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Abstract. Large deviation principles of occupation distribution for generalized Feyn-
man-Kac functionals are presented in the framework of symmetric Markov processes having
doubly Feller or strong Feller property. As a consequence, we obtain the Lp-independence
of spectral radius of our generalized Feynman-Kac functionals. We also prove Fukushima’s
decomposition in the strict sense for functions locally in the domain of Dirichlet form having
energy measure of Dynkin class without assuming no inside killing.

1. Introduction and statement of results. This paper is a continuation of the previ-
ous work [12] by authors including the first and second named present authors. The subject of
[12] is the Lp-independence of the spectral bound of Feynman-Kac semigroup by continuous
additive functionals in the framework of symmetric doubly Feller or strong Feller processes.
In this paper, we focus on the Donsker-Varadhan type large deviation theory for generalized
Feynman-Kac semigroups including non-local part in the framework of symmetric doubly
Feller or strong Feller processes. As a consequence, we can and do deduce Lp-independence
of the spectral bounds of our generalized Feynman-Kac semigroups.

The Donsker-Varadhan type large deviation principle of the occupation distribution for
Markov processes has been developed by several authors. First, Fukushima-Takeda [17] gave
a lower estimate in the Donsker-Varadhan type large deviation principle of the occupation
distribution for Markov processes associated with irreducible Dirichlet forms admitting ex-
plosion or inside killing. Takeda [32] also gave an upper estimate in the Donsker-Varadhan
type large deviation principle provided the underlying process is an irreducible Feller pro-
cess satisfying the absolute continuity condition. In [33], Takeda extended the result in [32]
to Feynman-Kac semigroups with continuous additive functionals of bounded variation. In
Kim [19], this work was extended to non-local Feynman-Kac semigroups with discontinu-
ous additive functionals in the extended Kato class. In [34] or [35], Takeda gave a sufficient
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condition for the full large deviation principle for the occupation distribution of Markov pro-
cesses and the Lp-independence of the spectral radius for symmetric Markov processes under
this condition. In Takeda [36], he established a necessary and sufficient condition for the
Lp-independence of spectral bounds for Feynman-Kac semigroups with continuous additive
functionals of bounded variation whose Revuz measures are in the Kato class with 0-order
Green-tightness in the framework of symmetric conservative Markov processes. The method
of [36] also depends on the Donsker-Varadhan large deviation theory and remains valid for
non-local Feynman-Kac semigroups (see [39, 42, 43]). They assumed the transience of the
underlying process to define 0-order Green-tight measures of Kato class. Without using the
Feller property of the underlying process, Takeda [37] gave sufficient conditions for the Lp-
independence of the spectral radius for Feynman-Kac semigroups with positive continuous
additive functionals whose Revuz measure is in the Kato class with Green-tightness if the
symmetrizing measure is positive-order Green-tight. Moreover, Takeda proved that the Lp-
independence of the spectral radius is equivalent to the non-positivity of the L2-spectral ra-
dius in the framework of one-dimensional diffusion processes on the interval having natural
boundary (Theorem 5.1 in [37]).

For Feynman-Kac semigroups with continuous additive functionals of zero energy,
Takeda and Zhang [41] obtained its asymptotic behavior based on the Donsker-Varadhan large
deviation theory for d-dimensional Brownian motion. Zhang [45] obtained the asymptotic be-
havior of Feynman-Kac semigroups with continuous additive functionals of zero energy for
symmetric Lévy processes under some conditions. In [12], the authors extended these results
and also obtained the Lp-independence of the spectral radius of the Feynman-Kac semigroup
for symmetric doubly Feller or strong Feller processes.

Very recently, Chen [3, 4] gives a general result on the Lp-independence of the spectral
radius of the non-local Feynman-Kac semigroup involving continuous additive functionals of
zero energy without using the large deviation theory. It is remarkable that in [3, 4] the doubly
Feller nor strong Feller property of the underlying process are not imposed.

In this paper, we expose the large deviation principle for generalized Feynman-Kac func-
tionals in the framework of doubly Feller or strong Feller symmetric Markov processes, which
is extended to the all results in [12, 33, 34, 35, 37, 38, 39, 42, 43]. In particular, in the frame-
work of strong Feller process, Theorem 1.1 with Remark 4.1(2) extends [37, 43], [38, Theo-
rem 1.2], more precisely, the conclusions of Theorems 1.1 and 1.2(1) hold for our Feynman-
Kac functionals of additive functionals having Kato class conditions without Green-tightness.
Our conditions on the measures related to our generalized Feynman-Kac functional are very
mild for deducing the large deviation principle in terms of the given topology over the under-
lying space, however, it is somewhat restrictive for the Lp-independence of the spectral radius
of it as indicated in [3, 4].

Now we state our framework and results. Let E be a locally compact separable met-
ric space and m a positive Radon measure on E with full topological support. Let X =
(Ω,F∞,Ft , Xt , ζ, Px, x ∈ E) be an m-symmetric Hunt process on E and (E,F) the associ-
ated symmetric Dirichlet form on L2(E;m). Let ∂ be a point added to E so that E∂ := E∪{∂}
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is the one-point compactification of E. The point ∂ also serves as the cemetery point for X.
For notational convenience, denote by 1E the constant function 1 on E, which vanishes at ∂ ,
and by 1E∂ the constant function 1 defined on E∂ . Throughout this paper, we assume that
(E,F) is irreducible, that is, any (Tt )t>0-invariant set B satisfies m(B) = 0 or m(Bc) = 0.
Here (Tt )t>0 is the strongly continuous semigroup on L2(E;m) associated with (E,F). The
transition kernel of X is denoted by Pt (x, dy), t > 0. The correspondence between X and
(E,F) is given by

Ttf (x) = Ex[f (Xt)] :=
∫

E

f (y)Pt (x, dy) m-a.e. x ∈ E

for each t > 0 and any Borel function f ∈ L2(E;m). The process X is said to have the Feller
property if Pt (C∞(E)) ⊂ C∞(E) for every t > 0 and limt→0 ‖Ptf − f ‖∞ = 0 for every
f ∈ C∞(E). Here C∞(E) is the space of continuous functions on E that vanish at infinity
and ‖f ‖∞ := supx∈E |f (x)|. Under the Feller property of X, for any compact subset K of
E, limx→∂ Ex [e−ασK ] = 0 for each α > 0 and limx→∂ Px(σK ≤ t) = 0 for each t > 0 (see
Proposition 3.1 in [1], [42]). The space of bounded continuous functions on E will be denoted
as Cb(E). The process X is said to have the strong Feller property if Pt(Bb(E)) ⊂ Cb(E)

for every t > 0. We say that X (or its transition semigroup) has the doubly Feller property
if it has both the Feller and strong Feller properties. Throughout this paper, we assume that
X has doubly Feller property. The Feller property of X yields the regularity of the Dirichlet
form (E,F) on L2(E;m). Since X has strong Feller property, E is connected under the
irreducibility of (E,F) and the transition kernel (Pt )t>0 of X satisfies the absolute continuity
condition with respect to m ((AC) for short in this paper), i.e., Pt (x,N) = 0 if m(N) = 0 for
each N ∈ B(E), x ∈ E and t > 0.

For α > 0, there exists an α-order resolvent kernel Rα(x, y) which is defined for all
x, y ∈ E (see Lemma 4.2.4 in [16]). Since α 	→ Rα(x, y) is decreasing for each x, y ∈ E,
we can define the 0-order resolvent kernel R(x, y) := R0(x, y) := limα→0 Rα(x, y). For a
non-negative Borel measure ν, we write Rαν(x) := ∫

E
Rα(x, y)ν(dy) and Rν(x) := R0ν(x).

Note that Rαf (x) = Rα(f m)(x) for any f ∈ B+(E) or f ∈ Bb(E). A non-negative Borel
measure ν is said to be of Dynkin class (resp. Kato class) if supx∈E Rαν(x) < ∞ for some
α > 0 (resp. limα→∞ supx∈E Rαν(x) = 0), and ν is in the local Kato class if 1Kν is in
the Kato class for every compact set K ⊂ E. A non-negative Borel measure ν is said to
be of extended Kato class if limα→∞ supx∈E Rαν(x) < 1. Denote by S0

D(X) (resp. S0
K(X))

the family of measures of Dynkin class (resp. Kato class) and by S0
EK(X) (resp S0

LK(X))
the family of measures of extended Kato class (resp. local Kato class). Clearly, S0

K(X) ⊂
S0

EK(X) ⊂ S0
D(X) and S0

K(X) ⊂ S0
LK(X).

Denote by S(X) (resp. S1(X), S0(X), S00(X)) the family of smooth measures (resp. the
family of smooth measures in the strict sense, the family of measures of finite energy integrals,
the family of measures of finite energy integrals with bounded potentials) with respect to X
(see pp. 83, pp. 79, (2.2.10) and pp. 238 in [16]). Note that any Radon measure of Dynkin
class (hence any Radon measure of local/extended Kato class) always belongs to S1(X) in
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view of Proposition 3.1 in [22]. (Though the framework of [22] requires the existence of
heat kernel, the proof of Proposition 3.1 in [22] still works in the present context.) We set
S1

D(X) := S0
D(X) ∩ S1(X), S1

K(X) := S0
K(X) ∩ S1(X), S1

EK(X) := S0
EK(X) ∩ S1(X) and

S1
LK(X) := S0

LK(X) ∩ S1(X). Conversely, any element ν ∈ S0
D(X) ∩ S(X) is always a Radon

measure by the regularity of the Dirichlet form (E,F) with the Stollmann-Voigt inequality
(see [31]) ∫

E

f 2dν ≤ ‖Rαν‖∞Eα(f, f ) , f ∈ F .

For each α ≥ 0, a positive measure ν ∈ S0
K(X) is said to be α-order Green-tight if and

only if for any ε > 0 there exists a compact subset K of E such that

sup
x∈E

Rα(1Kcν)(x) = sup
x∈E

∫
Kc

Rα(x, y)ν(dy) < ε .

By definition, for positive α, α-order Green-tightness of the measure ν ∈ S0
K(X) is indepen-

dent of the choice of α > 0 in view of the resolvent equation (4.2.12) in [16]. The mea-
sure of 0-order Green-tightness is suitable to treat the transient case. In this case the 0-order
Green-tightness always implies the α-order Green-tightness for α > 0. Denote by S0

K+∞
(X)

(resp. S0
K∞(X)) the family of positive-order (resp. 0-order) Green-tight measures in the Kato

class and set S1
K+∞

(X) := S0
K+∞

(X) ∩ S1(X) (resp. S1
K∞(X) := S0

K∞(X) ∩ S1(X)).

Let (E,Fe) be the extended Dirichlet space of (E,F) (see [16] for the definition). Each
element f ∈ Fe admits E-quasi continuous m-version f̃ (see [16]). Throughout this paper,
we always take E-quasi continuous m-versions of elements of Fe, that is, we omit tilde from
f̃ for f ∈ Fe.

Since X is a Hunt process, its Lévy system (N(x, dy),Ht) exists and is defined under
Px for every x ∈ E, where N(x, dy) is a kernel on (E∂,B(E∂)) and Ht is a PCAF with
bounded 1-potential such that for any nonnegative Borel function φ on E∂ ×E∂ vanishing on
the diagonal and any x ∈ E∂ ,

Ex

[∑
s≤t

φ(Xs−,Xs)

]
= Ex

[ ∫ t

0

∫
E∂

φ(Xs, y)N(Xs, dy)dHs

]
.

To simplify notation, we will write

Nφ(x) :=
∫

E∂

φ(x, y)N(x, dy) .

Let μH be the Revuz measure of the PCAF H . Then the jumping measure J and the killing
measure κ of X are given by

J (dxdy) = 1

2
N(x, dy)μH (dx) , and κ(dx) = N(x, {∂})μH(dx) .

These measures feature in the Beurling-Deny decomposition of E : for f, g ∈ Fe,

E(f, g) = Ec(f, g)+
∫

E×E

(f (x)− f (y))(g(x)− g(y))J (dxdy)+
∫

E

f (x)g(x)κ(dx) ,
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where Ec is the strongly local part of E .
Now we consider a bounded symmetric function F on E × E∂ which is extended to a

function F defined on E∂ × E∂ vanishing on the diagonal set of E∂ × E∂ (actually there is
no need to define the value F(∂, y) for y ∈ E). We say that F is in the class J1(X) if the
measure N(|F |)μH belongs to the class S1(X). It is said that F is to be in the class J 1

D(X)

(resp. J 1
K(X), J 1

LK(X) and J 1
EK(X)) if the measure N(|F |)μH belongs to the class S1

D(X)

(resp. S1
K(X), S1

LK(X) and S1
EK(X)). For α ≥ 0, F ∈ J 1

K(X) is said to be a function of α-order
Green-tightness if the measure N(|F |)μH belongs to the class S1

K+∞
(X). Denote by J 1

K+∞
(X)

(resp. J 1
K∞(X)) the family of functions of positive-order (resp. 0-order) Green-tightness.

For F ∈ J1(X), the following AF can be defined as an AF in the strict sense:

AF
t =

∑
0<s≤t

F (Xs−,Xs) .

Note that AF
t = ∑

0<s≤t 1{s<ζ }F(Xs−,Xs) provided F(x, ∂) = 0 for x ∈ E∂ . Hereafter,
we take non-negative bounded functions F1, F2 ∈ J1(X) on E∂ × E∂ vanishing on diagonal
satisfying ‖F2‖∞ < 1 and F1(x, ∂) = F2(x, ∂) = 0, x ∈ E∂ , and set F := F1 − F2. Note
that F1 ≥ F+ := max{F, 0} and F2 ≥ F− := max{−F, 0} on E∂ × E∂ .

A function f on E is said to be locally in F in the broad sense if there exists a nest {Gn}
of finely open (nearly) Borel sets and a sequence {fn} of elements in F such that f = fn

m-a.e. on Gn. Let Ḟloc be the family of functions on E locally in F in the broad sense. It is
known that any f ∈ Ḟloc admits an E-quasi continuous m-version. We introduce a subclass
Ḟ†

loc of Ḟloc as follows:

Ḟ†
loc := {f ∈ Ḟloc | N(1E×E(f (·)− f )2)μH ∈ S(X)} .

Clearly, Ḟ†
loc is a linear subspaces of Ḟloc, and 1E∂ , 1E ∈ Ḟ†

loc. By Remark 3.9 of [6] and

κ ∈ S, we see Fe ∪ (Ḟloc)b ⊂ Ḟ†
loc. For f, g ∈ Ḟ†

loc, we see f g ∈ Ḟ†
loc provided f or g is

bounded. Moreover, we define

F†
loc :=

{
f ∈ Floc

∣∣∣∣ for any compact set K,

∫
K×E

(f (y)− f (x))2J (dxdy) < ∞
}

.

Here Floc is the space of functions locally in F in the ordinary sense (see [16]). Clearly,
F†

loc ⊂ Ḟ†
loc. For f ∈ Floc, f ∈ F†

loc if and only if that for any compact set K with its
relatively compact open neighborhood G∫

K×Gc

(f (y)− f (x))2J (dxdy) < ∞ .

We see F ∪ (Floc)b ⊂ F†
loc, because of J (K ×Gc) < ∞, where K and G are noted as above.

REMARK 1.1. In [25], we introduce the following classes

Ḟ‡
loc : = {f ∈ Ḟ†

loc | f (∂) ∈ R and (f (·)− f (∂))2κ ∈ S(X)} ,
F‡

loc : =
{
f ∈ F†

loc

∣∣∣∣ f (∂) ∈ R and for any compact set K,

∫
K

(f (x)− f (∂))2κ(dx) < ∞
}

.
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These classes are unnecessary. Indeed, we can easily see that any f ∈ Ḟ†
loc (resp. f ∈ F†

loc)
with f (∂) ∈ R satisfies (f (·)−f (∂))2κ ∈ S(X) (resp.

∫
K(f (x)−f (∂))2κ(dx) < ∞ for any

compact set K).

Hereafter, we fix u ∈ Ḟloc ∩ C(E∂) with μ〈u〉 ∈ S1
K(X). In Theorem 6.2(2) below, we

prove that the additive functional u(Xt)− u(X0) admits the following strict decomposition:

u(Xt)− u(X0) = Mu
t +Nu

t t ∈ [0,+∞[ Px-a.s. for all x ∈ E ,(1.1)

where Mu is a square integrable martingale additive functional in the strict sense, and Nu is a
continuous additive functional in the strict sense. Mu can be decomposed as

Mu
t = M

u,c
t +M

u,j
t +M

u,κ
t ,(1.2)

where M
u,j
t , M

u,κ
t and M

u,c
t are the jumping, killing and continuous part of Mu respectively.

Those are defined Px-a.s. for all x ∈ E by Theorem 6.2(2). The strict decompositions (1.1)
and (1.2) are necessary to deduce the large deviation principle for our Feynman-Kac semi-
group defined later.

Let μ〈u〉, μc〈u〉, μ
j
〈u〉 and μκ〈u〉 be the smooth Revuz measures in the strict sense associated

with the quadratic variational processes (or the sharp bracket PCAFs in the strict sense) 〈Mu〉,
〈Mu,c〉, 〈Mu,j 〉 and 〈Mu,κ〉 respectively. Then

μ〈u〉(dx) = μc〈u〉(dx)+ μ
j
〈u〉(dx)+ μκ〈u〉(dx) .

Note that E(u, u) = 1
2ν〈u〉(E) with ν〈u〉 := μc

〈u〉 + μ
j

〈u〉 + 2μκ
〈u〉 provided u ∈ Fe.

Hereafter we use the convention that μ = μ1−μ2 ∈ S1∗(X)−S1∗∗(X) means μ1 ∈ S1∗(X)

and μ2 ∈ S1∗∗(X) for subclasses S1∗(X) and S1∗∗(X) of S1(X), where μ = μ1 − μ2 is the
Hahn-Jordan decomposition of the signed smooth measure μ in the strict sense. Similarly
F = F1 − F2 ∈ J 1∗ (X)− J 1∗∗(X) means F1 ∈ J 1∗ (X) and F2 ∈ J 1∗∗(X) for subclasses J 1∗ (X)

and J 1∗∗(X) of J1(X).
We always take μ = μ1−μ2 and F = F1−F2 with μ1+N(F1)μH ∈ S1

LK(X)∩S1
EK(X),

μ2 + N(F2)μH ∈ S1
LK(X).

We now fix an AF A := Nu + Aμ,F with Aμ,F := Aμ + AF . Here A
μ
t := A

μ1
t − A

μ2
t ,

and A
μ1
t (resp. A

μ2
t ) is the PCAF in the strict sense associated with μ1 (resp. μ2) as its Revuz

measure.
Now we consider the following multiplicative functional:

eA(t) := exp(Nu
t )Exp(Aμ,F )t , t ≥ 0 .

Here Exp(Aμ,F )t := eA
μ
t Πs≤t (1 + F(Xs−,Xs)) is the Stieltjes exponential of A

μ,F
t . Define

the associated Feynman-Kac semigroup by

Qtf (x) := Ex [eA(t)f (Xt )] for x ∈ E, f ∈ B+(E) .(1.3)

The probabilistic resolvent (Sα)α>0 associated with (Qt)t>0 is defined by

Sαf (x) :=
∫ ∞

0
e−αtQtf (x)dt x ∈ E



LARGE DEVIATION PRINCIPLES 167

for f ∈ B+(E).
Define a transition probability P∂

t (x, dy) on E∂ ; for B ∈ B(E∂),

P∂
t (x, B) =

{
Pt (x, B \ {∂}) x ∈ E ,

δ∂(B) x = ∂ .

Denote by X∂ = (Xt , P∂
x, x ∈ E∂) the Markov process with transition probability P∂

t (x, dy).
X∂ is an extension of X with ∂ as a cemetery point. We also use that for f ∈ B+(E∂) and
x ∈ E∂ ,

Q∂
t f (x) := E∂

x [eA(t)f (Xt)] and S∂
αf (x) :=

∫ ∞

0
e−αtQ∂

t f (x)dt .

Any function f on E can be regarded as a function f on E∂ with f (∂) = 0 unless we mention
the value at infinity. In this case Qtf (x) = Q∂

t f (x) for x ∈ E and f ∈ B(E). In particular,
Q∂

t 1E∂ (x) = Ex [eA(t)] and Q∂
t 1E(x) = Qt 1E(x) = Ex [eA(t) : t < ζ ], x ∈ E.

Let C be a core of (E,F) on L2(E;m). Under the above conditions for μ〈u〉, μ and F ,
we introduce the following quadratic form (Q, C) on L2(E;m): for f, g ∈ C

Q(f, g) := E(f, g) + E(u, f g)−H(f, g) ,

where

E(u, f g) := 1

2
μc〈u,f g〉(E)+

∫
E×E

(u(x)− u(y))((f g)(x)− (f g)(y))J (dxdy)+
∫

E

uf gdκ ,

H(f, g) :=
∫

E

f (x)g(x)μ(dx)+
∫∫

E×E

f (x)g(y)F (x, y)N(x, dy)μH(dx) .

Under the condition μ〈u〉 ∈ S1
K(X) (resp. μ1 + N(F1)μH ∈ S1

LK(X) ∩ S1
EK(X), μ2 +

N(F2)μH ∈ S1
LK(X)), the quantity E(u, f g) (resp. H(f, g)) is well-defined for f, g ∈ C,

consequently, the quadratic formQ is well defined and lower bounded on C and the probabilis-
tic semigroup defined in (1.3) is regarded as a strongly continuous semigroup on L2(E;m)

associated with the closure (Q,D(Q)) of (Q, C) on L2(E;m) (Corollaries 1.5, 1.8 and 1.9
in [7]). Note that D(Q) ⊂ F always holds, because there exist C > 0 and α0 > 0 such
that C−1E1(f, f ) ≤ Qα0(f, f ) for all f ∈ D(Q). Moreover, if further μ2 + N(F2)μH ∈
S1

LK(X) ∩ S1
D(X), then there exist C > 0 and α0 > 0 such that

C−1E1(f, f ) ≤ Qα0(f, f ) ≤ CE1(f, f ) for all f ∈ F .

In this case, we have D(Q) = F .
We state some notations. Let P(E) denote the space of all Borel probability measures

on E. Define a rate function IQ(ν) on P(E) by

IQ(ν) :=
{Q(φ, φ) if ν � m and φ := √

dν/dm ∈ D(Q) ,

+∞ otherwise .
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For ω ∈ Ω with t < ζ(ω), we define the normalized occupation time distribution Lt (ω) ∈
P(E) by

Lt (ω)(A) := 1

t

∫ t

0
1A(Xs(ω))ds for A ∈ B(E).

Our first result is the following:

THEOREM 1.1. Suppose μ〈u〉 ∈ S1
K(X), μ = μ1 − μ2 and F = F1 − F2 with μ1 +

N(F1)μH ∈ S1
LK(X) ∩ S1

EK(X), μ2 +N(F2)μH ∈ S1
LK(X).

(1) For any open set G ⊂ P(E) and x ∈ E,

lim
t→∞

1

t
log Ex [eA(t) : Lt ∈ G, t < ζ ] ≥ − inf

ν∈G
IQ(ν) .

(2) Assume μ2 +N(F2)μH ∈ S1
LK(X) ∩ S1

D(X). Then for any compact set K ⊂ P(E),

lim
t→∞

1

t
log sup

x∈E

Ex [eA(t) : Lt ∈ K, t < ζ ] ≤ − inf
ν∈K

IQ(ν) .(1.4)

(3) Assume further m ∈ S1
K+∞

(X) and μ2+N(F2)μH ∈ S1
LK(X)∩ S1

D(X). Then for any

closed set K ⊂ P(E), we have (1.4). In particular,

lim
t→∞

1

t
log Ex [eA(t) : t < ζ ]

= lim
t→∞

1

t
log sup

x∈E

Ex[eA(t) : t < ζ ] = − inf
ν∈P(E)

IQ(ν) .

Define the probability measure on P(E) by

Qx,t (B) := Ex [eA(t) : Lt ∈ B, t < ζ ]
Ex [eA(t) : t < ζ ] , B ∈ B(P(E)) .

Define the function J on P(E) by

J (ν) := IQ(ν)− λ2(u, μ, F ).

Here λ2(u, μ, F ) := inff∈F ,‖f ‖2=1 Q(f, f ) is the bottom of the L2-spectrum of our Feyn-
man-Kac semigroup. We have the following:

COROLLARY 1.1. Suppose μ〈u〉 ∈ S1
K(X), μ = μ1 − μ2 and F = F1 − F2 with

μ1 + N(F1)μH ∈ S1
LK(X) ∩ S1

EK(X), μ2 + N(F2)μH ∈ S1
LK(X) ∩ S1

D(X). Assume m ∈
S1

K+∞
(X).

(1) There exists a unique ground state, that is, there exists u0 ∈ F with ‖u0‖2 = 1 such
that Q(u0, u0) = inff∈F ,‖f ‖2=1 Q(f, f ).

(2) {Qx,t}t>0 obeys the large deviation principle with rate function J :
(a) For any open set G ⊂ P(E)

lim
t→∞

1

t
log Qx,t (G) ≥ − inf

ν∈G
J (ν) .
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(b) For any closed set K ⊂ P(E),

lim
t→∞

1

t
log Qx,t (K) ≤ − inf

ν∈K
J (ν) .

(3) The measure Qx,t converges to δu2
0m

weakly.

Fix an open subset G of E and consider a part space (EG,FG) defined by{FG := {f ∈ F | f = 0 q.e. on E \G} ,
EG(f, g) := E(f, g) for f, g ∈ FG .

It is known that (EG,FG) is a regular Dirichlet form on L2(G;m). Under the doubly Feller
property of X, it is proved in [11, Corollary] that RG

1 1G ∈ C∞(G) provided G is a relatively
compact open set which is regular in the sense that Px(τG = 0) = 1 for all x ∈ E\G. Here RG

1
is the 1-order resolvent under the part process XG and τG := inf{t > 0 | Xt /∈ G} is the first
exit time from G. Consider a probabilistic semigroup QG

t f (x) := Ex [eA(t)f (Xt) : t < τG]
for f ∈ Bb(G). Note that QG

t forms a strongly continuous semigroup on L2(G;m) associated
with a closed quadratic form (Q,FG) on L2(G;m) provided G is relatively compact.

Let us denote by ‖QG
t ‖p,p the operator norm of QG

t from Lp(G;m) to Lp(G;m) and
put

λp(G) := λp(u,μ, F )(G) := − lim
t→∞

1

t
log ‖QG

t ‖p,p , 1 ≤ p ≤ ∞
and we omit ‘(G)’ from λp(G) when G = E.

The following theorem is a direct consequence of Theorem 1.1.

THEOREM 1.2. Suppose μ〈u〉 ∈ S1
K(X), μ = μ1 − μ2 and F = F1 − F2 with μ1 +

N(F1)μH ∈ S1
LK(X) ∩ S1

EK(X), μ2 +N(F2)μH ∈ S1
LK(X) ∩ S1

D(X).

(1) The spectral radius λp(u,μ, F ) (1 ≤ p ≤ ∞) is independent of p if m ∈ S1
K+∞

(X).

(2) The spectral radius λp(u,μ, F )(G) (1 ≤ p ≤ ∞) is independent of p if G is a
regular open set satisfying limG�x→∂ Px(τG > 0) = 0.

(3) Suppose the weaker conditions than the hypotheses of the present theorem that μ〈u〉 ∈
S1

LK(X), μ = μ1−μ2 ∈ S1
LK(X)−S1

LK(X) and F = F1−F2 ∈ J 1
LK(X)− J 1

LK(X).
Then the spectral radius λp(u,μ, F )(G) (1 ≤ p ≤ ∞) is independent of p if G is a
relatively compact regular open set.

We further have the following:

THEOREM 1.3. Suppose μ〈u〉 ∈ S1
K+∞

(X), μ = μ1−μ2 ∈ S1
K+∞

(X)−S1
LK(X)∩S1

D(X)

and F = F1 − F2 ∈ J 1
K+∞

(X)− J 1
LK(X) ∩ J 1

D(X). Then the spectral radius λp(u,μ, F ) (1 ≤
p ≤ ∞) is independent of p if λ2(u, μ, F ) ≤ 0. Moreover, suppose that X is conservative,
μ2 ∈ S1

K+∞
(X) and F2 ∈ J 1

K+∞
(X). Then λ2(u, μ, F ) > 0 implies λ∞(u, μ, F ) = 0.

COROLLARY 1.2. Suppose μ〈u〉 ∈ S1
K+∞

(X), μ = μ1 − μ2 with μ1 ∈ S1
K+∞

(X) and

μ2 = 0, and assume F = F1 − F2 with F1 ∈ J 1
K+∞

(X) and F2 = 0. Then λ2(0, 0, 0) ≤ 0

implies λ2(u, μ, F ) ≤ 0, in particular, λp(u,μ, F ) (1 ≤ p ≤ ∞) is independent of p if
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λ2(0, 0, 0) ≤ 0. Moreover, if X is transient, μ〈u〉 ∈ S1
K+∞

(X), μ = μ1 − μ2 ∈ S1
K+∞

(X) −
S1

K∞(X) and F = F1 − F2 ∈ J 1
K+∞

(X)− J 1
K∞(X) then the same conclusion holds.

These results are extensions of [12, 34, 35, 36]. Let us briefly state the constitution of this
paper. In Section 3, we investigate the properties of our Feynman-Kac semigroup generated
by continuous additive functionals whose Revuz measures are of (local and extended) Kato
class and give more properties if they have the positive-order Green-tightness. In Section 4,
we give the proofs of our main results. In Section 5, we give examples on birth and death pro-
cesses (Example 5.1), on relativistic stable processes (Example 5.2). In Section 6, we restate
Fukushima’s decomposition in the strict sense up to infinity as an errata for the appendix in
[12] and prove it without assuming no inside killing.

2. Properties on Green-tight PAF of Kato class. In this section, we use the ter-
minologies additive functional (AF in short) in the strict sense and positive additive func-
tional (PAF in short) in the strict sense, which are presented in [8]. A PAF A in the strict
sense is said to be of Kato class if supx∈E Ex [

∫∞
0 e−αtdAt ] → 0 as α → ∞, equivalently

supx∈E Ex [At ] → 0 as t → 0. A PAF A in the strict sense is said to be of Dynkin class
if supx∈E Ex [

∫∞
0 e−αtdAt ] < ∞ for some/any α > 0, equivalently supx∈E Ex [At ] < ∞

for some/any t > 0. A PAF A in the strict sense is said be of extended Kato class if
limt→0 supx∈E Ex [At ] < 1. A PAF A in the strict sense is said be of local Kato class if
for any compact set K , (1K ∗ A), defined by (1K ∗ A)t :=

∫ t

0 1K(Xs)dAs , is of Kato class.
A PAF A in the strict sense is said be of positive order Green-tight Kato class if for some/any
α > 0,

lim
K↑E

K :compact

sup
x∈E

Ex

[∫ ∞

0
e−αt1Kc(Xt )dAt

]
= 0 .

If A is a PCAF in the strict sense, those above notions correspond the notions defined before
with respect to its Revuz measure.

The following lemma can be similarly proved as for [12, Lemma 2.2]. So we omit its
proof.

LEMMA 2.1. Let A be an AF in the strict sense, which is a difference of PAFs in the
strict sense. Let A = A+ − A− be the Hahn-Jordan decomposition of A and set |A| :=
A+ + A−. Then |A| is a PAF in the strict sense. For p ∈ [1,∞[, we have

Ex[|At |p] ≤ Cp

(
sup
y∈E

Ey [|At |]
)[p]

Ex [|At |]p−[p] ≤ Cp

(
sup
y∈E

Ey [|At |]
)p

,

where [p] := sup{x ∈ N | x ≤ p} and Cp := p(p − 1) · · · (p − [p] + 1). In particular,
for PAFs A and B of Dynkin class, x 	→ Ex [Ap

t B
q
t ] is bounded Borel measurable for any

p, q ≥ 0.

PROPOSITION 2.1. Let A,B be PAFs of Dynkin class and of local Kato class in the
strict sense. Under the strong Feller property of X, we have the following:
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(1) For each compact set K , p ≥ 1 and s ≥ 0,

lim
t→0

sup
x∈K

Ex[Ap
t ◦ θs] = 0 .(2.1)

(2) Let p, q ∈ N ∪ {0}. Then E·[Ap
t B

q
t ] ∈ Cb(E).

(3) Suppose that A belongs to the extended Kato class and B belongs to the Kato class.
Then, for sufficiently small t > 0, E·[eAt−Bt ] ∈ Cb(E).

PROOF. (1): First we prove (2.1) for s = 0. Let {Gn} be an increasing sequence of
relatively compact open sets with K ⊂ G1. Owing to the strong Feller property of X, we have
supx∈K Px(ζ ≤ t) → 0 as t → 0, and supx∈K Px(τGn ≤ t < ζ ) → 0 as n → ∞ for each
t > 0 (its proof can be seen after pp. 911 line -1 in [8]). Since (1Gn ∗A) is of Kato class,

lim
t→0

sup
x∈K

Ex [Ap
t∧τGn

] ≤ lim
t→0

sup
x∈K

Ex

[( ∫ t

0
1Gn(Xs)dAs

)p]

≤Cp lim
t→0

(
sup
x∈E

Ex

[∫ t

0
1Gn(Xs)dAs

])p

= 0 .

Then we see

lim
t→0

sup
x∈K

Ex [Ap
t ] ≤ lim

t→0
sup
x∈K

Ex [Ap
t : t ≥ ζ ] + lim

t→0
sup
x∈K

Ex [Ap
t − A

p
t∧τGn

: t < ζ ]

≤ lim
t→0

sup
x∈K

Ex [A2p
t ]1/2 sup

x∈K

Px(ζ ≤ t)

+ lim
t→0

sup
x∈K

Ex [Ap
t − A

p
t∧τGn

: τGn ≤ t < ζ ]
≤ lim

t→0
sup
x∈K

Ex [Ap
t : τGn ≤ t < ζ ]

= lim
t→0

sup
x∈K

Ex [Ap
t : τGn ≤ t] − lim

t→0
sup
x∈K

Ex [Ap
t : ζ ≤ t]

≤ sup
x∈K

Ex [Ap
T : τGn ≤ T ]

≤ sup
x∈K

Ex [Ap
T : τGn ≤ T < ζ ] + sup

x∈K

Ex [Ap
T : ζ ≤ T ]

≤ sup
x∈K

Ex [A2p
T ]1/2

(
sup
x∈K

Px(τGn ≤ T < ζ)+ sup
x∈K

Px(ζ ≤ T )

)
.

Letting n → ∞ and T → 0, we have the assertion. Next we prove (2.1) for general s > 0.
Noting At ◦ θs = 0 for s ≥ ζ , we have

lim
t→0

sup
x∈K

Ex [Ap
t ◦ θs] = lim

t→0
sup
x∈K

Ex [Ap
t ◦ θs : s < ζ ]

≤ lim
t→0

sup
x∈K

Ex [Ap
t ◦ θs : τGn ≤ s < ζ ] + lim

t→0
sup
x∈K

Ex [Ap
t ◦ θs : s < τGn]

≤ lim
t→0

sup
x∈K

Ex [A2p
t ◦ θs]1/2 sup

x∈K

Px(τGn ≤ s < ζ )+ lim
t→0

sup
x∈K

Ex

[
EXs [Ap

t ] : s < τGn

]

≤ lim
t→0

sup
x∈K

Ex

[
EXs [A2p

t ]
]1/2 sup

x∈K

Px(τGn ≤ s < ζ )+ lim
t→0

sup
x∈Gn

Ex [Ap
t ]



172 D. KIM, K. KUWAE AND Y. TAWARA

≤ lim
t→0

sup
x∈E

Ex [A2p
t ]1/2 sup

x∈K

Px(τGn ≤ s < ζ ) .

Here we used the assertion (2.1) for s = 0. Letting n →∞, we obtain (2.1) for general s > 0.
(2): Put f (x) := Ex [Ap

t B
q
t ]. We only prove for the case p, q ≥ 1. The proof for other

cases are similar. We see Psf ∈ Cb(E) for s > 0. Take s ∈]0, t]. Since |ap − bp| ≤
p max{ap−1, bp−1}|a − b| for a, b ≥ 0, we have

|Psf (x)− f (x)| = ∣∣Ex

[
EXs

[
A

p
t B

q
t

]]− Ex [Ap
t B

q
t ]

∣∣
= ∣∣Ex

[
(At+s − As)

p(Bt+s − Bs)
qg(Xt+s)− A

p
t B

q
t

]∣∣
≤ |Ex

[
((At+s − As)

p − A
p
t )(Bt+s − Bs)

q)
] |

+|Ex

[
A

p
t ((Bt+s − Bs)

q − B
q
t )

] |
≤ pEx

[{
(At+s − As)

p−1 ∨ A
p−1
t

}|At+s − As − At |(Bt+s − Bs)
q
]

+qEx

[{
(Bt+s − Bs)

q−1 ∨ B
q−1
t

}|Bt+s − Bs − Bt |Ap
t

]
≤ pEx

[
A

p−1
2t B

q

2t |At+s − As − At |
]+ qEx

[
B

q−1
2t |Bt+s − Bs − Bt |Ap

t

]
,

which uniformly converges to 0 on any compact set K , because

sup
x∈K

Ex

[
|At+s − As − At |3

]
≤ 22 sup

x∈K

Ex [|At+s − At |3 + A3
s ]

≤ 4 sup
x∈K

Ex

[
A3

s ◦ θt ]
]
+ 4 sup

x∈K

Ex [A3
s ] → 0 as s → 0

and supx∈E Ex [A3(p−1)
2t ] < ∞, supx∈E Ex [B3q

2t ] < ∞. Therefore f (x) is continuous.
(3): From (2), E·[An

t B
k
t ] ∈ Cb(E) for n, k ∈ N ∪ {0}. So it suffices to show the uniform

convergence of

Ex [eAt−Bt ] = Ex

[ ∞∑
n=0

(At − Bt )
n

n!
]
= Ex

[ ∞∑
n=0

1

n!
n∑

k=0

(−1)n−k
nCkA

k
t B

n−k
t

]

for sufficiently small t > 0. We estimate by Lemma 2.1

sup
x∈E

Ex

[∣∣∣∣
∞∑

n=N

(At − Bt )
n

n!
∣∣∣∣
]
≤

∞∑
n=N

supx∈E Ex [|At − Bt |n]
n!

≤
∞∑

n=N

(
sup
x∈E

Ex[|At − Bt |]
)n

→ 0 as N →∞ ,

provided supx∈E Ex [|At − Bt |] < 1. �

3. Properties on the Feynman-Kac semigroup. In this section, we investigate sev-
eral properties on (Qt )t>0. We assume that X has doubly Feller property.

Take a bounded function v defined on E∂ such that v ∈ Ḟloc. Since ez− z− 1 ≤ 1
2e|z|z2,

(3.1) |ev(x)−v(y)− (v(x)− v(y))− 1| ≤ 1

2
e2‖v‖∞|v(x)− v(y)|2 .
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Put Mt :=
∫ t

0 ev(Xs−)dMe−v−1
s and let

Yt := Exp(M)t , t < ζ

be the solution of the SDE Yt = 1 + ∫ t

0 Ys−dMs , t < ζ relative to Mt . Here Me−v−1 be the
locally square integrable MAF on [[0, ζ [[ appeared in the generalized Fukushima decomposi-
tion (Theorem 6.1 below) for e−v − 1 ∈ Ḟloc ∩ L∞(E;m). Note that Yt is a positive local
martingale on [[0, ζ [[. Let us denote by Y = (Ω,FY∞,FY

t , Xt , PY
x , ζ ) the transformed process

of X by Yt . The transition semigroup (P Y
t )t>0 of Y is defined by

PY
t f (x) := EY

x [f (Xt )] = Ex [Ytf (Xt)] .
Given a path ω ∈ {t < ζ }, define a time-reversal operator rt by rt (ω)(s) = ω(t − s)− for
0 ≤ s < t , and rt (ω)(s) = ω(0) for s ≥ t . A continuous additive functional Ct is said to
be even if Ct ◦ rt = Ct for every t < ζ . The following lemma is deduced similarly to [10,
Lemma 3.2].

LEMMA 3.1. (1) Yt can be represented as follows:

(3.2) Yt = exp
(−Mv

t − A
μv
t

)
, t < ζ ,

where

A
μv
t :=

∫ t

0
N(ev−v(·) − (v − v(·))− 1)(Xs)dHs + 1

2
〈Mv,c〉t .

(2) Y is an e−2vm-symmetric Hunt process on E.

REMARK 3.1. Note here that u ∈ Floc ∩ C(E∂) with μ〈u〉 ∈ S1
K(X) admits a gen-

eralized Fukushima decomposition in the strict sense by Theorem 6.2(2) below. Then this
implies that Ex [Yt ] = 1 for any t > 0 and x ∈ E, that is, Yt is a martingale multi-
plicative functional. Its proof can be done in a way similar to that in [10, Lemma 4.1(ii)].
In this case, Y satisfies EY

x [f (Xt )] = Ex [Ytf (Xt)] for any f ∈ Bb(E∂), x ∈ E∂ and
t ≥ 0. Indeed, Y is constructed on E through the transition probability PY

t (x, dy) defined
by PY

t f (x) := Ex [Ytf (Xt) : t < ζ ], x ∈ E, t > 0 and f ∈ Bb(E), and is extended to
E∂ by adding ∂ as a trap point. The transition probability P

Y,∂
t (x, dy) on E∂ of Y is given

by P
Y,∂
t f (x) := EY

x [f (Xt )] = PY
t 1Ef (x) + f (∂)(1E∂ (x) − PY

t 1E(x)), x ∈ E∂ , t > 0 and
f ∈ Bb(E∂), satisfies P

Y,∂
t f (x) = Ex [Ytf (Xt)] for x ∈ E∂ from the martingale property of

Yu
t .

The next lemma is needed for the large deviation principle for our Feynman-Kac semi-
groups.

LEMMA 3.2. Suppose μ〈u〉 ∈ S1
K(X) for u ∈ Floc ∩ C(E∂), μ = μ1 − μ2 and

F = F1 − F2 with μ1 +N(F1)μH ∈ S1
LK(X) ∩ S1

EK(X), μ2 +N(F2)μH ∈ S1
LK(X).

(1) Both the semigroups (P Y
t )t>0 and (Qt )t>0 have the doubly Feller property. In par-

ticular, Y is a doubly Feller process.
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(2) There exist p > 1, Cp(= Cp(u,μ1, F1)) > 1 and βp(= βp(u,μ1, F1)) > 0 such
that

sup
x∈E

Ex

[
(eA(t))p

] ≤ Cpeβpt .

Hence,

sup
x∈E

Q∂
t 1E∂ (x) ≤ Ceβt ,(3.3)

where C := C
1/p
p and β := βp/p, in particular, for any α > β, we have

sup
x∈E

S∂
α1E∂ (x) ≤ C

α − β
.(3.4)

(3) Assume further μ2 +N(F2)μH ∈ S1
LK(X) ∩ S1

D(X). For each α > 0, there exists a
constant C > 1 and β > 0 such that

inf
x∈E

S∂
α1E∂ (x) ≥ 1

C(α + β)
> 0 .

PROOF. (1): By (3.2), exp(−Mu
t ) can be expressed as

exp
(−Mu

t

) = Yt exp
(
A

μu
t

)
.

Here Yt := Yu
t for u ∈ Floc ∩ C(E∂). Since μu(dx) := N(eu(x)−u(·) − (u(x) − u(·)) −

1)(x)μH (dx) + 1
2μ〈Mu,c〉(dx) ∈ S1

K(X) in view of (3.1), Aμu corresponding to μu is the
PCAF in the strict sense. Let D be a relatively compact open set of E and XD the part process
of X on D. Applying [8, Lemmas 2.4(iii) and 3.2(iii)] to XD , we see from the boundedness of
u and F that U

(1)
t := Exp(A−μ2,−F2)t , U

(2)
t := Exp(Aμ1,F1 + Aμu)t and U

(3)
t := Yt satisfy

the following; for each i = 1, 2, 3 and for any p ∈ [1,∞[,

lim
t→0

sup
x∈D

E
[

sup
s∈[0,t ]

∣∣U(i)
s − 1

∣∣p : t < τD

]
= 0 ,

where τD := inf{t > 0 : Xt /∈ D} is the first exit time of Xt from D. By way of the
Hölder inequality and |a + b|p ≤ 2p−1(|a|p + |b|p) for a, b ∈ R, we can easily check that
Ut := ∏3

i=1 U
(i)
t = exp(−Mu

t )Exp(Aμ,F )t satisfies eA(t) = eu(Xt )−u(X0)Ut and

lim
t→0

sup
x∈D

E
[

sup
s∈[0,t ]

|Us − 1|p : t < τD

]
= 0 .

In particular, we obtain the condition [8, (1.7)] for B = E. Since μ1+N(F1)μH ∈ S1
LK(X)∩

S1
EK(X) and μu ∈ S1

K(X), [8, Theorem 2.5] shows that U
(2)
t satisfies that there exists p > 1

such that for all t > 0

sup
s∈[0,t ]

sup
x∈E

Ex

[∣∣U(2)
s

∣∣p : s < ζ
]
< ∞ .

By way of Hölder inequality, we then see that for any q ∈]1, p[,
Ex

[|Us |q : s < ζ
] ≤ Ex

[|U(2)
s |p : s < ζ

] q
p Ex

[|U(3)
s | pq

p−q : s < ζ
] p−q

pq ,
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which yields that Ut satisfies the condition [8, (1.12)] for B = E. Note that the condition
μ〈u〉 ∈ S1

K(X) is used for that Yt = U
(3)
t satisfies [8, (1.7) and (1.12)] with any p > 1 for

B = E by way of a corrected version of Lemma 3.2(ii) in [8]. Hence Corollary 1.5 in [8] tells
us that (P Y

t )t>0 has doubly Feller property and the semigroup (P
u,μ,F
t )t>0 defined by

P
u,μ,F
t f (x) := Ex [e−Mu

t Exp(Aμ,F )tf (Xt )] for f ∈ Bb(E)

also has doubly Feller property. Therefore (Qt )t>0 has the desired doubly Feller property
because Qtf (x) = e−u(x)P

u,μ,F
t (f eu)(x) for all x ∈ E.

(2): Let Yt and A
μu
t be as above. Note that there exist p > 1 and q > 1 being close to 1

with pq ∈]1, 2[ such that

(pq + (pq − 1)‖F1‖∞) νμu,μ1,F1

is a measure of extended Kato class, where νμu,μ1,F1 := μu + μ1 + N(F1)μH . For such
p > 1, q > 1, A

νpqμu,pqμ1 ,(1+F1)pq−1 is a PAF of extended Kato class in view of the inequality
(1 + x)pq − 1 ≤ pqx + (pq − 1)x2 for x > −1. Therefore, we have from (3.2) and [44,
Lemma 2.1(b)] that

Ex [eA(t)p] =Ex

[
ep(u(Xt)−u(X0)−Mu

t )Exp(Aμ,F )
p
t

]
≤ e2p‖u‖∞Ex

[
e−pMu

t epA
μ1
t Exp(AF1)

p
t

]
= e2p‖u‖∞Ex

[
Y

p
t epA

μu
t +pA

μ1
t Exp(AF1)

p
t

]

≤ e2p‖u‖∞Ex

[
Y

pq
q−1

t

] q−1
q Ex

[
epqA

μu
t +pqA

μ1
t Exp(AF1)

pq
t

] 1
q

= e2p‖u‖∞Ex

[
Y

pq
q−1

t

] q−1
q Ex

[
Exp(A

νpqμu,pqμ1 ,(1+F1)pq−1)t
] 1

q

≤ e2p‖u‖∞c(1)
p,q(u)c(2)

p,q(u, μ1, F1)e
βp,q(u,μ1,F1)t .

Note that all coefficients are greater than 1, because of Ex [Y
pq
q−1

t ] ≥ Ex [Yt ]
pq
q−1 = 1 and

c
(2)
p,q(u, μ1, F1) > 1. So we may assume that these are strictly greater than 1.

(3): Set F
(1)
2 := F2

1−F2
≤ F2

1−‖F2‖∞ . We see μ2 + N(F
(1)
2 )μH ∈ S1

LK(X) ∩ S1
D(X). Let

δ ∈]0, 1[ be such that δ(μ2+N(F
(1)
2 )μH ) ∈ S1

LK(X)∩S1
EK(X). In a similar way of the proof

of (2) with δμ−u, δμ2 and δF
(1)
2 , there exist p > 1 and q > 1 close to 1 with pqδ ∈]0, 1[ such

that A
ν
pqδμ−u,pqδμ2 ,(1+F

(1)
2 )pqδ−1 is also a PAF of extended Kato class in view of the inequality

(1+ x)pqδ − 1 ≤ pqδx for x > −1. So we have

Ex

[
eA(t)−pδ

]=Ex

[
epδN−u

t −pδA
μ
t Exp(AF )

−pδ
t

]
≤ e2pδ‖u‖∞Ex

[
e−pδM−u

t epδA
μ2
t Exp(A−F2)

−pδ
t

]

≤ e2pδ‖u‖∞c
(1)
p,q,δ(−u)Ex

[
Exp(A

ν
pqδμ−u,pqδμ2 ,(1−F2)−pqδ−1)t

] 1
q

= e2pδ‖u‖∞c
(1)
p,q,δ(−u)Ex

[
Exp(A

ν
pqδμ−u,pqδμ2 ,(1+F

(1)
2 )pqδ−1)t

] 1
q

≤ e2p‖u‖∞c
(1)
p,q,δ(−u)c

(2)
p,q,δ(−u,μ2, F2)e

βp,q,δ(−u,μ2,F2)t .
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From this,

1= Ex

[
1E∂

]2 = Ex

[
eA(t)

δ
2 eA(t)−

δ
2
]2

≤ Ex

[
eA(t)δ

]
Ex

[
eA(t)−pδ

] 1
p ≤ Ex

[
eA(t)δ

]
Ceβt

for some C = Cp,q,δ(−u,μ2, F2) > 1 and β = βp,q,δ(−u,μ2, F2) > 0. Hence

Ex [eA(t)]δ ≥ Ex

[
eA(t)δ

] ≥ C−1e−βt

for all x ∈ E. Finally, the relation Ex [eA(t)] ≥ C−1/δe−(1/δ)βt implies the assertion. �

REMARK 3.2. In the same way as in the proof of Lemma 3.2(1), we can prove the
following. If μ〈u〉 ∈ S1

K(X), μ = μ1 − μ2 ∈ S1
K(X)− S1

K(X) and F = F1 − F2 ∈ J 1
K(X)−

J 1
K(X), then we can obtain that (Qt )t>0 satisfies the conditions (a) and (c) in [11] (see (1.3),

(1.4) and (1.6) in [8]). So the proof of Theorem 2 in [11] yields the strong Feller property of
(Qt )t>0 without assuming the Feller property of X (see also Theorem 1.1, Corollary 1.2 and
Remark 1.3 in [8]).

Let Cu(E) be the set of continuous functions on E that has the limit as x → ∂ . In other
words, each element in Cu(E) is the restriction of some function in C(E∂). For f ∈ Cu(E),
we write f (∂) := limx→∂ f (x). Let USC(E∂) be the family of all upper semi continuous
functions on E∂ and USCu(E) a family of functions on E whose element is the restriction of
some function in USC(E∂). We set C+u (E) := {f ∈ Cu(E) | f ≥ 0 on E} and USC+u (E) :=
{f ∈ USCu(E) | f ≥ 0 on E}.

The main theorem of this section is the following:

THEOREM 3.1. Suppose μ〈u〉 ∈ S1
K+∞

(X), μ = μ1 − μ2 ∈ S1
K+∞

(X) − S1
LK(X) and

F = F1 − F2 ∈ J 1
K+∞

(X) − J 1
LK(X). Then Qt(USC+u (E)) ⊂ USC+u (E) for each t > 0. If

further μ2 +N(F2)μH ∈ S1
K+∞

(X), then Qt(Cu(E)) ⊂ Cu(E) for each t > 0.

To prove this theorem, we need several lemmas below. When u = 0, we write P
μ,F
t

(resp. R
μ,F
α ) instead of Qt (resp. Sα). The following lemma is a slight extension of The-

orem 2.1(iv) of [36] without assuming the transience and conservativeness of X, and also
generalizes Lemma 3.2 in [12]. The proof of Lemma 3.2 in [12] has a gap derived from the
incorrect statement of Lemma A.1 in [12]. The proof of Lemma 3.3 below fulfills the gap.

LEMMA 3.3. Suppose μ = μ1 − μ2 ∈ S1
K+∞

(X) − S1
LK(X) and F = F1 − F2 ∈

J 1
K+∞

(X) − J 1
LK(X). Then P

μ,F
t (USC+u (E)) ⊂ USC+u (E) for each t > 0. If further μ2 +

N(F2)μH ∈ S1
K+∞

(X), then P
μ,F
t (Cu(E)) ⊂ Cu(E) for each t > 0.

PROOF. First we assume μ2+N(F2)μH ∈ S1
K+∞

(X). We use the convention P
μ,F,∂
t f (x)

:= Ex [Exp(Aμ,F )tf (Xt)] for f ∈ B(E∂). For any f ∈ C+u (E), f − f (∂)1E∂ ∈ C∞(E).

So for proving P
μ,F
t f = P

μ,F
t (f − f (∂)1E∂ )+ f (∂)P

μ,F,∂
t 1E∂ ∈ C+u (E), we first need to

show P
μ,F,∂
t 1E∂ ∈ C(E). This holds for sufficiently small t > 0 by Proposition 2.1(3).
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Next we prove the continuity of P
μ,F,∂
t 1E∂ at ∂ . Since P

μ,F,∂
t 1E∂ (∂) = 1, it suffices to

show
lim
x→∂

P
μ,F,∂
t 1E∂ (x) = lim

x→∂
Ex [Exp(Aμ,F )t ] = 1 .

Let ν ∈ S1
K+∞

(X), U ∈ J 1
K+∞

(X) with M ≥ U ≥ 0 on E × E for some M > 0. Note that

V := eU − 1 ∈ J 1
K+∞

(X) because of the boundedness of the function x 	→ x−1(ex − 1) on

[0,M]. Put 1BV (x, y) := 1B(x)V (x, y), x, y ∈ E for B ⊂ E. In the same way as in the
proof after pp. 704 line −12 in [12, Lemma 3.2], we can get

lim
x→∂

Ex

[
Exp(A21Kν,21KV )t

] = 1

for any compact set K of E. Moreover,

lim
K:compact

K↑E

sup
x∈E

Ex

[
Exp(A21Kcν,21KcV )t

] ≤ 1

by Khasminskii’s inequality for Stieltjes exponential (Lemma 2.1(a) in [44]). Indeed, owing
to the property of Lévy system,

Ex

[
A

21Kcν,21KcV
t

] = Ex

[
A

21Kc(ν+N(V )μH )
t

]
for all x ∈ E and by the assumptions of ν and U , we see

lim
K:compact

K↑E

sup
x∈E

Ex

[
A

21Kcν,21KcV
t

] = 0 .

Therefore

lim
x→∂

Ex

[
Exp

(
Aν,V

)
t

]
= lim

x→∂
Ex

[
Exp(A1Kν,1KV )tExp(A1Kcν,1KcV )t

]

≤ lim
x→∂

Ex

[
Exp(A21Kν,21KV )t

]1/2Ex

[
Exp(A21Kcν,21KcV )t

]1/2

≤ sup
x∈E

Ex

[
Exp(A21Kcν,21KcV )t

]1/2 ↓ 1

as K ↑ E with K being compact, and thus

lim
x→∂

Ex

[
Exp(Aν,V )−1

t

] ≥ 1

limx→∂ Ex

[
Exp(Aν,V )t

] ≥ 1 .

Now we have
lim
x→∂

Ex

[
Exp(Aν,V )t

] ≤ 1 ≤ lim
x→∂

Ex

[
Exp(Aν,V )−1

t

]
.

Noting that for μ = μ1 − μ2 ∈ S1
K+∞

(X)− S1
K+∞

(X) and F = F1 − F2 ∈ J 1
K+∞

(X)− J 1
K+∞

(X)

we have
Ex

[
Exp(Aμ2,F

(1)
2 )−1

t

] ≤ Ex

[
Exp(Aμ,F )t

] ≤ Ex

[
Exp(Aμ1,F1)t

]
for F

(1)
2 := F2/(1− F2) because Exp(A−F2)t = Exp(AF

(1)
2 )−1

t . Since ‖ 1
1−F2

‖∞ ≤ 1
1−‖F2‖∞

< ∞, we see F
(1)
2 ∈ J 1

K+∞
(X), and thus

lim
x→∂

Ex

[
Exp(Aμ,F )t

] = 1 .
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Therefore, we have P
μ,F
t (C+u (E)) ⊂ C+u (E) for sufficiently small t > 0. By the semigroup

property of (P
μ,F
t )t>0, we obtain the assertion for any t > 0.

Next we only assume μ2 ∈ S1
LK(X) and F2 ∈ J 1

LK(X). Let K be a compact set. Then
1Kμ2 ∈ S1

K(X) and 1KF2 ∈ J 1
K(X), where 1KF2(x, y) := 1K(x)F2(x, y), x, y ∈ E. More-

over, we have 1Kμ2 ∈ S1
K+∞

(X) and 1KF2 ∈ J 1
K+∞

(X) from the definitions for S1
K+∞

(X) and

J 1
K+∞

(X) which implies P
μK ,FK
t (C+u (E)) ⊂ C+u (E) for any t > 0, where μK := μ1 − 1Kμ2

and FK := F1 − 1KF2. Letting K ↑ E, we have P
μ,F
t (C+u (E)) ⊂ USC+u (E) for any

t > 0. Since any element of USC+u (E) is a limit of decreasing sequence from C+u (E) and
any limit of decreasing sequence from USC+u (E) belongs to USC+u (E), we obtain the desired
assertion. �

The following lemma can be proved by the same argument as in the proof of
[14, Lemma 4.4] in the framework of (quasi-)regular Dirichlet forms (see also the remark
before Theorem 2.5 in [5]. Under μ〈v〉 ∈ SK(X) for v ∈ Fe see Theorem A.2 in [10].)

LEMMA 3.4. Suppose that v is a bounded function defined on E∂ such that v ∈ Ḟloc.
Let Y be the transformed process by the multiplicative functional Y v

t . Let Aν be a continuous
additive functional of X with signed Revuz measure ν. Then the Revuz measure of Aν as a
continuous additive functional of Y is e−2vν.

The next theorem can be proved by nearly same arguments as in [10] with Lemma 3.4
above. Its proof depends on the generalized Fukushima decomposition holding up to infinity
(see Theorem 6.2(2)).

THEOREM 3.2 (cf. [10]). Suppose that v is a bounded strictly E-quasi continuous
function defined on E∂ such that v ∈ Ḟloc admits Fukushima’s decomposition holding up
to infinity under Px-a.s. for q.e. starting point x ∈ E. Let (EY ,FY ) be the Dirichlet form on
L2(E; e−2vm) associated with the transformed process Y by Yt . Then FY = F and

EY (f, f ) = 1

2

∫
E

e−2v(x)μc
〈f 〉(dx)+

∫∫
E×E

(f (x)− f (y))2e−v(x)−v(y)J (dxdy)

+
∫

E

f (x)2e−v(∂)−v(x)κ(dx)

for any f ∈ FY = F . Moreover, if κ = 0, then the conclusion holds without assuming the
Fukushima decomposition holding up to infinity.

Let J1(Y) be the family of functions with respect to Y as the class J1(X) is defined
with respect to Y. The classes J 1

K(Y), J 1
LK(Y), J 1

EK(Y), J 1
K+∞

(Y) and J 1
K∞(Y) are similarly

defined for Y as well as J 1
K(X), J 1

LK(X), J 1
EK(X), J 1

K+∞
(X) and J 1

K∞(X) are defined for X.

Using Theorem 3.2, we then have the following:

LEMMA 3.5 (cf. [12, Lemma 3.3], [20, Lemma 4.6]). Let Y be the transformed pro-
cess by Yt := Yu

t for u ∈ Ḟloc ∩ C(E∂) with μ〈u〉 ∈ S1
K(X). Then the following hold:

(1) For ν ∈ S1
D(X) (resp. ν ∈ S00(X)), e−2uν ∈ S1

D(Y) (resp. e−2uν ∈ S00(Y)).
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(2) For ν ∈ S1(X) (resp. F ∈ J1(X)), e−2uν ∈ S1(Y) (resp. e−2uF ∈ J1(Y)).
(3) For ν ∈ S1

K(X) (resp. F ∈ J 1
K(X)), e−2uν ∈ S1

K(Y) (resp. e−2uF ∈ J 1
K(Y)). In par-

ticular, ν ∈ S1
LK(X) (resp. F ∈ J 1

LK(X)) implies e−2uν ∈ S1
LK(Y) (resp. e−2uF ∈

J 1
LK(Y)).

(4) For ν ∈ S1
EK(X) (resp. F ∈ J 1

EK(X)), e−2uν ∈ S1
EK(Y) (resp. e−2uF ∈ J 1

EK(Y)).
(5) For ν ∈ S1

K+∞
(X) (resp. F ∈ J 1

K+∞
(X)), e−2uν ∈ S1

K+∞
(Y) (resp. e−2uF ∈ J 1

K+∞
(Y)).

PROOF. The proof is a repetition of the proof of [12, Lemma 3.3]. We omit the details.
We only note that under μ〈u〉 ∈ S1

K(X), Yt is a martingale multiplicative functional defined
for all t ∈ [0,∞[ and it satisfies supx∈E Ex [Y k

t ] < ∞ for any k ∈ N. �

Now we prove Theorem 3.1.

PROOF OF THEOREM 3.1. Take f ∈ USC+u (E). We then see

Qtf (x)= e−u(x)Ex

[
Yt e

A
μu
t Exp(Aμ,F )t (f eu)(Xs)

]
= e−u(x)EY

x

[
Exp(Aμu + Aμ,F )t (f eu)(Xs)

]
.

Since A
μu
t and A

μ1
t are PCAFs of Kato class in the strict sense under X whose Revuz mea-

sures under X have positive order Green-tightness, they are also PCAFs of Kato class in the
strict sense under Y whose Revuz measures under Y have positive order Green-tightness by
Lemma 3.5(5). We see that A

μ2
t is also a PCAF of local Kato class in the strict sense whose

Revuz measure under Y is of local Kato class by Lemma 3.5(3). Similarly, A
F1
t (resp. AF2

t ) is
also PAF in the strict sense under Y and the Revuz measure of its dual predictable projection
under Y has positive order Green-tightness (resp. is of local Kato class) by Lemma 3.5(5)
(resp. Lemma 3.5(3)).

Recall that Y is a doubly Feller process. We can apply Lemma 3.3 to Y. Therefore
Qtf ∈ USC+u (E). The latter assertion is similarly proved. �

4. Proofs of Theorems 1.1, 1.2, 1.3 and Corollaries 1.1, 1.2. Define the generator
A by

Aφ = αφ − g for φ = Sαg , g ∈ Bb(E) .

Set
D+(A) := {φ = Sαg | α > β, g ∈ L2(E;m) ∩ C+b (E), g �≡ 0} ,

where β is the constant appeared in (3.4). For α > β and φ = Sαg ∈ D+(A), put

(4.1) M
u,μ,φ,F
t := e−αteA(t)φ(Xt )− φ(X0)−

∫ t

0
e−αseA(s)(A− α)φ(Xs) ds.

Then Mu,μ,φ,F is a Px-martingale for all x ∈ E because Ex [Mu,μ,φ,F
t ] = 0 and

M
u,μ,φ,F
s+t = Mu,μ,φ,F

s + e−αseA(s)M
u,μ,φ,F
t (θs) for t, s ≥ 0 Px-a.s.

for all x ∈ E hold. Note that eA(t)e−A(t−) = 1 + F(Xt−,Xt ). Let denote by Mφ the
martingale part of Fukushima’s decomposition for φ(Xt ) − φ(X0). The next lemma is a
slight modification of [12, Lemma 4.1] by applying [19, Lemma 3.1].
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LEMMA 4.1. M
u,μ,φ,F
t can be written as

M
u,μ,φ,F
t =

∫ t

0
e−αseA(s−)d

(
Mφ

s +Mφ,F
s

)
,

where

M
φ,F
t :=

∑
0<s≤t

φ(Xs)F (Xs−,Xs)−
∫ t

0

∫
E

φ(y)F (Xs, y)N(Xs, dy)dHs .

Let

M̌t :=
∫ t

0

1

φ(Xs−)
d
(
Mφ

s +Mφ,F
s

)
, t < ζ .

The unique solution of Doléans-Dade equation relative to M̌t ,

(4.2) Zt = 1+
∫ t

0
Zs−dM̌s , t < ζ

is then given by

Zt = exp

(
M̌t − 1

2
〈M̌c〉t

)

×
∏

0<s≤t

(1+ F(Xs−,Xs))φ(Xs)

φ(Xs−)
exp

(
φ(Xs−)− (1+ F(Xs−,Xs))φ(Xs)

φ(Xs−)

)
,

(4.3)

where 〈M̌c〉t is the quadratic variation of the continuous martingale part of M̌t . Note that Zt

is a positive local martingale on [0, ζ [.
Applying Itô’s formula for semi-martingale (with jumps) to log(e−αteA(t)φ(Xt )) and

using Lemma 4.1, we get

log(e−αteA(t)φ(Xt ))− log(φ(X0))

=
∫ t

0

1

e−αseA(s−)φ(Xs−)
dMu,μ,φ,F

s +
∫ t

0

(A− α)φ(Xs)

φ(Xs)
ds

− 1

2

∫ t

0

1

e−2αseA(s−)2φ(Xs−)2
d〈Mu,μ,φ,F,c〉s

+
∑

0<s≤t

(
log

eA(s)φ(Xs)

eA(s−)φ(Xs−)
− eA(s)φ(Xs)− eA(s−)φ(Xs−)

eA(s−)φ(Xs−)

)

= M̌t +
∫ t

0

(A− α)φ(Xs)

φ(Xs)
ds − 1

2
〈M̌c〉t +

∑
0<s≤t

(
log(1+�M̌s)−�M̌s

)
, t < ζ .

Therefore we see that Zt defined in (4.3) can be represented as follows:

Zt = eA(t)
φ(Xt)

φ(X0)
exp

(
−

∫ t

0

Aφ(Xs)

φ(Xs)
ds

)
, t < ζ .(4.4)

Let us denote by Z = (Xt , PZ
x , x ∈ E) the transformed process of X by the multiplicative

functional (4.4). Note that φ ∈ F implies
∫
E

φ2dm < ∞. Then by the same arguments as in
[19, Proposition 3.1], we have the following.
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LEMMA 4.2.

(1) Z is a φ2m-symmetric right process on E.

(2) Let (EZ,FZ) be the Dirichlet form on L2(E;φ2m) associated with Z. Suppose
that μ〈u〉 ∈ S1

K(X), μ = μ1 − μ2 and F = F1 − F2 with μ1 + N(F1)μH ∈
S1

LK(X) ∩ S1
EK(X) and μ2 +N(F2)μH ∈ S1

LK(X) ∩ S1
D(X). Then F ⊂ FZ and for

f ∈ F ,

EZ(f, f )= 1

2

∫
E

φ(x)2μc〈f 〉(dx)

+
∫

E×E\diag
(f (x)− f (y))2 φ(x)φ(y)(1+ F(x, y))J (dxdy) .

Moreover, 1 ∈ FZ and EZ(1, 1) = 0.

(3) Z is ergodic in the sense that if Λ ∈ F0∞ is (θt )-invariant, i.e., θ−1
t (Λ) = Λ for

any t > 0, then PZ
x (Λ) = 0 for all x ∈ E or PZ

x (Λ) = 1 for all x ∈ E. Here
F0∞ = σ {Xt : 0 ≤ t < ∞}.

Let P(E) be the space of all Borel probability measures on E equipped with the weak
topology. For ω ∈ Ω with t < ζ(ω), define the normalized occupation time distribution
Lt (ω) ∈ P(E) by

Lt (ω)(A) := 1

t

∫ t

0
1A(Xs(ω)) ds, A ∈ B(E).

Consider a rate function IQ(ν) on P(E) defined by

IQ(ν) :=
{Q(f, f ) if dν = f 2dm , f ∈ D(Q) ,

+∞ otherwise .

In the same way as in [33, Proposition 4.3], IQ(ν) is equal to the so called Donsker-Varadhan
type’s I -function defined by

I (ν) = − inf
φ∈D++(A)

∫
E

Aφ

φ
dν, for ν ∈ P(E).

Here D++(A) := D++(A∂ )|E with

D++(A∂ ) :=
{
φ = S∂

αg | α > β, g ∈ C(E∂) , inf
x∈E∂

g(x) > 0

}

and β appeared above is the constant in (3.4). For φ ∈ D++(A) with φ = φ|E , φ ∈ D++(A∂ ),
we set Aφ := αφ − g on E and A∂φ := αφ − g on E∂ . Clearly, A∂φ = Aφ on E and
A∂φ(∂) = αφ(∂)− g(∂) = 0.

PROOF OF THEOREM 1.1. (1): In view of Lemma 4.2, Z is ergodic with invariant mea-
sure φ2dm. So the lower bound (1) of the present theorem can be proved by exactly the same
manner as that in [33, Proposition 4.1].
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(2): To prove the upper bound, we have only to imitate the argument in [33, Proposition
4.2]. Indeed, for φ ∈ D++(A), we can define the supermartingale multiplicative functional
Zt as like in (4.4). Though φ may not belong to F , we can define a local MAF Mφ by

M
φ
t := ∫ t

0 eαse−A(s)dM
u,μ,F,φ
s −M

φ,F
t , where {Mu,μ,φ,F

t }t∈[0,∞[ defined like (4.1) by use

of φ and A∂ is a Px-martingale for all x ∈ E. Note that Lemma 3.2(3) and φ(∂) = g(∂)
α

> 0
together imply infx∈E φ(x) ≥ infx∈E∂ φ(x) > 0 for φ ∈ D++(A). Then the solution Zt of
the Doléans-Dade equation (4.2) with

M̌t :=
∫ t

0

1

φ(Xs−)
d(Mφ

s +Mφ,F
s ) , t ∈ [0,∞[ ,

has a similar expression as in (4.4) in terms of φ and A∂ . Since {Zt }t∈[0,∞[ is a supermartin-
gale with Z0 = 1,

Ex

[
eA(t)

φ(Xt)

φ(X0)
exp

(
−

∫ t

0

A∂φ(Xs)

φ(Xs)
ds

)]
≤ 1

and thus

sup
x∈E

Ex

[
eA(t) exp

(
−

∫ t

0

Aφ(Xs)

φ(Xs)
ds

)
: t < ζ

]
≤ supx∈E φ(x)

infx∈E φ(x)
.

Hence, for any Borel set C ⊂ P(E),

lim
t→∞

1

t
log sup

x∈E

Ex

[
eA(t) : Lt ∈ C, t < ζ

] ≤ inf
φ∈D++(A)

sup
ν∈C

∫
E

Aφ

φ
dν .(4.5)

In particular, the inequality (4.5) yields that for any compact set K ⊂ P(E),

lim
t→∞

1

t
log sup

x∈E

Ex [eA(t) : Lt ∈ K, t < ζ ] ≤ − inf
ν∈K

I (ν)

holds by using a finite open covering {Ni = N(νi)} of K . Here we use that any φ ∈
D++(A), hence Aφ/φ, is bounded upper semi continuous on E. Now we prove the up-
per semi continuities of such φ and Aφ/φ. Assume first μ2 + N(F2)μH ∈ S1

K(X). Ap-
plying Proposition 2.1(3) to the transformed process Y, for a sufficiently small s > 0 and
μ2 + N(F2)μH ∈ S1

K(X), we have the continuity of x 	→ EY
x [Exp(Aμu + Aμ,F )s ], because

log
[
Exp(Aμu + Aμ,F )t

] = A
μu+μ
t + A

log(1+F)
t is a difference of PAF of Kato class in the

strict sense under Y from Lemma 3.5(3). Owing to the strong Feller property of (Qt )t>0 with
Remark 3.1, if μ2 + N(F2)μH ∈ S1

K(X), for such a sufficiently small s > 0, we have the
continuity of

x 	→ Q∂
s 1E∂ (x) = Ex [eA(s)] = e−u(x)EY

x [Exp(Aμu + Aμ,F )se
u(Xs)]

= e−u(x)EY
x

[
Exp(Aμu + Aμ,F )s(e

u − eu(∂))(Xs)
]

+ eu(∂)−u(x)EY
x

[
Exp(Aμu + Aμ,F )s

]
= Qs(1E(1− eu(∂)−u))(x)+ eu(∂)−u(x)EY

x

[
Exp(Aμu + Aμ,F )s

]
.

Applying the strong Feller property of (Qt)t>0 again,

Q∂
t+s1E∂ =Q∂

s (Q
∂
t 1E∂ − 1E∂ )+Q∂

s 1E∂



LARGE DEVIATION PRINCIPLES 183

=Qs(Q
∂
t 1E∂ − 1E∂ )+Q∂

s 1E∂

is also continuous on E for any t > 0 and such a small s > 0. This shows the continuity
of x 	→ Q∂

s 1E∂ (x) on E for any s > 0 under μ2 + N(F2)μH ∈ S1
K(X). We obtain the

continuity of x 	→ S∂
α1E∂ (x) on E for α > β by applying the dominated convergence theorem

and (3.3) under μ2 + N(F2)μH ∈ S1
K(X). Next we prove the upper semi continuity of

x 	→ S∂
α1E∂ (x) on E for α > β without assuming μ2 + N(F2)μH ∈ S1

K(X). This can be
obtained by approximating the killing part by Kato class PAFs in the strict sense. Therefore
any φ ∈ D++(A) and Aφ/φ = α − g/φ are upper continuous on E by φ = S∂

αg|E =
Sα(g − g(∂)1E)+ g(∂)S∂

α1E∂ |E .
Recall that I (ν) = IQ(ν) in a similar way of [33, Proposition 4.3]. This implies the

desired result.
(3): Recall that (3.4) holds for any α > β with some C > 1 and β > 0. More strongly,

we have that there exist C > 1, β > 0 and r > 1 such that

(4.6) ‖S∂
αf ‖∞ ≤

(
C

α − β

) r−1
r

‖R∂
α|f |r‖1/r∞ , for any f ∈ Bb(E∂) .

Indeed, taking q > 1 with q(μ1 + N(F1)μH ) ∈ S1
EK(X), we have

Q∂
t |f |(x)≤ e2‖u‖∞Ex

[
Yt e

A
μu
t Exp(Aμ1,F1)t |f |(Xt)

]
≤ e2‖u‖∞Ex

[
epA

μu
t

]1/pEx

[
Y

q
t Exp(Aμ1,F1)

q
t

]1/qEx

[|f |(Xt)
r
]1/r

≤ e2‖u‖∞(Cpeβpt )1/p(Cu,qeβu,q t )1/q(P ∂
t |f |r (x))1/r

for some Cp,Cu,q > 1 and βp, βu,q > 0 with 1
p
+ 1

q
+ 1

r
= 1, p, q, r > 1. Then we can

obtain (4.6). Hereafter we always take α > C + β > 1, in particular, ‖S∂
α1E∂‖∞ < 1. Take

ε ∈]0, 1/(3α)[. Since m ∈ S1
K+∞

(X), we can take a compact set Kε such that ‖R11Kc
ε
‖∞ < εr ,

hence ‖Sα1Kc
ε
‖∞ < ε for α > C + β(> 1). Here Kc

ε := E \Kε . We prepare larger domain
for generator:

D∗++(A∂ ) :=
{
φ = S∂

αg

∣∣∣∣α > β, g ∈ Bb(E∂), inf
x∈E∂

g(x) > 0

}

and A∂φ := αφ−g for φ = S∂
αg ∈ D∗++(A∂ ), where β is the constant appeared in (3.4). Then

for φ ∈ D∗++(A∂ ), Zt can be defined to be a supermartingale multiplicative functional having

a similar expression with (4.4) by way of the above φ as in the proof of (2). Set Vε := −A∂φε

φε

with φε := S∂
α(1Kc

ε
+ ε1E∂ ) ∈ D∗++(A). Then

Vε = 1Kc
ε
+ ε1E∂

S∂
α(1Kc

ε
+ ε1E∂ )

− α .

The rest of the description of the proof is quite similar as in the proof of [12, Theorem 1.1(3)].
So we omit it. �
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PROOF OF COROLLARY 1.1. The proof of (1) is similar to the proof of Proposition 3.1
in [40]. The proof of (2) is an easy consequence of Theorem 1.1 (cf. Theorem 4.1 in [40]).
The proof of (3) is similar to the proof of Corollary 4.1 in [40]. �

Let us denote by ‖Qt‖p,p the operator norm of Qt from Lp(E;m) to Lp(E;m) and put

λp := λp(u,μ, F ) := − lim
t→∞

1

t
log ‖Qt‖p,p , 1 ≤ p ≤ ∞

as in Section 1.
The proof of Theorem 1.2 is the same as that of Theorems 1.2 in [12]. So we omit it.

REMARK 4.1.

(1) In Takeda [37] (resp. Takeda-Tawara [40]), Theorem 1.1 is proved under the condi-
tions u = F = 0 and |μ| ∈ S1

K+∞
(X) (resp. u = 0, |μ| ∈ S1

K+∞
(X) and |F | ∈ A2(X)),

where A2(X) denotes a class of jump functions satisfying a positive order Green-
tightness with respect to conditional processes (see [40] for the definitions). The
method of the proof of Theorem 1.1 in [37, 40] is based on the gaugeability of
Feynman-Kac functional. Our proof of Theorem 1.1 does not use the conditions for
the gaugeability.

(2) If we assume μ〈u〉 ∈ S1
K(X), μ = μ1 − μ2 ∈ S1

K(X)− S1
K(X) and F = F1 − F2 ∈

J 1
K(X)−J 1

K(X) then we can obtain the same conclusions as in Theorems 1.1, 1.2(1)
and Corollary 1.1 without assuming the Feller property of X. Indeed, under these
conditions, (Qt )t>0 has the strong Feller property without the Feller property of X
by Remark 3.2. For the proof of the assertion of Theorem 1.1(1), we only need the
absolute continuity condition of (Qt )t>0 with respect to φ2m, which is guaranteed
by the strong Feller property of (Qt)t>0. In the proof of Theorem 1.1(2), for α > β,
we have the continuity of S∂

α1E∂ on E, consequently, for φ ∈ D++(A), we have
φ = S∂

αg|E ∈ Cb(E) with g ∈ C(E∂) and Aφ = αφ − g ∈ Cb(E). Hence
Aφ/φ ∈ Cb(E), which yields the upper estimates. The proof of Theorem 1.1(3)
under the conditions μ〈u〉 ∈ S1

K(X), μ = μ1 − μ2 ∈ S1
K(X) − S1

K(X) and F =
F1 − F2 ∈ J 1

K(X)− J 1
K(X) does not use the Feller property of X.

(3) In Theorem 1.2(2),(3), we used the Feller property of X and the regularity of the
open set G for the doubly Feller property of the part process XG on G. Instead of
the Feller property of X and the regularity of G, the strong Feller property of XG

yields the same conclusion provided we replace the hypotheses for Theorem 1.2
with μ = μ1 − μ2 ∈ S1

K(X) − S1
K(X) and F = F1 − F2 ∈ J 1

K(X) − J 1
K(X) in

Theorem 1.2(2).

PROOF OF THEOREM 1.3. For μ = μ1 − μ2 ∈ S1
K+∞

(X) − S1
LK(X) ∩ S1

D(X), F =
F1 − F2 ∈ J 1

K+∞
(X) − J 1

LK(X) ∩ J 1
D(X) and μ〈u〉 ∈ S1

K+∞
(X), define the modified I -function

I ∂ on P(E∂) by

I ∂(ν) = − inf
φ∈D++(A∂ )

∫
E∂

A∂φ

φ
dν ,
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where A∂φ = αφ−g for φ = S∂
αg ∈ D++(A∂ ). By Theorem 3.1, any φ := S∂

αg , g ∈ C+(E∂)

is upper semi continuous on E∂ . Hence, A∂φ/φ = α − g/φ is upper semi continuous on E∂ .
Note that P(E∂) is compact with respect to the weak topology. Therefore, we can derive the
following inequality in the similar way as one in the proof of the upper bound of Theorem
1.1(2).

lim
t→∞

1

t
log sup

x∈E

Ex [eA(t) : t < ζ ] ≤ − inf
ν∈P(E∂)

I ∂ (ν) .

Since P(E∂) \ {δ∂} and ]0, 1] × P(E) are in one to one correspondence by the map

ν ∈ P(E∂) \ {δ∂} 	→ (ν(E), ν̂) ∈]0, 1] × P(E) for ν̂(·) := ν(·)
ν(E)

,

and I ∂ (ν) = I (ν) = − infφ∈D++(A) ν(E)
∫
E

Aφ
φ

d̂ν = ν(E)IQ(̂ν), we have

lim
t→∞

1

t
log sup

x∈E

Ex [eA(t) : t < ζ ] ≤ − inf
θ∈[0,1]

(
θ inf

ν∈P(E)
IQ(ν)

)

=− inf
θ∈[0,1] (θλ2) .(4.7)

The left-hand side of (4.7) equals −λ∞ because supx∈E Ex [eA(t) : t < ζ ] = ‖Qt‖∞,∞.
Hence we have

(4.8) λ∞ ≥ inf
θ∈[0,1](θλ2) .

If λ2 ≤ 0, then the right-hand side of (4.8) is equal to λ2. So we have λ∞ ≥ λ2. The converse
inequality always holds because

‖Qt‖2,2 ≤ ‖Qt‖p,p ≤ ‖Qt‖∞,∞ , 1 ≤ p ≤ ∞
by the symmetry and the positivity of Qt . Now, we see that the Lp-independence holds if
λ2 ≤ 0. The latter assertion of the present theorem can be proved similarly to Theorem 1.3 in
[12] by using Lemmas 3.3 and 3.5. So we omit the proof. �

PROOF OF COROLLARY 1.2. Suppose that μ〈u〉 ∈ S1
K+∞

(X), μ1 ∈ S1
K+∞

(X), μ2 = 0,

F1 ∈ J 1
K+∞

(X), F2 = 0 hold. In view of Beurling-Deny formula (see [16]), for f ∈ F∩C0(E),

we have

Q(f, f )= E(f, f )+
∫

E

f dμc〈f,u〉 + 2
∫∫

E×E

f (x)(f (x)− f (y))(u(x)− u(y))J (dxdy)

+
∫

E

f 2udκ −
∫

E

f 2dμ1 −
∫∫

E×E

f (x)f (y)F1(x, y)N(x, dy)μH(dx)

≤ E(f, f )+√2E(f, f )1/2
(∫

E

f 2dμ〈u〉
)1/2

−
∫∫

E×E

f (x)(f (y)− f (x))F1(x, y)N(x, dy)μH(dx)

≤ E(f, f )+√2E(f, f )1/2 (‖R1μ〈u〉‖∞E1(f, f )
)1/2
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+
∫

E

|f (x)|
(∫

E

(f (y)− f (x))2N(x, dy)

)1/2 (
N((F1)

2)(x)
)1/2

μH(dx)

≤ E(f, f )+√2E(f, f )1/2 (‖R1μ〈u〉‖∞E1(f, f )
)1/2

+
(∫

E

f (x)2N((F1)
2)(x)μH (dx)

)1/2 (∫
E

(f (y)− f (x))2N(x, dy)μH (dx)

)1/2

≤ E(f, f )+√2E(f, f )1/2 (‖R1μ〈u〉‖∞E1(f, f )
)1/2

+
(
‖R1N((F1)

2)μH‖∞E1(f, f )
)1/2 E(f, f )1/2.

Since λ2(0, 0, 0) ≤ 0, we have λ2(0, 0, 0) = 0. So by taking a sequence {fn} ⊂ F ∩ C0(E)

with ‖fn‖2 = 1, E(fn, fn) → 0 as n → ∞, we have Q(fn, fn) → 0 as n → ∞, which
implies λ2(u, μ, F ) ≤ 0 under the conditions. If we further assume the transience of X, then
for ν ∈ S1

K∞(X), we have the Stollmann-Voigt inequality (see [31])∫
E

f 2dν ≤ ‖Rν‖∞E(f, f ) for any f ∈ Fe .

The proof of the second statement is easily seen from this and a similar argument by noting
N((F2)

2)μH ∈ S1
K∞(X). �

5. Examples.

EXAMPLE 5.1 (Birth and Death Process, cf. [13]). Let X be a birth and death process,
that is, a time homogeneous Markov process with transition function Pij (t) such that

Pij (t) ≥ 0 ,

∞∑
k=0

Pik(t) ≤ 1 , Pij (t + s) =
∞∑

k=0

Pik(t)Pkj (s) .

Moreover, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pi i+1(t) = λi t + o(t) as t → 0 , i ≥ 0 ,

Pi i (t) = 1− (λi + μi)t + o(t) as t → 0 , i ≥ 0 ,

Pi i−1(t) = μit + o(t) as t → 0 , i ≥ 1 ,

Pij (0) = δij :=
{

1 i = j

0 i �= j
,

where λi (i = 0, 1, 2, . . . ) and μi (i = 1, 2, 3, . . . ) are positive constants and μ0 := 0. We
set

x0 = 0 , x1 = 1

λ0
, xn = 1

λ0
+

n−1∑
i=1

1

λimi

with

m0 = 1 , mi = λ0λ1 · · ·λi−1

μ1μ2 · · ·μi

, (i = 1, 2, . . . ) .

We further set E := {xi}∞i=0 and a measure m by m({xi}) := mi . Then m is a Radon measure
on E and X is m-symmetric, Pij (t)mi = Pji(t)mj for any i, j ∈ N ∪ {0}. We prepare the
following conditions: For x∞ := limi→∞ xi ,
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(A1) x∞ is a regular boundary, that is, x∞ < ∞ and
∑∞

i=0 mi < ∞.
(A2) x∞ is a natural boundary, that is, x∞ = ∞ and

∑∞
i=0 mi = ∞.

Suppose that (A1) holds. Then the one point compactification E∂ of E can be regarded as
E ∪ {x∞}. Let us introduce a symmetric bilinear form (E,F) on L2(E;m) by⎧⎪⎪⎨

⎪⎪⎩
F :=

{
f ∈ C∞(E)

∣∣∣∣
∞∑
i=0

|Df (xi)|2(xi+1 − xi) < ∞
}

,

E(f, g) :=
∞∑
i=0

Df (xi)Dg(xi)(xi+1 − xi) f, g ∈ F ,

(5.1)

where Df (xi) := f (xi+1)−f (xi)

xi+1−xi
and C∞(E) := {f ∈ C(E) | limi→∞ f (xi) = 0}. Then

(E,F) is an irreducible transient regular Dirichlet form on L2(E;m) in the same way of
the proof of Lemma 5.1 in [24] (cf. [21]). The corresponding process X of (E,F) is an
m-symmetric one dimensional generalized diffusion process on E with a regular boundary
x∞ < ∞ (cf. [28]). Since 1 ∈ L2(E;m), we see Rα1 ∈ F ⊂ C∞(E), hence m ∈ S1

K+∞
(X).

Moreover, by way of Ascoli-Arzela’s Theorem, we see Fe = F . The form (5.1) can be
rewritten to⎧⎪⎪⎨

⎪⎪⎩
F :=

{
f ∈ C∞(E)

∣∣∣∣
∫

E×E

(f (x)− f (y))2J (dxdy) < ∞
}

,

E(f, g) :=
∫

E×E

(f (x)− f (y))(g(x)− g(y)J (dxdy) f, g ∈ F
(5.2)

with J (dxdy) = ∑∞
i=0

1
xi+1−xi

δxi (dx)δxi+1(dy), where δx stands for the Dirac measure at x.
Next suppose that (A2) holds. Note that any function on E is always continuous. We

consider (E,F) on L2(E;m) by⎧⎪⎪⎨
⎪⎪⎩
F :=

{
f ∈ L2(E;m)

∣∣∣∣
∞∑
i=0

|Df (xi)|2(xi+1 − xi) < ∞
}

,

E(f, g) :=
∞∑
i=0

Df (xi)Dg(xi)(xi+1 − xi) f, g ∈ F .

(5.3)

Then (E,F) is an irreducible recurrent regular Dirichlet form on L2(E;m). We then have
Fe := {f ∈ C(E) | ∑∞

i=0 |Df (xi)|2(xi+1 − xi) < ∞} and E(f, g) for f, g ∈ Fe has the
same expression as well as for f, g ∈ F . The form (5.3) also can be rewritten to a similar
form to (5.2). The corresponding process X is an m-symmetric one dimensional generalized
diffusion process on E with a natural boundary x∞ = ∞.

In either (A1) or (A2), the Lévy system (N,H) of X is determined by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N(x, y) :=
{

1
xi+1−xi

, (x, y) = (xi, xi+1) (i ∈ N ∪ {0}) ,

0 otherwise ,
for x, y ∈ E,

N(x, dy) :=
∞∑

j=0

N(x, y)δxj (dy) , μH (dx) :=
∞∑
i=0

δxi (dx) .

Now we fix a function u ∈ Ḟloc ∩ C(E∂). We further consider
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(A3) {λi | i ∈ N ∪ {0}} is bounded. (A4) u ∈ C∞(E).

From

μ〈u〉(dx) =
∞∑
i=0

(u(xi+1)− u(xi))
2

xi+1 − xi

δxi (dx) ,

we have μ〈u〉 � m and its density Γ (u) := dμ〈u〉/dm is given by

Γ (u)(xi) = (u(xi+1)− u(xi))
2

xi+1 − xi

1

mi

= (u(xi+1)− u(xi))
2λi.

Then Γ (u) ∈ L∞(E;m) under (A3). This implies μ〈u〉 ∈ S1
K+∞

(X) under (A1) and (A3),

because of m ∈ S1
K+∞

(X) under (A1). On the other hand, under (A3) and (A4), we have

Γ (u) ∈ C∞(E), hence R1μ〈u〉 = R1Γ (u) ∈ C∞(E) by the doubly Feller property of X.
Hence μ〈u〉 ∈ S1

K+∞
(X) under (A2), (A3) and (A4).

Therefore, Theorem 1.1 tells us that, under (A1) and (A3) we have the large deviation
principle for the Feynman-Kac functional of CAF Nu

t of 0-energy and

lim
t→∞

1

t
log sup

x∈E

Ex

[
eNu

t : t < σ{x∞}
] = − inf{Q(f, f ) | f ∈ F , ‖f ‖2 = 1} ,

where (Q,F) is the quadratic form on L2(E;m) defined by Q(f, g) := E(f, g) + E(u, f g),
f, g ∈ F . As a consequence, we have the Lp-independence of the spectral radius λp(u, 0, 0)

of this Feynman-Kac functional by Theorem 1.2(1).
On the other hand, Corollary 1.2 tells us that λp(u, 0, 0) is independent of p under (A2),

(A3) and (A4) because λ2(0, 0, 0) = inf{E(f, f ) | f ∈ F , ‖f ‖2 = 1} = 0.

EXAMPLE 5.2 (Symmetric Relativistic α-stable Process). Take α ∈]0, 2[ and m ≥ 0.
Let XR,α = (Ω,Xt , Px)x∈Rd be a Lévy process on R

d with

E0
[
e
√−1〈ξ,Xt 〉] = exp

(− t{(|ξ |2 +m2/α)α/2 −m}) .

If m > 0, it is called the relativistic α-stable process with mass m (see [30]). In particular,
if α = 1 and m > 0, it is called the relativistic free Hamiltonian process (see [18]). When
m = 0, XR,α is nothing but the usual symmetric α-stable process. We consider the case
m > 0. It is known that XR,α is transient if and only if d > 2 under m > 0. Let (ER,α,FR,α)

be the Dirichlet form on L2(Rd ) associated with XR,α. Using Fourier transform f̂ (x) :=
1

(2π)d/2

∫
Rd ei〈x,y〉f (y)dy, it follows from Example 1.4.1 of [16] that

⎧⎪⎪⎨
⎪⎪⎩
FR,α :=

{
f ∈ L2(Rd )

∣∣∣∣
∫
Rd

|f̂ (ξ)|2((|ξ |2 +m2/α)α/2 −m
)
dξ < ∞

}
,

ER,α(f, g) :=
∫
Rd

f̂ (ξ) ¯̂g(ξ)
(
(|ξ |2 +m2/α)α/2 −m

)
dξ for f, g ∈ FR,α.

It is shown by Ryznar [30] that the semigroup kernel pt(x, y) of XR,α is given by

pt (x, y) = emt

∫ ∞

0

(
1

4πs

)d/2

e−
|x−y|2

4s e−sm2/α

θα/2(t, s)ds ,
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where θδ(t, s) is the nonnegative function called the subordinator whose Laplace transform is
given by ∫ ∞

0
e−λsθδ(t, s)ds = e−tλδ

.

Then we see the conservativeness of XR,α. It is shown in [9] that the corresponding jumping
measure satisfies

J (dxdy) = J (x, y)dxdy with J (x, y) = A(d,−α)

2

Ψ (m1/α|x − y|)
|x − y|d+α

,

where A(d,−α) = α2d+αΓ ( d+α
2 )

2d+1πd/2Γ (1− α
2 )

, and Ψ (r) := I (r)/I (0) with I (r) := ∫∞
0 s

d+α
2 e− s

4− r2
s ds

is a function satisfying Ψ (r) � e−r (1+r(d+α−1)/2) near r = ∞, and Ψ (r) = 1+Ψ ′′(0)r2/2+
o(r4) near r = 0. In particular,⎧⎪⎪⎨

⎪⎪⎩
FR,α =

{
f ∈ L2(Rd )

∣∣∣∣
∫
Rd×Rd

|f (x)− f (y)|2J (x, y)dxdy < ∞
}

,

ER,α(f, g) =
∫
Rd×Rd

(f (x)− f (y))(g(x)− g(y))J (x, y)dxdy for f, g ∈ FR,α .

As noted in Example 5.1 in [23], we have that for each t0 > 0, there exist Ci =
Ci(α, d) > 0, i = 1, 2 independent of t0 such that for any t ∈]0, t0[, x, y ∈ R

d

C1

td/α
Ψ1

( |x − y|
t1/α

)
≤ pt (x, y) ≤ C2

td/α

emt0(
1+ |x−y|

t1/α

)d+α
,

where Ψ1(s) :=
∫∞

1∨s2 e−(mt0)
2/αu du

u
d+α

2 +1
. In particular, sup

x,y∈Rd

pt (x, y) ≤ C2e
mt0/td/α for

t ∈]0, t0[.
For m = 0, we have the following estimate which can be obtained from Theorem 2.1 in

Blumenthal-Getoor [2]: there exists Ci = Ci(α, d) > 0, i = 1, 2 such that for all (t, x, y) ∈
]0,∞[×Rd × R

d

C1

td/α

1(
1+ |x−y|

t1/α

)d+α
≤ pt(x, y) ≤ C2

td/α

1(
1+ |x−y|

t1/α

)d+α
.

For a signed Borel measure μ on R
d , μ is said to be of Kato class with respect to XR,α if

and only if

lim
r→0

sup
x∈Rd

∫
|x−y|<r

|μ|(dy)

|x − y|d−α
= 0 for d > α ,

lim
r→0

sup
x∈Rd

∫
|x−y|<r

(log |x − y|−1)|μ|(dy) = 0 for d = α(= 1) ,

sup
x∈Rd

∫
|x−y|≤1

|μ|(dy) < ∞ for α > d(= 1) .
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Denote by Kd,α the family of non-negative measures of Kato class with respect to XR,α . Then
we have Kd,α = S1

K(XR,α) by [23]. Consequently, the surface measure σr on the r-sphere
∂Br(0) is in Kd,α = S1

K(XR,α) if and only if α > 1. This was shown by Port [29] for the case
d > α and m = 0.

From Lemma 3 in [30], for m > 0, there exists C(d,m, α) > 0 depending only on m, d

and α such that

sup
x,y∈Rd

pt (x, y) ≤ C(d,m, α)t−d/2 for any t ≥ 1 .

As we see, for m = 0 there exists C(d, α) > 0 depending only on m, d and α such that

sup
x,y∈Rd

pt (x, y) ≤ C(d, α)t−d/α for any t > 0 .

We can apply [12, Lemma 5.1(2)] to XR,α for Φ1 := C1Ψ1, Φ2(s) := C2e
m

(1+s)d+α and Φ∗
2 (s) :=

C(d,m, α) with t0 = 1, d∗ = d and β∗ = 2 > β = α provided m > 0, and for Φ1 = C1Ψ2,
Φ2 = Φ∗

2 = C2Ψ2 with Ψ2(s) := 1/(1 + s)d+α, and d = d∗, β∗ = β = α provided
m = 0. Hence every μ ∈ Kd,α = S1

K(XR,α) with μ(Rd) < ∞ belongs to S1
K+∞

(to S1
K∞(XR,α)

provided d > 2). Hence σr ∈ S1
K+∞

(XR,α) (resp. σr ∈ S1
K∞(XR,α))) under α > 1 (resp. α > 1

and d > 2).
Take φ ∈ C∞(Rd)∩(FR,α)e with

(∫
Rd (φ(x)− φ(y))2J (x, y)dy

)
dx ∈ Kd,α and assume

α > 1. Then
(∫

Rd (φ(x)− φ(y))2J (x, y)dy
)

dx ∈ S1
K+∞

(XR,α). Take also F = F1 − F2 with

−1 < inf
x,y∈Rd

F (x, y) ≤ sup
x,y∈Rd

F (x, y) < ∞

and suppose F1 ∈ J 1
K+∞

(XR,α), F2 = 0, or F1 ∈ J 1
K+∞

(XR,α), F2 ∈ J 1
K∞(XR,α) and the

transience of XR,α . For example, for d = 1 and F(x, y) := f (x, y)|x − y|1+α with a sym-
metric function f ∈ L1(R2) satisfies this condition provided f ≥ 0 on R

2. We consider
another function F(x, y) := f (x, y)|x − y|d+α with a symmetric f ∈ L1(R2d) satisfy-
ing

∫
Rd f (x, y)dy ∈ Lp(Rd) with p > d/α (This condition is satisfied if f has the form

f = f1 ⊗ f2 + f2 ⊗ f1 with f1, f2 ∈ C0(R
d )). Then F satisfies the required condition

provided XR,α is transient.
Consider the following Feynman-Kac semigroup

Qtf (x) := Ex

[
eN

φ
t +Lr

t Exp
(
AF

)
t
f (Xt)

]
.
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Here Lr
t is the PCAF in the strict sense associated with the surface measure σr . The associated

quadratic form Q is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(f, g) :=
∫
Rd×Rd

(f (x)− f (y))(g(x)− g(y))J (x, y)dxdy

+
∫
Rd×Rd

(f g(x)− f g(y))(φ(x)− φ(y))J (x, y)dxdy

−
∫

∂Br (0)

f (x)g(x)σr(dx)

−
∫
Rd×Rd

f (x)g(y)F (x, y)J (x, y)dxdy

for f, g ∈ D(Q) ∩ L∞(Rd) ,

D(Q) := FR,α .

Let D be a bounded open set with smooth (or more generally regular) boundary. The Lebesgue
m on D satisfies m ∈ S1

K+∞
(XR,α

D ) under XR,α
D by way of [11, Corollary]. Then we have the

following by Theorem 1.1(3):

lim
t→∞

1

t
log sup

x∈D

Ex

[
eN

φ
t +Lr

t Exp(AF )t : t < τD

] = − inf
v∈FR,α

D ,‖v‖2=1
Q(v, v) .

Since (|ξ |2 + m2/α)α/2 − m = m
(
1+ |ξ |2/m2/α

)α/2 − m ≤ m
(
1+ |ξ |2/m2/α

) − m =
m1− 2

α |ξ |2, we have H 1(Rd) ⊂ FR,α and ER,α(f, f ) ≤ m1− 2
α ‖∇f ‖2

2, f ∈ H 1(Rd), hence

inf
v∈FR,α ,‖v‖2=1

ER,α(v, v) = 0 .

Then Corollary 1.2 tells us that the spectral radius λp(φ, σr , F ) := − limt→∞ 1
t

log ‖Qt‖p,p

is independent of p provided α > 1.

6. Appendix: Fukushima decomposition in the strict sense. In this section, under
(AC), without assuming the condition that X admits no inside killing in the sense that

Px(ζ < ∞,Xζ− ∈ E) = 0 for all x ∈ E ,(6.1)

we will prove that the strict version of Fukushima’s decomposition holds for strictly E-quasi
continuous function u on E∂ satisfying u ∈ Ḟ†

loc with μ〈u〉 ∈ S1
D(X), which is (nearly)

Borel finely continuous on E. The condition (6.1) is equivalent to the absence of the killing
part in the Beurling-Deny representation of (E,F) (cf. [15]). In Appendix of [12], we show
Fukushima’s decomposition (1.1) in the strict sense under (6.1) (Proposition A.1 in [12]),
but the conclusion of Proposition A.1 in [12] based on Lemma 3.1 in [6] is not true for the
condition μ〈u〉 ∈ S1

D(X) lacking (Lemma 3.1 in [6] is completely wrong). We shall correct
Proposition A.1 in [12] in this appendix remaining valid for our main results including [12].

Let E, E∂ and m as in Section 1. Let X be an m-symmetric Markov process Let (E,F)

be the associated symmetric Dirichlet form on L2(E;m) and assume that (E,F) is regular.

Denote by MI (ζ )
loc (resp.

◦
M), the family of locally square integrable martingale additive

functionals on I (ζ ) := [[0, ζ [[∪[[ζi]], where ζi is the totally inaccessible part of ζ (resp. of
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square integrable martingale additive functionals of finite energy), and by Nc,loc (resp.Nc) the
family of continuous additive functionals locally of zero energy (resp. of continuous additive
functionals of zero energy) (see [6, 25, 27]).

THEOREM 6.1 (Generalized Fukushima Decomposition, cf. [25, Theorem 4.2], [26,
Theorem 1.2], [27, Theorem 1.4]). For f ∈ Ḟ†

loc, the additive functional Af defined by

A
f
t := f (Xt)− f (X0) can be decomposed as

Af = Mf +Nf , Mf ∈MI (ζ )
loc , Nf ∈ Nc,loc

in the sense that A
f
t = M

f
t + N

f
t , t ∈ [0, ζ [ Px-a.s. for q.e. x ∈ E. Such a decomposi-

tion is unique up to the equivalence of additive functionals on [[0, ζ [[ (or of local additive
functionals).

We set Mc,I (ζ )
loc := {M ∈ MI (ζ )

loc | M is continuous} and Md,I (ζ )
loc := {M ∈ MI (ζ )

loc |
MI (ζ )

loc is purely discontinuous}. Define

J : = {φ : E∂ ×E∂ → R | φ is Borel measurable,

vanishes on diagonal and N(φ2)μH ∈ S(X)} .
For M ∈ Md,I (ζ )

loc , there exists φ ∈ J such that �Mt = φ(Xt−,Xt ) t ∈]0, ζ [ Px-a.s. for

q.e. x ∈ E (see Theorem 2.1 in [25], Theorem 1.1 in [26]). We set Mj,I (ζ )

loc := {M ∈
Md,I (ζ )

loc | φ(·, ∂) = 0 κ-a.e. on E} and Mκ,I (ζ )
loc := {M ∈Md,I (ζ )

loc | φ = 0 J -a.e. on E×E}.
Let M be the family of square integrable MAF admitting exceptional set. Note that

◦
M⊂

M ⊂ Mloc ⊂ MI (ζ )
loc ⊂ M[[0,ζ [[

loc . For each i = c, d, j, κ , we can define Mi analogously

as for Mi,I (ζ )
loc . Every M ∈ M admits decomposition M = Mc +Md = Mc +Mj +Mκ ,

where Mc ∈ Mc, Md ∈ Md , Mj ∈ Mj and Mκ ∈ Mκ . Set SD(X) := {μ ∈ S(X) |
‖E·[Aμ

t ]‖q < ∞ for some/all t > 0}, the family of Dynkin class smooth measures. Here
‖f ‖q := infCap(N)=0 supx∈E\N |f (x)|.

Our result is the following:

THEOREM 6.2. Take f ∈ Ḟ†
loc and μ〈f 〉 ∈ SD(X). Assume one of the following:

• f is a strictly E-quasi continuous finite function on E∂ , that is, there exists a strict
E-nest {Fn} of closed sets such that f |Fn∪{∂} is continuous on each Fn ∪ {∂}.

• X is conservative, i.e. Px(ζ = ∞) = 1 q.e. x ∈ E.

Then the following hold:

(1) Af can be decomposed as

Af = Mf +Nf , Mf ∈M, Nf ∈ N ∗
c,loc

in the sense that A
f
t = M

f
t + N

f
t , t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. Here

N ∗
c,loc := {N ∈ Nc,loc | N is a CAF admitting exceptional set}. Such a decom-

position is unique up to the equivalence of additive functionals. Moreover, Mf can
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be decomposed to be

M
f
t = M

f,c
t +M

f,j
t +M

f,κ
t t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E,

where Mf,c ∈Mc, Mf,j ∈Mj , Mf,κ ∈Mκ .
(2) Suppose that (AC) holds and f is a (nearly) Borel finely continuous function on E.

Then next two conditions are equivalent to each other
(a) μ〈f 〉 ∈ S1

D(X).
(b) The decomposition

f (Xt )− f (X0) = M
f
t +N

f
t , t ∈ [0,∞[, Px-a.s. for all x ∈ E

holds with
(i) Mf ∈ M, Mf is an AF in the strict sense admitting a PCAF A in the

strict sense satisfying supx∈E Ex[
∫∞

0 e−tdAt ] < ∞ such that

Ex [(Mf
t )2] = Ex [At ] < ∞, Ex[Mf

t ] = 0 for all x ∈ E .

(ii) Nf ∈ Nc,loc, Nf is a CAF in the strict sense.
Moreover, under the equivalence (2a)⇐⇒(2b), Mf can be decomposed to be

M
f
t = M

f,c
t +M

f,j
t +M

f,κ
t t ∈ [0,∞[ Px-a.s. for all x ∈ E ,

where Mf,c ∈ Mc, Mf,j ∈ Mj , Mf,κ ∈ Mκ are square integrable MAFs in the
strict sense. If f ∈ Fe with f (∂) = 0, Mf in (2(b)i) (resp. Nf in (2(b)ii)) satisfies

Mf ∈ ◦
M (resp. Nf ∈ Nc).

PROOF OF THEOREM 6.2 (1). For φ ∈ J with N(φ2)μH ∈ SD(X), we construct a
purely discontinuous MAF Mφ such that �M

φ
t = φ(Xt−,Xt ) for all t ∈]0,∞[ Px-a.s. for

q.e. x ∈ E.
Set

M
(2)
t :=

∑
s≤t

(1{|φ|>1}φ)(Xs−,Xs)−
∫ t

0
N(1{|φ|>1}φ)(Xs)dHs .

Since N(φ2)μH ∈ SD(X), we see Ex [
∫ t

0 N(φ2)(Xs)dHs] < ∞ for q.e. x ∈ E. Then M(2) is
a square integrable MAF. Define an AF Mn by

Mn
t :=

∑
s≤t

(1{1/n<|φ|≤1}φ)(Xs−,Xs)−
∫ t

0
N(1{1/n<|φ|≤1}φ)(Xs)dHs .

Then it is also a square integrable MAF. For n > k > 1, we see

Ex [〈Mn −Mk〉t ] = Ex

[ ∫ t

0
N(1{1/n<|φ|≤1/k}φ2)(Xs)dHs

]
.

Then Doob’s maximal inequality yields that there exists a subsequence {nk} such that M
nk
t

converges uniformly on each compact subinterval of [0,∞[ Px -a.s. for q.e. x ∈ E. Therefore
the limit

M
(1)
t := lim

k→∞M
nk
t
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exists and defines a square integrable MAF. Thus, M
φ
t := M

(1)
1 +M

(2)
t is the desired square

integrable MAF. We then set Mf,d := Mφ for φ(x, y) := f (y) − f (x), Mf,j := Mφ for
φ(x, y) := 1E×E(x, y)(f (y)− f (x)) and Mf,κ := Mφ for φ(x, y) := f (∂) − f (x). Note
here that there is no need to define Mf,κ if X is conservative.

Next we construct the continuous square integrable MAF Mf,c whose quadratic vari-
ational process 〈Mf,c〉 is a PCAF associated with μc〈f 〉 ∈ SD . Take {fn} ⊂ F and a nest
{Gn} of finely open (nearly) Borel sets such that f = fn m-a.e. on Gn. The strongly local
properties of μc

〈f 〉 and μc
〈fn〉 imply 1Gkμ

c
〈f 〉 = 1Gkμ

c
〈fk〉 = 1Gkμ

c
〈fn〉 = 1Gkμ

c
〈fn,fk〉 for each

n, k ∈ N with k < n. Let (g ∗M)t ∈
◦

M denotes the stochastic integral by an MAF M ∈ ◦
M

with g ∈ L2(E;μ〈M〉) ∩ B(E) constructed in Theorem 5.6.1 in [16]. Note that 1Gn ∗Mfn,c

forms a continuous MAF of finite energy for each n ∈ N. Let A be a PCAF associated with
μc〈f 〉. Then (1Gk ∗A)t = (1Gk ∗ 〈Mfk,c〉)t = (1Gk ∗ 〈Mfn,c〉)t = (1Gk ∗ 〈Mfn,c,Mfk,c〉)t for

k < n. Here (g ∗B)t denotes the PCAF defined by
∫ t

0 g(Xs)dBs for g ∈ B+(E) and a PCAF
B. We then see that for k < n

Ex

[
(1Gn ∗M

fn,c
t − 1Gk ∗M

fk,c
t )2]=Ex

[〈1Gn ∗Mfn,c − 1Gk ∗Mfk,c〉t
]

=Ex

[〈1Gn ∗Mfn,c〉t − 〈1Gk ∗Mfk,c〉t
]

=Ex

[
(1Gn ∗ 〈Mfn,c〉)t − (1Gk ∗ 〈Mfk,c〉)t

]

≤ Ex

[∫ t

0
1Gn(Xs)dAs −

∫ t

0
1Gk(Xs)dAs

]

=Ex

[∫ t

0
1Gn\Gk(Xs)dAs

]
≤ Ex [At ] < ∞

for q.e. x ∈ E. Then Doob’s maximal inequality yields that there exists a subsequence {nk}
such that 1Gnk

∗Mfnk
,c

t converges uniformly on each compact subinterval of [0,∞[ Px-a.s. for

q.e. x ∈ E. We then see that the limit M
f,c
t := limk→∞ 1Gnk

∗ M
fnk

,c

t forms a square

integrable continuous MAF. We see M
f,c
t = M

fn,c
t t < τGn Px -a.s. for q.e. x ∈ E.

Now we set N
f
t := f (Xt)− f (X0)−M

f,c
t −M

f,d
t . We see that Nf is an AF admitting

exceptional set. Assume first the strict E-quasi-continuity of f on E∂ . Then, there exists a
strict E-nest {Fn} of closed sets such that Fn∪{∂} is compact in E∂ and f |Fn∪{∂} is continuous
on Fn ∪ {∂} for each n ∈ N. Noting Px(limn→∞ σE\Fn = ∞) = 1 for q.e. x ∈ E, we have
that lims↓t f (Xs) = f (Xt) for all t ∈ [0,∞[ and lims↑t f (Xs) = f (Xt−) for all t ∈]0,∞[
Px -a.s. for q.e. x ∈ E. Then we obtain that Nf is a CAF admitting exceptional set under the
strict E-quasi-continuity of f on E∂ . It is clear that the same conclusion also holds under the
conservativeness of X, because f is always E-quasi-continuous on E. Finally, we prove the
uniqueness of the decomposition: It suffices to prove M ∩ N ∗

c,loc = {0}. Take M ∈ M and
N ∈ N ∗

c,loc. Suppose that Mt + Nt = 0 for all t ∈ [0,∞[ Px-a.s. for q.e. x ∈ E. Owing to
the uniqueness of the decomposition in Theorem 6.1, we have Mt = Nt = 0 for t ∈ [0, ζ [
Px -a.s. for q.e. x ∈ E. Since N ∈ N ∗

c,loc is a CAF admitting exceptional set, Nt = Nζ = 0
for all t ∈ [ζ,∞[ Px-a.s. for q.e. x ∈ E. This implies the desired uniqueness.



LARGE DEVIATION PRINCIPLES 195

Proof of (2a) $⇒ (2b): The proof is a repetition of the proof of (1). For φ ∈ J with
N(φ2)μH ∈ S1

D(X), we can construct a square integrable purely discontinuous MAF Mφ

in the strict sense such that �M
φ
t = φ(Xt−,Xt ) for all t ∈ [0,∞[ Px-a.s. for all x ∈ E.

Consequently, Mf,d,Mf,j ,Mf,κ can be constructed as square integrable MAFs in the strict
sense under f ∈ Ḟ†

loc and μ〈f 〉 ∈ S1
D(X) under the conditions (there is no need to define Mf,κ

if X is conservative). Similarly as in the proof of (1), we can construct continuous square
integrable MAF M

f,c
t in the strict sense. Assume first the strict E-quasi-continuity of f on

E∂ . Take a strict E-nest {Fn} of closed sets such that Fn∪{∂} is compact in E∂ and f |Fn∪{∂} is
continuous on Fn ∪{∂} for each n ∈ N. Noting Px(limn→∞(t +σE\Fn ◦ θt) = ∞) = 1 for all
x ∈ E, we have that lims↓t f (Xs) = f (Xt) for all t ∈ [0,∞[ and lims↑t f (Xs) = f (Xt−) for
all t ∈]0,∞[ Px-a.s. for all x ∈ E. The same conclusion also holds under the conservativeness
of X. Moreover, the quantity f (X0) is uniquely determined in the sense that Px-a.s. for all
x ∈ E under the fine continuity of f on E with (AC), because f1 = f2 on E provided
f1 = f2 q.e. (or m-a.e.) on E for any finely continuous (nearly) Borel functions f1, f2 on E.
Note that f (X0) is only uniquely determined in the sense that Px-a.s. for q.e. x ∈ E for any
E-quasi continuous function f on E. Then N

f
t := f (Xt) − f (X0) −Mf,c −M

f,d
t forms a

CAF in the strict sense. Other properties in (2b) can be easily confirmed.
Proof of (2b) $⇒ (2a): Let Mf , Nf and A be functionals satisfying condition (2b) of

Theorem 6.2. Then Mf and Nf are strict versions of AFs appeared in the decomposition in
(1) and we can see that A is a strict version of 〈Mf 〉. Hence μ〈f 〉 is the Revuz measure of the
PCAF A in the strict sense and we see μ〈f 〉 ∈ S1(X) with supx∈E R1μ〈f 〉(x) < ∞, which
shows μ〈f 〉 ∈ S1

D(X). �

Acknowledgment. The authors would like to thank Professor Masayoshi Takeda for his valuable
comment on a draft of this paper.

REFERENCES

[ 1 ] R. AZENCOTT, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. France 102 (1974), 193–240.
[ 2 ] R. M. BLUMENTHAL AND R. K. GETOOR, Some theorems on stable processes, Trans. Amer. Math. Soc. 95

(1960), 263–273.
[ 3 ] Z.-Q. CHEN, Uniform integrability of exponential martingales and spectral bounds of non-local Feynman-

Kac semigroups, Stochastic Analysis and Applications to Finance, Essays in Honor of Jia-an Yan. Eds by T.
Zhang and X. Zhou, 2012.

[ 4 ] Z.-Q. CHEN, Lp-independence of spectral bounds of generalized non-local Feynman-Kac semigroups, J.
Funct. Anal. 262 (2012), no. 9, 4120–4139.

[ 5 ] Z.-Q. CHEN, P. J. FITZSIMMONS, M. TAKEDA, J. YING AND T.-S. ZHANG, Absolute continuity of sym-
metric Markov processes, Ann. Probab. 32 (2004), no. 3, 2067–2098.

[ 6 ] Z.-Q. CHEN, P. J. FITZSIMMONS, K. KUWAE AND T.-S. ZHANG, Stochastic calculus for symmetric Markov
processes, Ann. Probab. 36 (2008), no. 3, 931–970.

[ 7 ] Z.-Q. CHEN, P. J. FITZSIMMONS, K. KUWAE AND T.-S. ZHANG, On general perturbations of symmetric
Markov processes, J. Math. Pures et Appliquées 92 (2009), no. 4, 363–374.

[ 8 ] Z.-Q. CHEN AND K. KUWAE, On doubly Feller property, Osaka J. Math. 46, (2009), no. 4, 909–930.
[ 9 ] Z.-Q. CHEN AND R. SONG, Drift transforms and Green function estimates for discontinuous processes, J.



196 D. KIM, K. KUWAE AND Y. TAWARA

Funct. Anal. 201 (2003), no. 1, 262–281.
[10] Z.-Q. CHEN AND T.-S. ZHANG, Girsanov and Feynman-Kac type transformations for symmetric Markov

processes, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 4, 475–505.
[11] K. L. CHUNG, Doubly-Feller process with multiplicative functional, Seminar on stochastic processes, 1985

(Gainesville, Fla., 1985), 63–78, Progr. Probab. Statist. 12, Birkhäuser Boston, Boston, MA, 1986.
[12] G. DE LEVA, D. KIM AND K. KUWAE, Lp-independence of spectral bounds of Feynman-Kac semigroups by

continuous additive functionals, J. Funct. Anal. 259 (2010), no. 3, 690–730.
[13] W. FELLER, The birth and death processes as diffusion processes, J. Math. Pures Appl. (9) 38 (1959), 301–345.
[14] P. J. FITZSIMMONS, Absolute continuity of symmetric diffusions, Ann. Probab. 25 (1997), no. 1, 230–258.
[15] M. FUKUSHIMA, On a decomposition of additive functionals in the strict sense for a symmetric Markov

process, Dirichlet forms and stochastic processes (Beijing, 1993), 155–169, de Gruyter, Berlin, 1995.
[16] M. FUKUSHIMA, Y. OSHIMA AND M. TAKEDA, Dirichlet Forms and Symmetric Markov Processes. Second

revised and extended edition. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994.
[17] M. FUKUSHIMA AND M. TAKEDA, A transformation of a symmetric Markov process and the Donsker-

Varadhan theory, Osaka J. Math. 21 (1984), no. 2, 311–326.
[18] I. W. HERBST AND A. D. SLOAN, Perturbation of translation invariant positivity preserving semigroups on

L2(Rn), Trans. Amer. Math. Soc. 236 (1978), 325–360.
[19] D. KIM, Asymptotic properties for continuous and jump type’s Feynman-Kac functionals, Osaka J. Math. 37

(2000), no. 1, 147–173.
[20] D. KIM AND K. KUWAE, Analytic characterizations of gaugeability for generalized Feynman-Kac functionals,

(2016), to appear in Transactions of AMS.
[21] D. KIM, M. TAKEDA AND J. YING, Some variational formulas on additive functionals of symmetric Markov

chains, Proc. Amer. Math. Soc. 130 (2002), no. 7, 2115–2123.
[22] K. KUWAE AND M. TAKAHASHI, Kato class functions of Markov processes under ultracontractivity, Potential

theory in Matsue, 193–202, Adv. Stud. Pure Math. 44, Math. Soc. Japan, Tokyo, 2006.
[23] K. KUWAE AND M. TAKAHASHI, Kato class measures of symmetric Markov processes under heat kernel

estimates, J. Funct. Anal. 250 (2007), no. 1, 86–113.
[24] K. KUWAE AND S. NAKAO, Time changes in Dirichlet space theory, Osaka J. Math. 28 (1991), no. 4, 847–

865.
[25] K. KUWAE, Stochastic calculus over symmetric Markov processes without time reversal, Ann. Probab. 38

(2010), no. 4 1532–1569.
[26] K. KUWAE, Errata Stochastic calculus over symmetric Markov processes without time reversal, Ann. Probab.

40 (2012), no. 6, 2705–2706.
[27] Z.-M. MA, W. SUN AND L.-F. WANG, Fukushima type decomposition for semi-Dirichlet forms, Tohoku

Math. J. 68 (2016), no. 1, 1–27.
[28] Y. OGURA AND M. TOMISAKI, One dimensional diffusion processes, Abstracts of Summer

School of Probability Theory, Kyushu University. (2004) (in Japanese). http://www.math.kyoto-
u.ac.jp/probability/sympo/PSS04.html

[29] S. C. PORT, The first hitting distribution of a sphere for symmetric stable processes, Trans. Amer. Math. Soc.
135 (1969), 115–125.

[30] M. Ł. RYZNAR, Estimates of Green function for relativistic α-stable process, Potential Anal. 17 (2002), no. 1,
1–23.

[31] P. STOLLMANN AND J. VOIGT, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), no. 2,
109–138.

[32] M. TAKEDA, On a large deviation for symmetric Markov processes with finite life time, Stochastics Stochastic
Reports 59 (1996), no. 1–2, 143–167.

[33] M. TAKEDA, Asymptotic properties of generalized Feynman-Kac functionals, Potential Anal. 9 (1998), no. 3,
261–291.



LARGE DEVIATION PRINCIPLES 197

[34] M. TAKEDA, Lp-independence of the spectral radius of symmetric Markov semigroups, Stochastic processes,
physics and geometry: new interplays, II (Leipzig, 1999), 613–623, CMS Conf. Proc. 29, Amer. Math. Soc.,
Providence, RI, 2000.

[35] M. TAKEDA, Conditional gaugeability and subcriticality of generalized Schrödinger operators, J. Funct. Anal.
191 (2002), no. 2, 343–376.

[36] M. TAKEDA, Lp-independence of spectral bounds of Schrödinger type semigroups, J. Funct. Anal. 252 (2007),
no. 2, 550–565.

[37] M. TAKEDA, A large deviation principle for symmetric Markov processes with Feynman-Kac functional, J.
Theoret. Probab. 24 (2011), no. 4, 1097–1129.

[38] M. TAKEDA, Lp-independence of growth bounds of Feynman-Kac semigroups, Surveys in Stochastic Pro-
cesses, eds. J. Blath, P. Imkeller, S. Roelly, Proceedings of the 33rd SPA Conference in Berlin, 2009. 201–
226, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011.

[39] M. TAKEDA AND Y. TAWARA, Lp-independence of spectral bounds of non-local Feynman-Kac semigroups,
Forum Math. 21 (2009), no. 6, 1067–1080.

[40] M. TAKEDA AND Y. TAWARA, A large deviation principle for symmetric Markov processes normalized by
Feynman-Kac functionals, Osaka J. Math. 50 (2013), no. 2, 287–307.

[41] M. TAKEDA AND T.-S. ZHANG, Asymptotic properties of additive functionals of Brownian motion, Ann.
Probab. 25 (1997), no. 2, 940–952.

[42] Y. TAWARA, Lp-independence of spectral bounds of Schrödinger type operators with non-local potentials,
J. Math. Soc. Japan 62 (2010), no. 3, 767–788.

[43] Y. TAWARA, Lp-independence of growth bounds of generalized Feynman-Kac semigroups, Doctor’s Degree
Thesis, Mathematical Institute, Tohoku University, 2009.

[44] J. YING, Dirichlet forms perturbated by additive functionals of extended Kato class, Osaka J. Math. 34 (1997),
no. 4, 933–952.

[45] T.-S. ZHANG, Generalized Feynman-Kac semigroups, associated quadratic forms and asymptotic properties,
Potential Anal. 14 (2001), no. 4, 387–408.

DEPARTMENT OF MATHEMATICS AND ENGINEERING

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY

KUMAMOTO UNIVERSITY

KUMAMOTO 860–8555
JAPAN

E-mail address: daehong@gpo.kumamoto-u.ac.jp

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

FUKUOKA UNIVERSITY

FUKUOKA 814–0180
JAPAN

E-mail address: kuwae@fukuoka-u.ac.jp

DIVISION OF GENERAL EDUCATION

NAGAOKA NATIONAL COLLEGE OF TECHNOLOGY

888 NISHIKATAKAI, NAGAOKA

NIIGATA 940–8532
JAPAN

E-mail address: tawara@nagaoka-ct.ac.jp


