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. Abstract . L
We present new deformable spline surfaces for segmentation of 3—D medical im-

ages. We explore parametric surfaces of the form x(u, v) with two different topologies,
planar and cylindrical, that permit to segment fine anatomical structures. With re-
spect to earlier approaches by Cinquin’s team [LMLC91| in Grenoble or Médioni’s
team in U.S.C. [MSMM90] and also by Cohen et al. [CCA92] or Kass et al. [KWT87]
that minimize the “energy” of a deformable surface in a potential field, we perform

this optimization with successive approximations of dense data, and propose the key
following improvements:

e We show that the Euler equation has a closed form solution in a quadratic po-
tential field. Each approximation requires only one iteration.

e We use tensor products of splines to solve independently the system along pa-
rameters u and v. This enables us to work with large meshes of control vertices,
e.g. 10,000 vertices and more.

e With a regularly sampled potential field, each point in the same image voxel in
processed in the same way. We use a continuous potential field defined with 3—D
volumetric splines to avoid this problem.

When the deformation process stops, we end up with a smooth differentiable surface
where we measure principle curvature and directions. We describe next an original
algorithm that extracts lines of extremal curvature on the surface. We present experi-
mental evidence with real medical images that illustrate all the previous points.
Finally we give two marginal contributions. We outline the spherical topology for
spline surfaces. We use Ostrogradsky’s formula to compute the exact volume bounded

by such a surface. We also give some hints about the tricky topic of avoiding self-
mtersections.

Modéles Déformables & Partir du Produit Tensoriel de Fonctions
Splines

Résumé : Nous présentons un nouveau modéle de surface déformable pour seg-
menter des images médicales tridimensionnelles. Nous utilisons des surfaces paramé-
triques x(u,v) avec des topologies simples : topologie plane, cylindrique, torique et
sphérigue. Par rapport aux approches précédentes de U’ équipe de Cingquin ¢ Greno-
ble [LMLCY1], de I’ équipe de Médioni ¢ U.S.C. [MSMM90], de Cohen et al. @
Paris [CCA92] ou de Kass et al. [KWT87] ou l’on minimise [’ énergie d’une surface
déformable dans un champ de potentiel, nous résolvons le probléeme d’optimisation qui
en découle a l’aide d’ approximations successives de données denses, et nous proposons
les améliorations sutvantes :

e Nous montrons que |’ équation d’Euler associée au probléme d’optimisation peut
étre & chaque fois résolue de maniére non itérative, pourvu que le potentiel puisse
étre exprimé localement comme une forme quadratique des parameétres de la sur-
face (points de contréle).

e Nous définissons la surface comme produit tensoriel de fonctions spline, et résol-
vons indépendemment notre systéme le long des paramétres u et v. Nous pouvons
ainst utiliser de larges maillages de points de contréles, e.g. 10 000 points et
davantage.

e Avec un champ de potentiel échantillonné réguliérement, tous les points appar-
tenant au méme vozel sont traités de maniére identique. Nous utilisons un champ
de potentiel continu défini d l'aide de fonctions splines volumiques (voir figure 5).

La surface obtenue aprés déformation est différentiable, et nous mesurons continiment
courbures et directions principales. Nous décrivons un procédé original pour tracer
des lignes de crétes sur la surface, et présentons des résultats expérimentauz sur des
images médicales.

Enfin, nous apportons deuz contributions marginales : Nous décrivons la topolo-
gie sphérique pour des surfaces splines et utilisons le théoréme d’ Ostrogradsky pour
calculer le volume de surfaces splines fermées. Nous eraminons ausst le probléme des
auto-intersections de surfaces.



1 Introduction

The problem of segmenting and registering 3—D medical images is very important to phys-
cians. For instance, information contained in X-ray Scanner or MRI 1mages must be ex-
tracted and fused to help physicians for diagnosis or surgical planning. Research in 3-D
unage processing has achieved considerable progress in this attempt. In particular, it 1s now
possible to register fully automatically two 3—-D images of the same patient in the same
modality, with the help of stable feature curves (see [TGM~921). These characteristic curves
could even permtt a standard approach to observe the same individual in time, to compare
different individuals [Cut89], or to compute statistics.

Our work 1s the continuation of the work accomplished by Monga [MBF92|, Thirion [T(92]
or Cohen et al. [CCA92| that used differential geometry of surfaces to extract robust and
useful features from 3—D volumes of data, and also features that are invariant to some classes
of deformations.

In our formulation of the problem, the segmentation with deformable surfaces is decom-
posed into two parts: Part (1) consists in characterizing contour points and computing a
3 — D distance potential. When done with a sequential machine, this operation may take
prohibitive computing time. Part (2) consists in piloting a parametric surface in the 3 — D
potential towards zeros of the potential. We concentrate on part (2).

Figure 1: After 14 iterations with a surface that counts finally as many as 256 - 128 control
vertices and 280 - 160 sample points (see section2.6.2). the segmentation is exhaustive. and
we represent the “global curvature™ k? + k7 that measures the density of bending energy
accumulated. The color ranges from blue to red in increasing magnitude of the curvature.
For this really huge model. the computing time is still tolerable: with a Dec 5900. one
iteration takes in average 42 sec. CPU.

The advantages of deformable surfaces for segmentation are the following: (1)Coutour



points belong necessarily to a unique surface, and the topology of the resulting surface is
simple. For instance, These are key features when dealing with the segmentation and the
representation of the human face; (ii)The lack of information (contour points) in small regions
can be overcome by the regularity of the surface; (iii)Differential structures, as well as the
connectivity between these structures, can be easily inferred from the surface representation.

In Section 2, we present our original contribution in detail with copious experimental evi-
dence. We see the surface deformation process as a sequence of least squares approzimations
of dense data. To our knowledge, this approach is original, even though it is very related to
earlier works, especially from Cinquin’s team [LMLC91] or Médioni’s team [MSMM?90], who
pioneered in the development of spline deformable curves and surfaces. We thus design a
very efficient algorithm which is able to deal with really large meshes with a moderate com-
putational burden. The number of iterations is reduced thanks to a local quadratic fit of the
potential field in which the surface evolves. After few iterations, the shape converged towards
an acceptable solution, except from isolated points or regions. We exhibit as an example the
segmentation of the face of G. Malandain (see section 2.6.1) which is nearly performed real
time: one iteration takes 7.3 seconds on a Dec 5900, including preprocessing (sections 2.4
and 2.5 provide a detailed analysis of the complexity). The speed of the method was not
our primary concern here, and we concentrated on differentiability and ways to obtain a high
resolution with a B-spline surface. However, we believe that real time deformable models
will soon operate. Since differentiability is costly, we might use simple polygonal models for
the convergence process and fit a spline when the polygonal surface is stabilized. Lastly, we
introduce in section 2.6.2 an iterative refinement of the mesh that permits to obtain a higher
degree of precision with less computations.

We take advantage of the differentiability of our model and compute curvature and crest
lines that are invariants of the euclidian group and are thus used for matching. For instance,
we represent in Fig. 1 the sum of squared principle curvatures or “global curvature” after
only 15 iterations of our method with a very fine grid. We can also measure the evolution
of the curvature as the surface deforms. Lines of extremal curvature of a surface were
previously computed inside the volume of 3—D data [BMGA92] when the surface had an
implicit equation. As an alternative, we can also draw the crest lines on a smooth parametric
representation of the surface. We have developed an original algorithm for this purpose that
we depict in section 3. This substitute algorithm is very promising for even surfaces as in
Fig. 1. For particularly smooth surfaces, previous crest lines extraction software [TG92] is
likely to produce unstable lines.

Next, we concentrate in section 4.1 on topologies that permit to describe closed surfaces
i.e. toric topology and spherical topology. For these type of surfaces, we will see how to
use Ostrogradsky’s theorem to compute the exact volume that is bounded by the spline
surface. This could be particularly useful for volume measurements of organs before the
transplantation.

Finally, we see in section 4.2 how the precomputation of the potential image could be
skipped. Note that this off-line computation and the storage of the resulting distance image
make sense for other purposes, such as rigid and non-rigid matching of 3 — D curves, sur-
faces and images. Instead, we will simulate the potential field on-line, i.e. determine on-line
the best displacement field along the deformable surface normal. We will see that the dis-



placement field can constitute a tubular neighborhood of the surface under some assumptions
related to the curvature of the surface. This will help us to avoid self-intersections of the
parametric surface.

In summary, we significantly extend previous 3—D segmentation methods using de-
formable surfaces and give a complementary approach for the extraction and the matching
of crest lines.

2 3— D Segmentation with a Deformable Surface

We suppose that contour points are characterized with a contour detector such as Canny
and Deriche’s (see Monga, Malandain et al. [MDMC90]) and represented as points in a 3— D
image. Further, a distance transformation (see Danielsson [Dan80]) maps the contour image
to a distance image d that takes zero values on contour points. This distance image can
be seen as representing a 3—D potential field d2. This potential integrates elastic forces
that would pull the surface towards the contour points as if springs were attached from each
surface point to some contour point. In order to minimize the integral of this potential
over the surface, several approaches exist, using finite differences or finite elements as well
as physically based methods including modal analysis [PS91, NA92). Note that analogies
exist between different formulations, e.g. the stiffness matrix in the mechanical formulation
is equivalent to the spline matrix A of section 2.3, thus a modal analysis would be possible
using splines.

2.1 Energy minimization as an approximation problem

Let us write an “energy” term & for a surface plunged in a square-distance potential field.
This energy includes a surface (or internal) energy & expressed with the surface x{u,v)
derivatives. The first derivatives x, and x, measure the tension. The second derivatives
Xyuu,Xuy and X,, measure the bending. We believe that energy terms can be extended to
higher derivatives, which measure less intuitive but equally interesting energies.

£ also includes an external energy term &, corresponding for instance to elastic forces that
are attached between the surface and the contours. Although these forces are not known
directly from the 3 — D original image, they can be inferred from an euclidian-distance
potential that gives everywhere the distance d between the surface and the contour. We
have for instance, with the choice of a 4th order energy term which is classical for bicubic
surfaces, by analogy with the bending energy for a rod in 1 — D (the reader may consult for
instance [Cin87)):

2 = 2E, + £.) = T/axfmw%-/;dz

The objective is now to minimize &, that is to solve an optimization problem. In order
to perform this optimization, we distinguish between the following techniques: (i)Finite
Elements: We derive first an euler differential equation. We project x on a limited number of
finite support basis function and compute integrals of products involved in the euler equation
for this functions. We end up with a linear system. (ii)Finite Differences: We also derive
first an euler differential equation. We discretize the surface in samples x;j, we discretize



also the differential euler equation and obtain again a linear system. (iii)Approximation
problem: We discretize the surface in samples x;;, and write a discrete energy term. We
choose smooth approximating functions that will minimize the discrete energy. A new Euler
equasion corresponds to this discrete energy, provided we differentiate with respect to the
coefficients of the functions. Schematically, we approximate integrals in (i) by Riemann
sums.

Solution (iii) was not explored to our knowledge, yet it permits to combine advantages
of finite differences (no integrals to compute over basis functions) and of finite elements
(smoothness of the solution, which is also known between sample points, flexibility in the
size of basis functions).

We thus take on solution (iii), and write the discrete energy term E as:

i (4]

If instead of d?, we have a quadratic function of the surface point x, i.e. (X ~ Coxtr)?, Coxtr
extrapolated contour point from the knowledge of the potential, we can solve a penalized
least squares problem, i.e. miminize:

TZ xiuvv + Z(X - 0)2
ij i

Although the two notations d? and (x — ¢)? lead to the same solution, they induce a great
difference in the speed of the convergence. This very simple observation is a key point for
the success and for the efficiency of our method. Fig 2 visualizes this difference.

With the first notation, we will need many euler steps to reach a minimum (Fig. 2a). In
Appendix A we derive the formulation of the problem in this case which turns out to be the
classical formulation. Linear systems could then be solved both implicitly or explicitly.

The second notation represents a quadratic approrimation of the potential, and we will
find a minimum in a reduced number of iterations (Fig. 2b). (By quadratic, we mean of
course quadratic in terms of the surface parameters). We concentrate on this approach.

Figure 2: a. left: Classical euler steps to minimize a function.
b. Right: Accelerated convergence with successive quadratic approximations.

We believe that B-splines are especially well suited for solving such a problem, in virtue of
their best and smoothest approximation properties (see De Boor [dB78]) and also because of
their algorithmic advantages. In addition, B-splines functions have a finite support and thus



serve frequently as a basis for finite elements. For these reasons, we choose B-spline basis
functions for the representation of the surface and we derive the Euler equation. Assuming
a quadratic potential field, this equation has a closed form solution.

2.2 Spline Formulation is Most Desirable

People familiar with spline surfaces might skip this section. It is not in the scope of this
article to give a survey on B-spline functions. Splines have been extensively studied and we
recommend to consult the following bibliography: Ahlberg et al. [JAJ67], De Boor [dB78],
Barsky et al. [BBB87], Farin [Far88], and Bohm et al. [BFK84] for a good survey. However,
we give a simple and minimal introduction that will be enough to understand fully our
implementation of the problem.

B-spline basis functions are piecewise polynomial with a finite support and a recursive
definition. The basis splines of degree 1 are simply the characteristic functions of the intervals
between real {u;} values called knots:

_ 1 uj <u< Uj+1
Bja(u) = { 0 otherwise

Successively higher-order splines are formed by blending lower-order splines:

U—u; Uj+k+1 — U
—Bjk(u) + —————B; u). 2
UjpK — Uj J ( ) Usi k41 — Ujbl J+1,K( ) ( )

BJ'.K+1 (u) =

It can be seen from this construction that Bj k.1 functions are globally C¥~!. Evaluation( 2)
is especially efficient (i.e. can be computed with divided differences) and permits to imple-
ment splines of all orders. For each application we implement the most adapted order. We
plot in Fig. 3a quadratic B-spline functions. In order to model a curve, we associate a control
point cx (3 coefficients for a 3 — D curve, 1 coefficient in the nonparametric case) to each
function. Note that with the shape of the functions in Fig. 3a, endpoints will be interpolated.
We call them “straigh?’ functions. It is also possible to obtain a closed curve, with the help
of functions as in Fig. 3b. We call them “circular” functions.

We now recall briefly the best and smoothest approximation properties for interpolating
splines of odd order (K = 2m, cubic K = 4, quintic K = 6, etc. This must be the reason
for noting order K = degree +1.) [dB78].

1. smoothest approximation: the spline Sx interpolating data x; minimizes the norm
J1isxtmp2

2. best approximation: the m-th derivative of the interpolant Sx{™ approximates the
m-th derivative of the underlying function x(™ in the least squares sense.

Recall that interpolation is equivalent to the least squares approximation of selected sample
points. Taking these considerations into account, we prefer to use cubic splines in the sequel.

In order to model a surface, we consider a tensor product of spline functions, i.e. a current
surface point x(u,v) will be written as x(u,v) = ¥ Br(u)Bi(v)exy. We are already able
to write the discrete energy E( 1) in terms of B-splines. We write in matrix z(7, j) of size
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Figure 3: a. left: Uniform quadratic straight B-spline functions. If a control point is
attached to each function, you obtain a C' curve that interpolates endpoints.

b. Right: Uniform quadratic circular splines. Set the two last control points equal to the
two first in order to obtain a closed C! curve.

We plot here quadratic functions for simplicity, but we implement splines of all order. Par-
ticularly, we make ample use of cubic splines, because of their property to minimize the
bending energy in 1 — D.

dim, x dim, x 3 all surface sample points x(i;,%;). We also define a control point matrix
c.(k.1l), dimc, x dimc, x 3. Notice that because we approximate, there are necessarily more
sample points than control points. We gather all spline evaluations Bi(#;) in a Matrix B,,
dim, x dimc,.

We next write matrix B, for the common cubic splines: for each sample point only 4
functions are non zero. Analogously, we define B,, dim, x dimc,.

)

T OO

Vo \ /

Under some regularity conditions on the sampling, i.e. {u;} real values, and on the
parametrization, {u;} values, we observe that the matrix B, has rank dimc,. Since ques-
tions regarding this rank value were repeatedly asked to the author, and also since proofs
are difficult to find (De Boor [dB78] gives a reference in p.200), we discuss this point in
Appendix B.

Next, we write the sample points matrix z as Bfc,B,. In doing so, we can only achieve
three simple topologies, planar topology, cylindrical topology and toric topology, summarized
in the next table.



vfunctions\ufunctions | straight ! circular |
e A e e
straight . planar _ILcylmdrlcal !

i

cireular | eylindrical | toric |

If basis functions are straight, isoparametric curves will interpolate end control points. If
basis functions are circular, isoparametric curves will be closed curves.

2.3 Euler Equation has a Closed Form Solution

With the above introduced notations, the discrete energy 2E( 1) can be written:
2E = ||B' e, By||* + ||dlf*

with the norm [|z(4,5)|]* = ¥ 2. Assuming cubic splines, we prefer to write the energy in
terms of the third derivative: ||Bl'c,B!'||2. This derivative is piecewise constant and thus
discontinuous. By constraining this derivative norm to be minimum, we implicitly constrain
lower order derivatives and we reduce the roughness component of the surface. Note that
since this derivative is constant on each interval between knots, one evaluation suffices to
compute exact quadratures, and also an exact expression for penalized least squares, where
the customary regularization term involves an integral [ rather than a discrete sum Y.

We take the gradient of E, VE, with respect to spline coefficients c,. Since we can only
measure the gradient of the distance field d on the surface x, we must apply the chain rule:
r = Bic,By, V||d(z(c;))||* = B,V||d(z)||? B:. We obtain:

VE = B"B"c,B"B" + B,(dVd)B. = 0 (3)

Refer to appendix A for the standard numerical solution of equation 3. Next, we write
the gradient of the potential as a function of the surface point x and obtain a closed form
solution:

VE = BJB!c,B'B!" + B,(z — c)B!,
with ¢, extrapolated “contour” matriz equal to matrix z¢ — dyVdy (index ¢ stands for initial

value or position). For simplicity, we note A matrix BB* (A, = B,B!, A, = B,B!), and
with a slight abuse of notation: A” = B B"",

| 0= Ayc Ay + AycsAy — BucBY. | (4)

( 4) is a linear system, i.e. the promised closed form. However, we would have here the
global minimum if the potential was truly quadratic. Instead, (z —c) is only a local fit of dVd
and the exact solution will issue from the iteration of the process. Of course, as visualized
in Fig. 2, few iterations will be needed in general. In addition, no step size needs to be
specified. Note that (i) there is no theoretical proof that we can find the global minimum
of the potential, as with classical “snakes”. (ii) there is however an exact measure of the
residual external energy F,, provided directly by the potential image. This information is
very useful for piloting the convergence process.



Note that the matrices A, and A, are symmetric positive because the associated quadratic
form is positive (¢, Ac, = ¢, BBtc, = ||Btc.||?, ||B'c,||? is a semi-norm) and because A and
B have the same rank from the same equality ¢, BBtc, = ||B'c,||? (c; is in the nullspace of
B! if and only if it is in the nullspace of BB!). Moreover, Appendix B tells us that this rank
is maximum so A, and A, are symmetric positive definite.

2.4 Resolution can be Separated for u and v

The separability, which is the second key advantage of our method is explained in this section.
We could here consider ¢, as a vector and write our system ( 4) as (which we classify as
“NOT separated”) :

HugeAc, = B,cB:. (5)

In the next figure is the doubly banded matrix HugeA. Each element has size dimc,, and the
number of lines and columns is dimc,. This matrix shape is frequent in 2-D problems.

dimc,
r( dimc, W‘
pr—ea
A.A,(0,0) A,4,(0,1) A,A4,(0,2) A,A,(0,3) 0 0 \
ALAL(0,1) A A,(1,1) A,A,(L,2) A A4,(1,3) A,A,(1,4) 0 \
ALA,(0,2) A,A,(1,2) A,A,(2,2) A,A,(2,3) A,A4,(2,4) A,A,(2,)) \
A AL(0,3) AuAL(1,3) AuA,(2,3) ALA,(3,3) A A,(3,4) ALA,(3,5) A.A,(3,6)
0 A AL(1,4) A A,(2,4) ALA,(3,4) A A.(4,4) A A,(4,5) AuA,{4,6)
0 Ay A,(2,5) A, A,(3,5) A,A,(4,3) A,A,(5,5) A,4,(5,6) )
\ \ \ \ \
Much more elegant is to solve (which we classify as “separated”):
A,.c, = BycBi;
followed by:
Ar,Co = Cy; (6)

(with A,, = A, + 1, AY, and A,, = A, + 7, A)') thus taking advantage of the symmetry of
the problem. The price to pay is to consider a different internal energy term FEj:

E; = Tu”th;CIBZle + TvHB:;”tCzBuW + TuTvHB:;”tCzBZ,H2= (7)

instead of 7||B)"*c,By'||*. The addition of matrix TA" to matrix A intensifies the positive
definite character of A and decreases its condition number. This is an important fact in of
the theory of regularization. As a surrogate for a proof, we show in Fig. 4 an experimental
plot of the condition number of matrix A, versus 7.

We adopt the compromise for the energy term( 7), use equation( 6) and analyze in the
nex: paragraph the advantage obtained in terms of computational complexity. In terms of
storage, the advantage is, of course, decisive. Take for instance a mesh of 100 x 100 = 10000
control vertices and compare the space needed to store matrices A,, and A, versus matrix
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Figure 4: Experimental measurement of condition number for matrix A, versus 7. The
obtainment of the optimum 7 is a non-trivial problem. However, there is a large amount of
7 values that ameliorate the condition number.

HugeA., for a floating point computation, i.e. 4 bytes per matrix element. Assume even
that these matrices are band matrices (i.e. exclude cylindrical and toric topologies!), which
permits a dense storage. We obtain 2 x K x 100 x 4 as compared with K x 100% x 4, i.e. for
cubic functions, 3.2 Kbytes versus 1.6 Mbytes. With a cylindrical topology, accounting for
the symmetry of the matrix, 200Mbytes would be theoretically needed, and unfortunately,
also in practice: The factorized matrix is rather dense and we know no obvious method to
reduce the storage space. Even if discussions about memory space are not fashionable, the
reader will agree that the above mentioned sizes are rather critical!

Because our matrices are positive definite (see above), we adopt Cholesky’s factorization
for linear systems and we compare in the next table the time complexities with and without
variable separation (See for instance [WR71] p.50-56). We assume the planar topology which
is the best case for the NOT separated method( 5). Recall that in the separated case( 6),
right hand sides consists of matrices instead of vectors.

co_mgaleiltx operation | NOT separated ( 5) separated ( 6)

. decomposition . dimc3dimc,deg? | (dimc, + dimc,)deg? |
decomposition v dimc,dimc, dimc, + dimc,
solution . dimci‘dimcvdeg | 2(dimc,dimc,)deg

 leading term | : [ O(dimcidimc,) | O(dimcydime,)

In sum, the advantage of the separated method( 6) is immense, both in terms of space and
time complexities, and the shortcomings due to energy term( 7) are not obvious.

2.5 Spline Interpolation of Potential d

We describe in this section the use of a continuous potential field, which is the third principal
characteristic of our method. Two main problems arise with potential field d, which is essen-
tially discrete: (i) We need to compute a useful gradient vector Vd. (ii) If two neighboring
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surface point belong to the same voxel, d and Vd should be different for those points. For
instance, we initialize a cylinder in a distance image originated by an ellipsoid. We compare
the elastic forces computed with a discrete gradient operator (see Fig. 5a) with the elastic
forces computed we the 3 — D interpolating splines we describe in the sequel (see Fig. 5b).

Figure 5: a. left: Synthetic data: A cylinder evolves in the potential originated by an
ellipsoid. We represent the cylinder after a few iterations. We plot elastic forces obtained
with a standard difference operator. The forces vary abruptly and many neighboring points
are subject to the same forces.

b. Right: We use 3 — D interpolating splines to compute a smooth and regular field of
forces.

The solution we adopt is to model continuously potential d, in order to compute contin-
uous gradient vectors and to extrapolate d in subvoxel precision. Techniques for modeling
3-D images are well known, and incorporate many different function types. Most popular
are nearest neighbor, linear and cubic B-spline interpolation as well as different convolution
methods involving polynomials, exponentials and cardinal sines (see Parker et al. [PKT88|,
Maeland [Mae88], Hummel [Hum83] or Cinquin [Cin87]). Cardinal sines are often considered
too costly. Nearest neighbor and linear interpolation suffer from well known shortcomings,
viz. they respectively shift or smooth the data (loss of sharpness). In addition, the gradient
would be respectively zero and constant, thus we eliminate these methods.

Cubic spline interpolation was considered one of the best methods in [Mae88], after
comparison of the spectra of the kernels involved for different functions. This particular
spectrum has a higher response in the pass band and a lower response in the stop band than
any other spectrum tested. We implement this method. In order to obtain the cubic spline
coefficients, we must solve a system for which the separation of variables is compulsory. This
operation is delicate and can be done off-line. However, it is interesting to keep these spline
coefficients for other purposes, e.g. the resampling of images or the computation of high
degree derivatives.

12



The on-line sub-voxel gradient computation Vd represents one of the bottlenecks of the
method with a high computational load: With cubic splines, 3 x 64 multiplications are needed
for one gradient evaluation. Thus we totalize 3x64 xdim, x dim, multiplications for the whole
sampled surface x. This is of the same order of magnitude as the number of multiplications
in Cholesky’s factorization, “separated” case (see section 2.4). Yet these volumetric splines
contribute to the quality of the segmentation, especially when we take a limited number of
sample points (see example of Gregoire, section 2.6.1), or in alternatively, when many surface
sample points belong to the same voxel (see example of Carl, section 2.6.2).

2.6 Results of Segmentation

We tested our method on various data. We focus in this section on 2 examples, both with
MRI data. We thus analyze in detail the convergence process. Each time contours points
have been labelled and a 3— D euclidian distance image d has been precomputed. In addition,
3— D spline coefficients have been evaluated, which permit to compute a continuous cubic C?
version of the potential field d2. Note that contours are provided by the distance image and
that we concentrate only on an efficient way to pilot a spline surface towards the contours.
We do not claim to detect simultaneously the position of contours.

Each time we initialize the process with a simple surface, respectively a plane and a
circular cylinder (see Fig. 9a), inside the 3 — D distance image d. After 15 iterations, i.e.
resolutions of system( 6), we consider that the solution is stationary.

2.6.1 Example of Gregoire (Figs.6a to8b)

This example illustrates the planar topology. The original data is a 3 — D 256 x 256 x 124
axial MRI image of the head of Gregoire Malandain, researcher.

We take 96 x 64 samples on the plane and 64 x 48 spline control vertices for the doubly
cubic C? spline surface. For the evolution of the spline surface, we only take into account
the component of the gradient perpendicular to the original plane.

We observe the evolution of the sample points over the successive iterations. Since no
resampling is done, we could trace the “trajectory” of each sample. The surface stops
evolving after about 15 iterations and 111 seconds CPU on a Dec 5900 (i.e. one iteration
takes 7.3 seconds). For an analysis of the computational complexity, see sections 2.4 and 2.5.

The successive shapes we observe are rather not intuitive (we think especially about
Fig. 6a and Fig. 6b). They illustrate that the potential d* is not quadratic (only our approx-
imation of d2 is), but instead extremely elaborate. They give a feeling of what results the
method would yield with contours of poor quality, with dilated contours, or with simple
thresholding in MRI images.

After iteration six (see Fig. 7a and Fig. 7b), we have a good overall idea of the shape
concealed in the 3 — D image. The subsequent 9 iterations permit to segment the face with
full precision. Notice in Fig. 8b the lack of data at the tip of the nose in the original image
that the spline surface would not surmount.

When observing these pictures, we realize the need for an iterative refinement of the
mesh. This refinement would increase the speed of the method since the data would be
smaller at the beginning, and would maybe decrease the number of iterations, because the
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Figure 6: a. Left: Example of Gregoire, first iteration. This picture, together with the
following one, gave Gregoire Malandain a stroke.

b. Right: Second iteration. Together with the previous picture, it demonstrates that the
euclidian potential originated by the contours of Gregoire’s head is not quadratic !

|
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Figure 7: a. Left: Fourth iteration. The surface is stabilized in the region of the mouth.
b. Right: Sixth iteration. The nose appears with more details.



Figure 8: a. Left: Eighth iteration. The segmentation is almost complete.
b. Right: Fifteenth iteration. The spline surface is stationary. Note that the spline could
not fill up the lack of data at the tip of the nose.

too high precision in the first iterations pilots the surface toward marginal minima of the
potential that should be disregarded. Our method if fully compatible with such an iterative
refinement. We implement the refinement procedure for the next example.

2.6.2 Example of Carl (Figs.9a tollb)

This example illustrates the cylindrical topology. The original dataisa 3—D 256 x256x 127
complete sagittal MRI image of the head of a patient.

1. Brute Force Strategy.

We take 192 x 192 samples on an initial circular cylinder and 96 x 96 spline control
vertices for the doubly cubic C? spline surface. For the evolution of the spline surface,
we only take into account the component of the gradient perpendicular to the axis of
the original cylinder. The surface stops evolving after 15 iterations and 915 seconds
CPU on a Dec 5900 (i.e. one iteration takes 61 seconds).

A new phenomenon can be observed here, due to the presence of isolated contour
points that perturb the convergence in Figs. 9b, 10a, where we observe sharp swellings
on the surface. The internal energy of the mode} will triumph over parasite contours
after fifteen iterations (see Fig. 11a).

Recall that the deformable spline surface is globally C? from the first iteration on.
Thus, we can observe the evolution of the curvature as the surface deforms. We can
also apply specific transformations to discover the rules that govern the evolution of
the curvature and observe the stability of curvature measures. If necessary, we can
observe higher order derivatives with higher order splines (remember scheme( 2) for
the construction of B-spline functions).
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Figure 9: a. Left: Example of Carl: The initial surface is a circular cylinder.
b. Right: Third iteration: We localize already the mouth, the nose an one ear. Near the
eye and the mouth, isolated contours refrain the surface from evolving.

Figure 10: a. Left: Sixth iteration: Swellings still appear near the mouth, the right ear and
the left eye.

b. Right: Tenth iteration: The protuberances have almost disappeared, but ears do not
have a normal shape.

16



Figure 11: a. Left: Fifteenth iteration. Five more iterations were necessary to complete
the segmentation and overcome the isolated contour points.
b. Right: Twenty ninth iteration: The surface evolved a little around the eyes.

2. Iterative Refinement.

We depicted below a brute-force method to obtain the convergence of the spline surface.
Now, for comparison, we show the result of an iterative refinement method. We linearly
increase during 10 iterations the number and samples from 30 x 15 to 160 x 100 and
in parallel we increase the number of control vertices up to 140 x 80. The whole
process operates in 160 sec. CPU (in average, 16 sec. per iteration). The resulting
surface is shown in Fig 12a. We pursue the refinement up to 280 x 160 samples and
256 x 128 control vertices. This takes 510 sec. CPU. We show the result in Fig. 12b.
For completeness, we show the profile of Carl in Fig. 13a. The strategy we chose to
refine the grid was to linearly increase its size along each coordinate, that is to increase
quadratically the number of sample points. Other strategies might perform better and
will be studied in the future.

We provide additionally a limited number of color prints to visualize the total curvature
k? + k2 of the face of Carl. In the first three prints, we visualize six steps of the convergence
with our own software that traces isoparametric curves. The algorithm of the moving horizon
is useful to discover some of the hidden parts. Im these pictures, the color determines the
magnitude of the curvature as follows: (From lowest to highest curvature) white, blue, green,
yellow, red. In Figs. 14, 15 and 16, we visualize iterations 0, 1, 3, 6, 9 and 21. All these
pictures are at the same scale, and the same color represents the same curvature value.

In order to draw crest lines, we define a mask of interest of surface regions having a total
curvature higher than some threshold. We then walk discretely along surface points and
mark crest points inside the interest mask (see Fig. 17). Fig. 18 visualizes the fineness of the
mesh, that could be achieved by using splines. Lastly, we show in Figs. 19 and 20 renderings
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Figure 12: a. Left: Surface obtained with only ten iterations and a linear increase of
samples points up to 160 x 100 The whole process operates in 160 sec. CPU (in average, 16
sec. per iteration).

b. Right: Result with four more iterations on a 280 x 160 grid. this refinement takes 510
sec. CPU. There are extraneous contour points near the eye that were not overcome, due to
the fineness of the spline surface.
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Figure 13: a. Left: Right profile of Carl with the 280 x 160 grid. Note that the total
amount of computing time needed is less than for the brute force method.

b. Right:Crest lines are drawn on Carl’s face after iteration fifteen, with our original method
that measures local extrema of k2 + k2 on the surface (section3).

of Carl with the AVS software, respectively front part and right profile.

3 Crest Lines and Matching

In this section, we exploit the differentiability of the model by drawing lines of extremal
curvature on the surface with a new algorithm. We will not recall here the expressions for
the surface curvatures. The reader may refer to Do Carmo [dC76] (Note that we adopt the
notations of Do Carmo for our surface x(u, v)). The quantity k?+k2, or “global curvature” is
of special importance to us. It is a local measure of the bending energy density for a thin plate
(see Courant and Hilbert [CH57]). For instance, in Fig. 1, the color value indicates the density
of potential bending energy gained by the surface during the convergence. In addition, it can
be seen from the equality k2 + k2 = 4H? — 2K that this measure is differentiable, as opposed
to principle curvatures k; and k; that are not differentiable at umbilics. Note that with our
differentiable spline representation of the surface, we can use the criterion defined for crest
lines in [MBF92], i.e. lines as zeros of the quantity Vk; - e; (e; is the principle direction
associated with curvature k;). The experimentation of this alternative is in progress.

In general, local extrema of curvature will appear as lines. This has been studied for
instance in [TG92]). An intuitive way to discover that we will obtain lines is to represent
level curves of k? + k2 and to remark that extremality is also a measure of medialness for
the families of level curves.

We next extract locii of extremal global curvature k2 + k2. We sample k? + k2 values
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Figure 14: Iterations zero and one for Carl. Representation of the total curvature £? + k3
of the surface. We use, from lowest to highest curvature: white, blue, green, yellow, and
red color. The spline has 96 by 96 control vertices, and we take 192 by 192 samples on the
surface in order to perform one iteration.
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Figure 15: Iterations three and six. The curvature is high on the nose and the ear and also
on sharp protuberances originated by parasite isolated contour points.



Figure 16: Iterations nine and twenty one. Final curvature map.
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Figure 17: Inside the interest mask marked in yellow (high curvature points), we walk

\

discretely along surface points and mark crest points. or extrema of curvature in red.
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Figure 18: Superimposition of crest lines in black on the spline mesh of 192 by 192 points.
The color of the mesh is representative of the total curvature measure k% + k2: (From lowest
to highest curvature) blue, green, yellow and red color. This figure visualizes the fineness of
the mesh.



Figure 19: Rendered version of Carl with the AVS software. Crest lines are superimposed
in black. (From lowest to highest curvature) blue, green, vellow, red color.
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Figure 20: Rendering of the right profile of Carl with the AVS software.
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on a regular rectangular grid. We test if the current point corresponds to a local discrete
extremum of curvature along the axis South-North (see Fig. 21a) or along the axis East-West
(see Fig. 21b) and explore recursively 6 directions for finding a next crest point. Thus we
assume the 4-connectivity for the surface and the 8-connectivity for the crest curves. We
avoid any paradox of discrete topology and a closed curve will split the surface in exactly
to connected components, thus respecting Jordan’s theorem (see for instance [Mal92]). The
result of the procedure is shown on the Example of Carl, after iteration fifteen (Fig. 13b).

a. b.

Figure 21: a. Left: If we have a local maximum of curvature k% + k2 along the axis South-
North, we recursively explore eight directions except South and North. Thus we assume the
4-connectivity for the surface and the 8-connectivity for the crest curves. In doing so, we
avoid a paradox of discrete topology (see for instance [Mal92]).

b. Right:If we have a local maximum of curvature along along the axis East-West, we
explore eight directions except East and West.

We next test experimentally the stability of the crest lines as defined and extracted
below. Of course, the measure k? + k3 is invariant to rigid motion. We consider the example
of Arthur, a “phantom” available in two different positions in 3 — D CT-scan images. For
the purpose of the experiment, we resampled dramatically both views, A and B, from 256 x
256 x 135 respectively down to 128 x 128 x 128 and 96 x 96 x 96. Thus, contours from B are
considerably corrupted. In addition, we use splines with fewer coefficients for view B. The
result of algorithm of section 2 is shown in Fig. 22.

In Fig. 23 we show the crest lines obtained with our software on views A and B of Fig. 22
and the rigid superposition obtained with algorithm [GA92]. Results are encouraging and
attest the stability of the crest lines as defined in this section.

4 Current Research

4.1 Toric and Spherical Topology, Exact Volume

We briefly describe the characteristics of the spherical topology for spline surfaces. The toric
topology is simple and has already been introduced in section 2.2.

As in the toric case, circular B-splines functions are used for parametrization variables
u and v. We must distinguish between odd order and even order splines. With odd order
splines, two control vertices, the north and the south poles, play a special role. Numeri-
cally, the problem of solving equation( 4) is delicate because the system is sparse and badly
conditioned (We use the Lanczos algorithm).
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Figure 22: a. Left: Result of the algorithm of section2 on the example of phantom Arthur,
view A. In addition, we represent the global curvature as follows: Black regions correspond
to high curvatures, white regions to average curvature and light grey regions to low curva-
tures.

b. Right: Result on the example of phantom Arthur, view B. The quality of the segmen-
tation is much better in view a. than in view b.

There are no poles with even order splines. Figure 24 visualizes the mesh for a bi-
quadratic spline in spherical topology. On each meridian, the last control vertices are the
same as the first control vertices on the opposite meridian.

We cannot separate the problem along discretization variables u and v as in equation( 6)
simply because we cannot write the sample points matrix z as Bic,B,. Thus we must solve
system( 5). This can be done with Cholesky’s method and the computational complexity is
given in section 2.4.

Splines with spherical topology have been fully implemented and tested on synthetic data
(note that Fig. 24 exhibits a real example where a sphere converged in the potential field
generated by an ellipsoid).

Now, suppose we have a closed spline surface S bounding a volume V. The Ostrogradsky
theorem states that:

JV = [ div(x)dV = | xNdS = | xNVEG — F?dudv, (8)
Vv S uv

div is the divergence operator, N is the surface normal pointing outwards, and £, F and G
are coefficients of the first fundamental form of the surface. N, E, F and G are well know
and easy to compute from the spline representation of the surface. We can compute the last
integral involved in equation( 8) either with a Riemann sum or with a Romberg quadrature.
This volume computation can be extended to surface triangulations, when N, E, F and G
can be approximated on each triangle. It will be very useful for computing the volume of
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Figure 23: a. Top: Crest lines on the two views of phantom Arthur, obtained with the
algorithm described in this section and smoothed with splines.

b. Bottom: Superposition of the lines of a. with the software of{GA92]. The algorithm
still performs, despite the bad quality of the surfaces.
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Figure 24: Mesh of control vertices for a bi-quadratic spline in spherical topology. For
simplicity, we split the sphere in two. The number of meridians is even and each terminal
control vertex on a meridian is also the first control vertex on the opposite meridian.
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organs before the transplantation. This formula has not been implemented yet. We will
present results as soon as adequate data is processed.

4.2 Avoidance of Self-Intersections, Tubular Neighborhood, On-
Line Contour Extraction

In this section, we use the following property of differentiable surfaces: there is a number ¢
such that the segments along the surface normals of length ¢ do not intersect. ¢ defines a
tubular neighborhood of the surface (consult [dC76]) Clearly, if we deform the surface along
the surface normal, with displacements smaller than €, we will avoid “local” self-intersections.
“global” self-intersections are tricky, when dealing with a parametric surface, and not likely
to occur in the examples we usually encounter (face, heart and other smooth organs). We
exclude them. With the example of Carl, we indeed observed “local” self-intersections in the
region of the ear, that would not occur if the motion of the spline surface would be properly
piloted in these regions.

The € of the tubular neighborhood is related to the surface curvature: Consider the
normal lines of a 2 — D curve at neighboring points. As the points become closer, the
normal lines will by definition intersect at the center of curvature (see [dC76] for instance).
In other words, if we take an ¢ smaller than the ray of curvature, the normal segments will
not intersect. Consider a surface and its two normal sections along principle directions.
These sections are 2 — D curves whose curvatures are principle curvatures. By applying the
arguments for 2 — D curves to the two normal sections, we discover that € equals the smaller
ray of curvature of the surface.

Thanks to the differentiability of the spline, we can measure this smaller ray of curvature
and impose a motion along the surface normal. Again, this will NOT guarantee the absence
of “global” self-intersections. We plan to walk along the surface normal directly in the 3— D
original image and look for extrema of the intensity gradient in the direction of the gradient
along the normal lines, only for a restricted number of grey values. This will avoid costly
precomputations such as the global extraction of contours and the computation of a distance
potential. The implementation of the ideas described above in in progress.

5 Conclusion

We presented an original and efficient algorithm to pilot a spline surface towards contours
inside a 3 — D image representing a square distance potential d2. Our approach, including
approximating spline formulation (section 2.3), separability (section 2.4) and iterative re-
finement (section 2.6.2), constitutes a step further towards real time convergence. Since the
differentiability is costly, real time could be achieved with a combination of a model with a
low degree of differentiability for convergence (such as, for instance [NA92]), and a C? fit of
the model when it has converged. Remember that contour points are already provided, and
that the potential field d? is precomputed. This operation may take a prohibitive amount of
time. However, since both problems of characterizing contours (1) and deforming a surface
(2) are essentially solved, we are exploring techniques that would permit to evolve in the
original 3 — D medical image without any precomputation.
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In addition, the differentiable deforming surfaces provide and excellent tool for measuring
the evolution and the stability of curvatures and crest lines.
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A Classical Euler Approach

To solve numerically equation 3, one introduces a time variable ¢ and one derives the evolution
equaliion:
Oc,

= —— +VE
0 0t+ ;

which becomes, in the discretized version:

Czi = Czi-1 :
0 = =——+VE
TR

Now, depending on the way we express VE, respectively in terms of ¢,; or ¢;;_,, we use
respectively an implicit( 9) scheme (for consistency, we use the spline formulation of sec-
tions 2.2 and 2.3, and expression( 3) for VE):

0 = Ly AVe, Al + B,(dVd)BY; (9)
or an ezplicit( 10) scheme:
Cr; — Cpi_ " "
0 = mEe 1+ A%cq 1 A" + B,(dVd)B! (10)

The implicit scheme has been shown to give better results. The interested reader may consult
Ciarlet [Cia88].

B Rank of the Spline Matrix

We show in this section that for uniform sampling {%;}, uniform parametrization {us}, and
straight quadratic spline functions (see Fig. 3a), the rank of the interpolation matrix B,
dimc x dimc, is equal to dimc. otherwise, there would be a non zero coefficient vector ¢
satisfying:

Bc=0. (11)
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In other words, there would be a non zero quadratic spline having dimc zeroes evenly spaced.
This is a contradiction and the proof follows.

dimc is also the number of different spline functions, but there are fewer intervals between
knots. As an example, in Fig. 3a, you will enumerate 9 intervals and 11 functions for
quadratic splines. The general rule is for degree K — 1 splines, dimc — K + 1 different
intervals. Inside those intervals, the spline is C*°. At knot values the spline is only CK=2. So
we can apply Rolle’s theorem anywhere at least K — 2 times.

From equation( 11), we know that the spline has globally at least dimc zeroes (remark:
it is the case because we interpolate. If we approximate, we have more zeroes). Thus from
Rolle’s theorem, the derivative has at least dimc — 1 zeros: in each open interval ¢ between
2 sample points #; and 4,4, there is one zero of the derivative.

Fortunately, for a quadratic spline, these zeroes are already too many zeroes. This is
good because we could only apply Rolle once ! In fact, the derivative of the quadratic spline
is piecewise linear C° in dimc — 2 intervals. One difficulty arises here, i.e. the zeros of the
derivative are not equally spaced in general (see Fig. 25. This picture describes the situation
with great fidelity).

O iOi\ O '1/\1

~ |

knots

Q zeroes of the spline

| zeroes of the derivative

Figure 25: With uniform sampling for zeroes {4}, = 0..4(circles), and uniform parametriza-
tion {us}, k = 0..2(large vertical bars), the spacing of the points where the derivative vanishes
(small vertical bars) will not necessarily be uniform. For instance, in the second interval,
there is no zero of the derivative. However, this could not be true for 2 consecutive intervals.

We know that the interval between zeroes is smaller than the interval between knots.
There are necessarily 2 zeros in end intervals, thus there is exactly one zero in each inter-
nal interval. With this distribution, there is at least one interval k with two zeros of the
derivative, certainly no interval with three zeroes of the derivative and no two consecutive
intervals without zeroes.

Inside interval k, the linear derivative has two zeros and thus vanishes. The quadratic
spline is constant, and by condition( 11), zero. We apply the continuity conditions and
discover zeroes u; and wug+; (knot values) for the spline and for its derivative. Then, we
“propagate” the same argument on the left and on the right of interval k, since we “gained”
by continuity two new zeros, u; and ugy;. If we encounter one interval where the derivative
has no zero, there is necessarily one other interval [ somewhere else with two zeroes. We would
be blocked if we could exhibit two consecutive intervals without zeroes of the derivative, but
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this is impossible. Finally, the quadratic spline vanishes completely.

We could try the same argument on higher order splines, but since the spacing between
zeros of successive derivatives is likely to be more irregular, the proof will be tedious. We
rather want to show what type of arguments can be used to prove that the least square
matrix BB! is positive definite, provided the sampling is regular enough compared with the
knot spacing.
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