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Abstract

Red blood cells are known to change shape in response to local flow conditions. Deformability 

affects red blood cell physiological function and the hydrodynamic properties of blood. The 

immersed boundary method is used to simulate three-dimensional membrane–fluid flow 

interactions for cells with the same internal and external fluid viscosities. The method has been 

validated for small deformations of an initially spherical capsule in simple shear flow for both neo-

Hookean and the Evans-Skalak membrane models. Initially oblate spheroidal capsules are 

simulated and it is shown that the red blood cell membrane exhibits asymptotic behavior as the 

ratio of the dilation modulus to the extensional modulus is increased and a good approximation of 

local area conservation is obtained. Tank treading behavior is observed and its period calculated.

I. INTRODUCTION

The membrane of the red blood cell (RBC) is easily deformed by shearing forces while 

maintaining its local area nearly unchanged. This type of response is due to the structure of 

the membrane which is composed of a lipid bilayer supported by a scaffolding of 

cytoskeletal proteins. Normal human RBCs in quiescent plasma assume a biconcave discoid 

shape with an average diameter of 8 μm, thickness of 2 μm, surface area of 140 μm2, and 

volume of 90 μm3.1 Equilibrium of forces determines the quiescent shape and it has been 

shown that changing the properties of the membrane leads to different quiescent shapes.2 

The surface area to volume ratio of the normal cell is 40% greater than that of a sphere with 

the same volume. Excess surface area not only improves the RBCs efficiency in loading and 

unloading solutes, but also allows the cell to deform easily as it passes through the 

circulatory system where it may encounter capillaries with diameters as small as 2.5 μm. 

The deformability of the RBC membrane affects its physiological function of oxygen 

transport3 and determines the hydrodynamic properties of whole blood,4,5 which has a 

normal hematocrit (volume fraction of RBCs) of approximately 45%.

The behavior of red blood cells in shear flow has been observed. At low shear rates the cells 

can tumble but as the shear rate increases the red blood cell can reach and equilibrium shape 

and orientation which remain constant as the membrane rotates in the plane of shear. Early 
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observations of this behavior, called tank treading, were reported by Schmid-Schönbein and 

co-workers.6,7 Since the tank treading velocity of the membrane is not uniform, this 

behavior is more like that of a drop than a solid particle. However, the tensions in an elastic 

membrane depend on the local strain, not local curvature. Keller and Skalak have modeled 

the behavior of nondeforming ellipsoidal particles in shear flow and predicted the shear rate 

at which the transition to tank treading occurs.8 The average deformation of a suspension of 

red blood cells was most recently measured by Mazeron et al.9 Chang and Olbrecht have 

measured the deformation of a single synthetic cell whose membrane is viscoelastic in 

extensional and Couette flows.10,11

The flow of deformable RBCs through capillaries can be considered axisymmetric under 

appropriate conditions and has been studied theoretically. Zarda et al.12 used a membrane 

model with a finite dilation modulus and resistance to bending stresses, and simulated 

axisymmetric flow through capillaries using the finite element method. A membrane model 

that treats the membrane as locally area conserving but neglects bending resistance was used 

by Secomb et al.13 Simulations with this model can result in shapes with cusps at the trailing 

edge of the RBC due to the lack of bending resistance. Nonaxisymmetric geometry of 

nondeformable RBCs in capillaries has also been considered.14 In vessels with diameters 

larger than the dimensions of the RBC the geometry is generally three dimensional. We 

begin the development of a general three-dimensional model of the RBC by studying ghost 

cells whose internal fluid is the same as the suspending fluid (plasma). These cells do not 

occur naturally but can be prepared in vitro15 and have been used extensively in 

experimental studies. A ghost cell is created by increasing the permeability of the membrane 

to hemoglobin by osmotic swelling to allow its diffusion into the surrounding fluid. RBCs 

fall into the category of suspended particles known as capsules; capsules are particles with 

elastic membranes that enclose a fluid, as opposed to droplets and bubbles whose interfacial 

forces arise from surface tension. Perturbation methods were used in the first models of 

fluid–capsule interactions. Assuming an initially unstressed spherical capsule with a 

quadratic strain energy function, linearized equations were solved to obtain the steady-state 

shape16 and time evolution17,18 of capsules in simple flows. Barthes-Biesel and Sgaier19 

used linear theory to study the effect of membrane viscosity and found that purely viscous 

membranes tumble while particles with viscoelastic membranes orient themselves to the 

streamlines when the shear rate and relaxation time are of the same order. Large 

deformations of two-dimensional cylindrical capsules were studied by Rao et al.20 by 

extending the perturbation equations to include terms of up to sixth order of the perturbation 

parameter that is proportional to the shear rate. More general models of capsule deformation 

have been based on the boundary element method. One advantage of using the boundary 

element method is that the geometric dimension of the problem is reduced by one. 

Governing equations are solved only on the bounding surface, and the solutions can be used 

to calculate variables in the external and internal flow field. Capsules with Mooney-Rivlin 

membranes suspended in elongational flow21 and passing through a hyperbolic 

constriction22 were modeled by Barthes-Biesel and co-workers. In both cases the geometry 

was axisymmetric. Pozrikidis23 has recently used the boundary element method to simulate 

the deformation of a capsule suspended in a simple shear flow with a quadratic 

approximation of a neo-Hookean membrane strain energy function. Rupture of the 
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membrane depends on the maximum strain, which varies with shear rate. A comparison is 

made with the observations made in Ref. 11 showing good agreement. Both initially 

spherical and elliptical capsules were considered. Zhou and Pozrikidis24 have used the 

boundary element method with interfacial tension based on surface tension with an 

incompressibility constraint as a model of the RBC membrane. Local area conservation is 

enforced through a kinematic condition which does not account for the extensional 

properties of the membrane.

In the present work, we use the immersed boundary method25,26 to simulate capsule 

deformation in which internal and external fluid properties are equal, thus representing the 

flow of red blood cell ghosts. Unlike the BEM, fluid velocities are calculated in the interior 

and exterior fluids at every time step. The immersed boundary method does not preclude the 

simulation of a cell with a fluid of differing internal viscosity. The methodology has been 

developed by Unverdi and Tryggvason27 for tracking the interface and accounting for the 

changes in fluid properties. Front tracking requires the solution of Poisson’s equation on the 

entire fluid grid at every time step, and is thus more costly to implement. Recently, Haj-

Hariri et al.28 have developed an adaptive grid refinement scheme in combination with a 

front tracking method to study thermocapillary motion of drops where the ratio of internal to 

external fluid viscosity varied from 10−3 to 101. The immersed boundary method has also 

been used to simulate the flow of suspensions of solid particles,29 and the deposition of 

nondeforming particles on solid substrates in the simulation of biofilm processes.30

A finite element model of the capsule membrane is used to approximate the forces due to 

general forms of the strain-energy function in conjunction with the immersed boundary 

method. The method is validated with the predictions of linear theory for both a neo-

Hookean membrane and a model of the RBC membrane. The material properties of the neo-

Hookean membrane are characterized solely by the elastic Young’s) modulus. The Evans 

and Skalak membrane model31 that has been commonly used as the model for the RBC 

membrane is characterized by a dilation modulus that determines the resistance to local 

changes in area and an extension modulus that determines the resistance to shearing stresses. 

Viscoelastic properties of the RBC membrane are not included in the model. Using the 

reported properties for the RBC membrane which has a very high dilation modulus we 

found the calculations to be unstable. In this work we show that very good approximations 

of RBC membrane behavior can be obtained at much lower dilation moduli at which the 

numerical method is more stable and total computation times are practical. Simulations of 

the deformation of initially spheroidal cells for different dilation moduli and shear rates are 

reported.

II. THE IMMERSED BOUNDARY METHOD

The immersed boundary method was introduced by Peskin25 to simulate blood flow in the 

heart. In the present work, we consider deformation of an elastic capsule filled with a 

Newtonian fluid. No modifications are made to the immersed boundary method, and the 

discretization of the membrane is done using a standard finite element method. The two 

methods have previously not been combined to study fluid–membrane interactions. In 

response to the external velocity field, the capsule will deform and exhibit tank treading. The 
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immersed boundary method is used to follow the motion of the membrane. Boundaries are 

allowed to translate and deform by splitting the numerical solution onto two grids: a 

stationary fluid grid which does not change after each time step and a moving boundary grid 

whose nodes move with the local velocity field. In this section we describe the immersed 

boundary method and save the discussion of the membrane model for a following section.

The following scalings are used to nondimensionalize time, length, velocity, pressure, and 

force:

(1)

where Lr and tr are the chosen reference length and time, respectively, and η is the fluid 

viscosity.

The nondimensional equations governing incompressible Navier–Stokes flow inside and 

outside a capsule are given by

(2)

(3)

(4)

(5)

where Eqs. (2) and (3) govern the flow of the internal fluid enclosed by the capsule 

membrane and Eqs. (4) and (5) the flow of the external fluid and λ = ηi/ηe is the ratio of the 

internal to external viscosities. No-slip conditions at the membrane surface S require that 

velocities be continuous across the surface such that

(6)

In the immersed boundary method, the elastic forces that the membrane exerts on the fluid 

are approximated through the addition of weighted forces to the momentum equation in the 

vicinity of boundary. Membrane forces in R3 located at X are distributed to a fluid grid node 
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at x using a discrete delta function which is chosen to approximate the properties of the 

Dirac delta function.25 Here we use the following three-dimensional function26

(7)

where

(8)

The domain of influence of each membrane node has a radius of two uniform fluid grid 

spacings h. A fraction of the elastic force at X is added to the momentum equation at the 

fluid grid x giving a modified momentum equation. Solving the coupled continuity equation 

and modified momentum equations gives the velocities on the fluid grid. No slip conditions 

at the membrane surface are satisfied by assigning a weighted local fluid velocity to the 

membrane nodes. The velocity (uN) of an immersed boundary node (N) is the sum of the 

velocities at the fluid grid nodes (x) weighted by the discrete delta function giving

(9)

The summation can be taken over all fluid grid nodes, but only those in the sphere of 

influence of the immersed boundary node N will make a contribution to its velocity. The 

immersed boundary node moves at this velocity for one time step to a new position given by

(10)

The forces exerted by the moving boundary have changed from the previous time step due to 

its new configuration. The new forces are calculated and the procedure is repeated to 

advance the flow one time step. The immersed boundary method does not rely on a specific 

discretizing method. Here we use the finite Fourier transform method described in detail in 

Ref. 26.

III. DISCRETE MODEL OF THE CAPSULE MEMBRANE

Our finite element model of the membrane is based on the model developed by Charrier et 
al.32 and Shrivastava and Tang.33 The model is used to obtain the forces acting at the 

discrete nodes of the membrane which are then distributed onto the fluid grid as described 

above. Here we summarize the characteristics of the model and refer the reader to Refs. 32 

and 33 for specific details. The capsule membrane is discretized into flat triangular elements 

which remain flat after deformation. The approximation is valid assuming that during 

deformation the local radius of curvature is much larger than the membrane thickness and 

bending stresses are negligible. The expressions developed for the force exerted at the nodes 
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of an element of the deformed membrane are given in the plane of the element. In a general 

three-dimensional deformation, the elements do not remain in the same plane after being 

displaced. The deformed element is transformed to the plane of the undeformed element to 

determine the relative displacement of the nodes and the corresponding forces. Stresses and 

strains exist only in the plane of the membrane and the strain energy is given by W(λ1, λ2), 

where λ1 and λ2 are the principal strains. Quantities are approximated by linear functions in 

the plane of the element with coordinates (x′, y′) such that they are described by

(11)

The three unknown coefficients a, b, and c are determined using known values of the 

function Fi at the three nodes located at  of the element.

Given the displacement of the three nodes of an element, its state of strain (λ1, λ2) can be 

obtained. The material properties of the element determine the forces that are required to 

maintain the element in a given state of strain/stress. The principle of virtual work is used to 

calculate the forces at the three nodes of an element. Each node of the discrete membrane 

belongs to more than one element. The resultant force F on the ith node is simply the sum of 

the forces exerted by the m elements attached to the node. The forces calculated are those 

that act on the node to deform the membrane. An equal and opposite force acts on the fluid 

in the manner prescribed by the immersed boundary method.

IV. SPHERICAL CAPSULES

Figure 1 shows the geometry and parameters that are important for the problem of a capsule 

deforming in shear flow. Here η is the fluid viscosity,  is the shear rate, a is the initial 

radius of the capsule, and μ denotes the extension modulus of the membrane. Barthes-Biesel 

and Rallison (BBR)22 studied the linearized problem of the evolution of an initially spherical 

capsule in a shear flow using perturbation methods and obtained expressions that are valid 

for . The deformation of the membrane is described by the Taylor shape 

parameter

(12)

where L is the length of cross section of the cell and B is the breadth. Cross sections are 

taken in the plane of shear in the discussions that follow. We will show that the time 

evolution of the Taylor shape parameter Dxy is in agreement with the previously obtained 

linear solutions for small values of G and the numerical nonlinear solutions at higher values 

of G for a neo-Hookean membrane.
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A. Theory for small deformations

The development of the equations that predict the deformation of initially spherical capsules 

in response to fluid forces is described in detail by BBR. Here we summarize and use their 

solution to validate calculations using the immersed boundary method.

Classic membrane theory expresses the principal strains λ1 and λ2 using local in-plane 

curvilinear coordinates. BBR have developed new strain invariants a and b that are more 

easily manipulated in Cartesian coordinates

(13)

(14)

The strain energy function W(λ1, λ2) for a given membrane material is then expressed in 

terms of these invariants to give W(a, b). Assuming small deformations, the strain energy 

function is expanded as a Taylor series and terms quadratic in a are kept so that the 

approximate strain energy function w is given by

(15)

This form of the strain energy function is used in obtaining the equations governing the 

deformation of the membrane in the plane of shear

(16)

where xs is the displaced position of a point on the sphere and Xs is the initial position of the 

same point. The functions J and K depend on time only and for an initially unstressed 

membrane their evolution is governed by

(17)

where

(18)
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(19)

(20)

(21)

The values of αi depend on the properties of the membrane and are given below. It is 

straightforward to solve these coupled ODEs with constant coefficients. Given the time 

evolution of K and (J−K), Eq. (16) is used to obtain the shape of the deformed membrane.

B. Neo-Hookean membrane

The strain energy function for a neo-Hookean membrane is given by

(22)

where E is the Young’s modulus and h is the membrane thickness. The material is 

incompressible (volume preserving). The corresponding coefficients for the quadratic strain 

energy function Eq. (15) are

(23)

The solution of the linearized equations for the neo-Hookean membrane was found by BBR. 

In the present work we use the immersed boundary method to simulate the deformation of a 

spherical neo-Hookean membrane and we will compare the results with linear theory. A 

spherical membrane of radius a is discretized into 15 552 flat triangular elements connecting 

7778 nodes distributed over the membrane. The spherical shape is taken to be a strain free 

state and the shape factors for each element are obtained from this undeformed 

configuration. The center of the membrane is placed at the center of a cube whose side is 4a 
and the cube is discretized into a uniformly spaced grid of discretization 2N×2N×2N. 

Periodic boundary conditions are imposed at the sides of the cube and shear flow is created 

by placing equal and opposite shearing forces on two planes near the edge of the cube. The 

forces (−bf,0,0) and (bf,0,0) are applied on the planes of the discretized cube, (i,2,k) and (i,
3,k), respectively. An undisturbed shear flow in the form (u(j),0,0) with shear rate  is 

created, where
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(24)

The membrane is held stationary until the shear flow is fully developed and is then released 

at t = 0.

The time evolution of the Taylor shape parameter is followed for several values of the 

dimensionless parameter  on a course grid 32×32×32 as shown in Fig. 2. 

Deformations are small for G<0.05 and there is excellent agreement with linear theory. The 

difference in the shape parameters when the calculations are stopped are 3.0%, 0.21% for G 
= 0.0125, 0.025, respectively. As the value of G increases the deformations increase and 

linear theory does not apply. For larger values of G, we compare the evolution of the capsule 

shape using the immersed boundary method coupled with the quadratic form of the strain 

energy function, Eq. (15), with that found by Pozrikidis23 using the boundary element 

method (BEM) at G=0.1 and G=0.2 in Fig. 2. In both cases the two solutions coincide. The 

method of generating the shear flow creates a discontinuity in velocity that may affect the 

deformation of the capsule. To test whether this is the case, a simulation is done on a cube 

whose side was 8a, instead of 4a, discretized into a grid that was 64×64×64. The uniform 

spacing is equal to that of the case above; however, the initial distance from the cell 

membrane to the edge of the cube has increased from a to 3a. Thus the discontinuity in 

velocity is farther from the cell. Calculations are repeated on this new grid for G=0.2, and 

the difference  (where the superscript indicates the length of the cube) 

between the two simulations at nondimensional time  is given in Table I. The differences 

are about 1% and the comparison suggests that boundary effects are negligible in this case.

C. Spherical ghost cells

Spherical ghost cells are studied in order to further validate the numerical method and 

investigate characteristics of the RBC membrane that can be compared to linear theory. 

Evans and Skalak31 have developed a strain energy function for the RBC membrane which 

is fit to deformation measurements for human RBCs34

(25)

(26)

The strain energy function for the RBC membrane is expanded as a Taylor series, in the 

same manner as was done for the neo-Hookean material, to obtain the following coefficients 

of the quadratic function, Eq. (15),
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(27)

These values used in Eq. (17) lead to the following equation for the shape evolution of 

spherical ghost cells (λ = 1)

(28)

The solution to Eq. (28) is

(29)

where

(30)

(31)

(32)

(33)

(34)

C1 and C2 are constants of integration in Eq. (29) that are chosen so that the initial values of 

K and J−K are zero. The properties that determine the characteristic parameter 
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 are viscosity of plasma η = 1.2 cP, radius of ghost cell a = 3.338×10−4 cm, 

and extension modulus, μRBC = 6×10−3 dyn/cm.

A grid refinement study is done for β = 10 and G = 0.01. The value of G was chosen so that 

the deformations are small but measurable and linear theory is valid. Calculations are done 

at a nondimensional time step  on 32×32×32 (coarse grid) and 64×64×64 (fine 

grid) fluid grids, and at  on the fine grid. The calculations are compared with 

the results of linear theory in Fig. 3. At  the membrane shape begins to 

asymptotically approach a steady-state value and the calculations are terminated. The 

difference between the linear-theory value of Dxy at  and that calculated on the 

coarse grid is 6.1%, while on the finer grid the difference is 0.20%. Time accuracy of the 

calculations is tested by halfing the time step on the fine grid. The results are nearly 

identical, with the difference in the final value of Dxy being 0.56%. The error is slightly 

larger for smaller time step because the time evolution of the shape parameter is not 

monotonic. A maximum is reached, and the steady-state value is approached from above. 

This characteristic is found for both the linear and nonlinear calculations and is attributed to 

the fact that the evolution depends on two time constants.

In the calculations that follow, simulations are done with 7778 membrane nodes and a 

64×64×64 fluid grid. At this level of discretization, approximately 10% of the CPU time is 

spent solving for the membrane forces, and about 90% is spent finding the fluid velocities. 

Thus we did not attempt to minimize the number of membrane nodes employed. The ratio of 

the extension to dilation moduli is fixed at β = 10 and the effect of increasing the 

characteristic parameter G is studied in this section. Five values of G = 0.01, 0.05, 0.1, 0.2, 

0.5 are considered corresponding to shear rates of approximately 15, 75, 150, 300, 750 s−1 

for the red blood cell ghost. These rates are in the range found under physiological 

conditions. The evolution of the shape parameter is shown in Fig. 4 and compared with 

linear theory, which is valid for β G ≪ 1, at low shear rates. The evolution of the orientation 

angle of the ghost cell u with respect to the streamlines is given in Fig. 4(b). At the lowest 

shear rate, G = 0.01, it appears that wobbling of the capsule occurs, along with tank treading, 

as the capsule approaches its equilibrium orientation. The orientation angle decreases as the 

shear rate and deformation of the ghost cell increase. Note that the time to reach a steady-

state shape increases with G. The ratio of the deformed surface area to initial surface area, 

A/A0, maximum and minimum deformed element area to initial element area, E/E0, and 

final volume to initial volume, Vf/V0, are summarized in Table II. As the shear rate increases 

the local area changes increase indicating that a larger value of β is required to approach 

area conserving behavior. Also, the membrane tensions change from being partly 

compressive and partly tensile for G ≤ 0.1 to fully tensile for G > 0.1. A sphere is the shape 

of minimum surface area for a fixed volume. Enforcing local area conservation results in a 

cell that cannot deform.

V. OBLATE SPHEROIDAL CAPSULES

Initially spherical capsules have been simulated because their simple geometry allows 

analytical methods to yield deformations histories. Here we simulate a capsule whose initial 

shape is an oblate spheroid with a semimajor to semiminor axes ratio of 2:1. This shape is 
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taken to be the strain free state. First we simulate the deformation of a neo-Hookean 

membrane and perform grid refinement studies to determine the numerical accuracy of the 

solutions. The Evans-Skalak model of the RBC membrane is then used to simulate ghost 

cells. Using the reported value of the dilational modulus results in an unstable system. The 

effect of increasing the dilational modulus at smaller values is studied and it is shown that 

local deformations are small and a good approximation of RBC membrane behavior can be 

obtained.

A. Neo-Hookean membrane

An oblate spheroidal membrane with a semimajor to semiminor axes ratio of 2:1 is 

discretized into the planar triangular elements described above. The dimensionless shear rate 

is define by Eq. (30) using as the reference length the radius of the sphere with the same 

volume. The quadratic form of the strain energy function with neo-Hookean coefficients, 

and initial inclination angle, θ = π/4 are employed. These parameters were chosen to 

compare the deformation histories with those calculated using the BEM under the same 

conditions. A fluid grid that is 64×64×64 and membrane discretization of 7778 nodes and 15 

552 elements was employed.

Deformation histories are calculated for three shear rates and are shown in Fig. 5 as solid 

lines. The calculations were done for . Results taken from the calculations using 

the boundary element method with 128 nodes on the spheroid surface (Fig. 13a, p. 146 of 

Ref. 23) are shown as solid circles. In every case the immersed boundary method predicts 

smaller equilibrium deformations than the BEM. The relative difference increases with shear 

rate G, and for G = 0.1 at , Dxy is 0.50 and 0.45 for the BEM and immersed boundary 

methods, respectively.

A grid refinement study was conducted at the smallest strain rate, G = 0.025, to determine if 

numerical errors lead to the difference between the two methods. The results are shown in 

Fig. 6. The steady-state deformation  from the simulation above is taken as the 

reference case and differences are calculated as . First a coarser 

fluid grid, 32×32×32 with the original membrane discretization was used and resulted in a 

smaller steady-state deformation that differed by −3.1%. Then, on the 64×64×64 fluid grid, a 

finer membrane discretization (60 002 nodes, 120 000 elements) was employed. The steady-

state deformation differs only by 0.15% but requires 33% more CPU time. Finally, the 

simulation is performed on a 128×128×128 fluid grid with the original membrane grid. In 

this case the steady-state deformation differs by 20.15% but required approximately 350% 

more CPU time to reach a nondimensional time of . The results show that the 

numerical error using the immersed boundary calculations at G = 0.025 is small. Numerical 

accuracy studies were not reported for initially spheriodal cells using the BEM in Ref. 23.

B. Oblate spheroidal ghost cell

Instabilities are encountered when simulating capsule deformation using the Evans-Skalak 

strain energy function with the reported values of the elastic parameters. Deformation 

histories are calculated using the reported value of the extensional modulus, μRBC, and 
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values of the dilational modulus, KRBC, at which the time step required for numerical 

stability is reasonable.

The same discretizations (fluid grid: 64×64×64; membrane: 7778 nodes, 15 552 elements) 

of the fluid domain and oblate 2:1 spheroid are used here. Using as the reference length the 

radius of the sphere of equal surface area, the nondimensional shear rate is given by Eq. 

(30). The fluid strain-rate simulated, G = 0.03, corresponds to 50 s−1 for the RBC. The effect 

of increasing the dilational modulus using the full strain energy function is studied by 

calculating the deformation history for β = 10,20,40,60,80,100. Refinement of the fluid grid 

is carried out for β of 60 and 100. It is shown in Fig. 7(a) that as β increases the equilibrium 

deformation decreases monotonically. A simulation is performed using the full Hookean 

strain energy function setting Eh/3 = μRBC so that the membranes have effectively the same 

extensional modulus for small deformations. The Hookean membrane is more compliant 

than the Evans-Skalak model of the RBC. Evolution of the orientation angle for the Hookean 

membrane and the Evans-Skalak membrane with β = 100 are shown in Fig. 7(d). The 

similarity of the curves indicates that the orientation angle is weakly dependent on the 

dilational modulus.

The grid refinement studies shown in Figs. 7(b) and 7(c) show that error in the change in 

Dxy from the quiescent state, , given by  is large on 

the coarse grid (20%, 28%) but the difference at equilibrium between the calculations on 

standard grid and the fine grid is (4.7%, 3.2%) for β = 60,100, respectively. The ratio of the 

deformed surface area to initial surface area, A/A0, maximum and minimum deformed 

element area to initial element area, E/E0, and final volume to initial volume, Vf/V0, are 

summarized in Table III. Note that although deformation and change in surface area 

decrease monotonically with increasing β (dimensionless dilational modulus) the changes in 

individual elements show no pattern and are in fact largest for β = 100 on the standard grid.

A better picture of local area conservation is given when the deformation in the equilibrium 

configuration of all elements (15 552) is examined. A strain histogram is created in the 

following manner. The percent change in area of each element Eh = (E/E0−1)*100% is 

calculated. The range of elemental area changes is divided into sectors, centered at zero. If 

Eh of an element falls in a sector, then its initial area normalized by the initial total surface 

area, E0/A0, is added to the running total for that sector. Once all elements have been 

grouped in this fashion, the sum of the weighted elemental area for all sectors is unity. The 

sum of the weighted elemental area for a single sector gives the proportion of the 

undeformed surface area that falls within that deformation range. Thus a perfectly locally 

area conserving membrane would have a value of 1 for −ε≤Eh≤ε and zero elsewhere. The 

strain histograms are found for the membrane deformation study above and selected cases 

are shown as curves to facilitate their comparison in Fig. 8(a) and all cases are summarized 

in Table IV. The histograms are not symmetrical and skewed towards tensile strain. For large 

β the maximum of the histogram is located at zero. As β increases the membrane becomes 

stiffer and for the same deformation exerts more stress on the fluid. This causes a larger 

jump in the fluid shear across the membrane and requires a finer fluid grid to capture the 

gradients in the fluid velocities. Increased area conservation is shown for β = 60 and 100 in 
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Figs. 8(b) and 8(c), respectively, with grid refinement. Note that with grid refinement the 

maximum and minimum area changes (extension and compression) of a single element 

decrease in magnitude. Local area conservation is best on the finest grid with β = 60, with 

98.9% of the original area having local deformations of less than ±0.75% and all local 

deformations being less than 1.4%. For β = 100, 95.8% of the original area has local 

deformations of less than ±0.75%, as seen in Table IV. The area histograms calculated on the 

standard and fine grid are still somewhat different, indicating that better results could be 

obtained on a still finer grid. We did not do this due to the larger amount of computing time 

and memory required.

C. Tank treading behavior

No-slip conditions at the membrane cause it to move with the local velocity field. Since the 

membrane is flexible and encloses a fluid, the capsule/cell does not necessarily tumble as a 

rigid body. The membrane which is a closed streamline at steady state rotates continuously 

without changing shape. This behavior is called tank treading and has been observed for red 

blood cells.6,7 We calculate the period it takes for the membrane to complete one rotation 

about its equilibrium shape in the following manner. The cross section of the cell in the 

plane of shear is found at two different time steps that differ by Δt. Elements that cross the 

plane of shear in both configurations are identified and their radial position  (n denotes 

time step, i denotes element) is calculated. The radial velocity  as a function of radial 

position (ϕ)ave is interpolated with the following:

(35)

(36)

About 280–300 elements were found to cross the plane of shear. We find the period of 

rotation τ by integrating these curves using periodic boundary conditions

(37)

Here we are assuming that the node moves at the average velocity  while 

moving from (ϕi)ave to (ϕi+1)ave. The results are shown in Table V for the oblate spheroid 

ghost cell at the values of β simulated. Note that the period decreases with increasing 

dilational modulus, and on the finest grid the periods are 16.5 and 16.1 nondimensional time 

units for β = 60,100, respectively. This indicates that the tangential velocities along the 

membrane and the strength of the circulation are increasing.
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VI. BICONCAVE DISCOID

Spheroidal cells can be created through osmotic swelling, but the quiescent shape of a 

normal RBC is a biconcave discoid. Evans and Fung35 developed the following equation to 

describe the cross section of this shape:

(38)

where

The x and y coordinates of cross section are given by

(39)

The discoid is scaled so that its area is 140 μm2 and is discretized into 7842 nodes and 15 

680 elements. Several simulations were performed for various shear rates with neo-Hookean 

and Evans-Skalak (β=10) membranes. We were not able to obtain steady-state solutions but 

were able to follow the deformation histories for up to . The profiles in the plane of 

shear for a discoid with initial inclination angle θ=0 at (GRBC=0.583, ) are 

shown in Fig. 9 for . Before the simulations become unstable the total area has 

increased by 5.25%, (E/E0)max=1.31 and (E/E0)min=0.676. The simulations become unstable 

when local radii of curvature become small and the membrane appears to begin to buckle or 

fold. Secomb et al.13 have obtained steady-state axisymmetric shapes with cusps having 

neglected the bending stiffness of the RBC membrane. Although the bending stiffness of the 

RBC is small, kc=10−12 erg,34 it is necessary to smooth out the deformations and prevent 

buckling.

VII. DISCUSSION

These are the first three-dimensional simulations of finite membrane deformation using the 

strain energy function for the red blood cell. In our attempt to numerically solve the coupled 

fluid–membrane deformation using the measured value of the dilational modulus for the 

RBC we found a system that is numerically unstable at reasonable time steps. We have 

shown that when smaller values of the dilational modulus are used, local area changes are 

small and RBC membrane behavior should be well approximated. However, this study raises 

the following questions. First, for the case of the oblate spheroid as KRBC→∞, is the 

asymptotic deformation zero or finite? Second, what is the appropriate value of the dilational 

modulus for dynamic deformations of the RBC membrane?

The first question can be taken as purely mathematical in nature: whether under the 

constraints of fixed volume and local area conservation (therefore total surface area 
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conservation) the surface area enclosing the given volume can deform. Not only must the 

initial and final shapes meet these constraints, but so must all the intermediate deformations 

during the evolution of the shape.

This leads us to ask if it is appropriate to model the red blood cell as absolutely locally area 

conserving under dynamic deformations. In reality deformations of the RBC membrane are 

not as severely constrained. The dilational modulus is measured by deforming an 

osmotically swollen sphere, which is not possible under volume and local area constraints. 

Under micropipette aspiration, the RBC membrane area increases by about 4% before 

hemolysis (membrane rupture). The area change is global, not local in nature. Physically a 

finite number of lipid molecules must cover a larger area. The average area per molecule 

must increase. It has also been shown that under static deformations there is up to a 10% 

variation in lipid density, as well as cytoskeletal rearrangement.36 These observations imply 

that KRBC and μRBC are not spatially uniform. It may then be possible that these parameters 

may vary under dynamic deformations. Also, even larger (>4%) local deformations can be 

sustained. Here under dynamic deformations local area changes were less than 1% in 

magnitude. Local and total area changes under dynamic deformations have not been 

measured. It is assumed that since the measured value of KRBC is very large that smaller 

local area changes are better approximations of RBC membrane behavior. Also, the RBC 

membrane is permeable so the constraint of constant volume may be too stringent. It is 

possible that deformations are accompanied by a flux of water through the membrane that 

may be passive or assisted by active pumping mechanisms within the membrane.

The importance of these questions depends on the motivation for studying red blood cell 

deformation. Two reasons for studying fluid–membrane interactions are to further our 

understanding of mass transport and to predict hemolysis. If one is interested in purely 

diffusive mass transport, then it is only necessary to have a good approximation of the cell 

shape. In order to understand the role of convective mass transport it is important to 

correctly predict the velocity field which is coupled to the membrane tensions. Predicting 

membrane tension evolution is necessary for analysis of hemolysis.

VIII. CONCLUSIONS

The immersed boundary method has been successfully applied to the simulation of 

deforming capsules. The method is validated through comparison with linear theory for the 

deformation of initially spherical capsules with both neo-Hookean and Evans-Skalak 

membrane models. Initially oblate spheroidal capsule deformations have been calculated for 

varying dilational modulus. When the red blood cell membrane is approximated using the 

Evans-Skalak model with a ratio of dilation modulus to extensional modulus KRBC/μRBC 

significantly smaller than the measured value, local area changes are less than 1%. It is 

interesting to note that for the chosen values of the parameter β(β=60–100), the predicted 

total area changes are very small, less than 0.17%, and are probably beyond experimental 

resolution. As the shear rate increases, the dilation modulus required to keep local area 

changes small increases as well. Capsules in shear flow have been shown to tank tread. 

Bending stiffness must be included in order to simulate more complex shapes.
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FIG. 1. 
Flow schematic for a capsule deforming in shear flow.

Eggleton and Popel Page 19

Phys Fluids (1994). Author manuscript; available in PMC 2017 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2. 
Validation for the neo-Hookean membrane model. The solid lines are linear theory (valid 

only for Gβ ≤1), Δ, immersed boundary method, ● are found using the boundary element 

method (Ref. 23).
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FIG. 3. 
Validation for Evans-Skalak membrane model for G = 0.01 and β = 10. The difference 

between linear theory and the numerical simulations at  are 6.1%, 0.20%, and 

0.56% for  (coarse and fine grids) and  (fine grid).
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FIG. 4. 
Evolution for β = 10 of (a) the deformation parameter (linear theory is valid only for Gβ ≤ 1) 

and (b) the orientation angle θ.
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FIG. 5. 
Deformation histories for a 2:1 oblate spheroid for G = 0.025, 0.05, 0.1. Solid lines are 

immersed boundary method. ●, BEM (Ref. 23).
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FIG. 6. 
Grid refinement study for 2:1 oblate spheroid with neo-Hookean membrane at G = 0.025.

Eggleton and Popel Page 24

Phys Fluids (1994). Author manuscript; available in PMC 2017 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 7. 
Effect of increasing dilational modulus. Deformation histories for a 2:1 oblate spheroid with 

neo-Hookean membrane and Evans-Skalak membrane with increasing dilational modulus, 

(β = 10,20,40,60.80,100), at . (a) 64×64×64 fluid grid, (b) grid 

refinement for β = 60, (c) grid refinement for β = 100, (d) the orientation angle θ.
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FIG. 8. 
Strain histograms for equilibrium shape at G = 0.03 for the Hookean membrane and Evans-

Skalak membrane with increasing dilational modulus, (β = 20,60,80). The abscissa is the 

percentage change in an elements area. Eh = (E/E0−1) and is centered at zero. Each bin has a 

width of 0.5%. The normalized unstrained area of an element, E0/A0, are added for each 

range of equilibrium strains. The sum of all bins is 1 for each case. Note that for a locally 

area conserving membrane all elements would have zero deformation and the coordinate 

value would be 1. (a) 64×64×64 fluid grid, (b) grid refinement for β = 60, (c) grid 

refinement for β = 100.
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FIG. 9. 
Membrane profiles in the plane of shear for an initially biconcave discoid at an orientation 

angle θ=0. Profiles are shown at , for G=0.583, .
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TABLE I

Effect of computational domain size on the deformation. The difference .

ε (%)

0.25 0.92

0.50 1.05

0.75 1.04

1.00 0.99

1.25 0.79
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TABLE II

Area and volume changes for increasing G for a sphere at β =10. The ratio of the deformed surface area to 

initial surface area, A/A0, maximum and minimum deformed element area to initial element area, E/E0, and 

final volume to initial volume, Vf/V0, are shown.

G AT Emax Emin Vf

0.01 1.0002 1.007 0.9917 1.000

0.05 1.006 1.033 0.9764 0.9994

0.1 1.019 1.048 0.9907 0.9987

0.2 1.042 1.078 1.006 0.9984

0.5 1.087 1.158 1.024 0.9986
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TABLE III

Area and volume changes for increasing β for an initially oblate spheroid 2:1 at GRBC=0.03, . The 

ratio of the deformed surface area to initial surface area, A/A0, maximum and minimum deformed element 

area to initial element area, E/E0, and final volume to initial volume, Vf/V0, are shown.

β,(grid) AT (E/E0)max (E/E0)min Vf

10 1.0046 1.0317 0.9761 0.998

20 1.0029 1.0372 0.9730 0.998

40 1.0018 1.0330 0.9698 0.998

60,323 1.0012 1.0339 0.9738 0.998

60,643 1.0013 1.0290 0.9754 0.998

60,1283 1.0016 1.0133 0.9880 0.999

80 1.0010 1.0240 0.9783 0.998

100,323 1.0008 1.0300 0.9731 0.998

100,643 1.0007 1.0425 0.9554 0.998

100,1283 1.0010 1.0243 0.9762 0.998
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TABLE V

Tank treading period for increasing β.

β

60,323 20.2

100,323 18.6

10 22.9

20 21.7

40 19.6

60 18.7

80 18.0

100 17.4

60,1283 16.5

100,1283 16.1
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