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Abstract

In this paper, we first present a sufficient condition(a variant) for the large deviation
criteria of Budhiraja, Dupuis and Maroulas for functionals of Brownian motions.
The sufficient condition is particularly more suitable for stochastic differential/partial
differential equations with reflection. We then apply the sufficient condition to establish
a large deviation principle for obstacle problems of quasi-linear stochastic partial
differential equations. It turns out that the backward stochastic differential equations
will also play an important role.
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1 Introduction

Consider the following obstacle problems for quasilinear stochastic partial differential
equations (SPDEs) in R:
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d
1
U1, x) + AU () + ) 0igit,x, U1, x), VU@ )t
i=1

+f(t,x,U(t,x), VU(t, x))dt

o
+ Y hj(t,x, Ut x), VU(t, x))dB] = —R(dt, dx), (1.1)
j=1
U(t,x) > L(t,x), (t,x) e Rt x R?,
U(T,x)=®(x), xeR? (1.2)
where B,j ,j = 1,2,... are independent real-valued standard Brownian motions,

the stochastic integral against Brownian motions is interpreted as the backward Ito
integral, A is the Laplacian operator, f, g;, h; are appropriate measurable functions
specified later, L(z, x) is the given barrier/obstacle function, R(dt, dx) is a random
measure which is a part of the solution pair (U, R). The random measure R plays a
similar role as a local time which prevents the solution U (¢, x) from falling below the
barrier L.

Such SPDEs appear in various applications like pathwise stochastic control prob-
lems, the Zakai equations in filtering and stochastic control with partial observations.
Existence and uniqueness of the above stochastic obstacle problems were established
in [13] based on an analytical approach. Existence and uniqueness of the obstacle prob-
lems for quasi-linear SPDEs on the whole space R? and driven by finite dimensional
Brownian motions were studied in [20] using the approach of backward stochastic
differential equations (BSDEs). Obstacle problems for nonlinear stochastic heat equa-
tions driven by space-time white noise were studied by several authors, see [23,28]
and references therein.

In this paper, we are concerned with the small noise large deviation principle(LDP)
of the following obstacle problems for quasilinear SPDEs:

d
1
dU (1, ) + S AU (1, x) + > digi(t,x, Ut x), VU (t, x))dt
i=1
+ f(t,x, U(t,x), VU (¢, x))dt

[o,0]
++/E Y hj(t,x, US(t,x), VU (t, x))dB] = —R°(dt, dx), (1.3)
j=1
Ut(t,x) > L(t,x), (t,x) € Rt xRY,
US(T,x) = ®(x), xeR% (1.4)

Large deviations for stochastic evolution equations and stochastic partial differential
equations driven by Brownian motions have been investigated in many papers, see e.g.
[3,5,6,8,11,18,19,25,27] and references therein.

To obtain the large deviation principle, we will adopt the weak convergence
approach introduced by Budhiraja, Dupuis and Maroulas in [2—4]. We refer the reader
to [2,11,18,19], [3,25] for large deviation principles of various dynamical systems
driven by Gaussian noises.
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In order to apply the weak convergence method to the obstacle problems, because
of the singularity introduced by the reflection/local time, it seems difficult to directly
use the criteria in [2]. We therefore first need to provide a sufficient condition to
verify the criteria of Budhiraja—Dupuis—Maroulas. This sufficient condition turns out
to be particularly suitable for stochastic dynamics generated by stochastic differential
equations and stochastic partial differential equations with reflection. The advantage
of the new sufficient condition is to shift the difficulty of proving the tightness of
the perturbations of stochastic differential(partial differential) equations to a study of
the continuity (with respect to the driving signals) of deterministic skeleton equations
associated with the stochastic equations. This new sufficient condition is recently
successfully applied to obtain a large deviation principle for stochastic conservation
laws (Ref. [9]), which otherwise could not (at least very difficult) be established using
the original form of the criteria in [2].

The important part of the current work is to study the continuity of the deterministic
obstacle problems driven by the elements in the Cameron—Martin space of the driving
Brownian motions. We need to show that if the driving signals converge weakly in the
Cameron—Martin space, then the corresponding solutions of the skeleton equations
converge in the appropriate state space. This turns out to be hard because of the
singularity caused by the obstacle. To overcome the difficulties, we have to appeal to
the penalized approximation of the skeleton equation and to establish some uniform
estimate for the solutions of the approximating equations with the help of the backward
stochastic differential equation representation of the solutions. This is purely due to
the technical reason because primarily the LDP problem has not much to do with
backward stochastic differential equations.

The rest of the paper is organized as follows. In Sect. 2, we introduce the stochastic
obstacle problem and the precise framework. In Sect. 3, we recall the weak convergence
approach of large deviations and present a sufficient condition. Section 4 is devoted
to the study of skeleton obstacle problems. We will show that the solution of the
skeleton problem is continuous with respect to the driving signal. The proof of the
large deviation principle is in Sect. 5.

2 The Framework
2.1 Obstacle Problems

Let H := L?(R?) be the Hilbert space of square integrable functions with respect to
the Lebesgue measure on R?. The associated scalar product and the norm are denoted

by
1/2
(u,v):/ u(x)v(x)dx, |u|:</ uz(x)dx) .
R4 R4

Let V := H(R?) denote the first order Sobolev space, endowed with the norm and
the inner product:
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1/2
||u||=<f |w|2(x>dx+f |u|2(x>dx) ,
Rd Rd

(u, v) = / (Vu) - (Vv)(x)dx +/ u(x)v(x)dx.
RY R4

V* will denote the dual space of V. When causing no confusion, we also use (u, v)
to denote the dual pair between V and V*.

Our evolution problem will be considered over a fixed time interval [0, T']. Now
we introduce the following assumptions.

Assumption2.1 (i) f : [0,T] xR x R x RY — R, h = (hy, ..., hi,...)
0,T] xR x R xRY - R® and g = (g1,...,84) : [0,T] x R?
R x RY — R? are measurable in (¢, x,y,z) and satisfy f9 A0, g°
L2 ([0, T] x RY)NL*> ([0, T] x RY) where £O(z, x) := f(t,x,0,0),h%, x) :
(U521 (e, x,0,002)2 and g1, x) = (X9 g;(1, . x,0,0)%)3.
(ii) There exist constants ¢ > 0,0 < ¢ < 1 and 0 < B < 1 such that for any
(t,x) €[0,TI xRY: (y1,21), (32.22) € R x RY

I m x ..

|f(t9x1 Y1, Zl) - f(t’xa Y2, Z2)| = C(|)’1 _Y2| + |Z1 _Z2|)

o0 12
(Z lhi(t, x, y1,21) — hi(t, x, yz,zz)lz) < ¢y = 2| + Blz1 — 22|

i=1

d 1/2
(Z |8i(t, x, y1.21) — git, X, 2, Zz)|2> < cly1 = »al +alz — zal.
i=1

(iii) There exists a function 2 € L2(R?) N L®°(R?) such that for (¢, x,y,z) €
[0,T] x R x R x R4,

00 172
(Z |hi(t, x, y, z)|2> < h().
i=1

2
1
(iv) The contract property: o + '87 < =

>
(v) The barrier function L(z, x) : R¢ — R satisfies
aL(t
gt’x), VL(t,x), AL(t,x) € L*([0, T] x RY) N L>®([0, T] x RY),

where the gradient V and the Laplacian A act on the space variable x.

Let Hr := C([0,T], H) N L2([O, T1, V) be the Banach space endowed with the

norm
T 1/2
2
lullg; = sup Ius|+(/ lluts dS>
0<t<T 0
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We denote by Hr the space of predictable, processes (u,, t > 0) such that u € Hr
and that

T
E { sup |us|%+/ ||us||2ds] < 0.
0<s<T 0

The space of test functions is D = C°(R") ® Cfo(Rd), where C2°(R™) denotes the
space of real-valued infinitely differentiable functions with compact supports in R™
and SS" (R9) is the space of infinitely differentiable functions with compact supports
in R4,

Let Blj ,Jj =1,2,...be asequence of independent real-valued standard Brownian
motions on a complete filtrated probability space (2, F, F;, P). We now precise the
definition of solutions for the reflected quasilinear SPDE (1.1):

Definition 2.1 We say that a pair (U, R) is a solution of the obstacle problem (1.1) if

() UeHr,U(t,x)>L({t,x),dP ®dt ®dx-ae.and U(T,x) = ®(x),dx —a.e.
(2) R is arandom regular measure on [0, 7)) X RY,
(3) forevery ¢ € D

T 1 T
(Ut’ §0t) - ((Dv §0T) + / (US7 ast)ds + E / <VU57 V(Ps>d5
t t

T © T X .
=/ (ﬂ(Us,VUs>,<ps>ds+§j/ (h] Uy, VU,), ¢;)d B!
t . t
j=1

d T T
-3 [ @ vvyavds+ [ [ ewrand. e
i=1"1 !
(4) U admits a quasi-continuous version U ,and

T
//((7(s,x)—L(s,x))R(dx,ds)=0 a.s.
0 R4

Remark 2.1 We refer the reader to [13] for the precise definition of regular measures
and quasi-continuity of functions on the space [0, 7] x R¢.

Let us recall the following result from [13,20].

Theorem 2.1 Let Assumption 2.1 hold and assume ®(x) > L(T, x) dx-a.e.. Then
there exists a unique solution (U, R) to the obstacle problem (1.1).

2.2 The Measures P™

The operator 9, + %A, which represents the main linear part in the equation (1.1), is
associated with the Bownian motion in R?. The sample space of the Brownian motion
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is Q' = C([0, 00); R?), the canonical process (W;);>¢ is defined by W;(w) = w(t),
forany w € Q, ¢ > 0and the shift operator, 8, : Q' — €/, is defined by 6, (w)(s) =
w(t +s), forany s > 0 and ¢+ > 0. The canonical filtration le =0 (Wss <t)is
completed by the standard procedure with respect to the probability measures produced
by the transition function

Pi(x,dy) =q:(x —y)dy, t>0, x¢€ Rd,

where g;(x) = (27rt)_% exp(—|x|2/2t) is the Gaussian density. Thus we get a
continuous Hunt process (', W;, 0;, F, ftw, P*). We shall also use the backward
filtration of the future events .7-'[ = oW s>1t) fort > 0. PO is the Wiener
measure, which is supported by the set 96 ={w € @, w(0) = 0}. We also set
Mo(w)(t) = w(t) — w(0), t > 0, which defines a map Iy : Q' — 526. Then
= (W, Ip) : @ — R? x €y, is a bijection. For each probability measure /1 on
R, the probability P* of the Brownian motion started with the initial distribution 1
is given by

Pt — 1~ (u ®IP>0) .
In particular, for the Lebesgue measure in R¢, which we denote by m = dx, we have
Pr=n" (dx @ P).

Notice that {W;_,, F;_,.r € [0, t]} is a backward local martingale under P". Let

J(-, ) : [0, 00) x R — R be a measurable function such that J € L2([0, T]xR? —
RY) for every T > 0. We recall the forward and backward stochastic integral defined
in [20,27] under the measure P,

t t 4 <~
/J(r, Wr)*dWrzf (](r,Wr),dWr)—l—/ (J(r, W,),dW ).

When J is smooth, one has

t t
/ J@, W) «dW, = —2/ div(J(r, ) (W,)dr. (2.2)

We refer the reader to [20,27] for more details.

3 A Sufficient Condition for LDP

In this section we recall the criteria obtained in [2] for proving a large deviation
principle and we will provide a sufficient condition to verify the criteria.
Let & be a Polish space with the Borel o-field B(E). Recall

Definition 3.1 (Rate function) A function I : £ — [0, oo] is called a rate function on
&, if for each M < oo, the level set {x € £ : I(x) < M} is a compact subset of £.
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Definition 3.2 (Large deviation principle) Let I be arate function on £. A family { X¢}
of £-valued random elements is said to satisfy a large deviation principle on £ with
rate function 7 if the following two claims hold.

(a) (Upper bound) For each closed subset F of £,

limsupslogP(X® € F) < — inf I(x).
xeF

e—0

(b) (Lower bound) For each open subset G of &,

liminf ¢ logP(X® € G) > — inf I(x).
e—0 xeG

3.1 A Criteria of Budhiraja-Dupuis

The Cameron—Martin space associated with the Brownian motion {B;, = (Bll, el
B/,...),t € [0, T]} is isomorphic to the Hilbert space K := L?([0, T]; I?) with the
inner product:

T
(h1, h2)k :/o (h1(s), ha(s))p2ds,

where

o0
1> = {a:(m,...,aj,...);Zaiz<oo}.
i=1

12 is a Hilbert space with inner product (a, b);2 = Zf’il a;b; fora,b e I2.
Let K denote the class of [2-valued {F; }-predictable processes ¢ that belong to the
space K a.s.. Let Sy = {k € K;; fOT ||k(s)||122ds < N}. The set Sy endowed with the

weak topology is a compact Polish space. Set Sy ={¢ € K; p(w) € Sy, P-as.}.
The following result was proved in [2].

Theorem 3.1 For ¢ > 0, let I'® be a measurable mapping from C([0, T]; R*>)
into €. Set Xt := T¢(B(-)). Suppose that there exists a measurable map T° :
C([0, TT; R*®) — & such that

(a) for every N < +00 and any family {ké; & > 0} C Sy satisfying that k* con-
verges in law as Sy-valued random elements to some element k as ¢ — 0,

e (B(-) + JLE fo kg(s)ds> converges in law to Fo(fd k(s)ds) as e — 0;
(b) for every N < 400, the set

(o) s

is a compact subset of £.
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Then the family {X¢}.~ satisfies a large deviation principle in € with the rate function
I given by

1 T
1(g) == inf {-/ ||k(s)||122ds}, geé, (3.1)

(keK;g=T(f; k(s)ds)) 1 2 Jo

with the convention inf{{}} = oo.

3.2 A Sufficient Condition

Here is a sufficient condition for verifying the assumptions in Theorem 3.1.

Theorem 3.2 For ¢ > 0, let I'® be a measurable mapping from C([0, T]; R*)
into €. Set X¢ := T¢(B(-)). Suppose that there exists a measurable map T° :
C([0, T]; R®) — & such that

(1) for every N < 400, any family {k*; e > 0} C Sy and any § > 0,

. & & _
EIE)%P('O(Y’Z)>5)_O’

where Y = T¢(B(-) + \/LE fO
for the metric in the space €

(ii) for every N < +o00 and any family {k®; ¢ > 0} C Sy satisfying that k® converges
weakly to some element k as ¢ — 0, T'0 (fo k¢ (s)ds) converges to Fo(fo' k(s)ds)
in the space E.

ke(s)ds), Z¢ =T0 (fo ks(s)ds) and p(-, ) stands

Then the family { X*}.~ o satisfies a large deviation principle in € with the rate function
1 given by

1 T
I(g) = inf {—/ ||k(s)||122ds} ,g€é, 3.2)

{keK;g=T0(f; k(s)ds)} | 2 Jo

with the convention inf{(}} = oc.

Remark 3.1 When proving a small noise large deviation principle for stochastic dif-
ferential equations/stochastic partial differential equations, condition (i) is usually not
difficult to check because the small noise disappears when ¢ — O.

Proof We will show that the conditions in Theorem 3.1 are fulfilled. Condition (b)
in Theorem 3.1 follows from condition (ii) because Sy is compact with respect to
the weak topology. Condition (i) implies that for any bounded, uniformly continuous
function G(-) on &,

111% E[IG(Y®) — G(Z%|1=0.

Thus, condition (a) will be satisfied if Z* converges in law to o f() k(s)ds) in the
space £. This is indeed true since the mapping I'° is continuous by condition (ii) and
k® converge in law as Sy-valued random elements to k. The proof is complete. O
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4 Skeleton Equations

Recall K := L2([0,T1,1%). Letk = (k!,...,k/,...) € K and consider the deter-
ministic obstacle problem:

d
1
du*(t, x) + 5Au"(t,x) + § Oigi(t, x, 1k (1, x), Vik (1, x))dt
i=l1

+ 1@t x, uk(t, x), Vuk (@, x))dt

oo
+Zhj(t,x, uk (e, x), Vil (¢, x))k] dr = —*(dt, dx), 4.1)
j=1
uk(t,x) > L(t, x), (t,x) e RT x ]Rd,
uF(T,x) = d(x), xeR% 4.2)

The existence and uniqueness of the solution of the deterministic obstacle problem
(4.1) can be obtained similarly as the random obstacle problem (1.1) ( but simpler). We
refer the reader to [13] for more details. Denote by u** the solution of equation (4.1)
with k® replacing k. The main purpose of this section is to show that uk converges
to u* in the space Hy if k® — k weakly in the Hilbert space K. To this end, we first
need to establish a number of preliminary results.

Consider the penalized equation:

d
1
duF" (1, x) + EAMk’n(t, X) Y gt x ub (1 x), Vi (e, x))dt
i=1
+ [ x, d @ x), Vit (1, x))di

o0
+ Y hjt x (@ x), VU e 2k dE = —n@b (e x) — L, )7t

j=1
4.3)
uo(T, x) = d(x), xeR% 4.4)
It is known that u*" — u* asn — oo for a fixed k € K (please see [13]).

For later use, we need to show that for any M > 0, u*" — u* uniformly over the

bounded subset {k; ||k||[x < M} as n — oo. For this purpose, it turns out that we
have to appeal to the BSDE representation of the solutions. Let Y,k‘" = ukn (t, W),
Zf’" = Vuk"(t, W,). Then it was shown in [20] that (Y¥", Z57) is the solution of
the backward stochastic differential equation under P™:

k r kn Sk — [T kn ko, j
Yt,n:q>(WT)+/ f(Ver,Yr‘",Zr’")drvLE / hj(r,Wr,Yr’",Zr»")k{dr
t . t
j=1

T k.n — 1T k.n Sk.n T k.n
+n/ (Yr7 _Sr) dr‘l'E/ g(}", Wr,Yr’ er7 )*dWr_/ Zr’ dWr
t N t
4.5)
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where S, = L(r, W,) satisfies
oL 1
ds, = 8—(r, W.dr + EAL(r, W.)dr + VL(r, W)dW,. 4.6)
r

The following result is a uniform estimate for (Y%, Z*km),

Lemma 4.1 For M > 0, we have the following estimate:

T
sup sup ¢ E™ | sup |Ytk’"|2 +E™ [/ |Zf’”|2dti|
{keK:|lklk <M} n 0<t<T 0
T 2
+E" |:<n/ vk — S,)dt) “
0

T
<cy [|¢|2+Em{ sup |St|2:|+/ / [0, )1
0<t<T R4 JO

+18°@, 012 + |0, x)|2]dtdxi| 4.7

The proof of this lemma is a repeat of the proof of Lemma 6 in [20]. One just needs
to notice that when applying the Grownwall’s inequality, the constant c); on on right
of (4.7) only depends on the norm of £ which is bounded by M.

We also need the following estimate.

Lemma 4.2

T
sup sup E” |:n/ [(ykn — S,)_]Zdt] <Cpy. (4.8)
n {keK: [kl x <M) 0

Proof Let F(z) = z°2. Applying the Ito’s formula (see [20]) we have
T
FOE" = ) = F(@(Wr) — S7) + / FIYRM — $) £, Wy, YER, ZEM)dr
t
o] T )
+ Z/ F/(YE" = SOhj(r, Wy, YE", ZEMk dr
j=1""
T
+nf F' Yk — s)rkn — s)~dr
t
1 T
+3 / FIYRn — S8, Wy, YR, ZEM) s W,
s

T
+ f (VO @, = Lo D), g b ), Vb ) )W
t

T T 9L
- / F'(ykn — syzkraw, +/ F'(ykn — S,)a—(r, W,dr
t t r
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T T
1
+ / F'(ykn — S,)EAL(r, W,)dr—i—/ F'(Yk" — SHVL(r, W,)dW,
t t

T
_ % / FI(Ykn — s)|Z80 — VLG, Wy)Pdr. (4.9)
t

Rearranging the terms we get

r T
" = S+ / |Zy" = VL(r, Wp)lPdr +2n / [(v}" = s) Vdr
! t
T
= (@(Wr) = 87)* +2 / (YR = S f(r W YN, Z " dr
t

o T .
+2Z/ (Ykm —Soni(r, Wy, YR ZEM) ] dr
j=1""

T
+ / (Y5 = S)g(r, Wy, YE", ZE") % dW,
t
T
+2/ (zf’" — VLG, W), g(r, Wy, Y5, Zf’”)>dr
13
T T oL
—2/ (ykn — syzknaw, +2/ (ykn S,)a—(r, W, )dr
t t r

T 1 T
+ / (ykn — Sr)EAL(r, W,)dr + 2/ (Y& — SHVL(r, W,)dW,.
t t
(4.10)

Using the conditions on % in the Assumption 2.1, for any given positive constant &
we have

o0 T .
23| R = Sy, W, YR, ZEMK dr
j=17"

T

T S .
=2 [ ) Yy W T ZE) — by WS, VLG WK dr
t N
=

T 0 .
2[R = 8 Dy W 1 VL W) = Wi 0,00
t ;
j=1

T o .
+2/ (YE" =803 hjr, Wr, 0,00k dr
t =
1

T 00 2

<2 / Yo — S [ Y G, We YR ZE) — Ry, Wi, S VLG, W) | ke 2y

t j=1
1

T 0 2
+2/ [Ykn — s, | (Z(hj(r, W, S;, VL(r, W,)) — hj(r, Wy, 0, 0))2) s Nl 2dr
t

=1
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1

T 00 2
+2/ E =S (S W 0,02 |k ladr
t

j=1

T T
< C/ |Y}{"” _ S,.|2||k,||122dr + €1 / |Zf’" — VL(r, W,)|%dr
t t
T
+Cf [L(r, W,)? + VLG, W + 1O, W) 1dr. (4.11)
13
By the assumptions on g, for any given positive constant &, we have

r k k k
(zr’” — VLG, W), g(r, Wy, YO Zr’")>dr

[\)
—

T
= / (25" = VLG Wo), g e YE, ZEM) = (e, Wy, Sy, VLG, W) dr
t
r k
+2/ (zr*” —VL(r, W), g(r, Wy, Sp, VL(r, Wp)) — g(r, Wy, 0, 0)>dr
t
r k
+2/ <Z,’" — VLG, Wy), g(r, Wy, 0, 0)>dr
t
T k k T k
< 2c/ |Z2 — VL, WH||Y" — Sp|dr + Zotf |Z5" — VL(r, W) |2dr
t t
r k.n 0
+C/ |Zy" = VL@, WHIlIL(r, We)| + IVL(r, Wp)| + g~ (r, Wp)ldr
t

T T
< c/ \Yem — s, 2dr + 2a +82)/ 1z v LG, W) dr
t t

T
+ cf LG W2+ VLG, W)+ 800, Wp)21dr. (4.12)
t

By a similar calculation, we have for any given g3 > 0,

T
2/ Y5m — Sy f(r, Wy, YR ZEMyar
t
T T
< c/ |Ykn — s, 12dr + 83/ |Z5n — Y L(r, W,)|dr
13 13
T
+c/ LG, WAl + VLo, WP + f00, W) ldr. (4.13)
13

Substitute (4.11), (4.12) and (4.13) back into to (4.10), choose €1, €2, €3 sufficiently
small to obtain

T T
E™[(YF" — §)%] + E” [/ |Zk" — VLG, W,)\zdr] + 2nE" [/ [(rkn — s,)*]zdr]
t t

T
< CE"[(®(Wr) — S7)*1 + CE" [ f (o, W2+ 10, W2 + 8°(r, Wr>2}dr]
t
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T T
+C / EM (V" = Sk lpdr + CE™ [ / Y~ Sr>2dr]
t t
Tl /oL : ) )
+CE" f <;(r,wr>+AL<r,W,)> LG WP + VLG, WP | dr, (4.14)
t

where the condition on « in the Assumption 2.1 was used. Now the desired conclusion
(4.8) follows from the Grownwall’s inequality. O

Lemma4.3 For M > 0, we have

lim sup E™[ sup [(Y,k’" — S,)7]4] =0. (4.15)
" Clkek; kg <M} 0<t<T

Proof Let G(z) = (z)*. By the Ito’s formula we have

T
G =) = / G (Y™ = S)f (o W YE", ZE dr

t

+ Z/ G'(Y}" — Soh;(r, Wy, YR, ZEM)k] dr
j=171

T

+n/ G'(Ykm — s)(vkr — 8,y ~dr

t

1 ’ k k k

+ 5/ G (Y5 = $,)g(r, Wy, YEM, ZEM) s dW,

s

T
+ / (V@ @h ) = L)), g0, Vb, ) (W

t

T T 9L
_ / G' Yk — s,y zknaw, +/ G (k- S,)a—(r, W, )dr
t t r

T 1 T
+ / G'(Ykn — S5 AL, Wy)dr +/ G' (Y& — S)VL(r, W,)dW,
t

t

T
_%/ G'(Y*" — s)\ZE" —VL(r, W) dr. (4.16)

t

Rearrange the terms in the above equation to get
L T
(" =871+ 6 f (V5" = 87 Pz
t
T
—VL(r, Wy)|2dr + 4n/ [(Ykr — sy~ 1dr
t
T
= 4 [ 108 = ) P e W vz
t

00 T )
—4> | @k =Sy PRy W YR ZEMK dr
j=1""

T
=2 [ U )P W, YA 2 s aw,
t
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T
+12 / [ = $)7(ZE" = VLG W), g0, Wy, VI, ZE)
t
g g L
+4 / (Y} =) Pzi"dw, —4 / (V" = )T P =, Wodr
t t r

T T
—2/ (Y5 — S P AL, W,)dr — 4/ [(Y5" — SH)TPVL(@, W)dW,.
t t
(4.17)

By Assumption 2.1, for any given positive constant £; we have

T
12/ [(rkn — Sr)’]2<Zf’" —VL(r, W,), g(r. Wy, Y51, Zf’”)>dr
t

- 12/T[(Y,’<»" — S TIHZE" = VLG, Wy), g(r, Wy, Y, ZE)
—g(rt, W, S, VL(r, W,)))dr
+ 12/T[(Y,k’” — ST 1(ZE — VLG, W), g(r, W, S, VL(r, W,))
—g(r,tWr, 0, 0))dr

T
12 [ = ) {28 = VLe. W), g0, W 0.0)dr
t
T
< [ 1ok - s PIZkn - Lo W lar
t
T
+ 12a/ [(Ykm —§,)7 12128 — VLG, W) 2dr
t
T
+ c/ [V} = ) PIZE" = VLG, WHIIL(r, Wo)| + [VL(r, W) |1dr
1
T
HC [ 108 = ) PIZE = VL Wl Wods
13
T
<o [ 10F = S)TPIZE - VLG WoPdr
t
T
12 / (Y5 — 5" PIZE0 = VLG, W) 2dr
t
T
+C/ [V} = ST IHILG, WP + VLG, W) PP
t

T
+ 8%, W) Hldr + C f [(Ykm —s,)"1dr
t
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T
< (o1 + 120) f (V5 — S RIZE" = VLG, W) 2dr
t
T
+C/ [(Ykn — s)"1dr (4.18)
t

Using again Assumption 2.1 and the similar computation as above we can show that
for any constants &2 > 0, &3 > 0,

00 T '
- / (V5 = §,) 7Py, Wy, Y7, Z5m ik dr
j=1""

T T
< & / (Y5 — S 1P1Z8" — VLG, Wo)2dr + C / [(ykn —s,)"1*dr
t t
T T
+C / (5" = S) 71 kel pdr + C / [(YF" — 8" dr, (4.19)
t t
and

T
—4 / (V" = ST P f(r, Wy, Y™, ZEMdr
t
T T
< [ 10RT = ) PIZE - VLG WP+ C [ f - )
t t
T
+ c/ [(Ykn — )" 1%dr. (4.20)
1

Put (4.20), (4.19), (4.18) and (4.17) together, select the constants €1, &2 and €3
sufficiently small, and take expectation to get

k T k k
EM[[(Y" = Sy 1+ B [/ (" = S)" 121z = VLG, wr>|2dr}
t
T
+4nE" [ / [rF" — Sr)]“dr}
t

T k
< +c/ E"[[(Y," - )7 1*ldr
t
T k T k
+C / E™ (" = 827 10k | 7dr + CE™ [ f (" — S»‘Fdr} (4.21)
t t

Applying the Grownwall’s inequality and Lemma 4.2 we obtain

lim  sup  sup EM[[(Y" —S)7 1Y
" OUkeK; ||kl x <M0<t<T

T
< Cy lim sup E™ [/ [(ykn — Sr)_]zdr:| =0, (4.22)
" OtkeK Ikl x <M} 0
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and

T
lim sup  E™ [/ [(ykr — s~z — VLG, W,)|2dr} =0. (4.23)
"> OtkeK: ||kl x <M} 0

Observe that by the assumptions on the function g,

T
ZE’”[ sup | [ [(YS" =S Per, Wex), Yo", 25 *der]

0<t<T Jt
r 1

T 2
CE" (/O [(Yf’”—Sr>—]6|g|2<r,Wr(x>,Y,"'",Zf*”)dr>

IA

1
ZE" | sup (e —s) 1t

0<r<T

IA

T
+CE [/ [ = 5 Plglr, Wi (o), Yo, Zf’")dr]
0

T
< %Em sup [(Y}" — 871" |+ CE” [ f [(ye" —Srr]“dr}
0

0<r<T

T
+ CE™ U (Y& — 8" 1?1Z5" — VL(r, W,)|2dr:|
0
T
+ CE™ U [(ykn — S,)_]zdr] , (4.24)
0
and

T
4E" [ sup | [ (V5" — )7 P(ZE" — VLG W), dW,>|}

0<t<T Jt
1

T 2
CE™ (f [(yYkn — 5718128 — VL(r, W,)|2dr)
0

IA

IA

1
—E™| sup [(Y*" —5)71*
4 0<r<T
T
+CE" [ / (V5" = 8)7PIZE" = VLG, Wr)|2dr} : (4.25)
0

Using (4.23)—(4.25) and taking supremum over the interval [0, 7] in (4.17) we further
deduce that

lim sup  E"| sup (" —S)"T*| =0.
"> OtkeK: |kl x <M} 0<t=T
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completing the proof. O

Proposition 4.1 For any M > 0, we have

lim sup  [ub" —uk |y, = 0. (4.26)

" Okek; ||kl x <M}
Proof We note that for any n, g > 1,

k, k,q2
™" — w9y,

T
<E" [ sup (Ykn — Y,"*q)z} + CE™ [/ |zkn — Zf’q|2dr} . @27
0

0<r<T

(4.27) follows from the fact that the law of W, under P is the Lebesgue measure m
for any ¢ > 0. Please also consult [20] (Theorem 3, Corollary 1) for details. Recall
that for each k € K, u*" — u* as n — oo. Thus, to prove (4.26), it is sufficient to
show

lim sup  E™| sup (vF" —¥FD2| =0, (4.28)
147> OtkeK ||kl x <M} 0<t<T
and .
lim sup  E™ [ / |zZkn — zf"f|2dr] =0. (4.29)
147> OfkeK; ||k|| k <M} 0

We will achieve this with the help of backward stochastic differential equations
satisfied by Ylk’" = uk" (¢, W,). Applying Ito’s formula we have

T
S AR / |z — 27 Pr
t
T k.n k k.n —k,n k k
= 2/ " =Y D W, Y 20 = e Wi, Y 20Ty dr
t

— (T k k k j
+2 Z/ " = YD) s We Y 20 =y W, Y 20T dr
j=1""

T T
b [C R v E0E — symar <20 [ oF - rf @t - s)mar
1 t
T k,n k k.n —k,n k.m Sk
+/ " =YD, W, Y Z0) — g W Y™ 200 w d Wy
t

T
+2/ (z’;*” —ZR e Wy Y MY e, W, YR, zf’q)>dr
t

T
—2/ (Yfm =yl (zEn — 259 aw,)
t

= IO+ 10 + IO+ 10 + IO+ 10 + 1)
(4.30)
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Note that

L") + 17" ()

T T
= 2n / (Yfm =y R — S)"dr — 2 / (Yfm — YOS~ S dr
t t

IA

T T
2n / VSl — 5"k — 5)7dr +2¢ / (VA" = §) (¥ — 5,)dr
t t

IA

T
2 sup (Y)1 — S,)—n/ (Y& — S,)"dr
0

0<r<T

T
+2 sup (Y — S,)—q/ Yk —sy=ar. 4.31)
0

0<r<T

By Young’s inequality, we have for any §; > 0,

T T
I < 8 / \zkn — Z892ar 4+ c/ \Ykn — v 2ar. (4.32)

t t

Moreover for any 8, > 0, we have

T T
L") <8 f |ZE" — 2y Pdr + € f Y= YNP4Ik ) dr. (433)

t t

Using Young’s inequality again, we have for any 63 > 0,
k r k r k
Ig" (1) < 83+ 20{)/ \ZF" =z Pdr + c/ YE" — v Pdr. (4.34)
t t

Substitute (4.31)—(4.34) back to (4.30), choose constants §;,i = 1, 2, 3 sufficiently
small and take expectation to obtain

T
EM[(r" - v B [ / 1ZP" — Zi""|2dr}
1

T
k,
< CE" [/ YA = v+ ||kr||fz)dr}
t

2 T 2
+C (E’"[ sup [(¥}4 —srr]zD (JE’" [(n / " —S»‘dr)ZD
0<r<T 0

1

! ’ 27\ 2
+C<E’"{ sup [(Yr"’"—sr)‘FD (E’" {(q f <Yr’""—sr>—dr) D
0<r<T 0

(4.35)
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Using Lemmas 4.1, 4.3 and applying the Grownwall’s inequality we deduce that

lim sup sup B[y — vy =, (4.36)
47> OlkeK; ||kl x <M)O<t<T
and - _
lim sup  E™ / |zkn — Z842q¢ | = 0. (4.37)
47 Okek: klx <My LJO J

Next we will strengthen the convergence in (4.36) to

lim sup  E"| sup (Y —vh)2| =o. (4.38)
AT ke Ikl k <M} | 0=t<T

We notice that by the Burkhdlder’s inequality, for any §4 > 0 we have

k
E"[ sup 157" (1)]]

0<t<T

1
T 2
X k. k, k, k, k,
“ |:(/0 W =Y D2 g, We, Y, ZE") = g, Wy, Y Y, 2, q)lzdr) }

IA

84E™ | sup (Yrk’" — Yrk’q)2

| 0<r<T

IA

T
+CE™ [/ 180, Wy, YS" ZF™) — g, W, Y1, Zfﬂ)lzalr}
0

T
< &E" | sup (¥F" —¥FD2 | 4 cEm [/ |zkn _ zf"’|2dr}
0

| 0<r<T

m T k.n k.q 2
+CE vk _yka2g, | (4.39)
0

Similarly, we have for §5 > 0

E" [ sup |1§""'q<r)|}

0<t<T

T 2
< CE" </ (ykn — ykay2 zkn _ Zf‘q|2dr)
0

T
< §sE™ [ sup (Ykn — Y,k’q)z:| + CE™ [ / |Zkn — zf*q|2dr} . (4.40)
0

0<r<T

Now use the above two estimates (4.39) and (4.40) and the already proved (4.36) to
obtain (4.38). This completes the proof. O
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Theorem 4.1 Let Assumptions 2.1 hold. Assume that k®* — k weakly in the Hilbert
space K as ¢ — 0. Then uk converges to u* in the space Hr, where u** denotes the
solution of equation (4.1) with k® replacing k.

Proof We will first prove a similar convergence result for the corresponding penalized
PDEs and then combined with the uniform convergence proved in Proposition 4.1 we
complete the proof of Theorem 4.1. Let X" be the solution to the following penalized
PDE:

d
& 1 € &€ €
du*" " (1, x) + EAuk T x) Y gt x, ub (e, x), Va2, x))di
i=1
+ £ xd ), V@, x0)di

o0
+ > (e x ub e x), Ve @ 0k dr
j=1
= —n@ ", x) — L(t, x))"dt, (4.41)
WKN(T x) = d(x), xeR (4.42)

We first fix the integer n and show lime_¢ [|u*" " — u*" ||, = 0, u®" is the solution
of equation (4.41) with k° replaced by k. To this end, we first prove that the family
(k" e > 0} is tight in the space L2([0, T1, Lloc(Rd)). Using the chain rule and
Gronwall s inequality, as in Lemma 4.1 , we can show that

& 0<r<T

T
supllu®* |13, = sup{ sup |uf ~"(r)|2+/ ||uk"”(t)||2dt} <o0o.  (4.43)
& 0

For B € (0, 1), recall that WA2([0, T1, V*) is the space of mappings v(-) : [0, T] —
V* that satisfy

T Jo@) = v 13-
10120 7y vey = /0 @1 + / | <o @

It is well known (see e.g. [15]) that the imbedding
L2([0, T1, V) n WF2([0, T1, V¥) < L*([0, T1, L},.(R%))

is compact. As an equation in V*, we have

uk ) = <b+%/t Auk" "(s)ds—i—/ Zalg,(s x, uF " (s, x), VK " (s, x))ds

T
+/ F(s,x,uk (s, x), ViK' (s, x))ds
t
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+ Z/ hj(s,x, uk 1 (s, x), VK " (s, x)kS ds
j=1"

T
—i—n/ ¥ " (s, x) — L(s, x)) " ds
t
=04+ L)+ L)+ I3() + 14() + Is(2). (4.45)

In view of (4.43), we have

t
I (1) — L1 () |3 < c/ I AL " () 13 dr (18 — s])
s
T &
scf X () 1Pdr(|t —s]) < Clt —s|.  (4.46)
0

Using the condition (iii) in Assumption 2.1, we have

T
1a(t) — L(s)[13+ < C (/0 ||kf||,%dr> h*|t —s| < Clt —s]. (4.47)

By (4.43) and the similar calculations as above we also have

||I,-(t)—I,-(s)||%,* <Clt—s|, i=2,3,5. (4.48)

Thus, for g € (0, %), it follows from (4.45) —(4.48) that

supllu’ " 1,5 0.7,y < O (4.49)
&

Combining (4.49) with (4.43), we conclude that (k" e > 0} is tight in the space
L%([0, T1, L?. (R%)). Now, applying the chain rule, we obtain

loc
K () — o (1)
T
- _/ V@K (s) — uF " (s))2ds
t
T £ £
—Zf (g(s, kM (s, vk (s, )
t
= g5, - b s, ik s, ), VR (5) = b (5)) s
T £ &
2 [ {76t s, v )
t

— f(s - dFN (s, ), Vb (s, ), uk o (s) — ufn (s)>ds

T o0
+ 2/ (ukg’"(s) —u (), D (s, ub s, ), vk s, )
t =
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(s, i (5,0, Vb s, kS s
T 0 . .
+2/ ORI O SN R e N )
t .
j=1

T
+ 2n/ <ukg’"(s) — k" (s), @K (s) = L(s, )™ — @R, ) — Ls, ~))_>ds
t
(4.50)

By the assumptions on /; and Young’s inequality, we see that for any given §; > 0,

T o
2/ <uks’"(s) —ukns), Z(hj(s, . ukg’n(s, ), Vuks’n(ss 2)
t

j=1
(s, b s, ik s, kS s

T . T,
561/ IV ’"(s)—u"*"<s))|2ds+0/ k" (s) — uF () (1 + IKE17)ds.
t t
4.51)

Using the assumptions on f, g and (4.51) it follows from (4.50) that there exist positive
constants 8, C such that

T
k() — uF )2 + 6 / V@ (5) = ub" () Pds
t

T &
< [ W) - dk R+ I Rds
t

T 00 . .
+2/ (1) = b ), 3 s s ), ViR s KT = ks,
t ]=1
(4.52)

By Gronwall’s inequality, (4.52) yields that

2
&
sup ‘uk (1) — uk‘”(t)‘
Ofth

T T
< exp(C/O (1 + [k [172)ds) sup / <uk (5)
t

0<t<T

o0
= b (5), D (sl (s, Vs, ) 05— kD)
J=1

T n
< C sup f (") — 5,
t

0<t<T
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oo
XY (s, Ut (s, ), Vit (s, ) (kS —ks]))ds ) (4.53)
j=1

To show lim,_o [|u%" — uF"||g, = 0, in view of (4.52) and (4.53), it suffices to
prove

lim sup
e—0 0<t<T

T S . .
[ {0 = 3 a5, s )k ks | =0
t

j=1

(4.54)
This will be achieved if we show that for any sequence &, — 0, one can find a
subsequence ¢&,,, — 0 such that

r emj > Em;sJ i
lim sup / <uk Lngy — ukn(s), Zhj (s, -, uP" (s, ), VuF" (s, ) (ks i ksj))ds =0
=0 0<<T |Jt =1
(4.55)
Now fix a sequence &, — 0. Since {u¥"" ", m > 1} is tight in L2([0, T'1, L? .(R%)),

there exist a subsequence m;,i > 1 and a mapping & such that ukK"m s in
L2([0, T], L? (R%)). Moreover, because of the uniform bound of ¥ " " in (4.43), i

loc

belongs to L2([0, T, H). Now,

sup
0<t<T

T Em; ad ] ;
/ (i) = 0, D (s, ), Vb s D = kD
t =1

< sup

0<t<T

T o0 . ,
/ <uk () = (), Y gl ub (s, ), Vb (s, )k — kﬁ))ds
t =

+ sup
0<t<T

T o0 . ,
f <ﬁ(s) — (), I Cs - b s, ), Tk s, ) — k!))ds.
t j:]
(4.56)

Since k*m — k weakly in L2([0, T, [?), for every ¢ > 0, it holds that

T o ) )
fim [ (i) — b)Y hts, b (s, ), Vb s, K = k) )ds =0,
1—>00 t N
j=1
(4.57)
On the other hand, using the assumption on &, for 0 < #; <, < T, we have

t o0 . .
f <ﬁ<s> — (), D s, (s, ), Vb (s, NG — K )>ds
1

j=1

no r ) 3 2o ) 3
§C</ ji(s) — b (s) ds) (/ ||ks'—ks||,zds)
1 1
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15 %
< C( f |ﬁ(s>—ukv"(s)|2ds) : (4.58)
141

Combing (4.57) and (4.58) we deduce that

T ) ) )
/ (65 = b0, D s 5,0, Vb s, K = k)ds| =o0.
t

j=1

lim sup
i—>000<t<T

(4.59)
By Holder’s inequality and the assumption on &, we have

T, 00 . )
f (i 5y = ). 3 Ry s, Vi s K = k) s
t =

T
5/ / k" (s, x) — di(s, )]
0 R4
1

e 2
x (Z 3 (s, - ub " (s, x), Vb (s, x))z) dx (k" [l + llksll2)ds)
j=1

T, 3 [ T . i 2
< (/ (kg™ ||,22+||ks\|,22)ds) (/ ds( luk ‘v"(s,x)—ﬂ(s,x)m(x)dx))
0 0 Rd
T o _ 2 %
c (/ ds (/ [k (s, x) — ﬂ(s,x)lh(x)dx) ) ) (4.60)
0 R4

For any M > 0, denote by By, the ball in R? centered at zero with radius M. We can
bound the right side of (4.60) as follows:

T 2
/ ds (f k"N (s, x) — ,z(s,x)m(x)dx)
0 R4
T
< C/ ds (/ |uk£mi’"(s,x) - ﬂ(s,x)|2dx> (/ l_lz(x)dx>
0 By R4
T Em: —
+c/ ds (/ |uF ""(s,x)—ft(s,x)|2dx) (/ % (x)dx
0 R4 B,

T em; —
< C/ ds (/ X" (s, x) —a(s,x)|2dx> +c/ W (x)dx, (4.61)
0 By BX/I

where the uniform L2([0, T] x R4 )-bound of uk"m has been_ used. Now given any
constant § > 0, we can pick a constant M such that C f Be h2(x)dx < §. For the
M

chosen constant M, we have

1
2

A

IA

i—o00

T
lim ds (/ X" (s, x) — (s, x)|2dx) =0.
0 By
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Thus, it follows from (4.60), (4.61) that

lim sup
1—> 00 OSIST

T o0
./ <Mk8'”f M(s) — u(s), Zhj(S, LR (s, ),
t ]=1

1

Vi (s, N —kd )>ds <2, (4.62)

Since § is arbitrary, (4.55) follows from (4.56), (4.59) and (4.62). Hence we have
proved limg g [[uX" " — uk"|| g, = 0.
Now we are ready to complete the last step of the proof. For any n > 1, we have

k® k
—u ”HT

k© ke, k®, k, k, k
< lu® —u™ gy + " = u® gy + 0" = u gy (4.63)

ll

For any given § > 0, by Proposition 4.1 there exists an integer n¢ such that sup, fluk® —
& . .
uk 10|y, < 3 and |luf — uk0) gy, < $. Replacing n in (4.63) by ng we get

& £
Mg, < 84 uk om0 — ukmo g,

[l
As we just proved
lim [0 — %m0 =0,
e—0
we obtain that

lim [|u*" — u¥|| g, <.
e—0

Since the constant § is arbitrary, the proof is complete. O

5 Large Deviations

After the preparations in Sect. 4, we are ready to state and to prove the large deviation
result. Recall that U¥? is the solution of the obstacle problem:

d
1
dU®(t,x) + EAUa(t,x) + E 9;gi(t,x,Us(t, x), VU (¢, x))drt
i=1

+ f(t,x,U%@t, x), VU (¢, x))dt

o0
+EY hj(t.x, US(t.x), VU (. x))dB] = —R*(dt,dx), (5.1)
j=1
Ut(t,x) > L(t,x), (t,x) e Rt x R?,
US(T,x) = ®(x), xeR% (5.2)
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Fork € K = L2([0, Tl 1 2), denote by u¥ the solution of the following deterministic
obstacle problem:

d
1
duf(t, x) + zAu"(x, X)+ Y gt x ub(t.x), VuF (e, x))dt
i=1
+ £, x, uk @, x), Vuk (@, x))dt

o0
+ Zhj(r, x, uf (2, x), Vuk(r, X))kl dt = —v*(dt, dx), (5.3)
j=1
uk(t,x) > L(t,x), (1, x) e Rt x R?,
uM(T,x) = d(x), xeR% (5.4)

Define a measurable mapping I'’ : C([0, T]; R®) — Hr by

ro (/ ksds> =yt for keKk,
0

where u* is the solution of (5.3). Here is the main result:

Theorem 5.1 Let the Assumption 2.1 hold. Then the family {U*}.~¢ satisfies a large
deviation principle on the space Hr with the rate function I given by

) 17
I(g) = inf {—f ||ks||,22dS}, g € Hr, (5.5
{keK;g=T0(f; kyds)} | 2 Jo

with the convention inf{{}} = oco.

Proof The existence of a unique strong solution of the obstacle problem (5.1) implies
that for every ¢ > 0, there exists a measurable mapping I'? (-) : C([0, T]; R*®) — Hr
such that

U =T¢ (B(")).

To prove the theorem, we are going to show that the conditions (i) and (ii) in Theo-
rem 3.2 are satisfied. Condition (ii) is exactly the statement of Theorem 4.1. It remains
to establish the condition (i) in Theorem 3.2. Recall the definitions of the spaces Sy and

Sy given in Sect. 3. Let {k®, ¢ > 0} C Sy be a given family of stochastic processes.

Applying Girsanov theorem it is easy to see that U**" = I'¢ (B(~) + \/LE Jo k° (s)ds)

is the solution of the stochastic obstacle problem:

d
& 1 £ & £
dUSF (¢, x) + zAUE”‘ (t, x) + § 3igi(t, x, US* (¢, x), VU* (¢, x))dt
i=1

+ £t x, UK (1, x), VU (¢, x))d1
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o
+/E Y it x, UK (1, x), VUK (1, x))d B]

j=1
e .
+ ) hj(tx, UK (1, x), VUK (1 x0))k dt = —vf (dt, dx), (5.6)
j=1
UK (0 = L, x), (1,0 e RY xR,
USK(T,x) = o(x), xeR. (5.7)

Moreover, V¥ =10 ( fo k¢ (s)ds) is the solution of the random obstacle problem:

d
£ 1 & & £
av¥ @, x) + 5AV" (t,x) + 2 Oigi(t, x, VR (t,x), VVE (1, x))dt
i=l1

+ £, x, VE (1, x), VVE (2, x))dt

o0
+ D hjtx, VR, x), VVE L x)k di = —pf(dt, dx), (5.8)
j=1
V@, x) > Lit,x), (t,x)eRT xR?,
VE(T,x) = d(x), xeR (5.9)

The condition (ii) in Theorem 3.2 will be satisfied if we prove

0<t<T

T
lim {E[ sup [USK — vE P14+ E[f sk — Vtk6||2dt]} =0, (5.10)
E—> 0

here U,S’kg = U**(1,.) and V,kg = VK (¢, ). The rest of the proof is to establish
(5.10). By Ito formula, we have

T
L A MU AR
t
= —2/ (VW = VI g URF VU — (s, VI IV Jas
t
T & £ £ £ £ £
42 [ U = VE U YU = s VE 0V Jas
t

T .
+ 2/ Y < U —VE s, U VUER ) — ks, VE VVE) > ki ds
t N
j=1

i T = £ £ £ i
+2J§Z/ <U§*"*’ — VK hj(s, - USK vUsk ))ng
=1

T ol T
+2/ (Uf,k‘ _ V‘Y"g’d”‘f —du§>+82/ |]’Lj(s,-,Uf,kS’VUsg,k‘)lZdS
t j=1 t
=1(t)+ L) + I3() + 14(t) + I5(t) + Is(1). (5.11)
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Here

T ] .
/ (UEF — VK ave —aub)
t
T £ &
=f / (UK (s, x) — VE (s, x)[VE (ds, dx) — p(ds, dx)].
t R4

With the assumptions on g in mind, applying Young’s inequality we have for any
81 >0

T t
L) < (81 + 201)/ IVUER — VK 2ds + C/ |USK —vE 2ds. (5.12)
t 0
By the assumption on f, for any §; > 0, we have
T & ¥ ! & &
L(r) < 52/ |V(UEK — vE )|2ds+C/ \UEK — VK 2ds. (5.13)
t 0
Using the assumption on /4, given any 63 > 0, we also have
T £ & 2 t £ £ 2 2
(1) < 83/ IV(UEK — vEY) ds+C/ (UK — VE P+ 1KEIIR)ds. (5.14)
t 0

€ €
For the term 5 in (5.11), because US* — L(s, ) > 0, VE* — L(s,-) > 0 and because
that the random measures v¢, ué are positive, we have

T
Is(t) = 2/ <U§’k€ — L(s, )+ L(s, ) — VK dvf — d;@) <0. (5.15)
t

Substituting (5.12)—(5.15) back into (5.11), choosing &1, 62, 3 sufficiently small and
rearranging terms we can find a positive constant § > 0 such that

T
|USk — vk |2+3/ IVWUER — vE)Pds
t

T
<C f UK — VE R+ K1) ds
t

0 T
+2Ve ) / (U5 = VE s, UK VU JaB
j=1""
0 T
—l—sZ/ (s, x, USK VUER ) 2ds. (5.16)
j=1""
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By the Gronwall’s inequality it follows that
kK e ’ K e
sup |USY — VE 2+ f 1oy — vF|12ar
0<t<T 0

T
< (Mf + M) exp (C /0 (1+ ||k;“||,%>ds) < Cy(ME + M), (5.17)

where

0 T
M5 = SZ/O lhj(s, -, USK, vUEK )| 2ds.
j=l1

Using Burkholder’s inequality and the boundedness of &, we see that

1
ad T € &€ &€ £ 2 :
E[M{] < C\/¢E Z/ <U§~’< —VE s, -, UK vUEk )> ds
0
j=1

1

T . . 2
< C\eE (/ |USk — vk |2dt>
0

—0, as ¢&—0, (5.18)

where we have used the fact that sup, { E[| Uf’kg 1214+ E[| Vlkg 121} < oo. By the condition
on & in the Assumption 2.1, it is also clear that

T
E[M3] < CsE [/ (14 UK )2 4+ ||Uf’k£||2)ds}
0
—0, as &—0. (5.19)

Assertion (5.10) follows from (5.17) to (5.19). O
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