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ABSTRACT: A system of nonlinear ckifferential equations governing the statical behavior of 
multisandwich shells built up of stiff and weak layers is derived in this contribution. The 

stiff layers are assumed to be ela&c, isotropic, and obeying the Kirchhoff-Love hypothesis. 

The weak layers are assumed to be elastic, orthotropic, and deformable in tangential 

directions. The thickness of the shell is small compared to its radii of curvature. The shell 

may be of arbitrary shape. The derived system of equations is specialized to cylindrical 

shells and compared with the equations of Kurshin for sandwich shells and the equations 

of Bolotin for multisandwich plates with infinitesimal de$eetions. 

Nomenclature 

x9 Y, 2 

K,k 
R,r 

a,B,Y 

A 
h 
b 

Shell coordinates based on curvature lines. z is the normal distance outward 
from a reference surface 
Principal curvatures of middle surface of a layer; K = l/R, k = 1 /r 
Principal radii of curvature of middle surface of a layer 
Lame coefficients for curvilinear orthogonal coordinates; y = 1 for shell 
coordinates 

a@, Y, O), R = /%r, Y, 0) 
Thickness of a layer 
Normal distance between middle surfaces of two neighboring stiff layers, 

bj = Q&+r + 2h, + h,-J 
1, 3, . . ., N. Index i is used as either subscript or superscript on a letter to 
indicate a stiff layer 
2, 4, . . . . N - 1. Index j is used as either subscript or superscript to indicate a 
weak layer 

A comma before a subscript indicates partial derivative with respect to that sub- 
script. Other symbols will be defined in the text wherever thay occur first. 

Introduction 

A typical multisandwich shell consists of N layers of different thicknesses 

and different properties of materials. $(N + 1) of these layers are stiff and 

$(N - 1) layers are weak. In the case of the common sandwich shell (N = 3) 

the stiff layers are usually referred to as facings and the single weak layer 
as core. 

* This research was supported by Grant GP-2702 of the National Science Foundation. 
The author also wishes to acknowledge the efforts of Mary Kitto in typing the 
manuscript. 
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Multisandwich shells and plates find application in the construction of 
self-sealing satellites to provide puncture protection for astronauts against 
micrometeoroids (“space nails”). In this application the number of layers 
would normally be five or seven. In general, multisandwich shells may be 
used with advantage whenever several different substances (e.g. a thermal 
insulator, a sealant, and a radiation shield) must be separated from each 
other within an integrated skin-like structure, such as a space ship, a fuel 
tank, a structure on the moon. 

The literature concerned with the theory and analysis of multisandwich 
plates and shells is not extensive. Bolotin (1) gives a rather thorough 
discussion of multisandwich plates with transversely rigid weak layers and 
flexing stiff layers; (2) is mainly a heuristic, limited study of five-layer plates. 
Kao (3) treats the simple problem of axisymmetrically deformed cylindrical 
multisandwich shells composed of two transversely rigid weak cores and 
three membrane layers. Liaw and Little (4) develop the governing equations 
for multisandwich plates built up of membrane layers and orthotropic shear 
cores. These four contributions present linear analyses only. Wong and 
Salama (5) discuss the overall buckling of multisandwich plates composed 
of membrane layers and orthotropic, transversely rigid weak layers. Vasek (6) 
develops a general nonlinear theory of multisandwich plates in the sense of 
FBppl-von K&man, assuming transversely compressible orthotropic weak 
layers. 

For a survey of the literature on regular three-layer sandwich plates and 
shells, see (7, 18). 

The present contribution is concerned with the formulation of a rather 
general nonlinear theory of multisandwich shells of arbitrary shape. This 
theory is based on the following assumptions: 

(1) The stiff layers are linearly elastic, homogeneous, and isotropic. The 
weak layers are elastic, homogeneous, and orthotropic in the directions of 
the coordinate lines. 

(2) The stiff layers obey the Kirchhoff hypothesis and behave nonlinearly 
in the sense of Fijppl-von K&m&n. The weak layers cannot transmit stresses 
in tangential directions and are inextensional in the transverse direction. 

(3) The shell is thin in the sense that its thickness is very small compared 
to the radii of curvature. It is not “shallow”, however. 

(4) The thicknesses and the materials of layers may be different. 
(5) The layer-to-layer bonds are strong enough so that under all loadings 

no bond failure will occur. 

Some Results of Geometry of Surfaces: Shell Coordinates 

A surface may be defined by the equations X = X(x,y), Y = Y(z,y), 
Z = 2(x, y) in which X, Y, Z are rectangular coordinates and x, y are 
parameters referred to as “surface coordinates”. 

Let the surface under consideration be the middle surface of a layer so that 
x, y are the curvilinear coordinates on this surface. Now measure a distance 
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z along one of the radii of principal curvature to the middle surface, away 
from the end of this radius. Then x, y, z are space coordinates. If we hold 
y and z constant, for example, then x may vary along a curve. This curve is 
called an x-coordinate line. Hence, we may speak of x-, y-, or z-coordinate 
lines. The z-coordinate line is always straight in our shell-coordinate system 
x, y, x. If x-, y-, z-coordinate lines are normal to each other, we have an 
“orthogonal” coordinate system. We assume here that x-, y-coordinate lines 
coincide with the lines of principal curvature of the surface on which they 
are situated. Such an orthogonal coordinate system is used in the present 
work. 

The distance ds, between two neighboring points is determined, in t’he 
orthogonal coordinates, by the equation 

dS; = 01~ dx2 + ,8” dy2 + y2 dX2, (1) 

where 01, ,8, y are the Lam6 coefficients. For shell coordinates y = 1. 
In the shell coordinates the distance ds between two neighboring points 

on the middle surface of a layer is determined by the equation 

ds2 = A2dx2+ B2dy2. (2) 
It is easy to show that 

01 = A(l+Kz), /3 = B(l+kz), (3) 

wherein K, k are the principal curvatures of the surface and A, B are functions 
of x and y only. We also note that K = K(x, y), k = k(x, y). 

It is often advantageous to make use of Codazzi’s relations (8) 

EA,, = (KA),g, KB,, = (kB),z (4) 
from which 

AK,, = (k-K) A,,, Bk,z = (K-k) B,,, (5) 

where a comma before a subscript indicates partial derivative with respect 
to that subscript, e.g. (KA),u = alay( 

We also observe that 

A/3,,, = aB,,, Ba,, = P 2/> 
c+=KA, &=kB 

in view of Eqs. 3 and 4. 

(6) 

Some Results of Continuum Mechanics 

In the shell coordinate system the expressions for strain components 
assume the following form (9, 10): 

E, = e,+~[e~+(~e,,+W,)2+(~e,--W,)2], Pa) 

ey = e,+~[e~+(aezy-WB)2+(Qeyzl+Wz)2], (7b) 

E, = e,+~[e,2+(3e,+W,)2+(~eyZ-WZ)2], (7c) 
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wherein 

YXY = exy + e,(* ezy - 4 + e&i ez2/ + 4 

+ W,,- w,) (8 evz + wzL (74 

Yxz = erz + e,(+ e, + w,) + e,(& erz - w,) 

+ (4 esy + 4 (4 eus - wzL Ve) 

Yvz = eyz + e,(-he,, - w,) + e,(* egz + w,) 

+ (1 erg - 4 (3 e,, + w,), (7f) 

e, = 1 i L~,+A,~~+KAW , W 
a 

eu=A 
P i 

Vg+B,,z+kBW WI 

e, = Viz, (SC) 

(84 

are the strain expressions of the linear theory, and 

2w, = ; K~U),,- J+2, Pb) 

2% = f HP v,, - W),J PC) 

are the well-known expressions for the components of a curl. 
In the case that strains and rotations are small compared to unity (but not 

infinitesimal), the equations of equilibrium, in the absence of body forces, 
may be written in the form (9): 

426 dournal of The Franklin Institute 



Large Dejections of Multisandwich Shells qf Arbitrary Shape 

where 

.fm = 7x2 + % Txu - +/ ux, 

fucz = Txu - og au + WY Tuz, 

(llc) 

(1 W 

fyy = *y + %Txy - % Tuz, We) 

fua = Tuz + ux of/ - q/ TxyY (llf) 

fzx = 7x2 - % Tyz + uy uz, (llg) 

fz, = 7162: + % Txz - % *w (llh) 

fzz = *z + wx Tuz - WY Tm (lli) 

in which u’s and T’S denote the “engineering” components of stress, e.g. a, is 
the normal stress in the x-direction, 7X2/ is the shearing stress in the y-direction 
on an element of area normal to the x-coordinate line. 

In writing the foregoing equations free use was made of Eqs. 6. 

Weak Layers 

The layers of the shell are numbered 1, 2, 3, . . . , N. Thus, since the weak 
layers are always sandwiched in between stiff layers, they are denoted by 
j = 2, 4, . . . ) N - 1, j always being an even integer, i.e. as an index, letter j 
always designates the jth (weak) layer. 

For simplification, indexes will not be used under this heading. It is under- 
stood that all entities pertain to the jth (weak) layer and its middle surface. 

For a weak layer it is customary to assume 

OX = (Ty = TXu = 0 and &z = 0. (12) 

Since the Fiippl-von Karman nonlinearity is, to a significant extent, due to 
these stresses, we may use equations of the linear theory for the weak layers. 
Thus, the three equations of equilibrium 10 become 

; (+-xz) + KAbxz = 0 or g ( a"/?Txz) = 0, W4 

$ (@T,,) + ICBO~T~~ = 0 or g (afi2 TJ = 0, (13b) 

The first two equations are easily integrated to yield 

c~/~TX~ = A2 BT~, c@“T,_ = AB2~u, (14) 

where TX, Tu are functions of x and y only. In view of assumptions (12), and 
the observation that further steps will involve integrations, we may assume, 
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for the weak layers, that 

ol=A(l+Kz)L4, P=B(l+kx)zB 

in the foregoing equations. Then 

7x3 = 7%) TyzI = Ty, (15) 

i.e. the transverse shearing stresses do not vary across the thickness of a 
weak layer. Also, by simple integration of Eq. 1312, 

08 = &, Y) - zwT !/I, (16) 
wherein 

T = (VW [(%J,, + b%,),gl (17) 

and (T is a function of integration. 
The stress-strain relations for the orthotropic weak layers, in view of the 

basic assumptions (12), simplify to the usual form (11): 

72 = Cz~mzI, ry = %yl/z, (18) 

where Gz and GY are moduli of rigidity of the weak layer in the transverse 
direction. 

Using Eqs. 7,8, 15, and 18, together with the assumption of linear behavior 
and negligibility of Kx and lez in comparison to unity, we obtain the following 
expressions for the displacement components of a weak layer in the direc- 
tions of the coordinate lines on an undeformed reference surface (middle 
surface in this paper) : 

Iv = w(x, y), 

u = u(x,y)fr(~-;w,~), 

v = v(x,y)+z(~-$w,~), WC) 

where u, v, w are functions of integration whose meaning is obvious. Thus, 
in order to describe the behavior of a weak layer, we must determine the 
five arbitrary functions of x and y, namely, rz, ry, u, v, w. This is possible 
by using the conditions of continuity of displacements and stresses at the 
interfaces between layers, and the equations of equilibrium for the stiff layers. 

Note that w = wi = wj according to the assumption that all layers are 
inextensional in the transverse direction. 

Stiff Layers 

To denote the stiff layers we use odd integers as indexes. Any one of them 
will be represented by the letter i = 1, 3, . . . , N. Under the present heading 
indexes will not be used, in order to simplify printing. It is understood that 
all entities pertain to the ith (stiff) layer and its middle surface. 
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We use the Kirchhoff hypothesis to describe the behavior of each of the 
+(N+ 1) stiff layers. According to this hypothesis, we may take 

“a = Yxz = Y2/B = 0. (20) 

With these conditions, Eqs. 7c, e, f may be integrated for U, V, W (12). 
Keeping only those terms that are required by the FGppl-von Karmbn con- 
cept of nonlinearity (theory of plates and shells with moderately large 
deflections), we obtain 

u = u+zw,, v = 2:-zw,, w = w, (21) 

where us v, w are functions of x and y, and 

WY = (l/B)w,,- kv, wU = Ku-(l/A)w,,. (22) 

With these results, expressions for strains, Eqs. 7a, b, d, become 

(23a) 

(23b) 

Yw = e zy ,,,+;A,uw, 9 (23~) 

after neglecting several small-order terms and using the symbols 

e, = ~u,,+&A,~+Kw, 

1 
e, = ~~,,+;~B,~+lcw, 

Pa) 

(24b) 

(24~) 

The stresses are determined by using Hooke’s law and Kirchhoff’s hypo- 

thesis (8). They are given by 

(25a) 

E 
uy I.-&!2 

= - (Ey + YES), (25b) 

TxY = %&I, (25c) 

where 
E 

G = 2(1 +u)’ (26) 

We now direct attention to the equilibrium conditions for the stiff layers. 
We strive to eliminate the independent variable z from the differential 
equations of equilibrium 10. For this purpose it is convenient to introduce 
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the so-called “stress resultants”. They are defined as follows: 

N, = s uxa2, CW 

Nu = s uua2, Wb) 

s= s Txu a2 (27~) 

(274 

M, = 
s 

Xa, ax, Pf) 

Mg = 
s 

zag az, Gw 

H = 
s 

2r2,az, F’h) 

where all the integrals are definite integrals which must be evaluated between 
the lower limit z = zi = - &h and the upper limit z = zi = ijh. These definitions 
are not “exact” in the sense that we assumed Kz, kx to be much smaller than 
unity. We refer to the quantities N,, N,, S as forces (per unit length); Q,, Qy 
as shearing forces ; M,, Mu as bending couples ; and H as twisting couple. 

Using Eqs. 22-25 we can determine the expressions for the stress resultants 
N,, N,, S, M,, M,, H in terms of the displacement components u, v, w of the 
middle surface of a stiff layer. Thus 

K=& [e, + &.o~ + v( e, + &J:)] , 

s=2(1+V) zy 
A(e -wzwy), 

~A,,-co~,, )I > 
, 

ma) 

(2se) 

3 Wf) 
in which e,, e,, exy and wz, wy are given by expressions 24 and 22, respectively. 
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And Eh3 

D = 12(1-v”)’ 
(29) 

Next we simplify Eqs. 11 by noting that, for stiff shells, “rotation” w, is 
much smaller than wz or wy, stress uz is much smaller than the other five 
stresses, and that the products of the “rotations” and stresses are much 
smaller than stresses a%, uy, 7z2/, but not uz, rz8, ryz. Hence, we may take 

fz, = uz7 f,, = ~QP fm = 7x2 + ox Txy - WY um 
f,x = Txy3 fall = ua/, f,z = 71/z+ %c~zl--wy~x2/’ 

1 

(30) 

fm = ~XZP fa, = -rum fzz = us + WX~YZ: - %l~xv 
where wx, wy are given by expressions 22 with a sufficient degree of accuracy. 
Note that wz, wy are functions of x and y only. 

Substituting expressions 30 in Eqs. 10 and integrating these through t,he 
thickness of a stiff layer we obtain three equilibrium equations in terms of 
forces. Two moment equations are established by multiplying the first two 
of Eqs. 10 by z and then integrating these equations through the thickness h. 
The third moment equation that can be obtained is an identity (8). 

In this fashion we get 

;(BNx)+;;(A2S)-B,,,z;+ABK&, 

+AB[~x?(~,y,~)-~,(z,?/;-~)] = 0, 

$(A~v,)+&$Bw)-A,~N~+AB~&, 

+~B[~~~(~,y,~)-~~,~,y,-~)] = 0, 

$(BQ,)+~(AQ,)-AB(KN~+k~~)+~(wxBS-w,BNx) 

+&&NV-wvAS)+AB [u~(x,Y,~)-u~(~,Y,-~)] 

..,,[,(,,Y,~)-T,,(~,Y,-5)] 

-ABw,li,(z,Y,~)-r,(r,Y,-~)] = 0, 

i&BMz)+&$~2~)-~,,~~U-~B~x 

+~hAB[,?i~;y,~~+T~*~x,y,-~~] = o, 

~(A~~~)+~~(B2H)-A,~.Il,-ABQ, 

+thAB[r,,~~,y,~~+r~~~x,y,-~)] = o. 
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We note that 

T,,(x, y, @,I = 4w ~,z(x, Y, - @,I = &, 

T&G Y, +,h,) = Xv, T&, Y, - &I = Yl> (32) 

u,(x, Y, 3h,) = z,, a,(~> Y, - iih,) = z,, 

are the distributed load components on the exposed surfaces of the multi- 
sandwich shell, and 

Tz&, y, +hi) = T$+‘, T&, y, -&hi) = 7$-l, 

Tys(X, y, +hi) = T;+‘, Ty&, y, - +hi) = +I, 
‘i 

c+, y, *hi) = &+l+ +hi+l Ti+l, 
(33) 

a&, y, - ihi) = c+-1- +hi_l Ti-1 I 

follow from the continuity of stresses at the interfaces between the stiff 
layer i and the adjacent weak layers i + 1 and i- 1 (see Eqs. 16 and 17). 
Note that the placement of indexes as either subscripts or superscripts is 
governed by convenience. 

Continuity of Displacements at Interfaces 

Since the layers are bonded rigidly to each other, we must have continuity 
of displacements at the interfaces. The continuity conditions have the form : 

ui + ghj CO; = u~+~ - 3hi+1 

vi + $hi CO; = vi-l + ihi_, 

P*a) 

Wb) 

(34c) 

Wd) 

since wi = wifl = w~_~ = w, according to assumptions 12 and 20, and 

Ai ,z Ai+l z? A,_1 z A, 

Bi z Bi+l =: B,_l z B 

for thin multisandwich shells. 
Prom Eqs. 34 by simple subtractions, we obtain the following useful 

formulas : 

Wa) 

after neglecting Kh and kh terms as small compared to unity. 

bj = +(hj+l+2hi+hj_J, j = 2,4, . . . . N- 1. 

Wb) 
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System of Governing Equations 

If the displacement components u, V, w of the middle surfaces of the 
&(N+ 1) stiff layers are chosen as the unknown functions, the system of 
governing differential equations to be solved simultaneously consists of 
N +2 equations, since wi = wi = w. All the remaining quantities of interest 
can be calculated from explicit relationships. There is no unique way of 
presenting this system of governing equations. Therefore, compactness will 
govern in what follows. 

The system of equations to be solved may be presented in the form: 

(BN& + i (~2 s~),~ -B,+ N; + K [ (BM;),, +- i (~2 H~),~ - B,, M;] 

+ AB(T;+~ - ~$-l) = 0, (364 

(A~~),,+~(B~S~),,-A,~N~+~~[(AM~),~+~(B~H~,,,-A,,M~] 

+ AB(T;++~- T;-1) = 0, Wb) 

- (ABK - C& A,, + w;,, B) N; 

N-l 

+ . c b,[(%),,+ (&,),,I 
3=2,4,... 

= 
AB'& -2~ -2 [(BXl),z + (AYJ,gl -2 [(BXN) z + (AYN),u]), 

\ 
(36~) 

where 

Wa) 

(37b) 

bj= $(h,+l+2hj+hj_l), j=2,4 ,..., N-l. (38) 

The stress resultants and the “rotations” are expressed in terms of the 
displacement components u, v, w by Eqs. 28 and 22. 

Equations 36 are the equilibrium equations, and Eqs. 37 are obtained 
from the conditions of continuity of displacements at the interfaces between 
the layers, Eqs. 35. 
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Boundary Conditions 

The natural boundary conditions along the edge x = constant may be 
written in the form 

Ni = 0, (394 

&+kH, = 0, (39b) 

; M;=O, WC) 
2=1,3,... 

(394 

wherein Q$ should be calculated from the moment equilibrium, Eq. 31d. The 
imposed boundary conditions present no great difficulties. 

Cylindrical Shells 

We now reduce the developed general equations to the rather practical 
special case of circular cylindrical multisandwich shells. Using the cylindrical 
coordinates x, y = a9, p = a + z, where a is the radius of a suitable reference 
surface of the thin shell, we have R =q r = a, K = 0, k = l/a, A = B = 1, 
so that the system of governing Eqs. 36 assumes the form: 

N~z+~~~+7~+L,.i-1 = 0 z 2 9 (hOa) 

N$,y + ,.S’$ + ; ( M;,y + Ha) + T;+’ - T;--’ = 0, (4Ob) 

g 
i=1,3,... 

M&x, + 2H&, + M&, + N; w,~% 

+A$ 2w 
i 

59 ml-; ,z 

N-l 

+ j=g4 bj(TL + Tj,,y) 
,... 

= ‘1 -‘A’ - 2 cxl,x + y,,,, - 2 (.& + YN,& (4Oc) 

in which 

and 

where 

. Gj 
‘% = e (uj+l- Uj-1 + bj W,,) , 

+ - 53 (v 

u-h j+l - ?)j-l + b, w,& (41b) 
j 

%zz +2H;z,+M;,,, = -Di 
1 

V4w--Vv2v;$ 
a 

, 

v3=a2+%2 and ~4~~3~2. 

ax3 ay3 
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For th,e case of regular sandwich shells, i.e. N = 3, with identical internal 
a’nd external facings, the governing equations may be written in the form: 

wherein 

A$,, = +[Ni3) + N;l)], Ii?, = &[Ni3) - N;l)], 

and so on, and 

h = h, = h,, D = D, = D,, 

G 5 = Gp,, Gv = Gb2’. 

(424 

(42b) 

(42c) 

(42d) 

(42e) 

(43) 

Discussion 

The system of N + 2 differential equations, (36), together with the appro- 
priate boundary conditions, may be solved for the displacement components 
of the middle surfaces of the stiff layers. Having obtained these, the remaining 
quantities of interest can be easily calculated by means of explicit relation- 
ships. 

Of course it is not easy to solve the present system of equations for an 
arbitrary shell. However, there is a number of practical shell and plate 
problems whose solution can be obtained by means of well-known mathe- 
matical methods (e.g. linear and nonlinear bending of rectangular plates and 
cylindrical shells, axisymmetrically loaded circular plates and some shells of 
revolution). 

The governing equations, (36), may be simplified in several ways. 
First, they may be linearized by omitting products of displacements, of 

their derivatives and of forces. This would result in a very general linear 
theory of thin multisandwich shells. No such theory is in existence at present. 
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Second, by limiting the number of layers to three, a nonlinear theory of 
sandwich shells would be obtained. If linearized, this theory would be more 
general (as it is not for “shallow” shells only) than that in (13). 

Third, some of the terms multiplied by the principal curvatures may some- 
times be neglected as small compared to other terms in some of the equations. 

Fourth, by setting Di = 0, membrane characteristics could be assigned to 
the ith (stiff) layer. 

The governing equations of this contribution, if linearized and specialized 
to multisandwich plates with isotropic weak layers, agree with Bolotin’s 
theory (1). If specialized to cylindrical sandwich shells, the present theory is 
similar to Kurshin’s (14) except that Kurshin does not consider tangential 
loads and neglects the terms v/a as compared to w,~. This does not mean that 
Kurshin’s theory is inferior for all possible problems, for there exists the fact 
of two errors canceling each other. However, if the critical hydrostatic 
pressure acting on an infinitely long regular cylindrical tube (N = 1) is 
calculated, Kurshin’s theory yields p,, = 4Dla3 and the present theory, 

per = 3Dla3, which is the correct result (15). However, neither theory, 
despite Kurshin’s presentation of a system of buckling equations, may be 
relied upon when it comes to calculating buckling loads. A dependable theory 
of buckling is under development by the author. At this point it may be 
stated that a sandwich or multisandwich shell may not be assumed as “thin” 
in the derivation of a dependable buckling theory. 
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