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ABSTRACT: A system of nonlinear differential equations governing the statical behavior of
multisandwich shells built up of stiff and weak layers is derived in this contribution. The
stiff layers are assumed to be elastic, isotropic, and obeying the Kirchhoff—Love hypothesis.
The weak layers are assumed to be elastic, orthotropic, and deformable in tangential
directions. The thickness of the shell is small compared to its radii of curvature. The shell
may be of arbitrary shape. The derived system of equations is specialized to cylindrical
shells and compared with the equations of Kurshin for sandwich shells and the equations
of Bolotin for multisandwich plates with infinitesimal deflections.

Nomenclature

z, Y,z Shell coordinates based on curvature lines. z is the normal distance outward
from a reference surface
K,k  Principal curvatures of middle surface of a layer; K = 1/R, k = 1/r
R,r Principal radii of curvature of middle surface of a layer
a,B,y Lamé coefficients for curvilinear orthogonal coordinates; y = 1 for shell
coordinates
A oz, y,0), B = Bz,y,0)
h  Thickness of a layer
b Normal distance between middle surfaces of two neighboring stiff layers,
b; = 4P+ 2k + Ry y)

7 1,3,...,N. Index ¢ is used as either subscript or superseript on a letter to
indicate a stiff layer
J  2,4,...,N—1. Index j is used as either subscript or superscript to indicate a

weak layer
A comma before a subscript indicates partial derivative with respect to that sub-
script. Other symbols will be defined in the text wherever thay occur first.

Introduction

A typical multisandwich shell consists of N layers of different thicknesses
and different properties of materials. (N +1) of these layers are stiff and
#(N —1) layers are weak. In the case of the common sandwich shell (N = 3)
the stiff layers are usually referred to as facings and the single weak layer
as core.

* This research was supported by Grant GP-2702 of the National Science Foundation.
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Multisandwich shells and plates find application in the construction of
self-sealing satellites to provide puncture protection for astronauts agamst
micrometeoroids (‘‘space nails”). In this application the number of layers
would normally be five or seven. In general, multisandwich shells may be
used with advantage whenever several different substances (e.g. a thermal
insulator, a sealant, and a radiation shield) must be separated from each
other within an integrated skin-like structure, such as a space ship, a fuel
tank, a structure on the moon.

The literature concerned with the theory and analysis of multisandwich
plates and shells is not extensive. Bolotin (1) gives a rather thorough
discussion of multisandwich plates with transversely rigid weak layers and
flexing stiff layers; (2) is mainly a heuristic, limited study of five-layer plates.
Kao (3) treats the simple problem of axisymmetrically deformed cylindrical
multisandwich shells composed of two transversely rigid weak cores and
three membrane layers. Liaw and Little (4) develop the governing equations
for multisandwich plates built up of membrane layers and orthotropic shear
cores. These four contributions present linear analyses only. Wong and
Salama (5) discuss the overall buckling of multisandwich plates composed
of membrane layers and orthotropic, transversely rigid weak layers. Vasek (6)
develops a general nonlinear theory of multisandwich plates in the sense of
Foppl-von Kdrman, assuming transversely compressible orthotropic weak
layers.

For a survey of the literature on regular three-layer sandwich plates and
shells, see (7, 18).

The present contribution is concerned with the formulation of a rather
general nonlinear theory of multisandwich shells of arbitrary shape. This
theory is based on the following assumptions:

(1) The stiff layers are linearly elastic, homogeneous, and isotropic. The
weak layers are elastic, homogeneous, and orthotropic in the directions of
the coordinate lines.

(2) The stiff layers obey the Kirchhoff hypothesis and behave nonlinearly
in the sense of Féppl-von Karmén. The weak layers cannot transmit stresses
in tangential directions and are inextensional in the transverse direction.

(3) The shell is thin in the sense that its thickness is very small compared
to the radii of curvature. It is not ‘“‘shallow”’, however.

(4) The thicknesses and the materials of layers may be different.

(5) The layer-to-layer bonds are strong enough so that under all loadings
no bond failure will occur.

Some Results of Geometry of Surfaces: Shell Coordinates

A surface may be defined by the equations X = X(x,y), ¥ = Y(«,y),
Z = Z(x,y) in which X, Y, Z are rectangular coordinates and x», y are
parameters referred to as “surface coordinates”.

Let the surface under consideration be the middle surface of a layer so that
x, y are the curvilinear coordinates on this surface. Now measure a distance
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z along one of the radii of principal curvature to the middle surface, away
from the end of this radius. Then z, y, z are space coordinates. If we hold
y and z constant, for example, then # may vary along a curve. This curve is
called an z-coordinate line. Hence, we may speak of z-, -, or z-coordinate
lines. The z-coordinate line is always straight in our shell-coordinate system
x, 9, z. If x-, y-, z-coordinate lines are normal to each other, we have an
“orthogonal”’ coordinate system. We assume here that -, y-coordinate lines
coincide with the lines of principal curvature of the surface on which they
are situated. Such an orthogonal coordinate system is used in the present
work.

The distance ds, between two neighboring points is determined, in the
orthogonal coordinates, by the equation

ds? = a2da? + B2 dy? +y2d22, (1)

where «, B, v are the Lamé coefficients. For shell coordinates y = 1.
In the shell coordinates the distance ds between two neighboring points
on the middle surface of a layer is determined by the equation

ds? = A?2da?+ B2dy?. (2)
It is easy to show that
a=A(l+Kz), B=DB(l+kz), (3)
wherein K, k are the principal curvatures of the surface and A, B are functions
of z and y only. We also note that K = K(z,y), k= k(z,y).
It is often advantageous to make use of Codazzi’s relations (8)
kA, = (KA),, KB, = (kB), (4)
from which
AK ,=(k-K)A, Bk,=(K-k)B,, (5)

where a comma before a subscript indicates partial derivative with respect
to that subscript, e.g. (KA), = 0/oy (KA4).
We also observe that

AB,=aB,, Bx,=84,
a,=KA, B,=kB

in view of Eqs. 3 and 4.

Some Results of Continuum Mechanics

In the shell coordinate system the expressions for strain components
assume the following form (9, 10):

&, =¢e,+32+ (e, +w)+(de,—w,)?), (7a)
e, =¢e,+ 32+ (Fe,,—w )PP+ (Fe,+tw), (7b)
& = ez+%[e§+(%em+wy)2+(% eyz_wx)z]: (70)
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Vay = oyt eaben—w) +ey(deg, + )
+(Fen—wy) (Fey, +wy),
Yoz = xsteu(}ptwy) +e(de,,—w,)
+(F eyt o) (Fey,—w,),
Yye = et ey(Fe,, —wr)telfe,+ow,)
+G €y — w,) (}e,,+ wy)’
wherein

V

1
= |U
06(L,gﬁ-Al,Bq-KAW)

1 U
e, = B(I{V+B,xz+ kBW),

ez=VVz’
a (U
=) 5 (0),
em=cx(g) -I-le,
® «

= B(5) +5%,

are the strain expressions of the linear theory, and

1
w, ==|W,—
2w, ,3[ = (BV)1s
1
2wy = &[(O‘U),Z—Wx]’

1
= —(al
BlBV)= (@),

are the well-known expressions for the components of a curl.

(9a)

(9b)

(9¢)

In the case that strains and rotations are small compared to unity (but not
infinitesimal), the equations of equilibrium, in the absence of body forces,

may be written in the form (9):

(B e ey BTt o A oyt KA =

(foy),z + (O‘fyy),y + (‘x/gfzy),z -+ kBO‘fuz + % B,mfyz - % A,yfxx =0,

(Bf'vz),x + (afyz),y + (o‘/gfzz),z - KAfo;c - ]CBchw, = O’

(10a)

(10b)

(10¢)
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where

fxmz O Wy Tyy + Wy Ty, (11a)

fa:y = Ty T W, 00— Wy Ty, (

fxz = Tyt Wy Ty — Wy Oy, (

fyx = Ty W, 0yt w, Ty, (

Juy = Oy F @, Ty — w0, Ty, (11e)

Jye = Tyt wpo,— w0y 7, (

fzx = Ty Wy Ty T Wy 0y, (

fzy = Ty H W, Ty — Wy Oy (

Jo=0,+w, T, —w, T, (111)
in which ¢’s and 7’s denote the “‘engineering” components of stress, e.g. ¢, is
the normal stress in the z-direction, 7., is the shearing stress in the y-direction

on an element of area normal to the x-coordinate line.
In writing the foregoing equations free use was made of Egs. 6.

Weak Layers

The layers of the shell are numbered 1, 2, 3, ..., N. Thus, since the weak
layers are always sandwiched in between stiff layers, they are denoted by
j=2,4,...,N~1,jalways being an even integer, i.e. as an index, letter j
always designates the jth (weak) layer.

For simplification, indexes will not be used under this heading. It is under-
stood that all entities pertain to the jth (weak) layer and its middle surface.

For a weak layer it is customary to assume

Gy = 0Oy

Since the Foppl-von Karman nonlinearity is, to a significant extent, due to
these stresses, we may use equations of the linear theory for the weak layers.
Thus, the three equations of equilibrium 10 become

=7, =0 and g =0. (12)

2 (ofr) + KABro =0 or L (a2pr) =0, (13a)
0 Br,.)+ kB =0 or 9 (ap? =0 13b

g(a Ty) + kBat,, = % (B Tyz) =0, ( )
by} bij 0

a_x (BT.’L‘Z) +‘a:_y (aTyz) +8_z (O‘Bo'z) = 0. (130)

The first two equations are easily integrated to yield
o?pr,, = A2 Br,, of? Tys = AB? Tys (14)

where 7,7, are functions of x and y only. In view of assumptions (12), and
the observation that further steps will involve integrations, we may assume,
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for the weak layers, that
a=A(1+Kz)~ A4, B=Bl+kz)x~B
in the foregoing equations. Then

T T, (15)

ve = T

2z = T w

i.e. the transverse shearing stresses do not vary across the thickness of a
weak layer. Also, by simple integration of Eq. 13c,

o, = o(x,y)—=2T(x,y), (16)
wherein

T = (1AB)[(Bry),+ (A7y),] (17)

and o is a function of integration.
The stress-strain relations for the orthotropic weak layers, in view of the
basic assumptions (12), simplify to the usual form (11):

Te = YaVYrer Ty = Ty VYyo ' (18)

where G, and G, are moduli of rigidity of the weak layer in the transverse
direction.

Using Egs. 7, 8, 15, and 18, together with the assumption of linear behavior
and negligibility of Kz and kz in comparison to unity, we obtain the following
expressions for the displacement components of a weak layer in the direc-
tions of the coordinate lines on an undeformed reference surface (middle
surface in this paper):

W = wiz,y), (19a)
T, 1

U=ulx,y)+z (G—m—zw,z), (19b)
- Ty _ 1

V - v(x! y) +Z(Gy Bw,y)s (190)

where u, v, w are functions of integration whose meaning is obvious. Thus,
in order to describe the behavior of a weak layer, we must determine the
five arbitrary functions of x and y, namely, 7., 7,, %, v, w. This is possible
by using the conditions of continuity of displacements and stresses at the
interfaces between layers, and the equations of equilibrium for the stiff layers.

Note that w = w; = w; according to the assumption that all layers are
inextensional in the transverse direction.

Stiff Layers

To denote the stiff layers we use odd integers as indexes. Any one of them
will be represented by the letter ¢ = 1, 3, ..., N. Under the present heading
indexes will not be used, in order to simplify printing. It is understood that
all entities pertain to the ¢th (stiff) layer and its middle surface.
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We use the Kirchhoff hypothesis to describe the behavior of each of the
L(N +1) stiff layers. According to this hypothesis, we may take

&= Vaz = Vyz = 0. (20)
With these conditions, Eqgs. 7¢, e, f may be integrated for U, V, W (12).
Keeping only those terms that are required by the Foppl-von Kiarman con-
cept of nonlinearity (theory of plates and shells with moderately large
deflections), we obtain

U=utzw, V=v-zw, W=uw, (21)
where %, v, w are functions of x and y, and
w,=/Byw,—kv, w,=Ku—-(1/A)w,. (22)
With these results, expressions for strains, Kqs. 7a, b, d, become
z {1

&y = €x+—%—w12/—z (_B A’y ww—wy,x), (2334)

1.9 % 1 .
ey =€y thwz—p wx,y—;iB,me , (23b)

1 1 1 1
Yoy = Cay — Wz Wy 2 [Z (wx,:c + B A,y wy) B (wy,y + A B,x wm)] ,  (23¢)
after neglecting several small-order terms and using the symbols

1 v

ez = Zu’z"i"EA’y-‘}’Kw, (243:)
1

¢y = 0yt g Bethe, (24b)
B0 [vy A3d[u

The stresses are determined by using Hooke’s law and Kirchhoff’s hypo-
thesis (8). They are given by

Or =173 (e;+ve,), (25a)
E
O'y = m (8y+v£z), (25b)
Ty = G’yw, (25¢)
where
E

We now direct attention to the equilibrium conditions for the stiff layers.
We strive to eliminate the independent variable z from the differential
equations of equilibrium 10. For this purpose it is convenient to introduce
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the so-called ““stress resultants”. They are defined as follows:

N, - f o, dz, (27a)
N, = f o, dz, (27b)

S = frxydz (27¢)
Q. = | 7,,dz, (27d)
Q, = |7,.dz, (27e)
M, = fzaxdz, (27f)
M,= fzoy dz, (27g)
H= fZTwy dz, (27h)

where all the integrals are definite integrals which must be evaluated between
the lower limit z = 2, = — }4 and the upper limit z = z; = . These definitions
are not “‘exact” in the sense that we assumed Kz, kz to be much smaller than
unity. We refer to the quantities N, N, § as forces (per unit length); @,, @,
as shearing forces; M,, M, as bending couples; and H as twisting couple.

Using Eqgs. 22-25 we can determine the expressions for the stress resultants
N,, N,, 8, M, M,, H in terms of the displacement components u, v, w of the
middle surface of a stiff layer. Thus

Eh

N, = 2 foa+ dod 4 e, + o), (25a)
N, = lETth [ey +dwf +v(e; + 30p)], (28b)
R () (280)
3, = =D (5 Ay~ oe) 5 (0= 58| (25d)
M,=-D [% (wx,y—%’B@) +7 (% A,-w, m)] , (28e)
H=-1 ;”DB (w,,x+%A,,,) —%(wy,y-k%B,w)] , (25f)

in which e, e, ., and w,, w, are given by expressions 24 and 22, respectively.

4:30 Journal of The Franklin Institute



Large Deflections of Multisandwich Shells of Arbitrary Shape

And 3
p__ k¥ (29)
12(1—2)
Next we simplify Eqs. 11 by noting that, for stiff shells, “rotation” w, is
much smaller than w, or w,, stress o, is much smaller than the other five
stresses, and that the products of the ‘“rotations” and stresses are much

smaller than stresses o,, o, 7., but not o,, 7,,, 7,,. Hence, we may take
Joz = 00 fxy = Tay» Joe = Tea t @0y Tay — Wy Tg
fwc = Tuy fyy =0, fyz =Ty, tw,0,— 0y Ty, (30)
Joe = Tan fzy = Tyz fo=o0 T Wy Ty — Wy Tos

where w,, w, are given by expressions 22 with a sufficient degree of accuracy.

Note that w,, w, are functions of x and y only.

Substituting expressions 30 in Eqs. 10 and integrating these through the
thickness of a stiff layer we obtain three equilibrium equations in terms of
forces. Two moment equations are established by multiplying the first two
of Egs. 10 by z and then integrating these equations through the thickness A.
The third moment equation that can be obtained is an identity (8).

In this fashion we get

= (B\’I)-i-l 0 ;(428) =B, N, + ABKQ,

+A4B [‘rm (x, Y, g) — Ty (x, Y, —g)} =0, (31a)

. 10
(AN,) +5 5o (B*S)— 4, N, + ABkQ),
+AB [ryz (x, ¥, g) —Tys (x, Y, —g)] =0, (31b)
0

0 .
a_x(BQ’) o (4Q,)— AB(KN,+kN,) +

0
dy

8(wBS w, BN,)

3
+@<szNy AS+AB[< )"(”_g)]

+ABw, [T‘yz (x, Y, g) — ‘ryz(x, Y, —5)]

h h
——AB(JJ [sz(x, y, 5) — Tas (x, y, —5)] = 0, (310)
& . & -
5‘;(3311) A 3 (A*H)—B, M,— ABQ,
+ihAB [Tm(x, y,g) + T (x, Y, —g)] =0, (31d)
¢ ) 10 0 ,
@ (4M,) +E P (B*H)— A’y ]U_I-—ABQV

3 A
+3rAB [Tw (x, y,g) +7, (x, Y, —-5” =0. (3le)
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We note that
T2, Y, dhy) = Xy, 7.2, y,—3h) = X,
(& Yo dhy) = Yy, 7y, —3hy) = 1, (32)
o2y, thy) =Zy, o2y, — k) = Zy,

are the distributed load components on the exposed surfaces of the multi-
sandwich shell, and

el @,y 8he) =1 (@Y, — ) = 15,
Tty ) =L ey, — 3 1
o (@Y, ¥h;) = o1+ Lhy TH,
o (@, Y, —¥h;) = o1 =ty T J

follow from the continuity of stresses at the interfaces between the stiff

layer ¢ and the adjacent weak layers ¢+1 and ¢—1 (see Egs. 16 and 17).

Note that the placement of indexes as either subseripts or superseripts is
governed by convenience.

(33)

Continuity of Displacements at Interfaces

Since the layers are bonded rigidly to each other, we must have continuity
of displacements at the interfaces. The continuity conditions have the form:

. 7"L+1 1
U+ th o} = w3,y (Gz+1 A wx) ) (34a)
1 i 1 ot 1
U;— ?hi wy = ui—l'*'fki—l G; 1 Z e ) (34b)
71
—thiwl = vy —3hyy, ( Gist Ew,y), (34c)
. -1 ] \
v+l = v+ 3R, (Gl—l B w,y) ) (34d)

since w; = w,,; = w;_; = w, according to assumptions 12 and 20, and
A~4,,~4,_ =~ A,
B,~xB;,,,~B, ,~B

for thin multisandwich shells.
From Eqgs. 34 by simple subtractions, we obtain the following useful
formulas:

6~ h_j(uj+1_uj—1)+:47b;w (35a)
J 1 b;

= - 1)+ (35b)
v J

after neglecting KA and kh terms as small compared to unity.
b; = by +2h;+h; ), j=2,4,...,N—1L
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System of Governing Equations

If the displacement components %, v, w of the middle surfaces of the
31(N +1) stiff layers are chosen as the unknown functions, the system of
governing differential equations to be solved simultaneously consists of
N +2 equations, since w; = w; = w. All the remaining quantities of interest
can be calculated from explicit relationships. There is no unique way of
presenting this system of governing equations. Therefore, compactness will
govern in what follows.

The system of equations to be solved may be presented in the form:

. o1 .
(BNi) , +— (A2 S,),—B,Ni+K [(BM;)J +(42H),~B, M;,]
+ AB(ziH — TH) =0, (36a)

. 1 . .
(AN}) 45 (B2S)) o~ A, Nitk [(AM*) +5(BH)— A, Mx]

+ AB(zitt —7i-1) = 0, (36b)
N o2 12,0 Bour
iy [ax[Aa (BM)+ 5 55 (A* H) = AMU]
a1 8 1D A
+@[—B—@(AM’)+B% BH)——#M:I

—(4BK - A, +wi ,B) N,

i d [l
2 2
[B ax(B) -4 ay(A)]Sf
—(ABk+w§Byz——w;:’yA)Nf,;

N—-1

*, E b[(BT’) +(47),]

by h
- AB{Zl—ZN BUBX),+ (AF),] - T UBX) .+ (AT, 1), (360)
where
7l = %(u —u +ﬁw ) (37a)
T hj J+1 7—1 A =)
, Gg'/( b; )
T‘L =1, — v, +_w , 37b
Y hj J+1 1T p™uy ( )
b; = $(hjy +2h;+ 0 ), j=2,4,...,N—1. (38)

The stress resultants and the ‘“‘rotations” are expressed in terms of the
displacement components », v, w by Eqgs. 28 and 22.

Equations 36 are the equilibrium equations, and Eqgs. 37 are obtained
from the conditions of continuity of displacements at the interfaces between
the layers, Eqs. 35.

Vol, 287, No. 5, May 1969 433



Robert Schmidt

Boundary Conditions

The natural boundary conditions along the edge = = constant may be
written in the form

Ni =0, (39a)
S;+kH; = 0, (39b)
N .

Mi =0, (39¢)

i=1,3,...

N .1, N1
N (Q;+—H’y) + ¥ k=0, (39d)

i=13,... B j=24,..

wherein @ should be calculated from the moment equilibrium, Eq. 31d. The
imposed boundary conditions present no great difficulties.

Cylindrical Shells

We now reduce the developed general equations to the rather practical
special case of circular cylindrical multisandwich shells. Using the cylindrical
coordinates z, ¥ = af, p = a +2, where o is the radius of a suitable reference
surface of the thin shell, we have R =c0, r =a, K =0, k = lla, A=B=1,
so that the system of governing Eqgs. 36 assumes the form:

Ni,z+S’iy+ch+l—ch'1 =0, (40a)
. . . . .
Ny + 8+ (M3, + HY) + 734 -2t = 0, (40b)

N
2 [M;m +2H, + My + Now g,

i=1,3,...
1 . ; 1 . 1
+ Si (2w,ac1/ T a v,%z) + N:/ (wmu “a U,lu - a)]

N_—l . .
+ bj('r?c’z + ’Tg/,y)
j=24,..
hy hy
= Z1~ZN_§(Xl,z+:Yl,y) _7('XN,Z+YN,ZI)’ (400)
in which
. GI
% = h_,z (Ui =%+ 050 ,5), (41a)
2
7 = ﬁ (01— +bw,), (41b)
and !
. . . 1 .
Mi,,+2H, + M, =D, (V4 w——V? v}y),
where
2 32 82 d V4 V2 V2
= w + a‘yz an = .
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For the case of regular sandwich shells, i.e. N = 3, with identical internal
and external facings, the governing equations may be written in the form:

+ +

N +8, =§HX, - Xy), (42a)
+ + 1 + +
Ny.u'*‘S,z‘l'a( y,y+fl,m) = %(Yl_YN)a (42b)

a
b, (- b bGy (5 L b,
-——Tz<u,x+2w’m ——h; Uy 3 Wy

h

=HZy—2Z,) +Z(X1.z+XN,w+Yl,U+YN,y)’ (42¢)

- - 2@G b
Nz,:c+S,y~72_ (ﬂ’—'—éw,x) = _%(X1+XN): (42d)

= - 1 = — 2@, b

Ny,y + S,J: -+ a (ﬂ/ly’y + H;z) — Ty ('{7 + é w,y) = — %(Yl 4 YN)’ (426)

2

wherein

N, = YN® +ND], N, = }{N® - ND), (43)

and so on, and
h=h =hy, D=D =D,
G, =G, G,=G2.

Discussion

The system of N + 2 differential equations, (36), together with the appro-
priate boundary conditions, may be solved for the displacement components
of the middle surfaces of the stiff layers. Having obtained these, the remaining
quantities of interest can be easily calculated by means of explicit relation-
ships.

Of course it is not easy to solve the present system of equations for an
arbitrary shell. However, there is a number of practical shell and plate
problems whose solution can be obtained by means of well-known mathe-
matical methods (e.g. linear and nonlinear bending of rectangular plates and
cylindrical shells, axisymmetrically loaded circular plates and some shells of
revolution).

The governing equations, (36), may be simplified in several ways.

First, they may be linearized by omitting products of displacements, of
their derivatives and of forces. This would result in a very general linear
theory of thin multisandwich shells. No such theory is in existence at present.
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Second, by limiting the number of layers to three, a nonlinear theory of
sandwich shells would be obtained. If linearized, this theory would be mote
general (as it is not for “shallow’ shells only) than that in (13).

Third, some of the terms multiplied by the principal curvatures may some-
times be neglected as small compared to other terms in some of the equations.

Fourth, by setting D; = 0, membrane characteristics could be assigned to
the ¢th (stiff) layer.

The governing equations of this contribution, if linearized and specialized
to multisandwich plates with isotropic weak layers, agree with Bolotin’s
theory (1). If specialized to cylindrical sandwich shells, the present theory is
similar to Kurshin’s (14) except that Kurshin does not consider tangential
loads and neglects the terms v/a as compared to w . This does not mean that
Kurshin’s theory is inferior for all possible problems for there exists the fact
of two errors canceling each other. However, if the critical hydrostatic
pressure acting on an infinitely long regular cylindrical tube (N = 1) is
calculated, Kurshin’s theory yields p, = 4D/a® and the present theory,
Per = 3D/a®, which is the correct result (15). However, neither theory,
despite Kurshin’s presentation of a system of buckling equations, may be
relied upon when it comes to calculating buckling loads. A dependable theory
of buckling is under development by the author. At this point it may be
stated that a sandwich or multisandwich shell may not be assumed as “thin”
in the derivation of a dependable buckling theory.
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