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Abstract. In rough stochastic PDE theory of Hairer type, rough path lifts with respect
to the space variable of two-parameter continuous Gaussian processes play a main role. A
prominent example of such processes is the solution of the stochastic heat equation under the
periodic condition. The main objective of this paper is to show that the law of the spatial lift
of this process satisfies a Schilder type large deviation principle on the continuous path space
over a geometric rough path space.

1. Introduction and main result. In rough path theory of T. Lyons, the notion of
paths is generalized to a great extent and so is that of ordinary differential equations. They
are called rough paths and rough differential equations (RDEs), respectively. The solution
map of an RDE is called an Itô map, which is defined for every rough path and, moreover, is
continuous with respect to the topology of rough path space (Lyons’ continuity theorem). As
a result, stochastic differential equations (SDEs) in the usual sense are made deterministic or
“dis-randomized”.

Even though Itô maps are deterministic, the probabilistic aspect of the theory is still
very important undoubtedly. In a biased view of the author, a large deviation principle of
Schilder type is a central issue in stochastic analysis on rough path spaces. This kind of large
deviations was first shown by Ledoux, Qian, and Zhang [15] for the law of Brownian rough
path. Combined with Lyons’ continuity theorem, this result immediately recovers well-known
Freidlin-Wentzell type large deviations for solutions of SDEs. Since then many papers have
been published on this topic [2, 3, 5, 6, 12, 13, 18].

Naturally, one would like to apply rough path theory to stochastic PDEs. There have been
some successful attempts. In this paper, we focus on M. Hairer’s theory [8, 10, 11], which
is based on M. Gubinelli’s controlled path formalism. In this theory, rough path integration
is used for the space variable x ∈ S1 = R/Z for each fixed time variable t > 0. This
is surprising because almost everyone regarded solutions of stochastic PDEs as processes
indexed by t-variable that take values in function spaces of x-variable and then modify and
apply infinite dimensional rough path theory. Not only this point of view is novel, but this
theory also turned out to be very powerful when he rigorously solved KPZ equation in the
periodic case for the first time [9].
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Under these circumstances, it seems natural and necessary to develop stochastic analysis
in this framework. In this paper we will prove a large deviation principle of Schilder type for
the spatial lift of the (scaled) solution ψ of the stochastic heat equation on S1. This process ψ

plays a crucial role in [10, 11]. To our knowledge, a large deviation principle is new in rough
stochastic PDE theories of any kind.

Now we introduce our setting. We will give precise definitions and detailed explanations
in later sections. Let us recall the stochastic heat equation on S1. As usual S1 = R/Z is
regarded as [0, 1] with the two end points identified and △ = △S1 stands for the periodic
Laplacian. Let ξ i = ξ(t, x)i (1 ≤ i ≤ d) be independent copies of the space-time white
noise associated with L2([0, T ] × S1) with the (formal) covariance E[ξ(t, x)iξ(s, y)j ] =
δij · δt−s · δx−y . Let ψ = ψ(t, x) be a unique solution of the following Rd -valued stochastic
PDE.

(1.1) ∂tψ = △xψ + ξ, with ψ(0, x) ≡ 0 .

Then, ψ = (ψ(t, x))0≤t≤T ,0≤x≤1 is a two-parameter continuous Gaussian process. It was
shown in [10] that, (i) for each t , x �→ ψ(t, x) admits a natural lift to a geometric rough path
(x, y) �→ Ψ (t; x, y) a.s. and (ii) there exists a modification of Ψ such that t �→ Ψ (t; •, ⋆)

is continuous in the geometric rough path space a.s. In this theory, a solution of a rough
stochastic PDE is obtained from Ψ . Therefore, it is important to analyze (the law of) Ψ .

Let 1/3 < α < 1/2. We denote by GΩH
α (Rd ) the α-Hölder geometric rough path

space over Rd . The first level path of X ∈ GΩH
α (Rd) is a usual path in Rd which starts

at 0. Let GΩ̂H
α (Rd) ∼= Rd × GΩH

α (Rd) be the α-Hölder geometric rough path space in
an extended sense so that information of the initial values of the first level paths are added.
For each t , the random variable Ψ (t; •, ⋆) takes values in this Polish space GΩ̂H

α (Rd). Let
P∞GΩ̂H

α (Rd ) = C([0, T ],GΩ̂H
α (Rd)) be the continuous path space over GΩ̂H

α (Rd). Its
topology is given by the uniform convergence in t as usual. The random variable Ψ takes
values in this Polish space and hence its law is a probability measure on this space.

Introduce a small parameter 0 < ε ≤ 1. Let εΨ is the dilation of Ψ by ε, which is equal
to the natural lift of εψ , anyway. Denote by νε the law of εΨ on P∞GΩ̂H

α (Rd). Our main
result is the following:

MAIN RESULT. For any α ∈ (1/3, 1/2), the family (νε)0<ε≤1 of probability measures on

P∞GΩ̂H
α (Rd ) satisfies a large deviation principle as ε ց 0 with a good rate function I .

See Theorem 5.6 below for a precise statement of our main result. A concrete expres-
sion of I will be given in Section 5. A comment on a Freidlin-Wentzell type large deviation
principle for solutions of rough stochastic PDEs will also be given after the main theorem.

The organization of this paper is as follows. In Section 2 we introduce several kind of
path spaces over geometric rough path spaces and show basic properties between them. In
Section 3 we prove a few properties of the covariance of ψ in one-dimensional case. We use
them in the following section to prove convergence of the dyadic polygonal approximations.
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In Section 4 we prove that the spatial lift of the dyadic polygonal approximations of
ψ converge with respect to a Besov type topology which is stronger than the topology of
P∞GΩ̂H

α (Rd ). Unlike preceding examples in [4, 8, 11, 10, 21], in which Kolmogorov’s
continuity criterion is used to obtain regularity in t-variable, we directly prove a.s. and Lp-
convergence in function spaces of space-time variables. In this respect, the argument in this
section may be new.

In Section 5 we prove our main result, namely, large deviations for the law of εΨ . Our
method is based on Friz and Victoir’s in [6]. Their method is general and moreover is available
even when regularity of Cameron-Martin paths is not understood very well. (Sometimes,
lifting a Gaussian process may be easier than lifting its Cameron-Martin paths.) Neither in
our case do we know much about (the lift of) Cameron-Martin elements of ψ . So we use their
method.

Throughout this paper, c denotes an unimportant positive constant which may change
from line to line.

2. Path space over geometric rough path space. In this section we recall the def-
initions and some basic facts of the geometric rough path spaces, which are endowed with
Hölder, Besov, and the uniform norms. Then we consider continuous path spaces over geo-
metric rough path spaces and introduce several kinds of norms on them. All the ingredients of
this section are either known or easily derived from known facts. We refer to Appendix A.2
in Friz and Victoir [7] for basic information on Hölder and Besov norms.

Let us first recall Hölder and Besov norms on continuous path space over a real Banach
space. Let V be a real Banach space. The set of continuous path f : [0, T ] → V is denoted by
C([0, T ],V). It is a real Banach space with the usual uniform norm ‖f ‖∞ := sup0≤t≤T |ft |V .
The subspace of all the continuous paths which start at 0 is denoted by C0([0, T ],V).

For α ∈ (0, 1] and f ∈ C([0, T ],V), we define α-Hölder norm of f by

‖f ‖H ;α := |f0|V + sup
0≤s<t≤T

|ft − fs |V
|t − s|α .

The subspace of all the paths with ‖f ‖H ;α < ∞ is denoted by CH ;α([0, T ],V). Next we
introduce Besov norm. For α ∈ (0, 1] and m ≥ 1 with α > 1/m, we define (α,m)-Besov
norm of f by

‖f ‖B;α,m := |f0|V +
{

∫∫

S(T )

|ft − fs |mV
|t − s|1+αm

dsdt
}1/m

.

Here, S(T ) = {(s, t) | 0 ≤ s ≤ t ≤ T }. (When T = 1 we write S = S(1) for simplicity). The
subspace of all the paths with ‖f ‖B;α,m < ∞ is denoted by CB;α,m([0, T ],V). It is obvious
that ‖f ‖B;α,m ≤ c‖f ‖H ;α′ for some constant c = cα,α′,m > 0 if α < α′. By Besov-Hölder
embedding theorem (e.g. Corollary A.2, [7]), it also holds that ‖f ‖H ;α−1/m ≤ c′‖f ‖B;α,m

for some constant c′ = c′
α,m > 0. In particular, CB;α,m([0, T ],V) is continuously imbedded

in CH ;α−1/m([0, T ],V). The subspace of all the Besov or Hölder paths which start at 0 is
denoted with the subscript “0”.
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Let us next recall geometric rough path spaces. Throughout this paper, the parameter
interval for rough paths is [0, 1] and we set S = S(1) = {(x, y) | 0 ≤ x ≤ y ≤ 1}.
Let A ∈ C(S, Rd ) vanish on the diagonal. (The totality of such A’s will be denoted by
C0(S, Rd ).) We set

‖A‖H ;α = sup
0≤x<y≤1

|Ax,y|
|y − x|α (0 < α ≤ 1) ,(2.1)

‖A‖B;α,m =
(

∫∫

S

|Ax,y |m
|y − x|1+mα

dxdy
)1/m

(0 < 1/m < α ≤ 1) .(2.2)

These are called α-Hölder norm and (α,m)-Besov norm, respectively.
Let T 2(Rd ) = R ⊕ Rd ⊕ (Rd)⊗2 be the truncated tensor algebra of step 2. The set of

elements of the form (1, •, ⋆) forms a non-abelian group under the tensor multiplication ⊗.
The unit element is 1 = (1, 0, 0). A scalar action (1, a1, a2) �→ (1, λa1, λ

2a2) for λ ∈ R is
called the dilation.

A continuous map A = (1, A1, A2) : S → T 2(Rd) is called multiplicative if it satisfies
that

A1
x,y = A1

x,z + A1
z,y, A2

x,y = A2
x,z + A2

z,y + A1
x,z ⊗ A1

z,y, (x ≤ z ≤ y) .(2.3)

This relation is called Chen’s identity and can also be written as Ax,y = Ax,z⊗Az,y , where ⊗
stands for the multiplication of T 2(Rd). In particular, Ax,y is a “difference” of a group-valued
path, since Ax,y = (A0,x)

−1 ⊗ A0,y . Note that A1 and A2 vanish on the diagonal if they are
multiplicative. We denote by Ω∞(Rd) the set of such continuous multiplicative functionals.
A distance on Ω∞(Rd ) is given by d(A,B) = ‖A1 − B1‖∞ + ‖A2 − B2‖∞, where ‖ · ‖∞
denotes the sup-norm over S as usual.

Let 1/3 < α ≤ 1/2. The space of Rd -valued α-Hölder rough path is defined by

ΩH
α (Rd ) = {A = (1, A1, A2) ∈ C(S, T 2(Rd))

| multiplicative and ‖A1‖H ;α < ∞, ‖A2‖H ;2α < ∞} .

The topology of this space is naturally induced by the following distance: d(A,B) = ‖A1 −
B1‖H ;α + ‖A2 − B2‖H ;2α . In the same way, (α,m)-Besov rough path is defined for m ≥ 2
and 1/3 < α ≤ 1/2 with α − m−1 > 1/3 as follows;

ΩB
m,α(Rd ) = {A = (1, A1, A2) ∈ C(S, T 2(Rd))

| multiplicative and ‖A1‖B;α,m < ∞, ‖A2‖B;2α,m/2 < ∞} .

The topology of this space is naturally induced by the following distance: d(A,B) = ‖A1 −
B1‖B;α,m + ‖A2 − B2‖B;2α,m/2. In what follows, we will often write A = (A1, A2) for
simplicity, since the 0th component “1” is obvious.

A Lipschitz continuous path (i.e., 1-Hölder continuous path) x ∈ C
H ;1
0 ([0, 1], Rd) ad-

mits a natural lift to a rough path by setting

A1
x,y := ay − ax, A2

x,y :=
∫ y

x

(az − ax) ⊗ daz, (x, y) ∈ S .
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It is easy to see that A ∈ ΩH
α (Rd) ∩ ΩB

α,m(Rd). We call a rough path A obtained in this way
a smooth rough path lying above a, or the natural lift of a. The natural lift map is denoted by
L2, i.e., A = L2(a).

Now we introduce geometric rough path spaces. Let GΩH
α (Rd) be the closure of the

set of smooth rough paths in ΩH
α (Rd). This is called the geometric rough path space with

α-Hölder norm. The geometric rough path space GΩB
α,m(Rd) with (α,m)-Besov norm is

similarly defined. Hence, we have the following inclusions;

GΩH
α (Rd) ⊂ ΩH

α (Rd), GΩB
α,m(Rd) ⊂ ΩB

α,m(Rd) .

Moreover, by Besov-Hölder embedding in Proposition 2.1 below, we also have

GΩB
α,m(Rd ) ⊂ GΩH

α−1/m(Rd), ΩB
α,m(Rd) ⊂ ΩH

α−1/m(Rd ) ,

if 1/3 < α ≤ 1/2, m ≥ 2, and α − 1/m > 1/3. Note that these continuous inclusions are
bounded (in the sense that they map any bounded set to a bounded set).

PROPOSITION 2.1. Assume 1/3 < α ≤ 1/2, m ≥ 2, and α − 1/m > 1/3. Then,
ΩB

α,m(Rd ) is continuously embedded in ΩH
α−1/m(Rd). Consequently, (i) GΩB

α,m(Rd) is con-

tinuously embedded in GΩH
α−1/m(Rd) and (ii) ΩB

α,m(Rd ) is a complete metric space and

GΩB
α,m(Rd ) is a Polish space.

PROOF. Recall the following inequalities for Besov-Hölder embedding: For some pos-
itive constant c = cα,m independent of A,B ∈ Ω∞(Rd), we have

‖A1 − B1‖H ;α−1/m ≤ c‖A1 − B1‖B;α,m ,

‖A2 − B2‖H ;2α−2/m ≤ c
(

‖A1 − B1‖B;α,m + ‖A2 − B2‖B;2α,m/2
)

×
(

‖A1‖B;α,m + ‖A2‖B;2α,m/2 + ‖B1‖B;α,m + ‖B2‖B;2α,m/2
)

.(2.4)

The first one has already been explained. The second one is found in Proposition A.10,
pp. 576–579, [7]. (In the proof, only multiplicativity of A and B is used. In other words,
t �→ A0,t , B0,t need not take their values in the free nilpotent group of step 2. See [7] for
details.) From these inequalities, we can easily see that ΩB

α,m(Rd) is continuously embedded
in ΩH

α−1/m(Rd ).
Now we prove the rest of the proposition. The only non-trivial part is completeness of

ΩB
α,m(Rd ). Let A(n) (n = 1, 2, . . . ) be a Cauchy sequence in (α,m)-Besov topology. In the

Besov topology, there exists a limit A(∞). But, A(∞) is continuous and multiplicative on S

since convergence is also in (α − 1/m)-Hölder topology. Hence, ΩB
α,m(Rd) is complete. ✷

In the above definition, the first level path of a rough path is naturally identified with a
path in the usual sense which starts at origin. Now we slightly modify the definition so that
the first level path can start at any point.

Set Ω̂∞(Rd ) = Rd × Ω∞(Rd ). The distance on it is the natural one for a product space.
The path [0, 1] ∋ x �→ v + A1

0,x is said to be the first level path of (v,A) ∈ Ω̂∞(Rd ). v is
called the initial value The dilation naturally extends on this space by λ(v,A) = (λv, λA). In
the same way, Ω̂B

α,m(Rd) and Ω̂H
α (Rd) are defined.
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Conversely, for a ∈ CH ;1([0, 1], Rd), we set L2(a) = (a0,L2(a· − a0)) ∈ Ω̂∞(Rd) and
call it a natural lift of a or a smooth rough path lying above a. Geometric rough path spaces
GΩ̂∞(Rd), GΩ̂B

α,m(Rd), and GΩ̂H
α (Rd) in this extended sense are defined as the closure of

the set of smooth rough paths as before.

REMARK 2.2. (i) For (v,A) = (v,A1, A2) ∈ Ω̂∞(Rd), we will sometimes write
(a,A2), where ax = v + A1

0,x . In particular, for b ∈ CH ;1([0, 1], Rd), (b, B2) stands for the
smooth rough path lying above b.

(ii) Almost all the results for GΩH
α (Rd) etc. also hold for GΩ̂H

α (Rd) etc. with trivial
modifications.

(iii) ΩH
α (Rd) is basically the same rough path space as in [8, 10, 11, 9], etc., in which the

rough path space is denoted by Dα(Rd). The only difference is that in this paper a rough path
is defined on the simplex S, while in these papers it is defined on the simplex [0, 1]2. How-
ever, under Chen’s identity values of rough paths on [0, 1]2 \S are automatically determined.
Hence, there is essentially no difference.

Now we consider several kind of path spaces over geometric rough path space. Let T > 0
and assume 1/3 < α ≤ 1/2, m ≥ 2, and α − 1/m > 1/3. We first define continuous path
spaces over geometric rough path spaces with the usual sup-distance. Let P∞GΩ̂H

α (Rd) =
C([0, T ],GΩ̂H

α (Rd )) be a continuous path space over GΩ̂H
α (Rd). An element of this set is of

the form (vt , A
1(t; x, y),A2(t; x, y)). (We often write Ai(t; x, y) = Ai

t (x, y) for simplicity.)
The distance on this space is defined by

dist
(

(v,A1, A2), (u, B1, B2)
)

= sup
t∈[0,T ]

|vt − ut | + sup
t∈[0,T ]

‖A1
t − B1

t ‖H ;α + sup
t∈[0,T ]

‖A2
t − B2

t ‖H ;2α .

This space is the one used in M. Hairer’s rough stochastic PDE theory (see [8, 10, 11, 9]). In
the same way, we define P∞GΩ̂B

α,m(Rd) and P∞GΩ̂∞(Rd ) as well as their distances.
Let 0 < β ≤ 1. Set

PH
β GΩ̂H

α (Rd) = {(v,A1, A2) ∈ P∞GΩ̂H
α (Rd ) | t �→ vt ,

A1
t is β-Hölder continuous, A2

t is 2β-Hölder continuous} .

Of course, t �→ Ai
t is iβ-Hölder continuous with respect to ‖ · ‖H ;iα for i = 1, 2, that is,

sup0≤s<t≤T ‖Ai
t − Ai

s‖H ;iα/(t − s)iβ < ∞. The distance on this space is defined by

dist
(

(v,A1, A2), (u, B1, B2)
)

= ‖v − u‖H ;β +
∑

i=1,2

N
[

Ai − Bi; CH ;iβ([0, T ], CH ;iα
0 (S, (Rd )⊗i))

]

= ‖v − u‖H ;β +
∑

i=1,2

‖Ai
0 − Bi

0‖H ;iα

+
∑

i=1,2

sup
s<t,x<y

|(Ai
t (x, y) − Bi

t (x, y)) − (Ai
s(x, y) − Bi

s (x, y))|
(t − s)iβ (y − x)iα

.
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Here N [ · ;V] denotes the norm of a Banach space V . In the same way, PH
β GΩ̂B

α,m(Rd ) and

PH
β GΩ̂∞(Rd ) can be defined, but details are omitted.

Assume in addition that β > 1/m. We set (β,m)-Besov path spaces over geometric
rough path spaces as follows;

P
B
β,mGΩ̂B

α,m(Rd) =
{

(v,A1, A2) ∈ P∞GΩ̂B
α,m(Rd ) | t �→ vt ,

A1
t is (β,m)-Besov continuous, A2

t is (2β,m/2)-Besov continuous
}

.

Of course, t �→ Ai
t is (iβ,m/i)-Besov continuous with respect to ‖ · ‖B;iα,m′/i for i = 1, 2.

The spaces PB
β,mGΩ̂H

α (Rd) and PB
β,mGΩ̂∞(Rd), and the distances on these spaces are also

defined in a similar way. The distance on PB
β,mGΩ̂B

α,m(Rd ) has the following form;

dist
(

(v,A1, A2), (u, B1, B2)
)

= ‖v − u‖B;β,m +
∑

i=1,2

N
[

Ai − Bi; CB;iβ,m/i([0, T ], CB;iα,m/i
0 (S, (Rd )⊗i))

]

= ‖v − u‖B;β,m +
∑

i=1,2

‖Ai
0 − Bi

0‖B;iα,m/i

+
∑

i=1,2

{

∫∫

S(T )

dsdt

∫∫

S

|(Ai
t (x, y) − Bi

t (x, y)) − (Ai
s(x, y) − Bi

s (x, y))|m/i

(t − s)1+βm(y − x)1+αm
dxdy

}i/m

.

Finally, note that all of these PGΩ̂’s introduced above are complete.
There are of course natural inclusions between these PGΩ̂’s. Now we discuss two of

them for later use.

PROPOSITION 2.3. Let 1/3 < α′ < α ≤ 1/2, 0 < β ≤ 1, m ≥ 2 such that α′ <

α − 1/m and β > 1/m. Then, we have the following bounded, continuous inclusions;

PB
β,mGΩ̂B

α,m(Rd) →֒ P∞GΩ̂H
α′ (R

d) →֒ P∞GΩ̂∞(Rd) .

Moreover, the left inclusion is compact in the sense that it maps any bounded subset to a

precompact subset.

PROOF. The right inclusion is obvious. Now we consider the left one. From (2.4) and
Besov-Hölder embedding in t-variable, we easily obtain

sup
t

‖A1
t − B1

t ‖H ;α′ ≤ c‖A1 − B1‖B;β,α,m,

sup
t

‖A2
t − B2

t ‖H ;2α′ ≤ c
(

‖A1 − B1‖B;β,α,m + ‖A2 − B2‖B;2β,2α,m/2
)

×
(

‖A1‖B;β,α,m + ‖A2‖B;2β,2α,m/2 + ‖B1‖B;β,α,m + ‖B2‖B;2β,2α,m/2
)

.(2.5)

Here, the norms stand for N
[

· ; CB;iβ,m/2([0, T ], CB;iα,m/i

0 (S, (Rd )⊗i))
]

for i = 1, 2. In-
equalities (2.5) show that the left map is a continuous inclusion.

We prove compactness. First, the inclusion GΩ̂B
α,m(Rd ) →֒ GΩ̂H

α′ (R
d ) is compact.

Second, if {(v(n),A(n)1, A(n)2)}n=1,2,... is a bounded sequence in PB
β,mGΩ̂B

α,m(Rd), they
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are bounded and uniformly continuous GΩ̂B
α,m(Rd)-valued paths since β > 1/m and Besov-

Hölder embedding. By (2.4) they are also bounded and uniformly continuous as GΩ̂H
α′ (R

d)-
valued paths.

Now we can use Ascoli-Arzela type argument as follows. By the diagonalization ar-
gument, there exists a subsequence {nk}k=1,2,... such that {(v(nk)t , A(nk)

1
t , A(nk)

2
t )}k=1,2,...

converges in GΩ̂H
α′ (R

d) for any t ∈ [0, T ] ∩ Q. Let ε > 0 be arbitrary. By the uniform
continuity and compactness of [0, T ], there exists finitely many (relatively) open intervals
Uj (1 ≤ j ≤ l) such that (i) [0, T ] = ∪l

j=1Uj and (ii) it satisfy that

d
(

(v(n)t , A(n)1
t , A(n)2

t ), (v(n)s , A(n)1
s , A(n)2

s )
)

< ε (s, t ∈ Uj , 1 ≤ j ≤ l) .

Here, d denotes the distance on GΩ̂H
α′ (R

d ). Next choose tj ∈ Uj ∩ Q (1 ≤ j ≤ l). Since l is
finite, there exists k0 ∈ N such that if k,m ≥ k0 then

d
(

(v(nk)tj , A(nk)
1
tj
, A(nk)

2
tj
), (v(nm)tj , A(nm)1

tj
, A(nm)2

tj
)
)

< ε (1 ≤ j ≤ l) .

The 3ε-argument implies that if k,m ≥ k0 then

sup
0≤t≤T

d
(

(v(nk)t , A(nk)
1
t , A(nk)

2
t ), (v(nm)t , A(nm)1

t , A(nm)2
t )

)

< 3ε ,

which shows that this subsequence is Cauchy in P∞GΩ̂H
α′ (R

d). ✷

3. Covariance. The most important data for Gaussian processes are their covari-
ances. In this section we will calculate the covariance of ψ . Throughout this section, the
dimension is always d = 1.

Let t ≥ 0 and x ∈ R/Z ∼= S1. As usual, we identify S1 with [0, 1]. △ = △S1 denotes
the periodic Laplacian. ξ = ξ(t, x) is the space-time white noise with the formal covariance
E[ξ(t, x)ξ(s, y)] = δt−s · δx−y . Let ψ = ψ(t, x) be a unique solution of the following
real-valued stochastic PDE.

∂tψ = △xψ + ξ, with ψ(0, x) ≡ 0 .

ψ is a two-parameter Gaussian process and can be written down as follows;

ψ(t, x) =
[

∫ t

0
e(t−s)△ξ(s, ·)ds

]

(x) =
∫ t

0
ds

∫ 1

0
p̃t−s(x − y)ξ(s, y)dy .

Here,

p̃t (x) =
∞
∑

n=−∞
pt (x + n), pt (x) = 1√

4πt
exp

(

−x2

4t

)

are the heat kernels of S1 and R, respectively.
First, we give an explicit expression of the covariance. Observe that it has a few kinds of

symmetries.

LEMMA 3.1. For any s, t ≥ 0 and x, y ∈ R,

E[ψ(s, x)ψ(t, y)] = 1

4
√

π

∑

n∈Z

∫ s+t

|s−t |

√

1

l
exp

(

− (x − y − n)2

4l

)

dl .



LARGE DEVIATION PRINCIPLE FOR GAUSSIAN ROUGH PATH 441

PROOF. From the explicit expression of ψ , we have

E[ψ(s, x)ψ(t, y)]

=
∫ s

0

∫ t

0
drdr ′

∫

S1

∫

S1
dzdz′p̃s−r(x − z)p̃t−r ′(y − z′)E[ξ(r, z)ξ(r ′, z′)]

=
∫ s∧t

0
dr

∫ 1

0
p̃s−r (x − z)p̃t−r(y − z)dz

=
∫ s∧t

0
dr

∑

n∈Z

∫ ∞

−∞
ps−r(x − z)pt−r(y + n − z)dz .(3.1)

A well-known calculation for the heat kernel pt yields;

1

4π

∫ s∧t

0
dr

∫ ∞

−∞

1√
(s − r)(t − r)

exp
(

− (x − z)2

4(s − r)
− (−z)2

4(t − r)

)

dz

= 1

2
√

π

∫ s∧t

0
dr(s + t − 2r)−1/2 exp

(

− x2

4(s + t − 2r)

)

= 1

4
√

π

∫ s+t

|s−t |

√

1

l
exp(−x2

4l
)dl ,

for all s, t ≥ 0 and x ∈ R. Here, we performed completing the square for the first equality and
changed variables by s + t − 2r = l for the second equality. From this, (3.1), and translation
invariance, we prove the lemma.

In the above argument, we used the space-time white noise to calculate the covariance.
However, some readers may think this is not so mathematically rigorous. Hence, we will give
another proof by using Fourier series. Remember that both Fourier analysis and Gaussian
measure theory work perfectly in L2-setting.

Set v0(x) = 1. For n > 0, set also vn(x) =
√

2 cos(2πnx) and v−n(x) =
√

2 sin(2πnx).
Then, {vn}n∈Z forms an orthonormal basis of L2(S1). For each n, vn is an eigenfunction of △
with eigenvalue 4π2n2. The heat kernel admits Fourier expansion as follows;

p̃t (x − y) =
∑

n∈Z

e−4π2n2tvn(x)vn(y) .

Using these, we can easily check that
∫ 1

0
p̃s−r (x − z)p̃t−r(y − z)dz =

∑

n∈Z

e−4π2n2(s−r)e−4π2n2(t−r)vn(x)vn(y) .

In a similar way, since ξ(t, x)dt is the increment of an L2(S1)-cylindrical Brownian
motion, we have

ξ(t, x)dt =
∑

n∈Z

dbn(t)vn(x) ,

where (bn(t))t≥0 are independent copies of the standard real-valued Brownian motion.
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If we expand ψ(t, x) =
∑

n∈Z ψ̂n(t)vn(x), then we see the Fourier coefficient ψ̂n(t)

satisfies the following SDE;

dψ̂n(t) = 4π2n2ψ̂n(t)dt + dbn(t), ψ̂n(0) = 0 .

This SDE has an explicit solution, that is, ψ̂n(t) =
∫ t

0 e−4π2n2(t−r)dbn(r). Hence,

E[ψ(s, x)ψ(t, y)]=E

[

∑

n,m∈Z

∫ s

0
e−4π2n2(s−r)dbn(r) ·

∫ t

0
e−4π2m2(t−r)dbm(r) · vn(x)vm(y)

]

=
∑

n∈Z

∫ s∧t

0
dre−4π2n2(s−r)e−4π2n2(t−r)vn(x)vn(y)

=
∫ s∧t

0
dr

∫ 1

0
p̃s−r(x − z)p̃t−r(y − z)dz .

This coincides with (3.1). Thus, we have obtained the covariance of ψ via Fourier analysis,
too. ✷

Next we calculate variance for the two-parameter increment of ψ . Set

D(s, x; t, y) := E

[
∣

∣

∣
ψ(t, y) − ψ(t, x) − ψ(s, y) + ψ(s, x)

∣

∣

∣

2]

.

This quantity plays a very important role in this paper.

LEMMA 3.2. For any T > 0 and κ ∈ (0, 1), there exists a positive constant c =
c(T , κ) such that

D(s, x; t, y) ≤ c|t − s|κ/2distS1(x, y)1−κ

for all s, t ∈ [0, T ] and x, y ∈ R. Here, distS1(x, y) = infn∈Z |x − y + n| is the distance on

S1. (If |x − y| ≤ 1/2, then distS1(x, y) = |x − y|.)
PROOF. Due to the periodicity, the invariance under the translation and the inversion

x �→ −x, we may assume that s ≤ t , x = 0 and 0 < y ≤ 1/2 without loss of generality. In
this proof, the positive constant c may change from line to line.

Set vt = ψ(t, y) − ψ(t, 0). Then, we have

E[vtvs ] = 1

2
√

π

∑

n∈Z

∫ s+t

|s−t |

√

1

l

[

exp
(

−n2

4l

)

− exp
(

− (y + n)2

4l

)]

dl .

Hence,

D(s, 0; t, y) = E[(vt − vs)
2]

= 1

2
√

π

∑

n∈Z

{

∫ 2t

0
−2

∫ s+t

|s−t |
+

∫ 2s

0

}

√

1

l

[

exp
(

−n2

4l

)

− exp
(

− (y + n)2

4l

)]

dl .

There are two cases.
CASE (i), t − s ≤ 2s. Then, up to a Lebesgue zero set,

I[0,2t ] − 2I[t−s,t+s] + I[0,2s] = 2I[0,t−s] − I[2s,t+s] + I[t+s,2t ] ,
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where IA stands for the indicator function of A ⊂ R. Note that length of all the intervals on
the right hand side is dominated by t − s.

CASE (ii), t − s ≥ 2s. Then, 2t ≤ 3(t − s) and

|I[0,2t ] − 2I[t−s,t+s] + I[0,2s]| ≤ 4I[0,3(t−s)] .

Either way, it is sufficient to prove an inequality of the following form;
∑

n∈Z

∫ u+δ

u

√

1

l

∣

∣

∣
exp

(

−n2

4l

)

− exp
(

− (y + n)2

4l

)
∣

∣

∣
dl ≤ cδκ/2y1−κ(3.2)

for all u ≥ 0, δ ≥ 0 such that u + δ ≤ 3T .
First, we estimate the 0th term in the sum (3.2). We will change variables from l to z by

y2/l = z below, then dl = −(y/z)2dz.
∫ u+δ

u

√

1

l

(

1 − exp
(

−y2

4l

))

dl ≤
∫ δ

0

√

1

l

(

1 − exp
(

−y2

4l

))

dl

≤ y

∫ ∞

y2/δ

z−3/2(1 − e−z/4)dz .(3.3)

We will show that

(3.4)
∫ ∞

r

z−3/2(1 − e−z/4)dz ≤ cr−κ/2 (0 < r < ∞)

for some constant c = cκ > 0. When r ց 0, there is no problem since the integral is con-
vergent. When r → ∞, the integral is dominated by

∫ ∞
r z−3/2dz = O(r−1/2) = O(r−κ/2).

This proves (3.4). From (3.3) and (3.4), we have
∫ u+δ

u

√

1

l

(

1 − exp
(

−y2

4l

))

dl ≤ cδκ/2y1−κ .

Here, the constant c > 0 does not depend on y, δ, u.
Next, we estimate the

∑

n>0 part of the sum (3.2). By (e−x2/4l)′ = −e−x2/4l(x/2l) and
the mean value theorem,

exp
(

−n2

4l

)

− exp
(

− (y + n)2

4l

)

≤ exp
(

−n2

4l

) (n + y)y

2l
≤ exp

(

−n2

4l

)ny

l
,

where we used n ≥ 1 and 0 ≤ y ≤ 1/2.
By Schwarz’s inequality and change of variables by n2/l = z, we have

∫ u+δ

u

√

1

l

(

exp
(

−n2

4l

)

− exp
(

− (n + y)2

4l

))

dl

≤ yn

∫ u+δ

u

l−3/2 exp
(

−n2

4l

)

dl

≤ yn
{

∫ u+δ

u

lκ−1dl
}

1
2
{

∫ u+δ

u

l−(κ+2) exp
(

−n2

2l

)

dl
}

1
2

≤ cyδκ/2n
{

∫ u+δ

u

l−(κ+2) exp
(

−n2

2l

)

dl
}

1
2
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≤ cyδκ/2n · n−(1+κ)
{

∫ ∞

n2/3T

zκe−z/2dz
}

1
2

≤ cyδκ/2 exp
(

− n2

24T

)

,

since there exists c > 0 such that zκe−z/2 ≤ ce−z/4 for all z ≥ 0. Since
∞
∑

n=1

exp
(

− n2

24T

)

≤
∫ ∞

0
exp

(

− x2

24T

)

dx ≤
√

6πT ,

we have
∞
∑

n=1

∫ u+δ

u

√

1

l

(

exp
(

−n2

4l

)

− exp
(

− (n + y)2

4l

))

dl ≤ cyδκ/2 .

Using the condition that 0 ≤ y ≤ 1/2, we can also estimate the
∑

n<0 part of (3.2) with a
slight modification. Thus we have shown (3.2) and consequently Lemma 3.2. ✷

By the previous lemma and Kolmogorov-Čencov’s continuity criterion, we can obtain
the regularity of sample sheet of ψ .

COROLLARY 3.3. (i) For any T > 0, there exists a positive constant c = cT such that

E
[
∣

∣ψ(t, x) − ψ(s, x)
∣

∣

2] ≤ c|t − s|1/2, E
[
∣

∣ψ(t, x) − ψ(t, y)
∣

∣

2] ≤ c|y − x|
holds for all s, t ∈ [0, T ] and x, y ∈ [0, 1].

(ii) For any β < 1/4 and β ′ < 1/2, (t, x) �→ ψ(t, x) is (β, β ′)-Hölder continuous

almost surely. That is,

‖ψ‖H ;(β,β ′) := sup
{ |ψ(s, x) − ψ(t, y)|
|t − s|β + |x − y|β ′ | (s, x) �= (t, y)

}

< ∞ a.s .

Here, sup runs over all (s, x), (t, y) ∈ [0, T ] × [0, 1] such that (s, x) �= (t, y).

PROOF. By repeating a similar calculation as in the proof of Lemma 3.2, we can prove
the first assertion. (This is actually easier than Lemma 3.2. Note that one should not take limit
(κ ց 0 or κ ր 1) in Lemma 3.2, since the constant c may depend on κ .)

To prove the second assertion, we use Kolmogorov-Čencov’s continuity criterion (see
e.g. Theorem 1.4.4, p. 36, Kunita [14]). From the first assertion and Lemma 3.2, we see that,
for any fixed κ ∈ (0, 1) ∩ Q and γ ∈ N,

E
[
∣

∣ψ(t, x) − ψ(s, x)
∣

∣

γ ]

≤ c|t − s|κγ /4, E
[
∣

∣ψ(t, x) − ψ(t, y)
∣

∣

γ ]

≤ c|y − x|(1−κ)γ /2,

E
[
∣

∣ψ(t, y) − ψ(t, x) − ψ(s, y) + ψ(s, x)
∣

∣

γ ]

≤ c|t − s|κγ /4|x − y|(1−κ)γ /2 .

Here, c > 0 may depend on γ . Hence, by the continuity criterion, there exists a modification
of ψ (which is again denoted by the same symbol) which is a.s. (δ, δ′)-Hölder continuous for
any (δ, δ′) such that

δ <
κ

4
− 1

γ
, δ′ <

1 − κ

2
− 1

γ
.
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First choose κ1 and γ1 so that β < κ1/4 − 1/γ1. We set δ1 = β and take δ′
1 so that 0 < δ′

1 <

(1 − κ1)/2 − 1/γ1. Next choose κ2 and γ2 so that β ′ < (1 − κ2)/2 − 1/γ2. We set δ′
2 = β ′

and take δ2 so that 0 < δ2 < κ2/4 − 1/γ2. We now have two modifications, but they coincide
a.s. anyway. Hence, we have

|ψ(s, x) − ψ(t, y)| ≤ |ψ(s, x) − ψ(t, x)| + |ψ(t, x) − ψ(t, y)|

≤ ‖ψ‖H ;(δ1,δ′
1)

|t − s|β + ‖ψ‖H ;(δ2,δ′
2)|x − y|β ′

, a.s .

This proves the second assertion. ✷

Now we check that ψ satisfies a condition of Coutin-Qian type (see Definition 4.4.1,
Lyons and Qian [17]). Ours is slightly weaker than the one in Definition 4.4.1, [17], but
practically there is no problem. This kind of condition implies that the lift of the dyadic
piecewise linear approximation of Gaussian process converges in the geometric rough path
space.

LEMMA 3.4. For any T > 0, there exists a positive constant c = cT such that

(3.5)
∣

∣E[{ψ(t, x + h) − ψ(t, x)}{ψ(s, y + h) − ψ(s, y)}]
∣

∣ ≤ ch2

y − x

holds for all s, t ∈ [0, T ] and all 0 ≤ x < y ≤ 1, h > 0 such that 2h ≤ y − x ≤ 1/2.

PROOF. In this proof, the constant c > 0 may change from line to line. As before, it is
sufficient to prove the lemma when x = 0.

Let h > 0 and let g be a real-valued, C2-function defined on a certain interval which
includes [y − h, y + h]. By Taylor’s theorem,

|g(y + h) + g(y − h) − 2g(y)| = h2
∣

∣

∣

∫ 1

0
(1 − θ){g ′′(y + θh) + g

′′(y − θh)}dθ

∣

∣

∣

= h2
∣

∣

∣

∫ 1

−1
{(1 − θ) ∧ (1 + θ)}g ′′(y + θh)dθ

∣

∣

∣

≤ h2 sup
y−h≤η≤y+h

|g ′′(η)| .(3.6)

We will use (3.6) for g(y) = exp(−y2/4l). It is easy to see that g ′(y) = −(y/2l) exp(−y2/4l)

and g
′′(y) = {(y2/4l2) − (1/2l)} exp(−y2/4l).
From the covariance formula for ψ in Lemma 3.1, the left hand side of (3.5) is dominated

by a constant multiple of

∑

n∈Z

∫ 2T

0

√

1

l

∣

∣

∣
exp

(

− (y + h + n)2

4l

)

+ exp
(

− (y − h + n)2

4l

)

− 2 exp
(

− (y + n)2

4l

)
∣

∣

∣
dl .

We will denote by A(n) the nth summand in the above sum.
First we estimate A(0). From (3.6) and 0 ≤ h ≤ y/2, we see that

A(0) ≤ h2
∫ 2T

0

√

1

l

{ (3y/2)2

4l2
+ 1

2l

}

exp
(

− (y/2)2

4l

)

dl
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≤ ch2
∫ 2T

0

√

1

l

(y2

l2
+ 1

l

)

e−y2/16ldl .

Change variables from l to z by y2/l = z. Then, dl = −(y2/z2)dz and we have

A(0) ≤ ch2

y

∫ ∞

y2/2T

(z1/2 + z−1/2)e−z/16dz ≤ ch2

y
.(3.7)

Note that the integral above is convergent on (0,∞).
Next we estimate A(n) for n > 0. Using (3.6) with y + n instead of y and repeating a

similar computation, we have
∞
∑

n=1

A(n) ≤ h2
∞
∑

n=1

∫ 2T

0

√

1

l

{ (3y/2 + n)2

4l2
+ 1

2l

}

exp
(

− (y/2 + n)2

4l

)

dl

≤ ch2
∞
∑

n=1

∫ 2T

0

√

1

l

(n2

l2
+ 1

l

)

e−n2/4ldl

≤
∞
∑

n=1

ch2

n

∫ ∞

n2/2T

(z1/2 + z−1/2)e−z/4dz

≤
∞
∑

n=1

ch2

n

∫ ∞

n2/2T

z−1/2e−z/8dz

≤
∞
∑

n=1

ch2

n2

∫ ∞

0
e−z/8dz ≤ ch2 ≤ ch2

y
.(3.8)

Here, we used z + 1 ≤ cez/8 (z > 0) for some c > 0 and 1 ≤ (2y)−1.
Using the assumption that y ≤ 1/2, we can also prove

∑∞
n=1 A(−n) < ch2/y essentially

in the same way. Combining this with (3.7) and (3.8), we have shown the lemma. ✷

The following is a generalized version of Coutin-Qian’s condition in the sense that the
regularity with respect to t-variable is also taken into account. This is a key technical lemma
and will play a crucial role in the next section when we prove convergence of dyadic polygonal
approximation on the path space over the geometric rough path space.

LEMMA 3.5. For any T > 0 and κ ∈ (0, 1), there exists a positive constant c =
c(T , κ) such that

∣

∣

∣
E

[

{

(ψ(t, x + h) − ψ(t, x)) − (ψ(s, x + h) − ψ(s, x))
}

×
{

(ψ(t, y + h) − ψ(t, y)) − (ψ(s, y + h) − ψ(s, y))
}

]
∣

∣

∣
≤ c|t − s|κ/2h2

(y − x)1+κ
(3.9)

holds for all s, t ∈ [0, T ] and all 0 ≤ x < y ≤ 1, h > 0 such that 2h ≤ y − x ≤ 1/2.

PROOF. In this proof, the constant c > 0 may change from line to line. As before, it is
sufficient to prove the lemma when x = 0.
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From the covariance formula in Lemma 3.1, the left hand side of (3.5) is dominated by a
constant multiple of

∑

n∈Z |B(n)|, where

B(n) =
{

∫ 2t

0
−2

∫ s+t

|s−t |
+

∫ 2s

0

}

√

1

l

×
[

exp
(

− (y + h + n)2

4l

)

+ exp
(

− (y − h + n)2

4l

)

− 2 exp
(

− (y + n)2

4l

)]

dl .(3.10)

It is obvious from (3.10) that we may assume s ≤ t without loss of generality.
For the same reason as in the proof of Lemma 3.2 (see Cases (i)(ii)), it is sufficient to

prove the following inequality: There exists c > 0 such that

(3.11)
∑

n∈Z

C(n) ≤ cδκ/2h2

y1+κ
(u ≥ 0, δ ≥ 0 with u + δ ≤ 3T ) ,

where

C(n) =
∫ u+δ

u

√

1

l

∣

∣

∣
exp

(

− (y + h + n)2

4l

)

+exp
(

− (y − h + n)2

4l

)

− 2 exp
(

− (y + n)2

4l

)
∣

∣

∣
dl .

Using (3.6), we calculate C(0) in the same way as for A(0) in the proof of Lemma 3.4.

C(0) ≤ h2
∫ u+δ

u

l−1/2
{ (3y/2)2

4l2
+ 1

2l

}

exp
(

− (y/2)2

4l

)

dl

≤ ch2
∫ u+δ

u

l−3/2
(y2

l
+ 1

)

e−y2/16ldl

≤ ch2
{

∫ u+δ

u

(l
κ−1

2 )2dl
}

1
2
{

∫ u+δ

u

(l−
κ+2

2 )2
(y2

l
+ 1

)2
e−y2/8ldl

}
1
2

≤ ch2δκ/2
{ 1

y2+2κ

∫ ∞

y2/3T

zκ(z + 1)2e−z/8dl
}

1
2 ≤ ch2δκ/2

y1+κ
.

In the last line above, we changed variables by y2/l = z again.
Let us estimate C(n) for n > 0. In the same way as in the proof of Lemma 3.4,

∞
∑

n=1

C(n) ≤ h2
∞
∑

n=1

∫ u+δ

u

√

1

l

{ (3y/2 + n)2

4l2
+ 1

2l

}

exp
(

− (y/2 + n)2

4l

)

dl

≤ ch2
∞
∑

n=1

∫ u+δ

u

l−3/2
(n2

l
+ 1

)

e−n2/4ldl

≤ ch2
∞
∑

n=1

{

∫ u+δ

u

(l
κ−1

2 )2dl
}

1
2
{

∫ u+δ

u

(l−
κ+2

2 )2
(n2

l
+ 1

)2
e−n2/4ldl

}
1
2

≤ ch2δκ/2
∞
∑

n=1

{ 1

n2+2κ

∫ ∞

n2/3T

zκ(z + 1)2e−z/4dl
}

1
2

≤ ch2δκ/2
∞
∑

n=1

1

n1+κ
≤ ch2δκ/2 ≤ ch2δκ/2

y1+κ
.
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Using the condition y ≤ 1/2, we can also prove the same estimate for
∑∞

n=1 C(−n). Thus,
we have shown (3.11). ✷

4. Dyadic polygonal approximation. In this section we again consider the multi-
dimensional case of (1.1) ; ψ = (ψ1, . . . , ψd ). Here, ψ1, . . . , ψd are independent copies of
the one-dimensional process studied in the previous section. For the dyadic partition Pk =
{i/2k | 0 ≤ i ≤ 2k} of [0, 1] with k = 1, 2, . . . , we denote by ψ(k)(t, x) the piecewise linear
approximation in x associated with Pk for each fixed t . That is, for all t and i, ψ(k)(t, i2−k) =
ψ(t, i2−k) and x �→ ψ(k)(t, x) is linear on each [(i − 1)2−k, i2−k]. The main objective of
this section is to prove that the spatial lift Ψ (k) = L2(ψ(k)) of ψ(k) converges as k → ∞ in
PB

β,mGΩB
α,m(Rd) for suitable parameters β, α,m.

Before we calculate the dyadic polygonal approximations, we provide a proposition on
equivalence of a Banach space-valued Wiener chaos. This proposition is quite useful for our
purpose and will be used frequently. It is well-known that, on a fixed real-valued Wiener
chaos, all Lp-norm are equivalent (1 < p < ∞). This is still true in the case of a Banach
space-valued Wiener functionals. For instance, see Friz and Victoir [6] or Maas [19]. (By the
way, large deviations for the elements of Wiener chaos indexed by the time parameter was
already studied in [20], though we do not use it in this paper.)

The following is a quantified version of this fact (Lemmas 2 and 3, [6]). It is worth noting
that it holds for any real Banach space V without any additional condition.

PROPOSITION 4.1. Let (X ,H, µ) be an abstract Wiener space. For a real Banach

space V , denote by Cn(V) the V-valued nth inhomogeneous Wiener chaos.

(i) Restricted on a fixed Wiener chaos Cn(V), all Lp-norm are equivalent (1 < p < ∞).
(ii) For any n, there exists a positive constant c = cn such that

‖Z‖Lp ≤ ‖Z‖Lq ≤ cn(q − 1)n/2‖Z‖Lp

holds for all 2 ≤ p ≤ q < ∞ and Z ∈ Cn(V).

Let g ∈C0([0, T ],X ), where X =CB;α,m([0, 1], Rd). As before, we write G1(t; x, y) =
G1

t (x, y) = g(t, y) − g(t, x). By slightly abusing notations, we set

‖g‖m
B;β,α,m : = ‖G1‖m

B;β,α,m

=
∫∫

S(T )

dsdt

∫∫

S

|g(t, x) − g(s, x) − g(t, y) + g(s, y)|m
|t − s|1+βm|x − y|1+αm

dxdy .

Recall that we assumed g(0, x) ≡ 0.
Assume that α ∈ (1/3, 1/2) and β > 0 with 4β < 1 − 2α. Then, we can find κ ∈ (0, 1)

such that α < (1 − κ)/2 and β < κ/4 hold. Assume further that m ≥ 1, β > 1/m, and
a − 1/m > 1/3.

By Corollary 3.3, we can easily estimate (β,m)-Besov norm of t �→ ψ(t, 0). It holds
that E[‖ψ( · , 0)‖m

B;β,m
] < ∞ and hence ‖ψ( · , 0)‖B;β,m < ∞, a.s. Note that ψ(t, 0) =

ψ(k)(t, 0) for all t and k.
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By Lemma 3.2, we have E[‖ψ‖m
B;β,α,m

] < ∞ and hence ‖ψ‖B;β,α,m < ∞, a.s. In a
similar way, E[‖ψ(k)‖m

B;β,α,m] < ∞ for each fixed k. As a result, the laws of ψ and ψ(k) are

Gaussian measures on C
B;β,m
0 ([0, T ],X ) with X = CB;α,m([0, 1], Rd).

Now we prove the convergence of {ψ(k)}∞k=1 as k → ∞ in (β, α,m)-Besov norm.

LEMMA 4.2. Assume α ∈ (1/3, 1/2) and 0 < 4β < 1 − 2α. In addition, assume

m > 1 satisfies that α − (1/m) > 1/3 and β > 1/m. Then, there are constants c > 0,
η ∈ (0, 1) independent of k such that

(4.1) E

[

‖ψ(k + 1) − ψ(k)‖m
B;β,α,m

]1/m

≤ cηk

for all k. In particular, {ψ(k)}∞k=1 converges to ψ in (β, α,m)-Besov topology almost surely

and in Lp for all p ∈ (1,∞).

PROOF. First, we give an integration formula for later use. This is useful when we
estimate Besov norms. For any T > 0, there exists a constant cT > 0 such that

(4.2)
∫∫

S

ε ∧ |x − y|a
|x − y|b dxdy ≤ ε(a−b+1)/a

(a − b + 1)(b − 1)
, (0 ≤ ε ≤ 1, a > b − 1 > 0) .

To check this formula, change variables by u = s, v = t − s. Then, the integral domain
becomes {0 < u < 1, 0 < v < 1, u + v < 1}. The rest is easy.

In this proof the positive constant c may change from line to line. For k = 1, 2, . . . and
1 ≤ j ≤ 2k , we set ∆k

jψt = ψ(t, j/2k)−ψ(t, (j −1)/2k). We write λ(k) = ψ(k+1)−ψ(k)

for simplicity.
When (j − 1)/2k ≤ x ≤ j/2k,

λ(k)(t, x) = 2k

{(

x− j − 1

2k

)

∧
(

j

2k
−x

)}{

2ψ

(

t,
2j − 1

2k+1

)

−ψ

(

t,
j − 1

2k

)

−ψ

(

t,
j

2k

)}

= 2k

{(

x − j − 1

2k

)

∧
(

j

2k
−x

)}

(∆k+1
2j−1ψt − ∆k+1

2j ψt ) .

This is just a product of functions in t and in x. Hence, when (j − 1)/2k ≤ x, y ≤ j/2k, we
have

λ(k)(t, y) − λ(k)(t, x) − λ(k)(s, y) + λ(k)(s, x)

= 2k

{(

y − j − 1

2k

)

∧
(

j

2k
− y

)

−
(

x − j − 1

2k

)

∧
(

j

2k
− x

)}

× {(∆k+1
2j−1ψt − ∆k+1

2j−1ψs) − (∆k+1
2j ψt − ∆k+1

2j ψs)} .

By using Lemma 3.2, we can estimate the variance of this Gaussian random variable as fol-
lows:

E[|λ(k)(t, y) − λ(k)(t, x) − λ(k)(s, y) + λ(k)(s, x)|2]
≤ c22k|x − y|2(2−k)1−κ |t − s|κ/2 ≤ c|t − s|κ/2|x − y|1−κ .
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Next we consider the case that x and y are in distinct subintervals. We may assume
there exist j < l such that (j − 1)/2k ≤ x ≤ j/2k ≤ (l − 1)/2k ≤ y ≤ l/2k . Since
λ(k)(t, i/2k) = 0 for all i,

λ(k)(t, y) − λ(k)(t, x) − λ(k)(s, y) + λ(k)(s, x)

= {λ(k)(t, y) − λ(k)(t, (l − 1)/2k) − λ(k)(s, y) + λ(k)(s, (l − 1)/2k)}
+ {λ(k)(t, j/2k) − λ(k)(t, x) − λ(k)(s, j/2k) + λ(k)(s, x)} .

Now we can use the result for the previous case to obtain

E[|λ(k)(t, y) − λ(k)(t, x) − λ(k)(s, y) + λ(k)(s, x)|2] ≤ c|t − s|κ/2(2−k)1−κ .

From these we can easily see that, for all s, t and x, y,

E[|λ(k)(t, y) − λ(k)(t, x) − λ(k)(s, y) + λ(k)(s, x)|2]
≤E

[

|Ψ (k + 1)1
t (x, y) − Ψ (k)1

t (x, y) − Ψ (k + 1)1
s (x, y) + Ψ (k)1

s (x, y)|2
]

≤ c|t − s|κ/2{(2−k)1−κ ∧ |x − y|1−κ
}

.(4.3)

Using (4.2) and choosing κ ∈ (0, 1) so that β < κ/4 and α < (1 − κ)/2, we have

E

[

‖ψ(k + 1) − ψ(k)‖m
B;β,α,m

]

≤ c

∫ T

0

∫ t

0
|t − s|(κm/4)−(1+βm)dsdt

∫ 1

0

∫ y

0

(2−k)(1−κ)m/2 ∧ |x − y|(1−κ)m/2

|x − y|1+αm
dxdy

≤ c
(1

2

)(1−κ−2α)mk/2
.

Thus, we have shown (4.1) with η = 2−(1−κ−2α)/2 ∈ (0, 1). Almost sure convergence and
Lm-convergence are immediate from (4.1). By Proposition 4.1, convergence is also in Lp for
all p (1 < p < ∞). ✷

As usual we define the second level path of ψ(k) as follows. For all 0 ≤ x ≤ y ≤ 1, we
set

Ψ (k)2(t; x, y) :=
∫ y

x

{ψ(k)(t, u) − ψ(k)(t, x)} ⊗ duψ(k)(t, u) .

We will often write Ψ (k)2
t (x, y) for the left hand side when there is no possibility of confu-

sion. By a slight abuse of notation, L2 also stands for this natural spatial lift, i.e., L2(ψ(k)) =
Ψ (k) = (ψ(k), Ψ (k)2) = (ψ( · , 0), Ψ (k)1, Ψ (k)2).

For an appropriate choice of the parameters, Ψ (k)2 is a random variable taking its values
in C

B;2β,m/2
0 ([0, T ],X ). Here, X is the closure of C

B;2α,m/2
0 (S, Rd ⊗ Rd ) with respect to

(2α,m/2)-Besov norm. Recall that, for G ∈ C
B;2β,m/2
0 ([0, T ],X ), its (2β, 2α,m/2)-Besov

norm is given by

‖G‖m/2
B;2β,2α,m/2 : =

∫∫

S(T )

dsdt

∫∫

S

|G(t; x, y) − G(s; x, y)|m/2

|t − s|1+βm|x − y|1+αm
dxdy .
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Our purpose in this section is to prove that {Ψ (k)2}∞k=1 converges as k → ∞ in
(2β, 2α,m/2)-Besov norm for suitable parameters m,α, β.

LEMMA 4.3. Assume α ∈ (1/3, 1/2) and 0 < 4β < 1 − 2α. In addition, assume

m > 2 satisfies that α − (1/m) > 1/3 and β > 1/m. Then, there are constants c > 0,
η ∈ (0, 1) independent of k such that

(4.4) E

[

‖Ψ (k + 1)2 − Ψ (k)2‖m/2
B;2β,2α,m/2

]2/m

≤ cηk

for all k. In particular, {Ψ (k)2}∞k=1 converges in (2β, 2α,m/2)-Besov norm almost surely

and in Lp for all p ∈ (1,∞). Consequently, under the assumptions of the lemma, {Ψ (k)}∞k=1
converges a.s. in PB

β,mGΩB
α,m(Rd ).

PROOF. In this proof the positive constant c may change from line to line. We will
use Proposition 4.1 which states that, on a fixed inhomogeneous Wiener chaos, all Lp-norms
(1 < p < ∞) are equivalent.

Consider the case (j − 1)/2k ≤ x ≤ y ≤ j/2k. Since ψ(k)(t, · ) is linear on [x, y], it
is obvious that Ψ (k)2

t (x, y) = (22k/2)(y − x)2∆k
jψt ⊗ ∆k

jψt . From this and Lemma 3.2, we
see that

E

[

|Ψ(k)2
t (x, y) − Ψ (k)2

s (x, y)|2
]

≤ c24k|y − x|4|t − s|κ/2(2−k)1−κ2−k

≤ c|t − s|κ/2|y − x|2−κ .(4.5)

If (j − 1)/2k ≤ x ≤ j/2k ≤ y ≤ (j + 1)/2k. From Chen’s identity, we have

Ψ (k)2
t (x, y) = Ψ (k)2

t (x, j/2k) + Ψ (k)2
t (j/2k, y) + Ψ (k)1

t (x, j/2k) ⊗ Ψ (k)1
t (j/2k, y) .

This implies the inequality (4.5) in this case, too (for different c > 0). Thanks to repeated
use of Chen’s identity, a similar inequality still holds even if Ψ (k) is replaced with Ψ (k + 1).
Combining these we have

E

[

|Ψ (k + 1)2
t (x, y) − Ψ (k)2

t (x, y) − Ψ (k + 1)2
s (x, y) + Ψ (k)2

s (x, y)|2
]

≤ c|t − s|κ/2|y − x|2−κ (if |y − x| ≤ 1/2k) .(4.6)

Now we estimate the left hand side of (4.5), when x = I/2k and y = J/2k with I < J .
For simplicity we will write zk

i = i/2k. In the same way as in pp. 69–71, Lyons and Qian
[17],

Ψ (k)2
t (z

k
I , z

k
J ) =

J
∑

l=I+1

Ψ (k)2
t (z

k
l−1, z

k
l ) +

∑

I+1≤r<l≤J

Ψ (k)1
t (z

k
r−1, z

k
r ) ⊗ Ψ (k)1

t (z
k
l−1, z

k
l )

= 1

2

J
∑

l=I+1

∆k
l ψt ⊗ ∆k

l ψt +
∑

I+1≤r<l≤J

∆k
rψt ⊗ ∆k

l ψt .

Here, we used Chen’s identity and the fact that ψ(k)(t, · ) is linear on each [zk
l−1, z

k
l ] as a

function of x. Since Ψ (k)1
t (z

k
I , z

k
J ) = Ψ 1

t (zk
I , z

k
J ) =

∑J
l=I+1 ∆k

l ψt , we have
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Ψ (k)2
t (z

k
I , z

k
J ) = 1

2
Ψ 1

t (zk
I , z

k
J )⊗2 + 1

2

∑

I+1≤r<l≤J

(

∆k
rψt ⊗ ∆k

l ψt − ∆k
l ψt ⊗ ∆k

rψt

)

.

We can compute Ψ (k+1)2
t (z

k+1
2I , zk+1

2J ) = Ψ (k+1)2
t (z

k
I , z

k
J ) in the same way. By subtracting

them, we obtain

Ψ (k + 1)2
t (z

k
I , z

k
J ) − Ψ (k)2

t (z
k
I , z

k
J )

= 1

2

J
∑

l=I+1

(

∆k+1
2l−1ψt ⊗ ∆k+1

2l ψt − ∆k+1
2l ψt ⊗ ∆k+1

2l−1ψt

)

.(4.7)

Since (i, i)-components of the right hand side of (4.7) vanish, we have only to compute (i, j)-
components for distinct i, j . It is immediate from (4.7) that

Ψ (k + 1)
2;i,j
t (zk

I , z
k
J ) − Ψ (k)

2;i,j
t (zk

I , z
k
J ) − Ψ (k + 1)

2;i,j
s (zk

I , z
k
J ) + Ψ (k)

2;i,j
s (zk

I , z
k
J )

= 1

2

J
∑

l=I+1

(

∆k+1
2l−1ψ

i
t ∆

k+1
2l ψ

j
t − ∆k+1

2l−1ψ
i
s∆

k+1
2l ψ

j
s

)

−1

2

J
∑

l=I+1

(

∆k+1
2l ψ i

t ∆
k+1
2l−1ψ

j
t − ∆k+1

2l ψ i
s∆

k+1
2l−1ψ

j
s

)

= 1

2

J
∑

l=I+1

(∆k+1
2l−1ψ

i
t − ∆k+1

2l−1ψ
i
s )∆

k+1
2l ψ

j
t − 1

2

J
∑

l=I+1

∆k+1
2l−1ψ

i
s (∆

k+1
2l ψ

j
t − ∆k+1

2l ψ
j
s )

−1

2

J
∑

l=I+1

(∆k+1
2l ψ i

t −∆k+1
2l ψ i

s )∆
k+1
2l−1ψ

j
t + 1

2

J
∑

l=I+1

∆k+1
2l ψ i

s (∆
k+1
2l−1ψ

j
t −∆k+1

2l−1ψ
j
s )

=: 1

2
A

i,j
1 − 1

2
A

i,j
2 − 1

2
A

i,j
3 + 1

2
A

i,j
4 .(4.8)

From the independence of ith and j th components, we have

E[|Ai,j

1 |2]=
J

∑

l,m=I+1

E[(∆k+1
2l−1ψ

i
t − ∆k+1

2l−1ψ
i
s )(∆

k+1
2m−1ψ

i
t − ∆k+1

2m−1ψ
i
s )] · E[∆k+1

2l ψ
j
t ∆k+1

2m ψ
j
t ]

= 2
∑

I+1≤l<m≤J

E[(∆k+1
2l−1ψ

i
t − ∆k+1

2l−1ψ
i
s )(∆

k+1
2m−1ψ

i
t − ∆k+1

2m−1ψ
i
s )]

× E[∆k+1
2l ψ

j
t ∆k+1

2m ψ
j
t ] +

J
∑

l=I+1

E[|∆k+1
2l−1ψ

i
t − ∆k+1

2l−1ψ
i
s |2] · E[|∆k+1

2l ψ
j
t |2] .(4.9)

From Lemma 3.2 and y − x = (J − I)2−k , the second term on the right hand side of
(4.9) is dominated by

c(J − I)|t − s|κ/22−(k+1)(1−κ) · 2−(k+1) ≤ c|t − s|κ/2(y − x)2−k(1−κ).
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Assume that y − x = (J − I)2−k ≤ 1/2. Then, we may use Lemmas 3.4 and 3.5 to see
that the first term on the right hand side of (4.9) is dominated by

c
∑

I+1≤l<m≤J

|t − s|κ/22−2(k+1)

{(m − l)2−k}1+κ
· 2−2(k+1)

(m − l)2−k

≤ c|t − s|κ/22−k(2−κ)
∑

I+1≤l<m≤J

1

(m − l)2+κ

≤ c|t − s|κ/22−k(1−κ) J − I

2k
≤ c|t − s|κ/2(y − x)2−k(1−κ) .(4.10)

Thus, we have estimated E[|Ai,j

1 |2]. We can also estimate E[|Ai,j
p |2] for p = 2, 3, 4 in the

same way.
To sum up, we have obtained the following inequality: For x = I2−k, y = J2−k with

0 ≤ y − x ≤ 1/2,

E

[

|Ψ (k + 1)2
t (x, y) − Ψ (k)2

t (x, y) − Ψ (k + 1)2
s (x, y) + Ψ (k)2

s (x, y)|2
]

≤ c|t − s|κ/2|y − x|
( 1

2k

)1−κ

.(4.11)

We will check that the above estimate (4.11) also holds when y − x > 1/2. In this case,
divide the interval as [I2−k, J2−k] = [x, y] = [x, 1/2] ∪ [1/2, y] and use Chen’s identity.
Then, we have

Ψ (k)2
t (x, y) = Ψ (k)2

t (x, 1/2) + Ψ (k)2
t (1/2, y) + Ψ (k)1

t (x, 1/2) ⊗ Ψ (k)1
t (1/2, y)

= Ψ (k)2
t (x, 1/2) + Ψ (k)2

t (1/2, y) + Ψ 1
t (x, 1/2) ⊗ Ψ 1

t (1/2, y) .

Since a similar equality holds for Ψ (k + 1)2, we see that

Ψ (k + 1)2
t (x, y) − Ψ (k)2

t (x, y)

=
{

Ψ (k + 1)2
t (x, 1/2) − Ψ (k)2

t (x, 1/2)
}

+
{

Ψ (k + 1)2
t (1/2, y) − Ψ (k)2

t (1/2, y)
}

.

We can easily see from this that (4.11) holds (for a possibly different constant c > 0) even
when y − x = (J − I)/2k > 1/2.

Now, let us consider the general case 0 ≤ x < y ≤ 1 with y − x ≥ 2−k . Take two
integers I and J with I ≤ J so that 0 ≤ I2−k − x < 2−k and 0 ≤ y − J2−k < 2−k hold. Let
us again divide the interval as [x, y] = [x, I2−k] ∪ [I2−k, J2−k] ∪ [J2−k, y] and use Chen’s
identity. Then, we have

Ψ (k)2
t (x, y) = Ψ (k)2

t (x, I2−k) + Ψ (k)2
t (I2−k, J2−k) + Ψ (k)2

t (J2−k, y)

+ Ψ (k)1
t (x, I2−k) ⊗ Ψ 1

t (I2−k, J2−k) + Ψ (k)1
t (x, I2−k) ⊗ Ψ (k)1

t (J2−k, y)

+ Ψ 1
t (I2−k, J2−k) ⊗ Ψ (k)1

t (J2−k, y)

=: B1(k; t) + · · · + B6(k; t) .
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From (4.6) and (4.11), we can easily estimate Bi (1 ≤ i ≤ 3) as follows;

E

[

|Bi(k + 1; t) − Bi(k; t) − Bi(k + 1; s) + Bi(k; s)|2
]

≤ c|t − s|κ/2|y − x|
( 1

2k

)1−κ

(4.12)

for i = 1, 2, 3.
Estimates for Bi (4 ≤ i ≤ 6) are similar, but slightly more complicated. For example,

B4 can be calculated as follows;

B4(k + 1; t) − B4(k; t) − B4(k + 1; s) + B4(k; s)

=
{

Ψ (k + 1)1
t (x, I2−k) − Ψ (k)1

t (x, I2−k)
}

⊗ Ψ 1
t (I2−k, J2−k)

−
{

Ψ (k + 1)1
s (x, I2−k) − Ψ (k)1

s (x, I2−k)
}

⊗ Ψ 1
s (I2−k, J2−k)

=
{

Ψ (k + 1)1
t (x, I2−k) − Ψ (k)1

t (x, I2−k)

− Ψ (k + 1)1
s (x, I2−k) + Ψ (k)1

s (x, I2−k)
}

⊗ Ψ 1
t (I2−k, J2−k)

−
{

Ψ (k + 1)1
s (x, I2−k) − Ψ (k)1

s (x, I2−k)
}

⊗
{

Ψ 1
t (I2−k, J2−k) − Ψ 1

s (I2−k, J2−k)
}

.

From (4.3) and Lemma 3.2, we see that

E

[

|B4(k + 1; t) − B4(k; t) − B4(k + 1; s) + B4(k; s)|2
]

≤ c(t − s)κ/2(I2−k − x)1−κ · (J − I)2−k

+ c(I2−k − x) · (t − s)κ/2{(J − I)2−k}1−κ

≤ c(t − s)κ/2
( y − x

(2k)1−κ
+ (y − x)1−κ

2k

)

.(4.13)

If 2−k ≤ y − x, the right hand side is dominated by c(t − s)κ/2(y − x)2−k(1−κ). B5 and B6

are dominated in the same way. Hence, the inequality (4.11) holds for all t, s and all x, y with
y − x ≥ 2−k.

From this and (4.6), we finally obtain

E

[

|Ψ (k + 1)2
t (x, y) − Ψ (k)2

t (x, y) − Ψ (k + 1)2
s (x, y) + Ψ (k)2

s (x, y)|2
]

≤ c|t − s|κ/2|y − x|
{

|y − x|1−κ ∧
( 1

2k

)1−κ}

(4.14)

for all t, s ∈ [0, T ], k ∈ N and 0 ≤ x ≤ y ≤ 1.
From (4.14) and Proposition 4.1 in the finite dimensional case, we see that

E

[

‖Ψ (k + 1)2 − Ψ (k)2‖m/2
B;2β,2α,m/2

]

≤ c

∫∫

S(T )

dsdt

∫∫

S

|t − s|κm/8|y − x|m/4
{

|y − x|(1−κ)m/4 ∧
(

1
2k

)(1−κ)m/4}

|t − s|1+βm|y − x|1+αm
dxdy .
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If κ ∈ (0, 1) is chosen so that 4β < κ/2 < 1 − 2α, then the integral on the right hand
side converges. Moreover, we can see from (4.2) that the inequality (4.4) holds with η =
2−{1−2α−(κ/2)} ∈ (0, 1). From the inequality in the lemma, almost sure and Lm/2 conver-
gences of {Ψ (k)2} are immediate. Using Proposition 4.1, we finish the proof of the lemma.

✷

As a corollary, we obtain convergence of {Ψ (k)} in P∞GΩ̂H
α (Rd) by using Besov-

Hölder embedding.

COROLLARY 4.4. Assume α ∈ (1/3, 1/2). Then, {Ψ (k)}∞k=1 converges to Ψ a.s. as

k → ∞ in P∞GΩ̂H
α (Rd ). Moreover,

sup
0≤t≤T

‖Ψ (k)1
t − Ψ 1

t ‖H ;α + sup
0≤t≤T

‖Ψ (k)2
t − Ψ 2

t ‖H ;2α

converges to 0 in Lp as k → ∞ for all 1 < p < ∞.

PROOF. Take α̂ ∈ (α, 1/2). Choose β > 0 and m > 2 so that β > 1/m, α̂ − 1/m > α

and 4β < 1 − 2α̂. Then, the corollary is immediate from Lemma 4.2, Lemma 4.3, and
Propoition 2.3 (in particular, Eq. (2.5)). ✷

5. Large deviation principle. In this section we will state and prove our main the-
orem (Theorem 5.6), using the method developed by Friz and Victoir in [6]. First, we will
study the regularity of a generic element of Cameron-Martin space. Next, we will prove a
large deviation principle for a weaker topology. Finally, we will strengthen the topology by
using the inverse contraction principle and exponential tightness.

We denote by µ the law of the two parameter process ψ = (ψ(t, x))0≤t≤T ,0≤x≤1. For
α ∈ (1/3, 1/2), β > 0, and m ≥ 1 such that α − 1/m > 1/3, β > 1/m, and 4β < 1 − 2α, µ

is a Gaussian measure on C
B;β,m

0 ([0, T ],X ) with X = CB;α,m([0, 1], Rd). We denote by H

Cameron-Martin space of µ.
First we investigate the regularity of x �→ h(t, x) for h ∈ H to make sure that h admits a

spatial lift L2(h). (Lemma 5.1 below also follows from a fact that the Cameron-Matin space
x �→ ψ(t, x) is quite similar to that of the pinned Brownian motion. But, we use a rough path
argument here.)

LEMMA 5.1. Let h ∈ H and t ∈ [0, T ].
(i) h(t, ·) is 1/2-Hölder continuous and its 1/2-Hölder norm is dominated by c‖h‖H for

some positive constant c = cT independent of h and t .

(ii) h(t, ·) is of finite q-variation for any q ∈ (4/3, 2) and its q-variation norm is domi-

nated by c‖h‖H for some positive constant c = cT ,q independent of h and t .

PROOF. We may assume d = 1. Let Z be the measurable linear functional (i.e., the
element in the first order Wiener chaos) associated with h. Z is a mean-zero Gaussian ran-
dom variable with variance ‖h‖2

H
. Then, from the general theory of abstract Wiener spaces

and the fact that the evaluation map at (t, x) is a continuous linear functional, we see that
E[Zψ(t, x)] = h(t, x). Here, E stands for the expectation with respect to µ.
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By Corollary 3.3 and Schwarz’ inequality, we can easily see that

|h(t, y) − h(t, x)| ≤ E[Z2]1/2
E[|ψ(t, y) − ψ(t, x)|2] ≤ c‖h‖H|t − s|1/2 .

Thus we have proved the first assertion.
Now we show the second assertion, following p. 783, Friz and Victoir [6]. Recall that

Wick’s formula implies that

E[U2V 2] = 2E[UV ]2 + E[U2]E[V 2] or Cov(U2, V 2) = 2E[UV ]2

for two mean-zero Gaussian random variables U,V . Then

Qk : =
2k

∑

i=1

∣

∣

∣

∣

h

(

t,
i

2k

)

−
(

t,
i − 1

2k

)
∣

∣

∣

∣

2

=
2k

∑

i=1

E

[

ZΨ 1
t

(

i − 1

2k
,

i

2k

)]2

=
{

2k−1
∑

i=1

+
2k

∑

i=2k−1+1

}

E

[

ZΨ 1
t

(

i − 1

2k
,

i

2k

)]2

=: Q
(1)
k + Q

(2)
k .

The first term Q
(1)
k on the right hand side is dominated as follows:

Q
(1)
k = 1

2

2k−1
∑

i=1

E

[

Z2
{

Ψ 1
t

(

i − 1

2k
,

i

2k

)2

− E

[

Ψ 1
t

(

i − 1

2k
,

i

2k

)2]}]

≤ 1

2
E[Z4]1/2

{

2k−1
∑

i,l=1

Cov
(

Ψ 1
t

( i − 1

2k
,

i

2k

)2
, Ψ 1

t

( l − 1

2k
,

l

2k

)2)}1/2

= c‖h‖2
H

{2k−1
∑

i,l=1

E

[

Ψ 1
t

(

i − 1

2k
,

i

2k

)

Ψ 1
t

(

l − 1

2k
,

l

2k

)]2}1/2

.

From Corollary 3.3 and Lemma 3.4, we have

2k−1
∑

i,l=1

E

[

Ψ 1
t

(

i − 1

2k
,

i

2k

)

Ψ 1
t

(

l − 1

2k
,

l

2k

)]2

=
{

∑

1≤i,l≤2k−1:|i−l|≤1

+
∑

1≤i,l≤2k−1:|i−l|≥2

}

E

[

Ψ 1
t

(

i − 1

2k
,

i

2k

)

Ψ 1
t

(

l − 1

2k
,

l

2k

)]2

≤ c2k−1(2−k)2 + c
∑

1≤i,l≤2n−1:|i−l|≥2

∣

∣

∣

(2−k)2

i2−k − l2−k

∣

∣

∣

2
≤ c2−k .

Here, we have used
∑∞

l=1 l−2 < ∞. The second term Q
(2)
k can be dominated in the same

way. Consequently, Qk ≤ c‖h‖2
H

2−k/2.
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We use the following inequality (see Proposition 4.1.1 in p. 62, [17]): for γ > q − 1,
there is a positive constant c = cq,γ such that

‖h(t, · )‖q

var;q ≤ cq,γ

∞
∑

k=1

kγ

2k
∑

i=1

∣

∣

∣

∣

h

(

t,
i

2k

)

− h

(

t,
i − 1

2k

)
∣

∣

∣

∣

q

.

The right hand side is dominated by

c

∞
∑

k=1

kγ Q
q/2
k 2k(1−q/2) ≤ c‖h‖q

H

∞
∑

k=1

kγ 2k{1−(3q)/4} ,

which is convergent if q > 4/3. This proves the second assertion of Lemma 5.1. ✷

By Lemma 5.1, the spatial lift H = L2(h) exists for all h. A natural question is whether
and in which topology H(k) = L2(h(k)) converges to L2(h). Actually, it seems rather diffi-
cult to prove the convergence with respect to Hölder or Besov topology. However, it is much
easier to prove it with respect to a weaker topology, namely, the uniform topology.

LEMMA 5.2. For any L > 0 and i = 1, 2,

sup
{

|H(k)it(x, y) − H i
t (x, y)| | (x, y) ∈ S, t ∈ [0, T ], h ∈ H with ‖h‖H ≤ L

}

converges to zero as k → ∞.

PROOF. From Lemma 5.1 (i),

|h(t, x) − h(k)(t, x)| ≤ 2‖h(t, · )‖H ;1/2(2
−k)1/2 ≤ cL2−k/2 .

The constant c on the right hand side is independent of t, x, k, L. Taking a difference we can
easily prove the case i = 1.

Next we consider the case i = 2. Let 4/3 < q < r < 2. From Lemma 1.12 in p. 8,
Lyons, Caruana, and Levy [16] and Lemma 5.1 (ii) above, we see that

‖h(k)(t, · )‖var;q ≤ ‖h(t, · )‖var;q ≤ cL

and

‖h(k)(t, · ) − h(t, · )‖r
var;r

≤ c‖h(k)(t, · ) − h(t, · )‖r−q
∞ {‖h(k)(t, · )‖q

var;q + ‖h(t, · )‖q

var;q} ≤ cLr2−k(r−q)/2 .

Therefore, the left hand side converges to zero uniformly in t and h with ‖h‖H ≤ L. By the
theory of Young integral, we have

|H(k)2
t (x, y) − H 2

t (x, y)|

≤
∣

∣

∫ y

x

{H(k)1
t (x, z) − H 1

t (x, z)} ⊗ dzh(k)(t, z)
∣

∣

+
∣

∣

∫ y

x

H 1
t (x, z) ⊗ dz{h(k)(t, z) − h(t, z)}

∣

∣

≤ c‖h(k)(t, · ) − h(t, · )‖var;r{‖h(k)(t, · )‖var;r + ‖h(t, · )‖var;r} ≤ cL22−k(1−q/r)/2 .
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The constant c on the right hand side is independent of t, x, y, k, L. Letting k → ∞, we
prove the case i = 2. ✷

We will show below that {εΨ (k)} is an exponentially good approximation of εΨ with
respect to the uniform topology.

LEMMA 5.3. There exists a distance dist∞ on P∞GΩ̂∞(Rd) which induces the same

uniform topology on this set and satisfies the following property: For any δ > 0, it holds that

lim
k→∞

lim sup
εց0

ε2 logP
(

dist∞(εΨ, εΨ (k)) > δ
)

= −∞ .

PROOF. A geometric rough path is a continuous path that takes values in the free nilpo-
tent group G2 = G2(Rd) of step 2. We take this viewpoint, following p. 776, [6] and Chapters
7–9, [7]. G2 is a subset of {(1, g1, g2) | g1 ∈ Rd , g2 ∈ (Rd )⊗2} ⊂ T 2(Rd). The multiplication
of G2 is the tensor product ⊗ in T 2(Rd ), which will be suppressed. On G2 there exists a
homogeneous and symmetric norm ‖ · ‖. It satisfies that ‖g‖ = ‖g−1‖ and ‖λg‖ = |λ|‖g‖
for the dilation by λ ∈ R. Moreover, there exists a constant c ≥ 1 such that

c−1‖g‖ ≤ |g1|Rd + |g2|1/2
(Rd)⊗2 ≤ c‖g‖

for all g = (1, g1, g2) ∈ G2. A distance dG2 is defined by dG2(g, ĝ) := ‖g−1
ĝ‖ = ‖ĝ−1

g‖.
It is known that, for A ∈ GΩ∞(Rd), [0, 1] ∋ x �→ (1, A1

0,x, A
2
0,x) is a continuous path

in G2 which starts at the unit element. Conversely, for a continuous path a in G2 which starts
at the unit element, Ax,y = a−1

x ay defines an element in GΩ∞(Rd ). Hence, these spaces sets
GΩ∞(Rd) and Cunit([0, 1],G2) can be identified as sets. Topology of uniform convergence
is induced by the following distance; d̂(a, b) = sup0≤x≤1 dG2(ax, bx). It is easy to see that
for some constant c ≥ 1

c−1d̂(a, b) ≤ sup
0≤x≤1

{

|B1
0,x −A1

0,x |+ |(B2
0,x −A2

0,x)−A1
0,x ⊗ (B1

0,x −A1
0,x)|1/2

}

≤ cd̂(a, b) .

Note that limk→∞ A(k) = A in GΩ∞(Rd) (that is, limk→∞ sup(x,y)∈S |A(k)ix,y − Ai
x,y| for

i = 1, 2) is equivalent to limk→∞ d̂(a(k), a) = 0.
Let us consider P∞GΩ∞(Rd), which can be identified with C([0, T ],GΩ∞(Rd)) as

sets. Uniform convergence on this set is induced by the following distance;

dist∞(a, b) = sup
0≤t≤T

d̂(at , bt ) = sup
0≤t≤T

sup
0≤x≤1

dG2(at,x, bt,x) ,

where a, b ∈ C([0, T ],GΩ∞(Rd )) ∼= C([0, T ], Cunit([0, 1],G2)). For some constant c ≥ 1,

c−1dist∞(a, b) ≤ sup
0≤t≤T

sup
0≤x≤1

{

|B1
t (0, x) − A1

t (0, x)|

+
∣

∣(B2
t (0, x) − A2

t (0, x)) − A1
t (0, x) ⊗ (B1

t (0, x) − A1
t (0, x))

∣

∣

1/2
}

≤ cdist∞(a, b) .(5.1)

Again limk→∞ supt∈[0,T ],(x,y)∈S |A(k)it (x, y)−Ai
t(x, y)| for i = 1, 2 is equivalent to conver-

gence with respect to dist∞. This distance naturally extends to a distance on P∞GΩ̂∞(Rd)
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with a trivial modification and is again denoted by dist∞. The reason why we introduce this
distance is that dist∞(εa, εb) = εdist∞(a, b) for the dilation by ε ≥ 0.

Take any α, β,m which satisfy the assumptions of Lemmas 4.2 and 4.3. By Proposition
2.3, Ψ (k) also converges to Ψ inP∞GΩ∞(Rd) a.s. Moreover, we see from (2.5) and Lemmas
4.2, 4.3 that supt∈[0,T ],(x,y)∈S |Ψ (k)it (x, y) − Ψ i

t (x, y)| converges to 0 in any Lp-norm (1 <

p < ∞).
Let sk be the maximum of (i) L4-norm of supt,(x,y) |Ψ (k)1

t (x, y) − Ψ 1
t (x, y)|,

(ii) L2-norm of supt,(x,y) |Ψ(k)2
t (x, y)−Ψ 2

t (x, y)|, and (iii) L2-norm of supt,(x,y) |Ψ 1
t (x, y)⊗

(Ψ 1
t (x, y) − Ψ (k)1

t (x, y))|. Then, limk→∞ sk = 0. By Proposition 4.1, we have
∥

∥

∥
dist∞(Ψ,Ψ (k))

∥

∥

∥

L4q
≤ c

∥

∥

∥
sup

t,(x,y)

|Ψ (k)1
t (x, y) − Ψ 1

t (x, y)|
∥

∥

∥

L4q

+ c

∥

∥

∥
sup

t,(x,y)

|Ψ (k)2
t (x, y) − Ψ 2

t (x, y)|
∥

∥

∥

1/2

L2q

+ c

∥

∥

∥
sup

t,(x,y)

|Ψ 1
t (x, y) ⊗ (Ψ 1

t (x, y) − Ψ (k)1
t (x, y))|

∥

∥

∥

1/2

L2q
≤ c′sk

√

4q .

Here, c, c′ are positive constants independent of q ≥ 1 and k = 1, 2, . . . .
Therefore, for sufficiently large q , we have

P
(

dist∞(εΨ, εΨ (k)) > δ
)

= P
(

dist∞(Ψ,Ψ (k)) > δ/ε
)

≤ (δ/ε)−qc′qsq
k

√
q

q

= exp
[

q log
(εc′

δ
sk

√
q
)]

.

Choosing q = 1/ε2, we have

ε2 logP
(

dist∞(εΨ, εΨ (k)) > δ
)

≤ log
(c′

δ
sk

)

.

First taking lim supεց0 and then letting k → ∞, we complete the proof. ✷

Using Lemmas 5.2 and 5.3, we can prove a Schilder-type large deviation principle for νε ,
which is the laws of εΨ , with respect to a weaker topology. Let us define a rate function I by
I (A) = ‖h‖2

H
/2 if A = L2(h) for some h ∈ H and I (A) = ∞ if A ∈ P∞GΩ̂∞(Rd )\L2(H).

Here, L denotes the natural lift with respect to the spatial parameter.

PROPOSITION 5.4. Let the notations be as above. Then, (νε)0<ε≤1 satisfies a large

deviation principle as ε ց 0 in P∞GΩ̂∞(Rd) with a good rate function I .

PROOF. The laws of εψ induces scaled Gaussian measures on C0([0, T ], C([0, 1], Rd)).
By the general theory of abstract Wiener spaces, they satisfy Schilder’s large deviation with
a good rate function J . Here, J (h) = ‖h‖2

H
/2 if h ∈ H and J (h) = ∞ if h /∈ H. The map

a → A(k) = L2(a(k)) is clearly continuous for each fixed k = 1, 2, . . . . Therefore, the laws
of εΨ (k) satisfies a large deviation with a good rate function since it is a continuous image of
εψ (see Theorem 4.2.1, [1]).
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From Lemma 5.2 and (5.1), it is immediate that sup‖h‖H≤L dist∞(H(k),H) → 0 as
k → 0 for each L > 0. Combining this with Lemma 5.3, we can use exponentially good
approximation (Theorem 4.2.23, [1]) to finish the proof. ✷

We prove that the laws of εΨ are exponentially tight on the path space over the geometric
rough path space. To strengthen the topology, exponential tightness is the key.

LEMMA 5.5. (νε)0<ε≤1 are exponentially tight on P∞GΩ̂H
α (Rd) for any

α ∈ (1/3, 1/2).

PROOF. Take α′ ∈ (α, 1/2) and β > 0 so that 4β < 1 − 2α′. Take m > 2 sufficiently
large so that α′ − 1/m > α and β > 1/m. Then, Lemmas 4.2 and 4.3 hold.

Set Z = ‖ψ( · , 0)‖B;β,m + ‖Ψ 1‖B;β,α′,m or Z = ‖Ψ 2‖1/2
B;2β,2α′,m/2. By Proposition 4.1,

‖Z‖Lq ≤ c
√

q for some c > 0. This implies that E[eηZ2] < ∞ if η ∈ (0, (2c2e)−1). Indeed,

E[eηZ2] =
∞
∑

k=0

ηk
E[Z2k]
k! ≤

∞
∑

k=0

ηkc2k(2k)k

k! ,

which converges as a power series of η if |η| ≤ 1/(2c2e). By Chebyshev’s inequality, this
square exponential integrability implies that for some constant c > 0 it holds that P(Z > r) ≤
ce−ηr2

for all r > 0.
For r > 0, we set

Br : = {(a,A2) = (a0, A
1, A2) ∈ P∞GΩ̂H

α (Rd) |

‖a( · , 0)‖B;β,m + ‖A1‖B;β,α′,m ≤ r, ‖A2‖1/2
B;2β,2α′,m/2 ≤ r} .

From Proposition 2.3, its closure B̄r is compact in P∞GΩ̂H
α (Rd ). The complement set (B̄r )

c

is contained in {‖a( · , 0)‖B;β,m + ‖A1‖B;β,α′,m > r or ‖A2‖1/2
B;2β,2α′,m/2 > r}. Noting that

‖(εA)2‖1/2
B;2β,2α′,m/2 = ε‖A2‖1/2

B;2β,2α′,m/2, we can easily see that

lim sup
εց0

ε2 log νε((B̄r )
c) ≤ −ηr2 .

Letting r → ∞, we prove exponential tightness. ✷

Now we state and prove our main theorem. Thanks to exponential tightness in Lemma
5.5, we can prove a large deviation principle of Schilder type with respect to the desired
topology using the inverse contraction principle. It is a little bit interesting that we can show
L2(H) ⊂ P∞GΩ̂H

α (Rd) in a rather indirect way like this.

THEOREM 5.6. Let α ∈ (1/3, 1/2) and let νε be the law of εΨ . Then, (νε)0<ε≤1

satisfies a large deviation principle as ε ց 0 in P∞GΩ̂H
α (Rd ) with a good rate function I .

In particular, the effective domain of I , i.e., L2(H), is a subset of P∞GΩ̂H
α (Rd).

PROOF. By Lemma 5.5, we can use the inverse contraction principle. (See Theorem
4.2.4 and Remarks in pp.127–129, [1].) The inclusion L2(H) ⊂ P∞GΩ̂H

α (Rd) is a part
of the inverse contraction principle, but we will prove it now for the reader’s convenience.
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Suppose L2(h) /∈ P∞GΩ̂H
α (Rd ) for some h ∈ H. By exponential tightness, there exists a

compact subset K ⊂ P∞GΩ̂H
α (Rd ) such that lim supεց0 ε2 log νε(K

c) < −(1 + ‖h‖2
H

/2).

Since the injection is continuous (Proposition 2.3), K is also compact in P∞GΩ̂∞(Rd) and,
in particular, Kc is open. By Proposition 5.4, lim infεց0 ε2 log νε(K

c) ≥ −‖h‖2
H

/2, since
L2(h) ∈ Kc. This is a contradiction. ✷

Before we end this section, we give a comment on Freidlin-Wentzell type large devia-
tions. By the well-known contraction principle (Theorem 4.2.1, [1]), the laws of F(εΨ ) also
satisfies a large deviation principle for any continuous map F from P∞GΩ̂H

α (Rd) to any
Hausdorff space.

Hairer and Weber [10] considered the following rough stochastic PDE;

(5.2) dtu =
[

△xu + f (u) + g(u)∂xu
]

dt + θ(u)dWt , with u(0, x) = u0(x) .

Here, (i) the solution u = u(t, x) is a function from [0, T ] × S1 to Rd ; (ii) the coefficients
f : Rd → Rd , g : Rd → (Rd)⊗2, θ : Rd → (Rd)⊗2, are sufficiently regular functions;
(iii) u0(x) is a given initial condition at t = 0; (iv) (Wt )0≤t≤T is an L2(S1, Rd)-cylindrical
Brownian motion. Note that u = ψ when f ≡ 0 ≡ g and θ ≡ Id.

In the additive noise case, i.e., θ ≡ Id, it is proved in [10] that under mild assumptions
on the coefficients and the initial condition, stochastic PDE (5.2) is well-defined in rough
path sense and has a unique global solution. Moreover, u is a continuous image of Ψ with
respect to P∞GΩ̂H

α (Rd)-topology for some α ∈ (1/3, 1/2). (For precise information on the
sufficient conditions for f, g, u0 and on the topology of the space in which the solution u

lives, see [10, 11], etc.)
As a result, we see from our main theorem and the contraction principle that a large

deviation principle of Freidlin-Wentzell type holds in this case for the laws of the solution
uε = uε(t, x) of the following rough SPDE;

dtu
ε =

[

△xuε + f (uε) + g(uε)∂xu
ε
]

dt + εdWt , with uε(0, x) = u0(x) .

Freidlin-Wentzell type large deviations for various stochastic PDEs were extensively studied.
In none of them was rough path theory used, however. (Unfortunately, in the multiplicative
case, i.e., the case θ is not a constant, the continuity of the map is not known. So we cannot
use the contraction priciple to prove Freidlin-Wentzell type large deviations at present.) We
remark here that ‖h‖H = ‖(∂t − △x)h‖L2 holds for h ∈ H since there is a natural unitary
correspondence between H and L2([0, T ] × S1, Rd ). Moreover, the rate function Î of the
large deviation for the law of uε can be explicitly written as

Î (u) = 1

2

∫ T

0

∫

S1

∣

∣∂tu − {△xu + f (u) + g(u)∂xu}
∣

∣

2
dtdx

for u with u(0, x) = u0(x).

REMARK 5.7. We studied (the lift of) the solution of stochastic heat equation (1.1). In
Hairer’s theory, however, two-parameter Gaussian processes differ from paper to paper. See
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[4, 8, 9]. Therefore, it may be interesting to study whether similar large deviations hold for
the lifts of these processes, too.
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