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Abstract

In large-deformation diffeomorphic metric mapping (LDDMM), the diffeomorphic matching of

images are modeled as evolution in time, or a flow, of an associated smooth velocity vector field v

controlling the evolution. The initial momentum parameterizes the whole geodesic and encodes

the shape and form of the target image. Thus, methods such as principal component analysis

(PCA) of the initial momentum leads to analysis of anatomical shape and form in target images

without being restricted to small-deformation assumption in the analysis of linear displacements.

We apply this approach to a study of dementia of the Alzheimer type (DAT). The left

hippocampus in the DAT group shows significant shape abnormality while the right hippocampus

shows similar pattern of abnormality. Further, PCA of the initial momentum leads to correct

classification of 12 out of 18 DAT subjects and 22 out of 26 control subjects.
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I. Introduction

AN important task in the field of computational anatomy (CA) [1] is the study of

neuroanatomical variability. In CA, the anatomic model is a quadruple (Ω, , , )

consisting of  the template coordinate space, defined as the union of 0-D, 1-D, 2-D,

and 3-D manifolds,  a set diffeomorphic transformations on Ω,  the space of

anatomies, is the orbit of a template anatomy I0 under , and  the family of probability

measures on . In this framework, a geodesic  is computed where each point

, t ∈ [0,1] is a diffeomorphism of the domain Ω. The evolution of the template image

I0 along the path is given by  such that the end point of the geodesic connects

the template I0 to the target I1 via . Thus, anatomical variability in the target

is encoded by these geodesic transformations when a template is fixed. Fig. 1 illustrates a

schematic of the large deformation trajectory ϕt(x) followed by a particle x ∈ Ω and its

associated velocity vector field vt(ϕt(x)).

Until now, we have been using displacement vector fields,  between the target and

the template obtained from the matching transformation via u = ϕ1 − ϕ0 = ϕ1 − id, where id

is the identity transformation on Ω such that id(x) = x. These differences have been used to

make statistical inferences (for work on Alzheimer’s disease (AD), see [2]-[7]). While the

transformations that we have been computing follow the large deformation approach in that

they are the result of the evolution of a smooth time-dependent velocity vector field, the

final shape analysis via linearizing around template coordinates using displacement vector

fields has provided a practical basis for this approach [1].

Recent work in understanding diffeomorphic flows [8]-[10] has provided computational

tools for comparing these geodesic transformations and deriving a fundamental

“conservation of momentum” property of these geodesics. This property applies the general

theory on invariant Riemannian metrics on transformation groups [11], and provides the

theoretical background for parameterizing the entire geodesic by the initial momentum with

which the optimal trajectory emanates from the template image coordinates to reach the

target image. Anatomical submanifolds can now be compared by performing linear statistics

on these initial momentum. This was illustrated by diffeomorphic mapping of surface

submanifolds of the human heart [12] in volume space and face [13] in point space (sparse

1-D landmark sets) rather than volume.

In both [12] and [13], intrinsic average anatomies were constructed from the population

under study and the population variation was studied as characterized by linear statistics. In

this paper, we present diffeomorphic mappings of 3-D volumetric manifolds (hippocampus)

and the linear statistics with discrimination on the initial momentum in the context of

dementia of the Alzheimer type (DAT).

II. Methods

A. Large-Deformation Diffeomorphic Metric Mapping (LDDMM)

We have been estimating diffeomorphisms for template matching via the basic variational

problem that, in the space of smooth velocity vector fields V on domain , takes the

form [9]
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(1)

The optimizer of this cost then generates the optimal change of coordinates  upon

integration , ϕ0 = id, where the superscript v in ϕv is used to explicitly denote

the dependence of ϕ on the associated velocity field v. Enforcing a sufficient amount of

smoothness on the elements of V ensures that the solution to the differential equation

, t ∈ [0,1], vt ∈ V is in the space of diffeomorphisms [14,15]. The required

smoothness is enforced by defining the norm on V through a 3 × 3 differential operator L of

the type L = (−αΔ + γ)αI3×3 where α > 1.5 in 3-D space such that ∥f∥V = ∥Lf∥L2, and ∥·∥L2
is the standard L2 norm for square integrable functions defined on Ω. The differential

operator L has periodic boundary conditions on a rectangular domain Ω. The gradient of this

cost, in V, is given by

(2)

where  and , ∣Dg∣ is the determinant of the Jacobian matrix and K is a

compact self-adjoint operator  uniquely defined by 〈a,b〉L2 = 〈Ka,b〉V such

that for any smooth vector field f ∈ V, K(L†L)f = f holds. The notation  is also

used. The 1/σ2 parameter in (1) provides weighted optimization between the regularization

and the data matching components, and is chosen to be the same for all matchings.

B. Comparison Between LDDMM and Christensen’s Greedy Algorithm

Large deformation flows first put forth by Christensen et.al. [16] generate paths through the

space of diffeomorphisms matching the corresponding images. This algorithm exploits the

fact that if the operator L is not differentiable in time, then the space-time Ω × T is

discretized into a sequence of time-indexed optimizations. The algorithm then solves for the

locally optimal velocity at each time point and then forward integrates the solution. This is

only a locally-in-time optimal method (therefore, the term “greedy”) reducing the dimension

of the optimization. The transformation ϕ1,0 matching the images is generated from velocity

fields whose computation can be interpreted as following the variational Riemannian

gradient of the data term E2 in (1) [17]

(3)

This Riemannian (sometimes called “natural”) gradient ∇E2(ϕt) in the space of

diffeomorphisms is given by

(4)

where  and . The time-indexed sequence of locally optimal velocity fields

vtj are integrated to yield the sequence of transformations , j = 0, 1, 2, …, which are points

along a path on the manifold of diffeomorphisms from the identity transformation to ϕ1,0
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matching the given images. The regularization provided by the smoothing operator K gives

this gradient numerically stable behavior in finite time.

The main difference between the greedy and the LDDMM algorithms is that the path

generated by the greedy method does not correspond to any global variational problem

solution given by (1). As a result, the greedy method in general will not generate the shortest

path connecting the images through the space of diffeomorphisms. Further, unlike LDDMM,

the greedy method cannot generate metric distances between objects in the orbit [9], [18].

Metric distances between objects generated by LDDMM will be the focus of another paper.

For in-depth comparison of these two algorithms, refer to [9].

C. Initial Momentum: Geodesic 3-D Evolution

The LDDMM algorithm, which is based on following a gradient in space of time-dependent

smooth velocity fields, has yet another important distinction with respect to the greedy

algorithm. The LDDMM geodesic follows the property of conservation of momentum [10]

that is not shared by the locally optimal paths generated by the greedy algorithm. This

property takes the form

(5)

where (L†L)vt denotes the momentum of the evolving template transformation at time t. The

knowledge of the initial momentum (L†L)v0 with which the template coordinates evolve at t

= 0 completely specifies the full geodesic connecting the given template and target imagery

[10]. Hence, the initial momentum encodes the shape and form of the target. As also shown

earlier [13] in the context of diffeomorphic evolutions of landmarks, linear combinations of

momenta when propagated through the diffeomorphic evolution equations guarantee that the

computed transformations will be diffeomorphic. The linearizing model encodes

transformations via displacement fields in the coordinates of the fixed template.

Transformations encoded this way are not guaranteed to remain diffeomorphic, at hence, the

transformed template is not guaranteed to remain in the anatomical shape space as fusions,

fold-overs and tears of anatomical structures can occur in this setting. In contrast, the

LDDMM geodesic following the conservation of momentum whereby the matching

transformations are completely encoded by the initial momentum in the template coordinates

gives a powerful tool for studying shape variation, overcoming the restrictive assumption of

linear displacement model and giving due consideration to the nonlinearity of the anatomical

shape space. In particular, this allows linear techniques such as principal component analysis

(PCA) to be applied to statistical analysis of the initial momentum that encodes the target

shape.

D. PCA on the Initial Momentum

Hitherto we have used the linear displacement vector fields to compute PCA for the analysis

of hippocampal shape [4], [7], [19]. However, displacement vector fields do not necessarily

lead to diffeomorphic transformations, therefore, the assumption of small deformation had to

be made [1]. To date, this assumption has not been severely tested since all of our study

cases involved difference or changes in the hippocampus were not very large.

However, when the small-deformation assumption is removed, linear combination of the

principal components  may breakdown when cross-subject differences are

large [13]. That is, under mapping  structures may not be able to relate to the template via

a diffeomorphism.
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We now extend the construction of orthonormal basis functions (i.e., PCA) of linear

displacements on surface manifolds by Joshi [19] to PCA of initial momentum [see (5)] on

volume manifolds [12]. Instead of performing PCA analysis under the L2 metric, we

perform it with respect to the metric in space V used for the estimation of the flow, i.e.,

〈v,w〉V = 〈L†Lv,w〉L2 = 〈Lv,Lw〉L2, v, w ∈ V, the Hilbert space of smooth velocity vector

fields. Thus, PCA is applied on the quantity Lv0

Let  be the template volume manifold in  (e.g., 3-D volumetric representation of

the hippocampus). It follows that if Y(x) = {Lv1(x), …, LvN(x)}, , is assumed to be a

family of zero-mean1 Gaussian random vector fields on the manifold  with a covariance

structure KY(x,y),  then the integral equation

(6)

has a solution of a set of orthonormal functions {e1(x), …, eN(x)},  that is the

minimizer of the following minimum mean-square error problem:

(7)

where

(8)

and dx is the measure on the manifold . The proof [20] follows the standard Karhunen-

Loéve expansion [21]. This is the PCA, where Y(x) is projected onto a subspace spanned by

the orthonormal basis functions {e1(x), …, eN(x)}, such that the residual error between V(x)

and the projection  is minimized [see (7)]. The set of scalars {Ak}, k = 1, …,

N, are the principal component values.

In discrete image space, the integral (6) becomes, at each voxel x

(9)

where dyl is the measure around voxel yl (i.e., voxel size) and

 is the sample covariance.

The orthonormal basis {e1(x), …, eN(x)} is computed via the singular value decomposition

(SVD) of Y as follows [19]. Let Y be the matrix of the vector fields with the mean

subtracted, containing p rows and N columns (p = 3 × number of 3 -D image points, N =

number of subjects, p > N; for an image space of 64 × 112 × 64 voxels, p ≈ 0.5 × 106), then

the SVD of Y is defined as Y = PDQT, where PTP = I, QTQ = I and D is a diagonal matrix

consisting of the singular values of Y. The singular values are related to the eigen-

decomposition of  as follows. We re-write the sample covariance as .

From the SVD equation of Y = PDQT we see that YYT = PD2PT. Thus, the eigenvectors of

1In practice we subtract the mean from the vector fields first.
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 are the column vectors of P up to a constant scaling factor, and the eigenvalues of the

square matrix  are the squares of the singular values of Y, up to a constant scaling factor.

The matrix Q represents a directional component which is essentially ignored in the eigen-

decomposition of .

The first M, M < N, principal components (whose values are , k =

1, …, M, i = 1, …, N) that account for majority of the total variance (e.g., ~80%) are used in

a nonparametric permutation test to determine if the shape of the hippocampus as

represented by these principal components are statistically different between the subject

groups.

E. Nonparametric Statistical Test

Let  and  be the sample means of the

first M principal component values for each group, and  the pooled (common) sample

covariance. To test the null hypothesis

we compute the Hötelling’s T2 statistic [22] (for two samples) as

(10)

The significance of group variation is measured in a permutation test as follows.

In Fisher’s method of randomization, for all permutations of the given two groups, new

means and covariances are calculated. Monte Carlo simulations are used to generate a large

number of uniformly distributed random permutations (a typical number is 10 000). The

collection of T2 statistics from each permutation gives rise to an empirical distribution 

according to

(11)

The null hypothesis that the two groups have equal distributions is rejected when

(12)

falls below a predefined significance level (e.g., 0.05).

F. Subjects and Scans

The neuroanatomical template is produced using an MR image from an elder control

subject. The subject selected to produce this template is obtained from the same source as

the other subjects in the study, but is not otherwise included in the data analysis. The left and

right hippocampi in this template scan have been manually segmented by a team of experts

using methods previously described [23]. A more detailed anatomical description of the

hippocampus as outlined in MR was also given in App. A of [24].
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The initial hippocampal data used in this study came from our previously published

longitudinal study of hippocampal atrophy in early DAT [4], where 18 very mild DAT

(Clinical Dementia Rating Scale [25], CDR 0.5) subjects and 26 age-matched nondemented

(CDR 0) controls had two MR scans approximately two years apart. To obtain the rating, an

experienced clinician conducted semi-structured interviews with an informant and the

subject to assess the subject’s cognitive and functional performance; a neurological

examination also was obtained. The clinician determined the presence or absence of

dementia and, when present, its severity with the Clinical Dementia Rating (CDR), where

CDR 0 indicated no dementia and CDR 0.5, 1, 2, and 3 indicated very mild, mild, moderate,

and severe dementia [25]. The clinical diagnosis of DAT was in accordance with standard

criteria and was verified by the neuropathologic diagnosis of AD in 93% of cases [26].

Although elsewhere the CDR 0.5 individuals in our sample may be considered to have mild

cognitive impairment [27], they fulfill our diagnostic criteria for very mild DAT and at

autopsy overwhelmingly have neuropathologic AD [28].

The mean [standard deviation (SD)] age for the CDR 0 group was 73 (7.0) years, and for the

CDR 0.5 group, 74 (4.4) years. The gender distribution (M/F) of the subjects was CDR 0:

12/14, CDR 0.5: 11/7. The mean (SD) sum-of-boxes scores for the CDR 0 group was 0.02

(0.10), and for the CDR 0.5 group, 2.0 (1.3). All subjects had MR scans approximately two

years apart—the mean scan interval for the CDR 0 group was 2.2 years (range 1.4–4.1

years), and for the CDR 0.5 group, 2.0 years (range 1.0–2.6 years). The scans were obtained

using a Magnetom SP-4000 1.5 Tesla imaging system, a standard head coil, and a

magnetization prepared rapid gradient echo (MPRAGE) sequence. The MPRAGE sequence

(TR/TE—10/4, ACQ—1, Matrix—256 × 256, 180 slices, Scanning time—11.0 min)

produced 3-D data with a 1 mm × 1 mm in-plane resolution and 1 mm slice thickness across

the entire cranium.

In that study, baseline hippocampal surfaces were generated based on Christensen’s greedy

algorithm implementation of the diffeomorphic mapping from the above template. A

comparison between the two groups at baseline is illustrated in Fig. 4 (1a) and (1b). The

comparison is based on the surface displacement between each subject and the template, and

computing the z-scores between the two subject groups. It has been shown that this pattern

can be explained in terms of known AD pathology [4], [7].

In this study, we apply LDDMM to each template-target subject pair, taken from [4] at

baseline to generate geodesics. To do so, the individual hippocampal surfaces already

generated in each subject’s scan are scaled by a factor of 2 and aligned with the template

surfaces, similarly scaled, via a rigid-body rotation and translation. These surfaces are then

converted into voxelized binary segmentations of dimension 64 × 112 × 64 which have

isotropic voxel resolutions of 0.5 × 0.5 × 0.5 mm3/ After smoothing by a Gaussian filter (9 ×

9 × 9-voxel window and 1-voxel standard deviation), the voxelized binary segmentations

have real intensity values ranging from 0 to 255. Then LDDMM is applied to each template-

subject pair. Geodesics and initial momenta are generated as a result for each subject in the

template coordinate space. PCA is then performed on these initial momenta after the mean

has been subtracted.

III. Results

A. Validation 1: LDDMM Versus Greedy Algorithm

We have previously validated the accuracy of the automatic segmentations of the greedy

algorithm by comparing with reference segmentations generated by trained individuals [23].

For measuring the accuracy, we define an L1 error between positive summable functions

[29], [30] (i.e., segmentations) as follows. Let  and  be reference manual and automated
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segmentations of the image, respectively, such that each of the m-compartments is labeled

with a tag ranging from 1 to m. For example, let m = 3, then 1 = CSF, 2 = gray matter, 3 =

white matter. Let  and  be the posteriori probabilities of labeling hn at

voxel n for the reference manual and the automated segmentation, respectively. Then the L1

tissue classification error between the two segmentations is defined as

(13)

In the case of perfectly overlapping labeling of voxels, L1 = 0. In reality, L1 is a measure of

the cost of mislabeling the voxels with respect to the reference manual segmentation.

We compute the L1 errors for each algorithm, i.e., LDDMM and greedy algorithm with

respect to the same set of manual segmentations. Automated segmentations via the greedy

algorithm have been obtained previously [3], [23] using established protocols. Briefly, these

mapping protocols involve a first step of coarse alignment of the region of interest

(containing the hippocampus) based on manually delineated landmarks between the

template and the target scans [31], and a second step of ap-plying the greedy algorithm to

the MR subvolume of the region of interest. The template hippocampal segmentation is

carried forward through the concatenation of the two steps into the target scan, resulting in

automated segmentation of the hippocampus. To compare LDDMM and the greedy

algorithm, we replace the greedy algorithm in the second step with LDDMM. Table I shows

that the two algorithms produce automated segmentations that are comparable.

B. Validation 2: Initial Velocity Vector Fields vs Linear Displacement Vector Fields

We have already demonstrated that differences due to DAT in brain structures such as the

hippocampus could be observed by analyzing the displacement vector fields between the

DAT and control subjects [3], [4]. Since the initial velocity v0 field from the template

parameterizes the entire geodesic [13], [32], we should expect the final displacement u to be

highly correlated with the initial velocity v0. Since the initial velocity vector fields v0 are

computed on the 3-D volumetric submanifold , and the displacement vector fields from

[4] are computed on the 2-D surface submanifold (the triangulated surface around the

boundary of ), we interpolate v0 onto the surface for computing the correlation. The

displacement vector fields u are computed also on the surface, by taking the difference

between each target point and its corresponding starting point.

At each surface point, we compute the Spearman rank-order correlation between the surface-

interpolated v0 and surface displacement u in x, y, and z directions. Since possible outlying

points well away from the main body of the data could unduly influence the calculation of

the correlation coefficient, a nonparametric procedure, due to Spearman, is to replace the

observations by their ranks in the calculation of the correlation coefficient. The Rank

Correlation test is a distribution free test that determines whether there is a monotonic

relation between two variables. A monotonic relation exists when any increase in one

variable is invariably associated with either an increase or a decrease in the other variable.

Significance of correlation is adjusted to be α = 0.05/(3 × 12167) = 1.3698 × 10−6 (the left

and right surfaces have a total of 12167 points). Table II summarizes the correlations in the

x, y and z directions. The correlations are visualized on the template surface in Fig. 2, where

the significant correlations are painted as a flame scale onto each surface point. Surface

points for which correlations are not significant are painted yellow-green.
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C. PCA and Statistics on Lv0

Permutation tests are performed on the left- and right-hand sides separately. For the left

hippocampus, the first 20 principal components accounting for 82.9% of the total variance

are used. For the right hippocampus, the first 20 principal components accounting for 80.5%

of the total variance are used.

In Fig. 3 (3a) and (3b), we plot the empirical distribution  from randomized Hötelling’s T2

test with 10 000 group permutations, between the CDR 0 and CDR 0.5 subjects. The p

values shown are calculated from (12). There is a group difference (p = 0.0074) on the left-

hand side but no group difference on the statistic that right-hand side (p = 0.07).

The principal component values of the left hippocampus are then used in a “leave-one-out”

logistic regression classification procedure that selects subsets of principal components that

discriminate the two subject groups [33]. Logistic regression analysis is often used to

investigate the relationship between discrete responses (e.g., success or failure; normal, mild

or severe) and a set of explanatory variables [34], [35]. It fits linear logistic regression

models for discrete response data by the method of maximum likelihood. In the stepwise

procedure, at each step the candidate explanatory variable with the largest χ2 statistic that

satisfies a predetermined selection criterion (e.g., p = 0.05) will be selected into the model.

At each step among the selected variables, the one with the smallest χ2 statistic that satisfies

a pre-determined exclusion criterion (e.g., p = 0.2) will be removed from the model. The

logistic regression procedure terminates when no more variables satisfy the inclusion or

removal criteria. Using the solution of left-side principal components 2, 11, 14, (likelihood

ratio: χ2 = 19.6, df = 3, p = 0.0002) to discriminate the two groups with correct

classification rate of 84.6% (22 out of 26) for the CDR 0 group and 66.7% (12 out of 18) for

the CDR 0.5 group.

To assess the stability of the discriminating solution sets, we randomly divided each clinical

group into 9 subgroups of 2 to 3 subjects each. This creates 9 trials. In each trial, we use the

90% majority of the subjects from each clinical group in a stepwise “leave-one-out” logistic

regression procedure that selects a subset of the principal components. We then classify the

smaller set of subjects according to the subset solution. Across 9 trials, the principal

component (PC) 2 is selected each time; PC 11 six times; PC 14 six times; and PC 12 three

times. The overall rate of correct classification across the nine trials is 81.1% (92.6% for

CDR 0 and 66.7% for CDR 0.5 subjects).

IV. Discussion

The purpose of computing the initial velocity vector fields is to enable us to analyze the

geodesic resulting from the large-deformation transformation which is not possible from

analyzing displacement vector fields under small-deformation assumption. In [13] the

authors showed that PCA models based on point data [36] are not always able to generate

acceptable shapes in the space of given shapes. For example, these models do not account

for the curved manifold of shape space, unlike analysis based on diffeomorphism (i.e., PCA

on initial momentum).

It is interesting to note that there are a number of surface points in the hippocampus for

which v0 and u are not significantly correlated. This could be a reflection of the fact u is

calculated using linearizing assumptions whereas v0 is calculated in the large deformation

setting without the linearizing assumptions, such that if the points follow “curved”

trajectories, then the u displacement field will not correlate with the initial velocity field, v0.
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In this paper, PCA analysis shows a left hippocampal shape abnormality in the CDR 0.5

group as compared to the CDR 0 group. This is consistent with our previous follow-up study

of a group of CDR 0 subjects who later progress to CDR 0.5 [6]. Discriminant analysis

shows a somewhat improved overall classification rates compared with our previous cross-

sectional study (in [3], 78% for CDR 0, 67% for CDR 0.5), based on the greedy algorithm

implementation of the diffeomorphic mapping and comparing displacement vector fields:

there were 31 overlapping subjects between the two studies, and of these 31 subjects, six

were correctly classified in the current study whereas in the previous study they were

misclassified, and two were misclassified in the current study whereas in the previous study

they were corrected classified. Even though McNemar’s test [37] did not show disagreement

between the two studies (S = 2.0, df = 1, p = 0.16), this was probably due to the small

number of shared subjects. If the number of subjects were to double while keeping the same

correct classification rates, McNemar’s test would have shown an improvement of the

current study over the previous study (S = 4.0, df = 1, p = 0.045)! Further, validation using

new subjects that are unrelated to training (or model building) data is needed in the future to

test the validity of this approach.

The results of the current study by no means dispute findings of recent studies that show

longitudinal changes in structure to be a more sensitive marker than cross-sectional

comparisons in AD [38]-[45]. Rather, based on the findings of this study that within the

cross-sectional setting, statistics on the initial momentum fields is more powerful than on the

linear displacements, we believe that analysis of longitudinal changes of brain structures

based on initial momentum will further improve the sensitivity and specificity of AD

detection. In addition, analysis of initial momentum based on the subfields of the

hippocampus may give better understanding of the regional abnormalities associated with

DAT, as has been demonstrated by a similar analysis of linear displacements [7].

Acknowledgments

This work was supported in part by the National Institutes of Health (NIH) under Grant P50-MH71616, Grant R01-

MH60883, Grant R01-MH56584, Grant R01-MH064838, Grant P01-AG03991, Grant R01-AG025824, and P50-

AG05681, AG05684, in part by the National Center for Research Resources under Grant P41-RR15241, in part by

the National Science Foundation under Grant DMS-0456253, in part by the Natural Sciences and Engineering

Research Council (Canada) under Grant 31-611387, and in part by a grant from the HIGHQ Foundation (Canada).

REFERENCES

[1]. Grenander U, Miller MI. Computational anatomy: An emerging discipline. Quart. Appl. Math.

Dec..1998 vol. LVI:617–694.

[2]. Csernansky JG, Wang L, Joshi SC, Ratnanather JT, Miller MI. Computational anatomy and

neuropsychiatric disease: Probabilistic assessment of variation and statistical inference of group

difference, hemispheric asymmetry, and time-dependent change. NeuroImage. 2004; vol.

23:S56–S68. [PubMed: 15501101]

[3]. Csernansky JG, Wang L, Joshi S, Miller JP, Gado M, Kido D, McKeel D, Morris JC, Miller MI.

Early dat is distinguished from aging by high-dimensional mapping of the hippocampus.

Neurology. 2000; vol. 55(no. 11):1636–1643. [PubMed: 11113216]

[4]. Wang L, Swank JS, Glick IE, Gado MH, Miller MI, Morris JC, Csernansky JG. Changes in

hippocampal volume and shape across time distinguish dementia of the alzheimer type from

healthy aging. NeuroImage. 2003; vol. 20(no. 2):667–682. [PubMed: 14568443]

[5]. Csernansky JG, Hamstra J, Wang L, McKeel D, Price JL, Gado M, Morris JC. Correlations

between antemortem hippocampal volume and postmortem neuropathology in AD subjects.

Alzheimer Dis. Assoc. Disord. 2004; vol. 18(no. 4):190–195. [PubMed: 15592129]

[6]. Csernansky JG, Wang L, Swank J, Miller JP, Gado M, McKeel D, Miller MI, Morris JC.

Preclinical detection of alzheimer’s disease: Hippocampal shape and volume predict dementia

onset in the elderly. NeuroImage. 2005; vol. 25(no. 3):783–792. [PubMed: 15808979]

Wang et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



[7]. Wang L, Miller JP, Gado MH, McKeel DW, Rothermich M, Miller MI, Morris JC, Csernansky

JG. Abnormalities of hippocampal surface structure in very mild dementia of the alzheimer type.

NeuroImage. 2006; vol. 30(no. 1):52–60. [PubMed: 16243546]

[8]. Holm DD, Ratnanather JT, Trouvé A, Younes L. Soliton dynamics in computational anatomy.

NeuroImage. 2004; vol. 23:S170–S178. [PubMed: 15501086]

[9]. Beg MF, Miller MI, Trouvé A, Younes L. Computing large deformation metric mappings via

geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 2005; vol. 61(no. 2):139–139.

[10]. Miller MI, Trouvé A, Younes L. Geodesic shooting for computational anatomy. J. Math. Imag.

Vis. 2006; vol. 24(no. 2):209–228.

[11]. Arnold, VI. Mathematical Methods of Classical Mechanics. 2nd ed. Springer; New York: 1989.

[12]. Helm P, Younes L, Beg MF, Ennis D, Leclercq C, Faris O, McVeigh E, Miller M, Winslow R.

Evidence of structural remodeling in the dyssynchronous failing heart. Circ. Res. 2006; vol.

98(no. 1):125–132. [PubMed: 16339482]

[13]. Vaillant M, Miller MI, Younes L, Trouvé A. Statistics on diffeomorphisms via tangent space

representations. NeuroImage. 2004; vol. 23:S161–S169. [PubMed: 15501085]

[14]. Dupuis P, Grenander U, Miller M. Variational problems on flows of diffeomorphisms for image

matching. Quart. Appl. Math. Sep..1998 vol. LVI:587–600.

[15]. Trouvé A. An infinite dimensional group approach for physics based models in patterns

recognition. Int. J. Comput. Vis. 1995; vol. 28(3):213–221.

[16]. Christensen GE, Rabbitt RD, Miller MI. 3D brain mapping using a deformable neuroanatomy.

Phys. Med. Biol. Mar..1994 vol. 39:609–618. [PubMed: 15551602]

[17]. Trouvé A. Diffeomorphism groups and pattern matching in image analysis. Int. J. Comput. Vis.

1998; vol. 28(no. 3):213–221.

[18]. Miller MI. Computational anatomy: Shape, growth, and atrophy comparison via

diffeomorphisms. NeuroImage. 2004; vol. 23:S19–S33. [PubMed: 15501089]

[19]. Joshi, S.; Banerjee, A.; Christensan, GE.; Csernansky, JG.; Haller, JW.; Miller, MI.; Wang, L.

Gaussian random fields on sub-manifolds for characterizing brain surfaces. In: Duncan, JS.;

Gindi, G., editors. The 15th International Conference on Information Processing in Medical

Imaging, IPMI’97; 1997; Berlin, Germany: Springer-Verlag; p. 381-386.ser. Lecture Notes in

Computer Science

[20]. Joshi, SC. Ph.D. dissertation. Dept. Elect. Eng., Sever Inst. Technol., Washington Univ.; St.

Louis, MO: 1997. Large deformation diffeomorphisms and gaussian random fields for statistical

characterization of brain submanifolds.

[21]. Van Trees, HL. Detection, Estimation and Modulation Theory, Part I. Wiley; New York: 1968.

[22]. Anderson, TW. An Introduction to Multivariate Statistical Analysis. Wiley; New York: 1958.

[23]. Haller JW, Banerjee A, Christensen GE, Gado M, Joshi SC, Miller MI, Sheline Y, Vannier MW,

Csernansky JG. 3D hippocampal morphometry by high dimensional transformation of a

neuroanatomical atlas. Radiology. Feb..1997 vol. 202:504–510. [PubMed: 9015081]

[24]. Wang L, Joshi SC, Miller MI, Csernansky JG. Statistical analysis of hippocampal asymmetry in

schizophrenia. NeuroImage. Sep..2001 vol. 14:531–545. [PubMed: 11506528]

[25]. Morris JC. The clinical dementia rating (CDR): Current version and scoring rules. Neurology.

1993; vol. 43(no. 11):2412–2414. [PubMed: 8232972]

[26]. Berg L, McKeel DW Jr. Miller JP, Storandt M, Rubin EH, Morris JC, Baty J, Coats M, Norton J,

Goate AM, Price JL, Gearing M, Mirra SS, Saunders AM. Clinicopathologic studies in

cognitively healthy aging and alzheimer’s disease: Relation of histologic markers to dementia

severity, age, sex, and apolipoprotein e genotype. Arch. Neurol. 1998; vol. 55(no. 3):326–335.

[PubMed: 9520006]

[27]. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L,

Winblad B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001; vol. 58(no. 12):

1985–1992. [PubMed: 11735772]

[28]. Grant EA, Miller JP, Morris JC. Longitudinal course and neuropathologic outcomes in original vs

revised MCI and in pre-MCI. Neurology. Aug..2006 vol. 67:467–473. [PubMed: 16894109]

Wang et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



[29]. Joshi M, Cui J, Doolittle K, Joshi S, Essen DV, Wang L, Miller MI. Brain segmentation and the

generation of cortical surfaces. NeuroImage. 1999; vol. 9(no. 5):461–476. [PubMed: 10329286]

[30]. Ratnanather JT, Wang L, Nebel MB, Hosakere M, Han X, Csernansky JG, Miller MI. Validation

of semiautomated methods for quantifying cingulate cortical metrics in schizophrenia. Psychiatry

Res. 2004; vol. 132(no. 1):53–68. [PubMed: 15546703]

[31]. Joshi, S.; Miller, M.; Christensen, G.; Banerjee, A.; Coogan, T.; Grenander, U. Hierarchical brain

mapping via a generalized dirichlet solution for mapping brain manifolds. Proc. SPIE Int. Symp.

Optical Science, Engineering, and Instrumentation (Vision Geometry IV); San Diego, CA. 1995;

p. 278-289.

[32]. Miller MI, Banerjee A, Christensen GE, Joshi SC, Khaneja N, Grenander U, Matejic L.

Statistical methods in computational anatomy. Statist. Meth. Med. Res. 1997; vol. 6(no. 3):267–

299.

[33]. SAS System for Windows, V8. SAS Institute, Inc.; Cary, NC: 2000.

[34]. Hosmer, DW., Jr.; Lemeshow, S. Applied Logistic Regression. second ed. Wiley; New York:

2000.

[35]. Stokes, M.; Davis, C.; Koch, G. Categorical Data Analysis Using the SAS System. 2nd ed. SAS

Institute, Inc.; Cary, NC: 2000.

[36]. Cootes T, Taylor C, Cooper D, Graham J. Active shape models—Their training and application.

Comput. Vis. Image Understanding. 1995; vol. 61:38–59.

[37]. McNemar Q. Note on the sampling error of the difference between correlated proportions or

percentages. Psychometrika. 1947; vol. 12:153–157. [PubMed: 20254758]

[38]. Du A-T, Schuff N, Chao LL, Kornak J, Jagust WJ, Kramer JH, Reed BR, Miller BL, Norman D,

Chui HC, Weiner MW. Age effects on atrophy rates of entorhinal cortex and hippocampus.

Neurobiol. Aging. May.2006 vol. 27:733–740. [PubMed: 15961190]

[39]. Jack CR, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF, Knopman DS, Smith

GE, Ivnik RJ, Tangalos EG, Petersen RC. Brain atrophy rates predict subsequent clinical

conversion in normal elderly and amnestic MCI. Neurology. Oct..2005 vol. 65:1227–1231.

[PubMed: 16247049]

[40]. Mungas D, Harvey D, Reed BR, Jagust WJ, DeCarli C, Beckett L, Mack WJ, Kramer JH, Weiner

MW, Schuff N, Chui HC. Longitudinal volumetric MRI change and rate of cognitive decline.

Neurology. Aug..2005 vol. 65:565–571. [PubMed: 16116117]

[41]. Leow AD, Klunder AD, Jack CR, Toga AW, Dale AM, Bernstein MA, Britson PJ, Gunter JL,

Ward CP, Whitwell JL, Borowski BJ, Fleisher AS, Fox NC, Harvey D, Kornak J, Schuff N,

Studholme C, Alexander GE, Weiner MW, Thompson PM. For the ADNI preparatory phase

study, longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

NeuroImage. Feb..2006

[42]. Barnes J, Godbolt AK, Frost C, Boyes RG, Jones BF, Scahill RI, Rossor MN, Fox NC. Atrophy

rates of the cingulate gyrus and hippocampus in AD and FTLD. Neurobiol. Aging. Jan..2006

[43]. Frost C, Kenward MG, Fox NC. The analysis of repeated ‘direct’ measures of change illustrated

with an application in longitudinal imaging. Statist. Med. Nov..2004 vol. 23:3275–3286.

[44]. Barnes J, Scahill RI, Boyes RG, Frost C, Lewis EB, Rossor CL, Rossor MN, Fox NC.

Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates.

NeuroImage. Oct..2004 vol. 23:574–581. [PubMed: 15488407]

[45]. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain

volume changes in normal aging using serial registered magnetic resonance imaging. Arch.

Neurol. Jul..2003 vol. 60:989–994. [PubMed: 12873856]

Wang et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 1.
Diffeomorphic flow.
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Fig. 2.
Correlations between displacement vector fields (u) and initial velocity vector fields (v0).

Only the surface vertices that show significant correlation were colored according to the

correlation, others were colored as yellow-green. Top, middle and bottom row shows

correlation between v0 and u along the x, y, and z axes, respectively. Column a shows dorsal

view (from the top) and column b shows ventral view (from the bottom) of the

hippocampus.
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Fig. 3.
PCA of Lv0. Row (1) shows the distribution of eigenvalues for all eigenfunctions. Row (2)

shows the distribution of mean coefficients (CDR 0 and CDR 0.5 groups) associated with

the first 20 principal components. Row (3) shows the permutation tests for group differences

using the first 20 principal components. The p values shown are calculated from [see (12)].

Also shown are: 1)  value (solid blue line) of the Control-versus-DAT group

comparison; 2) theoretical F-distribution (solid red curve) with (20,23) degrees of freedom

superimposed on the empirical distribution; 3) p = .05 (red dotted line) and p = .01 (red dot-

dash line) for reference. Column (a) is for the left hippocampus where the first 20 principal

components account for 82.9% of the total variance. Column (b) is for the right

hippocampus where the first 20 principal components account for 80.5% of the total

variance.
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Fig. 4.
Visualization of the pattern of hippocampal deformities in subjects with very mild DAT

(CDR 0.5) compared with nondemented subjects (CDR 0) (Data taken from [3]). The flame

coloring represents the z -scores between the two groups of subjects. Inward variation of the

hippocampal surface is represented by cooler colors (i.e., blue to purple), while outward

variation is represented by warmer colors (i.e., orange to red). In (1a) the pair of

hippocampal surfaces are shown from above, with the head of the hippocampus pointing

toward the bottom edge of the figure panel, and the left hippocampus is on the right-hand

side of the panel. In (1b) the hippocampal surfaces are shown from below, with the head of

the hippocampus pointing toward the top edge of the figure panel, and the left hippocampus

is on the right-hand side of the panel.
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Table I

Validation 1—Matching Errors Between Each Algorithm and the Same Set of Manual Segmentations. Study

1: Five Schizophrenia and Five Control Subjects (MR Data Taken From [23]). Study 2: Five Dementia of the

Alzheimer Type (DAT) and Five Control Subjects (MR Data Taken From [3])

Study Algorithm L1 Error % Voxel Overlap

Study 1 Greedy 0.230 (±0.025) 79.45 (±2.97)

LDDMM 0.226 (±0.026) 79.56 (±2.72)

Study 2 Greedy 0.220 (±0.048) 80.62 (±5.52)

LDDMM 0.201 (±0.026) 78.54 (±5.80)

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 1.
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