrera et al. [33] for the complete form of the shape
functions N j . In this work, classical 1D FEs with four nodes
(B4) are adopted, i.e. a cubic approximation along the y axis
is considered. Finally, introducing the Eq. (4) into Eq. (1), the
explicit form of the 3D displacement field can be obtained:

u(x, y, z) = Fτ (x, z)Ni (y)qτ i

δu(x, y, z) = Fτ (x, z)Ni (y)δqτ i
(5)

2.3 The node-dependent kinematics approach

As discussed in the introduction, the possibility to couple
local-to-global parts of the FE model can be done in many
ways. NDK allows, by definition, for the variation of the
node-by-node kinematic in the same element, refining the
kinematics without any use of coupling mathematical arti-
fices. The refinement of the adopted kinematic can be taken
a step further by assigning an own approximation to each
node of an element. Thanks to the scalable nature of the
CUF-based displacement models, it is possible to develop
a FE with variable kinematic. The basic idea of NDK is to
describe the displacement field over each cross-section of an
element with different kinematics. In this way, one can refine
the model only over the regions which require a higher-order
theory to be accurately described, and associate lower-order
theories in the remaining zones of the domain where local-
ized phenomenadonot take place, saving computational cost.
The Fτ , Fs functions are node-dependents; in other words,
the theory approximation order is a function of the FE nodal
index i and j. Then, Eq. (5) becomes:

u(x, y, z) = Fi
τ (x, z)Ni (y)qτ i , τ = 1, 2, ...., Mi

δu(x, y, z) = F j
s (x, z)N j (y)δqs j , s = 1, 2, ...., M j

(6)

where the indexes i, j on Mi , M j and Fi
τ (x, z), F

j
s (x, z)

underlines that the expansion functions are associated to the
i, j-th node of the element, rather than to the entire element
itself. Note that Eq. (6) shows the discrete dependency at
the structural node level of the expansion functions through
the indexes i, j . An example of NDK approach is finally
shown inFig. 2,where a composite beamdiscretizedwith one
single 4-node B4 finite element in the beam axis direction is
shown. Figure 2a shows the case of a uniform LW kinematic
adopted for the whole structure, and each cross-section has
33 LP. Then, the number of Degrees Of Freedom (DOFs) is
33 × 3 × 4 = 396. On the other hand, Fig. 2b proposes a
NDK model of the structure. In particular, node 1 has a TE1
expansion, that is the Eq. (3) truncated at linear term and the
number its DOFs is 9; node 2 is expandedwith a TE2 (the Eq.
(3)), with 18DOFs.; the nodes 3 and 4 are approximated with
12 and 33LP so that their DOFs are 12×3 = 36 and 33×3 =
99, respectively. The number of DOFs is given by the sum of
DOFs of every cross-section, i.e. 9 + 18 + 36 + 99 = 162.

Figure 3 finally shows an example in which the NDK
concept could strongly reduce the computational effort. Con-
sider a thin-walled composite beam clamped at the two edges
and subjected to a uniform transverse pressure and in a far
nonlinear equilibrium state. As outlined in the figure, some
portions of the structure undergo remarkable cross-sectional
deformation (see the blue domains in Fig. 3), so that the
whole structure would need a refined theory to be accu-
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Fig. 2 Composite structure with uniform kinematic (a) and NDK
approach (b). Expansion functions (in red) are associated individually
with each node. The structure is modeled with four structural nodes.
The uniform kinematic model has 33LP, so that the number of DOFs

is 33 × 3 × 4 = 396. The NDK model is approximated with a TE1,
TE2, 12LP and 365LP, respectively. Then, the number of the DOFs is
9 + 18 + 12 × 3 + 33 × 3 = 162

Fig. 3 Large deflection bending of a thin-walled composite structure
subjected to uniform transverse pressure. Some areas (green domains)
undergo low deformations and can be approximatedwith low-order the-
ories, other (blu areas) show large deformations and have to be described
with refined kinematics

rately described. However, some zones (the green ones in
the figure) do not show remarkable deformations, so that a
lower-order kinematics would be enough to describe their
kinematics, even in a far nonlinear state. Thanks to NDK,
different kinematics can be employed in different domains,
building an efficient mathematical model for the geometrical
nonlinear analysis and decreasing the numbers of DOFs, as
already described in Fig. 2. In the present work, this proce-
dure is employed to build an efficient mathematical model
of composite structures in the large-displacements and post-
buckling fields.

Many examples will be discussed in the numerical results
section.

2.4 Geometrical and constitutive relations

The strain and stress œ components are written in vecto-
rial form, and the transposed vectors are introduced in the
following:

ε = {
εxx εyy εzz εxz εyz εxy

}T
,

σ = {
σxx σyy σzz σxz σyz σxy

}T (7)

As far as the geometrical relations are concerned, the
Green-Lagrangenonlinear strain components are considered.
Therefore, the displacement-strain relations are expressed as:

ε = εl + εnl = (bl + bnl)u (8)

wherebl andbnl are the linear andnonlinear differential oper-
ators, respectively. The complete form of these two matrices
can be found in [40].

Regarding the constitutive relations, we assume linear
elastic material, thus the Hooke law can be employed:

σ = Cε (9)

where C is the material matrix, whose complete form can be
found in [56]. The coefficients of the material matrix depend
only on thematerial properties and the geometrical properties
of thefibres. The explicit formof the coefficients canbe found
in many books, see [57].

2.5 Nonlinear governing equations

The principle of virtual work is hereafter recalled for the
derivation of the nonlinear FE governing equations. For static
problems, It states that the virtual work from the internal
strain energy (δL int) is equal to the one made by the external
loads (δLext). Moreover, the geometrical nonlinear problem
is obtained by introducing Eq. (6) into Eq. (8), so that strain
vector can be written in algebraic form as follows:

ε = (Bτ i
l + Bτ i

nl )qτ i (10)
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where Bτ i
l and Bτ i

nl are the linear and nonlinear algebraic
matrices with CUF and FEM formulations. For the sake of
completeness, these operators are given below.

Bτ i
l =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Fi
τ,x

Ni 0 0

0 Fi
τ Ni,y 0

0 0 Fi
τ,z
Ni

Fi
τ,z
Ni 0 Fi

τ,x
Ni

0 Fi
τ,z
Ni Fi

τ Ni,y

Fi
τ Ni,y Fi

τ,x
Ni 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(11)

and

Bτ i
nl = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ux,x F
i
τ,x

Ni uy,x F
i
τ,x

Ni uz,x F
i
τ,x

Ni

ux,y F
i
τ Ni,y uy,y F

i
τ Ni,y uz,y F

i
τ Ni,y

ux,z F
i
τ,z
Ni uy,z F

i
τ,z
Ni uz,z F

i
τ,z
Ni

ux,x F
i
τ,z
Ni + ux,z F

i
τ,x

Ni uy,x F
i
τ,z
Ni + uy,z F

i
τ,x

Ni uz,x F
i
τ,z
Ni + uz,z F

i
τ,x

Ni

ux,y F
i
τ,z
Ni + ux,z F

i
τ Ni,y uy,y F

i
τ,z
Ni + uy,z F

i
τ Ni,y uz,y F

i
τ,z
Ni + uz,z F

i
τ Ni,y

ux,x F
i
τ Ni,y + ux,y F

i
τ,x

Ni uy,x F
i
τ Ni,y + uy,y F

i
τ,x

Ni uz,x F
i
τ Ni,y + uz,y F

i
τ,x

Ni

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(12)

The variation of the elastic internalwork, considering con-
stitutive (Eq. 9) and geometrical relations (Eq. 10), can be
expressed as:

δL int =
∫

V
δTœ dV

= δqTs j

(∫
V

(
Bs j
l +2Bs j

nl

)T
C

(
Bτ i
l +Bτ i

nl

)
dV

)
qτ i

= δqTs j K
i jτ s
S qτ i

(13)

where Bs j
l and Bs j

nl comes out from the variation of the strain

components (Eq. 10) and Ki jτ s
S represents the secant stiff-

ness matrix. The complete form of the secant stiffness matrix
Ki jτ s

S can be found in [40,58].
Omitting somemathematical steps, which interested read-

ers canfind in [59], the principle of virtualwork, for thewhole
structure, becomes:

KS q − p = 0 (14)

whereKS , q, and p are the global FE arrays of the structure,
with p corresponding to the loading vector.

The system of algebraic nonlinear equations (Eq. 15) are
solved via an iterative method. Usually, an incremental lin-
earized scheme, typically the Newton–Raphson method is
adopted to solve the geometrical nonlinear systems. Accord-
ing to the Newton–Raphson method, Eq. (15) is formulated
as follows

ϕres = KS q − p = 0 (15)

where φres denotes the vector of the residual nodal forces
(unbalanced nodal force vector).

The Newton-Raphson scheme demands the linearization
of the equations. Thus, the related tangent stiffness matrix
KT can be obtained by the second variation of the strain
energy at the equilibrium point, as follows

δ2L int = δqTs j K
i jτ s
T δqτ i (16)

The explicit form ofKT is not given here, but it is derived
in a unified form in [60]. Finally, the resultant system of
equations is constrained with an approach of arc-length type,
which was developed by Riks [61], Crisfield [62,63], Ramm
[64] and Wempner [65]. In particular, in the present work,
the refinement proposed by Carrera [66] of the arc-length
procedure is employed, and it basically consists in the choice
of the roots of the nonlinear constraint equation as the closest
to the consistent linearized solution.

3 Numerical results

In this section, various problems are addressed for demon-
strating the application and capability of NDK models in
the large deflection field of composite structures. It must be
pointed out that, due to the anisotropic behavior of lami-
nated structures, the NDK approach is useful not only for
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Fig. 4 Geometric properties and
loading case of the asymmetric
beam with compact
cross-section subjected to
compressive loading

Fig. 5 Equilibrium curve of the [0◦/90◦] composite beam subjected
to compression loading. TE1 DOFs = 549, TE2 DOFs = 1098, L9
DOFs = 2745, L16 DOFs = 5124

thin-walled structure, but also for compact ones. Clearly,
from the results of Carrera and Zappino [34], when dealing
with isotropic structures with compact cross-sections, classi-
cal theories and low-ordermodels provide an adequate degree
of accuracy. Nevertheless, formodeling composite structures
with compact cross-sections, classical theories are no more
sufficient for the evaluation of displacements and, mostly,
stresses distributions. For this reason, numerical results show
the adoption of the NDK approach on compact composite
structures. Nevertheless, to further demonstrate the enhanced
simulation capabilities of the NDK method, it is also tested
on composite thin-walled structures in this section.

3.1 Compression of asymmetric laminated compact
beams

The first analysis case deals with asymmetric laminated
cantilever beams with compact cross-section. The geomet-
ric, boundary and material conditions are shown in Fig. 4,
with L/b = 9, h/b = 0.6, EL = 144.8 GPa, ET =
Ez = 9.65 GPa, ν = 0.3, GLT = GLz = 4.14 GPa and
GT z = 3.45 GPa, where L and T are the longitudinal and
transverse directions of the fibers, respectively. The con-
sidered stacking sequences are [0◦/90◦] and [0◦/45◦], as
depicted in the figure, where the red lines show the direction
of the fibers. 20B4 are employed for the approximation of
the beam axis.

Figure 5 reports the nonlinear equilibrium curves of the
[0◦/90◦] case using uniform kinematics. Lower-order and
refined theories are employed and, clearly, they lead to the
same results.

Then, it is evident that the NDK approach is useless for
the displacement evaluation of the selected case, since every
kinematic is able to predict the displacement field. However,
this is not true if one wants to accurately evaluate the stress
distribution within the structure. In fact, as shown in Fig. 6,
the stress distribution changes according to the adopted the-
ory. Clearly, the L9, TE2 and TE2 kinematics are not able to
describe the quadratic trend of the shear stress component,
whereas the L16 can. On the contrary, this difference is not
evident for the axial component, which distribution is linear.

Since only the L16 kinematic model is able to accu-
rately predict the distribution of stress components, the NDK
approach is suitable for building a model with fewer DOFs
capable of describing the stress trend on a given part of the
structure. The NDK approach allows to build a model refined
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Fig. 6 Axial and shear
through-the-thickness stress
distribution of the [0◦/90◦]
composite beam subjected to
compression loading, evaluated
at y = 0.2 L (red line).

σ ∗
yy = σyy b h

P
and

σ ∗
yz = σyz b h

P
. TE1

DOFs = 549, TE2
DOFs = 1098, L9
DOFs = 2745, L16
DOFs = 5124

in the selected zone, and gradually less refined as we get
further from it. The mathematical model for the selected
example is reported in Fig. 7, where a L16-TE8-TE5-TE1
model is shown. As reported in the same figure, the stress
distribution is the same as those calculatedwith a heavier uni-
form higher-order kinematic model, with a significant loss of
DOFs (from 5124 to 3579).

The [0◦/45◦] stacking sequence was further analyzed.
The nonlinear static equilibrium curves adopting uniform
kinematics are shown in Fig. 8. In this case, due to the
torsional-bending coupling, the uniformTE1kinematic leads
towrong results, compared tomore reliable TE2, L9 andL16.
For this reason, the NDK approach can be useful to describe
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Fig. 7 Axial and shear
through-the-thickness stress
distribution of the [0◦/90◦]
composite beam subjected to
compression loading, evaluated
at y = 0.2 L (red line) with a

NDK model. σ ∗
yy = σyy b h

P

and σ ∗
yz = σyz b h

P
. L16

DOFs = 5124, NDK
DOFs = 3579

the displacement field with lower DOFs, mixing TE1 and
higher-order theory (the selected one for this example is L9).

Figure 9 reports the equilibriumcurves usingvariousNDK
TE1-L9 models (depicted and described in the figure). The
figure demonstrates several interesting aspects.

• The four NDK models are built with the same number
of DOFs (1655), but the results are different. The distri-
bution of the DOFs is a crucial point when dealing with
NDK models.
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Fig. 8 Equilibrium curve of the [0◦/45◦] composite beam subjected
to compression loading. TE1 DOFs = 549, TE2 DOFs = 1098, L9
DOFs = 2745, L16 DOFs = 5124

Fig. 9 Equilibrium curve of the [0◦/45◦] composite beam subjected
to compression loading with various NDK models. L9 DOFs = 2745,
NDK DOFs = 1485

• The distribution which, in this case, leads to more accu-
rate results is the one which assignes more DOFs (i.e. a
more refined model) to the clamped zone.

Stress distributions are considered aswell. The sameNDK
models as those presented in Fig. 9 are used herein (although
the more refined L16 theory is used instead of L9 to catch
the parabolic distribution of shear stress). Significant differ-
ences are evident when the stress distribution is evaluated in
the TE1 portion of the structure and the results are shown in
Fig. 10. In fact, the most reliable NDK model (number 1, as

demonstrated in Fig. 9) is able to describe the stress distri-
bution in the L16 zone (Fig. 10), whereas the other models
fail.

3.2 Laminated box beam

Acantilever laminated box beam undergoing large deflection
due to transverse loadings were considered in the follow-
ing analysis case. The structure is made by two layers,
with [0◦/90◦] stacking sequence on top and bottom and
[0◦/45◦] on the lateral flanges. The considered material is
the same as in the previous case. The geometric characteris-
tics and dimensions are shown in Fig. 11, with L/b = 10,
h = 3.6 mm, b = 24 mm and h/t = 10. The refined cross-
section discretization wasmade by implementing 16L9. This
polynomial pattern will be recalled as “LE” in the following
analyses. The analysis case was taken from [67].

A preliminary convergence analysis was carried out to
establish a FE mesh for the beam axis. Figure 12 shows that
10 B4 can be considered a reliable approximation and, there-
fore, 10 B4 elements are employed for the approximation of
the beam axis.

Two loading cases are analyzed hereafter, involving sym-
metric and unsymmetric transverse loadings, respectively.
The nonlinear equilibrium curves using LE as a uniform
expansion function are shown in Fig. 13. In the figure, some
deformed configurations are depicted too. It is clear how the
clamped portion of the structure undergoes a large cross-
sectional deformation, whereas the free tip zone reports a
moderate cross-section deformation (Fig. 13a) and rotation
(Fig. 13b). For this reason, the subsequent investigation was
made giving a refined model in the first portion of the struc-
ture, with a lower-order kinematic in the remaining zone, to
analyze the static and stress response of the NDK models.

As far as the symmetric transverse load case is concerned,
the nonlinear static curves are presented in Fig. 14, along
with the adopted NDKmodels. As stated before, every NDK
model involves a higher-orderLEkinematic near the clamped
zone.Clearly, the results showagreat convergence for the dis-
placement evaluation, and only the low-order NDK models
TE1, L9-TE1 and TE5-TE1 are far from the reliable solution,
provided by a full L9 model.

Higher differences can be appreciated looking at stress
distributions of Fig. 15. It is clear that even the most refined
NDK model L9-TE1 fails in correctly evaluating the shear
stress distribution (see Fig. 15c).

Regarding the unsymmetric transverse loading, Fig. 16
shows the static nonlinear solutions adopting various NDK
models, described in the figure.

Moreover, the stress distribution of axial and shear com-
ponents is reported in Fig. 17. Clearly, the LE9-TE10 NDK
represents a reliable mathematical model, both from the dis-
placement and stress point of view.
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Fig. 10 Axial and shear through-the-thickness stress distribution of the [0◦/45◦] composite beam subjected to compression loading, evaluated at

y = 0.2 L (red line) with various NDK models. σ ∗
yy = σyy b h

P
and σ ∗

yz = σyz b h

P
. TE1 DOFs = 549, L16 DOFs = 5124, NDK DOFs = 2694

Fig. 11 Geometric properties and loading case of the composite box
beam subjected to transverse loading

3.3 Laminated box beamwith open cross-section

As an additional example, we want to investigate the influ-
ence of NDK models on an opened thin-walled composite
cross-section. The geometric, material and boundary condi-
tions are the same as those presented in the previous analysis,
but with a cut on the bottom part of the cross-section, as
described in Fig. 18. The cut s equals the thickness t , and it
is located in the middle of the edge. The unsymmetric trans-
verse loading case was analyzed.

A convergence analysis was conducted for the beam axis
discretization. Figure 19a shows how the considered approx-
imations lead to almost the same transverse displacement,
whereas if the lateral displacement is considered (Fig. 19b),
at least 10B4 FEs have to be considered for a reliable descrip-
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Fig. 12 Convergence analysis of the composite box beam subjected to
unsymmetric transverse loading

tion of the nonlinear behavior, especially for high levels of
load.

The reference solution was set by performing the geomet-
rical nonlinear analysis with a cross-sectional discretization

Fig. 14 Equilibrium curve of the composite box beam subjected to
symmetric transverse loading with various NDK models

involving 16L9 (this setting is recalled as “10L9” in this
analysis case). The results are shown in Fig. 20, along with a
deformed shape of a high value of the external load. Clearly,
the largest deformations occur near the clamp zone, so this
part was kept approximated with the higher-order “LE” the-
ory in the following NDK analyses. Nevertheless, the whole
structure undergoes large cross-section deformation and rota-
tion, so a high-order kinematic is necessary to analyze the
structure.

Fig. 13 Equilibrium curves of
the composite box beam
subjected to symmetric
transverse loading (a) and
unsymmetric transverse loading
(b). DOFs = 7440

(a) (b)
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(a) (b) (c)

Fig. 15 Axial and shear through-the-thickness stress distribution of the composite box beam subjected to symmetric transverse loading with various

NDKmodels. Stress distributions evaluated at (0,
L

2
,
h

2
) (a), (0, 0,

h

2
) (b) and (

b

2
,
L

2
,
h

4
) (c). σ ∗

yy = σyy b h

P∗ and σ ∗
yz = σyz b h

P∗ , where P∗ = 6000

kN

Fig. 16 Equilibrium curve of the composite box beam subjected to
unsymmetric transverse loading with various NDK models

In fact, as shown in Figs. 21 and 22 the results are far from
the full LE solution, although the error of the z displacement
(Fig. 21) is less than the x one (Fig. 22).

Finally, stress results are reported in Fig. 23. As demon-
strated before, the σ ∗

yy differences between the NDK models
is less than the σ ∗

yz , so, if one is interested in the transverse
displacement and σ ∗

yy values, a NDK approach can be suit-
able, but for lateral displacement and the shear component
of the stress a uniform higher-order kinematic needs to be
exploited.

(a) (b) (c)

Fig. 17 Axial and shear through-the-thickness stress distribution of the composite box beam subjected to unsymmetric transverse loading with

various NDK models. Stress distributions evaluated at (0,
L

2
,
h

2
) (a), (0, 0,

h

2
) (b) and (

b

2
,
L

2
,
h

4
) (c). σ ∗

yy = σyy b h

P∗ and σ ∗
yz = σyz b h

P∗ , where

P∗ = 6000 kN
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Fig. 18 Geometric properties and loading case of the composite box
beam with opened cross-section subjected to unsymmetric transverse
loading. The cut is located in the middle of the edge

3.4 Eight-layer laminated beam

The capability of the NDK approach to deal with the post-
buckling of a thin-walled structure is finally tested in the
following analysis case. The analyzed case was taken from
Ref. [68]. The geometric characteristics are described in
Fig. 24, with L/h = 9 and h/t = 10. The beam is made of
two different materials (in red and in blu in the figure). For

both materials, ET = Ez , νLT = 0.25 and GLT /ET = 0.5,
whereas for the first material EL/ET = 30 and for the second
material EL/ET = 5, where L and T are the longitudinal and
transverse directions of the fibers, respectively. The structure
is clamped at one side and free at the other and subjected to
a transverse load P . Finally, the unstable solution branches
have been enforced by applying a small load defect d as
depicted in the Fig. 24.

Figure 25 shows the post-buckling behavior of the struc-
ture, with the displacements over the z directions of the
middle point of the free tip. Several deformed configurations
are reported too to appreciate the structural deformation over
the nonlinear equilibrium path. Then, the NDK was applied
to this problem. Clearly, the clamped portion of the struc-
ture undergoes remarkable cross-sectional deformation and
rotation. Thus, higher-order kinematics was applied to the
elements near the clamp. The results are shown in Fig. 26.
Clearly, the 5L9-10T5-5T1 NDKmodel can evaluate the dis-
placement fieldwith high accuracy compared to the full 20L9
theory.

Finally, Fig. 27 reports the stress distribution for three

points of the beam (0, 0,
h

2
) (Fig. 27a), (0,

L

2
,
h

2
) (Fig. 27(b))

and (0,
L

2
, 0) (Fig. 27c). Even if the 10L9-10T1 NDKmodel

(a) (b)

Fig. 19 Convergence analysis of the composite box beam with opened cross-section subjected to unsymmetric transverse loading
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(a) (b)

Fig. 20 Equilibrium curves of the composite box beam with opened cross-section subjected to unsymmetric transverse loading. Transverse
displacement of point A (a) and lateral displacement of point B (b)

Fig. 21 Equilibrium curve of the composite box beam with opened
cross-section subjected to unsymmetric transverse loading with various
NDK models. Transverse displacement of point A (see Fig. 20a)

Fig. 22 Equilibrium curve of the composite box beam with opened
cross-section subjected to unsymmetric transverse loading with various
NDK models. Transverse displacement of point B (see Fig. 20b)
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(a) (b)

Fig. 23 Axial and shear through-the-thickness stress distribution of the composite box beam with opened cross-section subjected to unsymmetric

transverse loading with various NDKmodels. Stress distributions evaluated at (0,
L

2
,
h

2
) (a) and (

b

2
,
L

2
,
h

4
) (b). σ ∗

yy = σyy b h

P∗ and σ ∗
yz = σyz b h

P∗ ,

where P∗ = 6000 kN

Fig. 24 Geometric properties and loading case of the eight-layer lam-
inated beam subjected to transverse loading. A small defect load d
is imposed to enforce the the unstable solution branches of the post-
buckling regime

was able to catch the correct displacement field, it lacks the
ability to accurately predict the σ ∗

yy ans σ ∗
yz .

4 Conclusions

The present research work was addressed to determine the
effects and benefits of adoptingNode-DependentKinematics
(NDK) in the geometrical nonlinear analysis of compos-
ite compact and thin-walled structures. Both symmetric and
asymmetric loading conditionswere analyzed, including var-
ious stacking sequences. The results demonstrate that NDK
is a powerful method to reduce computational cost in nonlin-
ear problems, and this is confirmed by the different example

Fig. 25 Equilibrium curve of the eigth-layer laminated beam subjected
to transverse loading

problems reported in this paper. When dealing with compact
laminated beams, theNDKapproach can be exploited to eval-
uate the stress distribution in a given portion of the structure,
by enriching the kinematic only in that zone, saving compu-
tational cost. Moreover, higher/lower-order kinematics are
introduced easily in the regions of the structures which show
higher/lower sectional deformations. For compact beams, it
has been demonstrated that, considering the same number of
DOFs, the results change, according to which cross-section
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Fig. 26 Equilibrium curve of the [eigth-layer laminated beam subjected
to transverse loading with various NDK models

kinematic has been refined. In thin-walled cases, the cross-
sections which undergo local phenomena (large deformation
and/or rotation, e.g., near the clamped zone for cantilever
beams) need a higher-order theory to be accurately described,
whereas a lower-order kinematic can be used to approximate
the displacement field over the rest of the beam. Figure 28
demonstrates the advantage of using a NDKmodels for com-
posite thin-walled structures. In this figure, the percentage
difference of the value of σyy compared to the reference solu-
tion (Fig. 13) is reported. Clearly, for both unsymmetric and
symmetric loading cases, the NDK approach is able to build
more efficient mathematical models, using less than 40%
and 80% respectively, with errors less than 15%. Finally, it
can be pointed out that NDK works well for geometrically
nonlinear problems, and no drawbacks or numerical issues,
with respect to linear analysis, were found. The main aim of
the present work is to propose a technique to build efficient
mathematical model of composite structures in the geomet-
rical nonlinear field. An application of real 3D structure is
intended to be performed in future works.

(a) (b) (c)

Fig. 27 Axial and shear through-the-thickness stress distribution of the composite box beam subjected to unsymmetric transverse loading with

various NDK models. Stress distributions evaluated at (0, 0,
h

2
) (a), (0,

L

2
,
h

2
) (b) and (0,

L

2
, 0) (c). σ ∗

yy = σyy L h

P∗ and σ ∗
yz = σyz L h

P∗ , where

P∗ = 20000 kN
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Fig. 28 % err = σyy = (σ ∗
yy − σ ∗

yyRe f )

σ ∗
yyRe f

and % DOF = DOF − DOFRef

DOFRef
. σ ∗

yy = σyy b h

P∗ where P∗ = 6000 kN. Ref solutions are taken from

Fig. 13. Stress values evaluated at (0,
L

2
,
h

2
), where L and h are the length and the height of the beam, respectively
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