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LARGE DEVIATION PRINCIPLE FOR SOLUTIONS
TO SDE DRIVEN BY MARTINGALE MEASURE

Nuansook CHO

ABSTRACT. We consider a type of large deviation principle(LDP)
using Freidlin-Wentzell exponential estimates for the solutions to
perturbed stochastic differential equations(SDEs) driven by Mar-
tingale measure{Gaussian noise). We are using exponential tail
estimates and exit probability of a diffusion process. Referring to
Freidlin- Wentzell inequality, we want to show another approach to
get LDP for the solutions to SDEs.

1. Introduction

The large deviation principle(LDP) characterizes the limiting behav-
ior of a family of probability measure {u.} on (X,B) as ¢ — 0 in terms
of a rate function.

Recall that if {u.} is a family of probability measure on a Polish space
P with metric p, then p. is said to have an LDP with rate functional
I:P — [0,00], which is a lower semi-continuous function such that the
sets

Kiry={zeP:I(z)<r}, r=20

are compact and satisfies the following:
(L1) for each open set O C P

limiglf 2¢? log e (0) 2 —inf{I(z) : z € O}
(L2) for each closed set C C P
lim sup 2¢® log p(C) £ —inf{I(z) : z € C}.
e—0
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Instead of directly trying to show the above inequalities, (L1) and (L2)
we will follow a reformulated equivalent form of the so-called Freidlin-
Wentzell exponential estimates. (see [7])

(L1') Yz € P, ¥8 > 0 and Vy > 0 ey such that Ve € (0, €]

pely : ply,z) < 6} 2 exp{—i(%);—v}

(L2') Vr, V6 > 0 and V7 > 0 Jep such that Ve € (0, eo]

r

-
pefy : p(y, K(r)) 2 6} S exp{——5"}-

In this paper we consider a large deviation principle(LDP) for a mild
solution to stochastic partial differential equations(SPDEs) driven by
martingale measure. This extends the results proved by Freidlin and
Wentzell [4] for diffusion processes, Peszat [7], and Cho [3].

Let L be the usual elliptic operator defined by

szfmx_‘ft

and let M(dt,dz) be a continuous orthogonal martingale measure de-
fined on a probability space (2, F, P). For any € > 0, let X¢(¢, z) be the
solution of the parabolic SPDE under the following conditions:

0: X€(t,x) = LX(t,x) + b(t,z, X°(t,x))
(1.1) + eo(t,z, X(t,x))M(dt, dx)
X6(07 ) = UO()

for all (t,z) € [0,T] x [0,1] and uo € C§° with Dirichlet’s or Neuman’s
boundary conditions. We also suppose that there exist positive constants
C; and Cy such that

(1'2) lb(t,l‘,y) - b(t,l‘, z)( § Cl{y - Zl
(1'3) |0(t,m,y)—a(t,x,z)| §Czly—2|,

for all (¢,2) € [0,T]x[0,1] and y, z € R, and that there exists a constant
Cj3 such that for every z € R,

(1.4) sup lo(t,z, z) + b(t,z, z)| £ Cs(1+ |z|).
’ (t,x)€]0,1]x[0,T})
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Finally, we also assume that the function
(1.5) (t,z,y) — o(t,z,y) is continuous.

It is J. Walsh [9] who first gave a rigorous meaning to Eq. (1.1): that
is X¢(t,z) is the solution of the following evolution equation:

X(t,z) = Ge(z,up) +/0 /0 Ge-s(z,y)b(s,y, X(3,1))dsdy
t pl
+6‘/0 /0 Gi—y(z,y)o(s,y, X (s,y)) M (ds,dy),

where G¢(x,up) = fol Gi(z, y)uo(y)dy for fixed ug € C|[0,1], and Gy(+,-)
is the Green kernel associated with the partial differential equation O,u =
Lu and with the same boundary conditions as those of X*.

It is well known that for given ug € C|0,1] the trajectories of the
process, X¢ are known to be almost surely continuous in ¢ and z.

Let M be a continuous martingale measure and 7(ds,dz) be its co-
variance measure. We assume that there exists a predictable process
h(s,z) such that

(1.6) r(t, A) < / h(s, @)dsdz,
Ax[0,t]

for every borel set A, and for ¢ = 1—)%, 2 < p £ 3 and for some pg = 0,

oo
—  A(s.
E/o I T+ o (s,°)]lgrds < o0,

where || - ||, is the usual Lg-norm.

REMARK. Condition(1.6) includes the case in which

M?(t, A) —/ h(s,z)dsdz
Ax[0,¢]

is a martingale. If h(s,z) = 1 the associated martingale measure is a
white noise based on Lebesgue measure. If h(s,z) = h(z) is non-random,
the associated martingale measure having continuous sample paths is a
Brownian motion with the variance [, h(z)m(dz).
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Let H denote the Cameron-Martin space associated with M, i.e.,

H = {h{t,x) = /Ot /0m h(u, 2)m(du, dz) : h € Ly},

and let
T 1 .
Hr—{heH: / / I, 2)|2n(du, dz) < 0o}
0 0

We also let h € Hy and 2" be defined by the solution of the following
integral equation:

t 1
Zh z) = G\, t—s\L, ’ azh )
(t,2) = Gu(z, o) + /0 [0 Crea(, b5y, (5, 1)) dsdy
t 1
4 /0 /O Gz, 2)0(5, 9, 2" (5, 1)) h(s, y)m(ds, dy),

for all (¢,z) € [0,T] x [0,1].
Let I : C[0,T] x [0.1] — [0, 00| be given by

I(z) = inf{|hl3,, : 2 = 2"},

where |h|3, = fOT fol |h(w, 2)|27(du, dz). This I is our candidate for the
rate function.

Now, if X¢(t,z) converges to a deterministic limit, 2*(t, z), we want
to know what the rate of this convergence is. This problem is related to
the Freidlin-Wentzell theory for the analysis of dynamical systems and
to the study of PDE with small perturbations.

2. Preliminaries

F. Chenal and A. Millet [2] show a LDP for the solutions to a parabolic
SPDE perturbed by a small non-linear white noise. D. Marquez-Carreras
and M. Sarra [6] prove a LDP for a perturbed stochastic heat equation
driven by a Gaussian noise. Both of their proofs are based on a classical
result given by Azencott [1].

Azencott’s method is the following:
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THEOREM [1]. Let (E;,d;),i = 1,2 be two Polish spaces and X :
Q— F;,e>0,1=1,2 be two families of random variables. Suppose
the following requirements:

1. {X§ > 0} obeys a LDP with the rate function I : E; — [0, 0c].

2. There exists a function K : {I; < oo} — E5 such that for every
a < oo, the function K : {I; < a} — E4 is continuous.

3. For every 7, p, a > 0, there exist € > 0 and ¢y > 0 such that, for
h € E; satisfying I (h) < a and € < €, we have

r
P{dy(X3, K(h)) 2 p,di (X1, h) <0} < exp(— ).
Then, the family {X§ > 0} obeys a LDP with the rate function

I(¢) = inf{L1(h) : K(h) = ¢}.

If we deduce (from Schilder’s theorem) that the family {eM : e > 0}
satisfies a LDP with a good rate function I and show the continuity of
the skeleton, z, then we may have the LDP due to the above theorem.
However, we are going to prove our LDP problem by showing (L1’) and
(L2'), which are the equivalent forms of (L1) and (L2).

We briefly review the Green kernel. Recall that the Green kernel
G associated with satisfies the following inequalities under the case of
Dirichlet’s condition: (X€(¢,0) = X¢(¢,1) = 0) or Neumann’s boundary
conditions :(0,X¢(t,0) = 9;X(t,1) = 0). For all z,y € [0,1] and
s, € 10,7,

C (y w)2
<0 (y—x)”
(2.2)
sup / / IGu(z, 2) — Gul(y, 2)[Pdudz < Clz — y*~P, 3 e
te[0,T] ’

(2.3
sup / / |Gi—u(z,2) — Gs_ u(y,z)lpdudnglt—sls—gﬂ, 1<p<3

z€/0,1]

t pl ’
(2.4)  sup / / (Gu(x, 2)Pdudz < Clt— 5| < Cr, 1<p<3.
0

z€[0,1]

Also for convenience, we let M(¢,[0,z]) = M(t,z) and |- |0 = | - |-
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3. Lower bound

LEMMA 3.1. Assume that 3 is a predictable process and there exists
a constant [ < oo such that

T pl
/ / B%(s, z)m(ds,dx) £ 1, P — almost surely.
o Jo

Then for all r > 0 one has

(31)  P{ sup |/ / B(s,2)M(ds, dz)| = 1} <3 exp{——

0Zt<T
ProoOF. Let
t 1
(3.2) Z() = / / B(s, z)M(ds, dz)
o Jo
For the following estimations let
(3.3) or(z) = (1+ 22?3, A\ zeR,.

We again apply the Ito formula to (3.2).

éa(2(t))

=14 [ [ shietenats, s, e)
t [ ] CEsP (s, aa
(34) =1+ / / $h(2(5))B(s, ) M (ds, dz)
- -;—/ / (4 (2(5))8(s, )2 (ds, dar)
5 [ [ @8 nas @
/ / (¢ (2(s))B%(s, )7 (ds, dx).
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Note that ¢ (z) = 22 an let

®a

) =

E//d’)\ ,x)M(ds,dx)
-3 /0 /0 (8 ((5))B(s, 2))?n(ds, da).

() S 1+ + 3 W // f&iﬁ%@ (ds, d)

(3.6) §1+nt+/\-z.

(3.5)

Then

Let Z} = exp{n;'} for every real A. Then Z} is a local martingale and
it follows easily from the Ito formula that EZ} = 1. Hence using Doob’s
martingale inequality, we have

(3.7)
P{ sup |2(s)| 2} < P{ sup ¢x(2(s)) = (1+Ar?)2}
085t 0<s<t
< P{sup Z) 2 exp{(1+ )7 —1—Al}
055t

< exp{—[(1 + A&?)? — 1 — ]}
< exp{—(1+ A?)% +1+ M}

If r2 > 2] then taking )\ = 241 e obtain the desired bound (3.1). If

4l2 2
r? < 21, then 3exp(=f ) 2 1. Thus (3.1) holds for any r > 0. 0

LEMMA 3.2. If there exists a constant n < oo such that

sup / / |Gi—s(z,y)B(s, y)|*w(ds,dy) <n, P — almost surely
z€0,1]

then

P{sup sup | / / Gi—o(m, 1)B(s, y)M(ds, dy)| = 6}

0<t<T z€[0,1]

62
< 4Texp{—%}.
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PROOF. Let 94(s,z,y) = Gi—s(z,y)B(s,y) for 0 S s <t < T and 0
otherwise. Then by Lemma 3.1

Plexp(= sup | / / u(s, 2, 9)M (ds, dz))|* 2 u)
770<t<T

< 3exp(—%lnu) < 3u~%.

Hence

Eexp{— sup | / / i(s, 2, y) M(ds, dz))||%}

7 0<t<T

_ /0°°p{exp L H/ / Yi(s,2,y)M(ds, d))|?) 2 u}du

977 0<t<T

§1+3/ uidu<4
1

T
X/O Eexp{— sup ||/ / Uy (s, z,y)M(ds,dz))||*}dt < 4T.

9n 0StsT

P{ sup | /0 /0 Go_alz, v)B(s, y)M (ds, dy)|* 2 6}

0St<T

< P{ sup exp(%”/o /O Wu(s,,y) M (ds, dz))|?) ;exp(g_n)}

0St<T

2
< 4Texp(—%).

O

THEOREM 3.3 (LOWER BOUND). We assume (1.2)-(1.5). VT > 0,
VI > 0, Vé > 0, Vy > 0, there exists ¢g > 0 such that Ve € [0, ¢| and
Vh € Hy satisfying |h|%1T < [, we have

hi2, +
(3.8) P{ sup || X(¢,-)— 2 (¢, Moo £} 2 exp{—————( ’HTQ 7
0<t<T 2e

}.
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PROOF. Let I > 0,7 > 0,6 > 0 and h € Hy satisfying |n|Z, < 1.

Define .
1 v,
M¢(t,z) = M(t,x) — Z/ / h(s,y)m(ds,dy).
oJo .

According to the Girsanov theorem, for fixed x M¢(-,x) is a martingale
process on the probability space (Q2, F, P¢), where

dP 1 [Tt
G = eol=g [ [ he)Mds.ay
1 T 1 -
53 | [ e,
Note that P < Pe.

Now, consider the following:

X (2, 2) — 2(t, )
t 1
<c /0 /0 G 9)(X*(5,9)) — 2(s, ) |dsdy
+e / / Ge_a(z,)o (X (5,)) M (ds, dy)|
T /O / Gz, )| X (5, ) — 2 (5, 9)l (s, v) [m(ds, dy).

By (1.2)-(1.5) and the Gronwall inequality, there exists a constant K
such that

sup |X“(t, @) — 2"(t, z)|
0Zt<T

t 1
<Ky sup e / / Grealz,y)o (X (s, 4)) M* (ds, dy)|.

0St<T

Let [ € (0,1), and

G(e, t, ) //Gt s(x,y)o(X(s,y)) M (ds, dy)
Ae) = { sup [ X“(t,-) = 2"(¢, )| < 8}

0StsT

T 1 7
5@ =l [ [ tsmnmrecas. )l < 3
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Then

dP ha +1, .
PLA()} = B : A(0)] 2 exp{ - P  B(o).

We also want to show that P{A(¢)N B(e)} — 1 uniformly with respect
to x and h on bounded sets. Now,

PELA(0) N B(o)}
> 1= P*{ sup (6,1, )| > o) — PBE(Q))
0<t<T 1€

Note that by condition (1.4) and (2.4), there exists a constant Iy such
that

sup/ /0 |Gy_s(z, y)a(X(s,v))|?m(ds, dy) < lo.

z€[0,1] JO
Lemma 3.2 shows that

2

ey 0

39) P sup (et )] > ) S Sexp(-

and P{B°()} — 0 as ¢ — 0 by Lemma 3.1. Hence, we get the lower
bound. 0

4. Upper bound

For convenience, let

t 1
CIto)= [ [ G ol X (s, 9)M(ds, o).
0 0
LEMMA 4.1. Vr >,3M > 0 such that Ve € (0,1] we have

(4.1) P{ sup [[X“(t,)]| 2 M} < exp{—5}.
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ProoF. From (1.2)-(1.3), (2.4) and Gronwall’s inequality, there exist
C1,Cy > 0 such that Ve and = € B(zg, R) (for fixed zg),

sup [ X<(¢,)||* £ C1+ G sup lle°(z, )II?.
0Zt<ST 0Zt<T

Let M > 0 be such that M2 > C;. By Lemma 3.2
P{ sup | X°(¢, )| 2 M}
0LtET

M2 — 01 1

<P 1) 2 (L0

0St<T 2

1 M?-C
< ——=(————— —log4T
s exp{~5( 0Ty o8 )}
g exp(_?),
where r is chosen satisfying r = 4=C1 _ log 4T O

9C2n

The proofs of the following two propositions are simple modifications
of Proposition 6.2 and Proposition 6.1 in [7] respectively in our setting.
For the compactness of this paper we omit them.

PROPOSITION 4.2. Vr > 0, V6 > 0 3b > 0 and Jeg > 0 such that
Ve € (0,¢€0] we have

(4.2) P{OS?pTHeIE( I =8, sx:pTueM( )H_S_b}éexp{—e—g—},

To prove (4.2), X¢ is being approximated by the simpler process X¢
which is defined to be stopped on small intervals.

Forne Nand k =0,---,2" —1set t,p = k-27"T and dp,, =
[tn ks tnk+1)- Let mp(t) =ty i for t € dy, . Finally, let

1
XE(tz) = /O Gt () X (ma(8), y)dy.

PRrROPOSITION 4.3. Vr > 0, Vd > 0 3ng, Vn 2 ng, and Je,, > 0 such
that Ve € (0, €,] we have

P{ sup |IX(t,-) = X5(t, )] 2 8} < exp{- ).

0<t<T
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PROPOSITION 4.4. Under the assumption (1.2)-(1.5), Vr > 0, Vé > 0,
Vh € Hr, there exists ¢g > 0 and b > 0 such that Ve € (0, €] we have

P{ sup [ X(t,") - 2"(t, )| 2§,

0<tET
(4.3) sup [leM(t, )—/ / h(s, y)m(ds, dy)|| < b}
O0ZtST
< exp ~§2}-
PRrROOF. Let

N(e,b) ={ sup ||X*(t,2) - 2"(,2)]| 2 6,
0Lt<T

sup [leM (2, / / (s,y)m(ds, dy)|| < b)
0<t<T

and h € Hr. Let W€ and P¢ be defined as in the proof of Theorem 3.4.
For A > 0 set

M(e,/\):{/o /Oh(t,w)M(ds,dx)g—%}.

Obviously, for an arbitrary A > 0, we have

(4.4)

45)  P{N(e,b)} £ P{N(e,b) N M(e, \)} + P{M°(e, \)}.

By Theorem 3.1, we have

2

Note that
(4.7)
PN (e,b) N M(e, A)} = EE[j—P}i N(e,b) N M(e, )]

< expl + Pz ypeg e ),
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We have

P {N(e,0)} = P{ sup [IX°(t,") = 2"(t,)]| > & lleM (%, )] £ b},

0StET
where X (¢, ) is the solution of the SDE

8, X(t,x) = LX(t,z) + b(t, z, X(t, z)) + eo(t, z, X(t, z)) M (dt, dx)
X40,) = ua(").

Using the same argument as in the proof of Theorem 3.2 we get

(4.8)
P (N (6, )}
<P{swp o / / Gres()o (X (s,9)) M (ds, dy) || -g_

sup |{leM(t,-)|| < 0}
0St<T

<P swp | [ [ GralmoXe e i) 2 )

0StsT

where C; is a constant and [y is a constant defined as (3.9). Hence for
each @ > a we can find b such that

(4.9) P*{N(e,b)} < exp{- 5}
Combining (4.5) to (4.6), we have
A2 2\ + ||, —2a
P < —_— < .
{N(67 b)} - 3exp{ 462|h|$_‘T } + exp{ 262 }
If we first choose X and then a we get (4.4). O

Let

(4.10) Hp ={h€ H:|hf7, <r}
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ProrosiTIiON 4.5. VT > 0,Vr > 0, V6 > 0, Vy > 0, there exists
€0 > 0 such that Ve € (0, €] we have

(4.11)

where distcy, 7)4(0.1) (eM,H}) means the distance of eM to the space,
7 in the metric of Cig 7x(0,1]-

PRrROOF. As before, let

de_ p{——/ /1Mdsdy 262/ /hzsy (ds,dy)}.

Also let

(€)= {,inf, 1eM(T}1) - /0 /0 (s, yyr(ds, dy)| = 6, M2, < 7).

Then
PLCH ()} = B (e Co(6)}
< Ay

g

THEOREM 4.6 (UPPER BOUND). Under the condition (1.2)-(1.5),
VI > 0,Vy € R, V6 >0, VR > 0, Vr = 0, ¥y > 0, there exists ¢g > 0
such that Vo € R : |z — y| £ R and Ve € (0, 0] we have

. c r—
P{dIStC[O,T]x[O,lj (X (,.’L‘),’C(T’)) = 62’7 :

Proor. By Proposition 4.4, Vh € Hr, there exist by, > 0 and ¢, > 0
such that Ve € (0, €] and Vo € B(xzy, R),

P{ sup “Xe(t7) - zh(t,')“ g 67

0StET

(4.12) sup |leM(t,-) —/0 /0. h(s,y)m(ds,dy)|| < bn}

0StsT

a
s exp{~3}
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If we sum over all h € Hr satisfying |hl3, <,
t .

7 | {u € Comxpo, : sup fult, ')—/ / hs, y)m(ds, dy)|| < bn}.
0<t<T 0 Jo

Since HY. is compact, we may find {hq, ..., h;}, where each of h; satisfies
|hi|3,, < r such that

l
HT C | J{u € Cp, a1 sup |u(t,-)
T iZUI{ TIxioa) | U I

—/ / h(s,y)m(ds,dy)| £ bp,} = H.
0 Jo

(4.13)
Pldistcg, o (X (5 )-K(r)) 2 6}
< P{distcy ryu0 (XC,).K(r) 2 6,eM € H} + P{eM ¢ H}.
Let ¢; = min{ep,,...,€n, }. From (4.12) for € € (0, €] we have

(4.14)
P{dlsto o (X650, K(r)) 2 6,eM € H}

ZP{ sup | X(t,) — 2t )] 2 6,

i=1 OSt<T

sup |eM(t, //h s,y)m(ds, dy)l| < bn, }

0<tsT
S eXP{—E%}-
Since H7 is compact, there exists 8 > 0 such that
{u € Cloryx(o,1) : distcyg o, (€M, HE) < 8} C H.
By Proposition 4.5, there exists ea > 0 such that Ve € [0, €3],

(4.15) P{eM ¢ H} £ P{distcy 1., (€M, H7) 2 6}
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Let €3 = €1 A €. (4.13)-(4.15) imply that for all € € (0,¢e3] and z €
B(.’L‘O, R), letting 2a > r — 74,

P{diStC[o,T]x[o,u (Xe(') ')a IC(T')) Z 6}

a r—%
< lexp{—§}+exp{— 5o }

r—-y
< eXp{_Té_}’

for all € € (0, €] and Vz € B(zo, R). O
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