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Abstract

We study large deviation properties of systems of weakly interact-

ing particles modeled by Itô stochastic di�erential equations (SDEs).

It is known under certain conditions that the corresponding sequence

of empirical measures converges, as the number of particles tends to

in�nity, to the weak solution of an associated McKean-Vlasov equa-

tion. We derive a large deviation principle via the weak convergence

approach. The proof, which avoids discretization arguments, is based

on a representation theorem, weak convergence and ideas from stochas-

tic optimal control. The method works under rather mild assumptions

and also for models described by SDEs not of di�usion type. To illus-

trate this, we treat the case of SDEs with delay.
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1 Introduction

Collections of weakly interacting random processes have long been of interest
in statistical physics, and more recently have appeared in problems of engi-
neering and operations research. A simple but important example of such
a collection is a group of �particles,� each of which evolves according to the
solution of an Itô type stochastic di�erential equation (SDE). All particles
have the same functional form for the drift and di�usion coe�cients. The
coe�cients of particle i are, as usual, allowed to depend on the current state
of particle i, but also depend on the current empirical distribution of all
particle locations. When the number of particles is large the contribution
of any given particle to the empirical distribution is small, and in this sense
the interaction between any two particles is considered �weak.�

For various reasons, including model simpli�cation and approximation,
one may consider a functional law of large numbers (LLN) limit as the num-
ber of particles tends to in�nity. The limit behavior of a single particle
(under assumptions which guarantee that all particles are in some sense ex-
changeable) can be described by a two component Markov process. One
component corresponds to the state of a typical particle, while the second
corresponds to the limit of the empirical measures. Again using that all
particles are exchangeable, under appropriate conditions one can show that
the second component coincides with the distribution of the particle compo-
nent. The limit process, which typically has an in�nite dimensional state, is
sometimes referred to as a �nonlinear di�usion.� Because the particle's own
distribution appears in the state dynamics, the partial di�erential equations
that characterize expected values and densities associated with this process
are nonlinear, and hence the terminology.

In this paper we consider the large deviation properties of the particle
system as the number of particles tends to in�nity. Thus the deviations we
study are those of the empirical measure of the prelimit process from the dis-
tribution of the nonlinear di�usion. Of particular interest, and a subject for
further study, are deviations when the initial distribution of the single par-
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ticle in the nonlinear di�usion is invariant under the joint particle/measure
dynamics, and related questions of stability for both the limit and prelimit
processes.

One of the basic references for large deviation results for weakly inter-
acting di�usions is [10]. This paper considers a system of uniformly nonde-
generate di�usions with interaction in the drift term and establishes a large
deviation principle for the empirical measure using discretization arguments
and careful exponential probability estimates (see Section 7.1). Properties
related to a large deviation principle such as �uctuation theorems have been
studied in [33, 1, 26, 3, 21]. A proof of the large deviation principle for sys-
tems with constant di�usion coe�cient that is based on a comparison result
for a related in�nite dimensional Hamilton-Jacobi-Bellman equation appears
in [17: Section 13.3].

Later works have developed the theory for a variety of alternative mod-
els, including multilevel large deviations [11, 13], jump di�usions [25, 24],
discrete-time systems [9, 12], and interacting di�usions with random inter-
action coe�cients [2] or singular interaction [18]. In the current work we
develop an approach which is very di�erent from the one taken in any of
these papers. Our proofs do not involve any time or space discretization of
the system and no exponential probability estimates are invoked. The main
ingredients in the proof are weak convergence methods for functional occu-
pation measures and certain variational representation formulas. Our proofs
cover models with degenerate noise and allow for interaction in both drift
and di�usion terms. In fact the techniques are applicable to a wide range of
model settings and an example of stochastic delay equations is considered in
Section 7 to illustrate the possibilities.

The starting point of our analysis is a variational representation for mo-
ments of nonnegative functionals of a Brownian motion [5]. Using this rep-
resentation, the proof of the large deviation principle reduces to the study of
asymptotic properties of certain controlled versions of the original process.
The key step in the proof is to characterize the weak limits of the control
and controlled process as the large deviation parameter tends to its limit
and under the same scaling that applies to the original process. More pre-
cisely, one needs to characterize the limit of the empirical measure of a large
collection of controlled and weakly interacting processes. In the absence of
control this characterization problem reduces to an LLN analysis of the orig-
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inal particle system, which has been studied extensively [27, 19, 20]. Our
main tools for the study of the controlled analogue are functional occupation
measure methods. Indeed, these methods have been found to be quite useful
for the study of averaging problems, but where the average is with respect
to a time variable [23]. In the problem studied here the measure valued pro-
cesses of interest are obtained using averaging over particles rather than the
time variable.

The approach presented here can be applied to interacting systems driven
by general continuous time processes with jumps provided the systems are
scaled in the right way. Indeed, the driving noise process could be a Brownian
motion plus an independent Poisson random measure. A key step to make
the approach work is a variational representation of Poisson functionals,
which has recently been established in [8].

Finally, we remark that variational representations for Brownian motions
and Poisson random measures [6, 7, 8] have proved to be useful for the study
of small noise large deviation problems and many recent papers have applied
these results to a variety of in�nite dimensional small noise systems. A small
selection is [14, 29, 30, 31]�see [8] for a more complete list. We expect the
current work to be similarly a starting point for the study, using variational
representations, of a rather di�erent collection of large deviation problems,
namely asymptotics of a large number of interacting particles.

An outline of the paper is as follows. In Section 2 we introduce the in-
teracting SDE particle model, the related controlled and LLN limit versions,
and discuss the relevant topologies and sense of uniqueness of solutions. Sec-
tion 3 discusses the relation between Laplace and large deviation principles,
states assumptions and the main result of the paper, and then outlines how
this result will be proved using a representation theorem. In Section 4 we
describe the martingale problems that will be used in the proof. The proof
itself is divided into lower and upper bounds in Sections 5 and 6, respectively.
The constructions in the proof are set up to handle a more general case than
just the model introduced in Section 2, and in Section 7 we use this gener-
ality to state and prove a large deviation theorem for systems with delay.
This section also reviews the prior work of [10] . The appendix contains the
proof of a technical point that was deferred for reasons of exposition.
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2 The model

For each N ∈ N, the N -particle prelimit model is described in terms of a
system of N weakly coupled d-dimensional stochastic di�erential equations
(SDEs). The system is considered over the �xed �nite interval [0, T ]. Set
X .

= C([0, T ],Rd) and equip X with the maximum norm, which is denoted by
‖.‖. Similarly, setW .

= C([0, T ],Rd1) and equipW with the maximum norm.
Let (Ω,F ,P) be a probability space and suppose that on this space there is
a �ltration (Ft) satisfying the usual conditions (i.e., (Ft) is right-continuous
and F0 contains all P-negligible sets), as well as a collection

{
W i, i ∈ N

}
of

independent standard d1-dimensional (Ft)-Wiener processes.
Let b and σ be Borel measurable functions de�ned on Rd×P(Rd) taking

values in Rd and the space of real d×d1-matrices, respectively. If (S, dS)

is a metric space, then P(S) denotes the space of probability measures on
the Borel σ-�eld B(S). The space P(S) is equipped with the topology of
weak convergence, which can be metricized, using for example the bounded
Lipschitz metric, making it a Polish space.

The evolution of the state of the particles in the N -particle model is given
by the solution to the system of SDEs
(2.1)
dXi,N (t) = b

(
Xi,N (t), µN (t)

)
dt+σ

(
Xi,N (t), µN (t)

)
dW i(t), Xi,N (0) = xi,N ,

where xi,N ∈ Rd, i ∈ {1, . . . , N}, and

µN (t, ω)
.
=

1

N

N∑
i=1

δXi,N (t,ω), ω ∈ Ω,

is the empirical measure of (X1,N (t), . . . , XN,N (t)) for t ∈ [0, T ]. By con-
struction, µN (t) is a P(Rd)-valued random variable. Denote by µN the
empirical measure of (X1,N , . . . , XN,N ) over the time interval [0, T ], that is,
µN is the P(X )-valued random variable de�ned by

µNω
.
=

1

N

N∑
i=1

δXi,N (.,ω), ω ∈ Ω.

Clearly, the distribution of µN (t) is identical to the marginal distribution of
µN at time t, i.e., µN (t) = µN ◦ π−1

t where πt : X → Rd is the projection
map corresponding to the value at time t.
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Our aim is to establish a Laplace principle for the family {µN , N ∈ N} of
P(X )-valued random variables. When 1

N

∑N
i=0 δxi,N converges weakly to ν0

for some ν0 ∈ P(Rd), the asymptotic behavior of µN as N tends to in�nity
can be characterized in terms of solutions to the nonlinear di�usion
(2.2)
dX(t) = b

(
X(t),Law(X(t))

)
dt+ σ

(
X(t),Law(X(t))

)
dW (t), X(0) ∼ ν0,

where W is a standard d1-dimensional Wiener process. Thus we are inter-
ested in the study of deviations of µN , N large, from its typical behavior,
namely the probability law of the process solving Eq. (2.2).

In the formulation and proof of the Laplace principle, we will need to
consider a controlled version of Eq. (2.1). For N ∈ N, let UN be the space of
all (Ft)-progressively measurable functions u : [0, T ]×Ω→ RN×d1 such that

E

[∫ T

0
|u(t)|2dt

]
<∞,

where E denotes expectation with respect to P and |.| denotes the Euclidean
norm of appropriate dimension. For u ∈ UN , we sometimes write u =

(u1, . . . , uN ), where ui is the i-th block of d1 components of u.
Given u ∈ UN , u = (u1, . . . , uN ), we consider the controlled system of

SDEs

dX̄i,N (t) = b
(
X̄i,N (t), µ̄N (t)

)
dt + σ

(
X̄i,N (t), µ̄N (t)

)
ui(t)dt

+ σ
(
X̄i,N (t), µ̄N (t)

)
dW i(t), X̄i,N (0) = xi,N ,

(2.3)

where µ̄N (t) and µ̄N are the empirical measures of X̄i,N (t) and X̄i,N , re-
spectively:

µ̄N (t, ω)
.
=

1

N

N∑
i=1

δX̄i,N (t,ω), µ̄Nω
.
=

1

N

N∑
i=1

δX̄i,N (.,ω), ω ∈ Ω.

The �barred� symbols in the display above and in Eq. (2.3) refer to objects
depending on a control, here u. We adopt this as a convention and indicate
control-dependent objects by overbars. The existence and uniqueness of
strong solutions to Eq. (2.3) will be a consequence of Assumption (A3) made
in Section 3; see comments below Assumption (A5) there.

It will be convenient to have a path space which is Polish for the compo-
nents ui, i ∈ {1, . . . , N}, of a control process u ∈ UN . We choose the space
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of deterministic relaxed controls on Rd1 × [0, T ] with �nite �rst moments.
Let us �rst recall some facts about deterministic relaxed controls; see, for
instance, [23: Section 3.2] for the case of a compact space of control actions.
Denote by R the space of all deterministic relaxed controls on Rd1 × [0, T ],
that is, R is the set of all positive measures r on B(Rd1× [0, T ]) such that
r(Rd1×[0, t]) = t for all t ∈ [0, T ]. If r ∈ R and B ∈ B(Rd1), then the mapping
[0, T ] 3 t 7→ r(B×[0, t]) is absolutely continuous, hence di�erentiable almost
everywhere. Since B(Rd1) is countably generated, the time derivative of r
exists almost everywhere and is a measurable mapping rt : [0, T ] → P(Rd1)

such that r(dy×dt) = rt(dy)dt.
Denote by R1 the space of deterministic relaxed controls with �nite �rst

moments, that is,

R1
.
=

{
r ∈ R :

∫
Rd1×[0,T ]

|y| r(dy×dt) <∞

}
.

By de�nition, R1 ⊂ R. The topology of weak convergence of measures turns
R into a Polish space (not compact in our case). We equipR1 with the topol-
ogy of weak convergence of measures plus convergence of �rst moments. This
topology turns R1 into a Polish space, cf. [28: Section 6.3]. It is related to
the Monge-Kantorovich distances. For T = 1 (else one has to renormal-
ize), the topology coincides with that induced by the Monge-Kantorovich
distance with exponent one, also called the Kantorovich-Rubinstein distance
or Wasserstein distance of order one. The topology is convenient because
the controls appear in an unbounded (but a�ne) fashion in the dynamics.
Thus ordinary weak convergence will not imply convergence of corresponding
integrals, but convergence in R1 will.

Any Rd1-valued process v de�ned on some probability space (Ω̃, F̃ , P̃)

induces an R-valued random variable ρ according to

(2.4) ρω
(
B × I

) .
=

∫
I
δv(t,ω)(B)dt, B ∈ B(Rd1), I ⊂ [0, T ], ω ∈ Ω̃.

If v is such that
∫ T

0 |v(t, ω)|dt <∞ for all ω ∈ Ω̃, then the induced random
variable ρ takes values in R1. If v is progressively measurable with respect
to a �ltration (F̃t) in F̃ , then ρ is adapted in the sense that the mapping
t 7→ ρ(B×[0, t]) is (F̃t)-adapted for all B ∈ B(Rd1) [23: Section 3.3].
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Given an adapted (in the above sense)R1-valued random variable ρ and a
Borel measurable mapping ν : [0, T ]→ P(Rd), we will consider the controlled
SDE

dX̄(t) = b
(
X̄(t), ν(t)

)
dt +

(∫
Rd1

σ
(
X̄(t), ν(t)

)
y ρt(dy)

)
dt

+ σ
(
X̄(t), ν(t)

)
dW (t), X̄(0) ∼ ν(0),

(2.5)

whereW is a d1-dimensional (F̃t)-adapted standardWiener process. Eq. (2.5)
is a parameterized version of Eq. (2.7) below, the controlled analogue of the
limit SDE (2.2). We will only have to deal with weak solutions of Eq. (2.5)
or, equivalently, with certain probability measures on B(Z), where

Z .
= X ×R1 ×W.

For a typical element in Z let us write (ϕ, r, w) with the understanding that
ϕ ∈ X , r ∈ R1, w ∈ W.

Notice that we include W as a component of our canonical space Z.
This will allow identi�cation of the joint distribution of the control and
driving Wiener process. Indeed, if the triple (X̄, ρ,W ) de�ned on some
�ltered probability space (Ω̃, F̃ , P̃, (F̃t)) solves Eq. (2.5) for some measurable
ν : [0, T ]→ P(Rd), then the distribution of (X̄, ρ,W ) under P̃ is an element
of P(Z).

When Eq. (2.5) is used the mapping ν : [0, T ] → P(Rd) appearing in
the coe�cients will be determined by a probability measure on B(Z). To be
more precise, let Θ ∈ P(Z). Then Θ induces a mapping νΘ : [0, T ]→ P(Rd)
which is de�ned by

(2.6) νΘ(t)(B)
.
= Θ({(ϕ, r, w) ∈ Z : ϕ(t) ∈ B}), B ∈ B(Rd), t ∈ [0, T ].

By construction, νΘ(t) is the distribution under Θ of the �rst component
of the coordinate process on Z = X × R1 × W at time t. Therefore, if
Θ corresponds to a weak solution of Eq. (2.5) with ν = νΘ, then Θ also
corresponds to a weak solution of the controlled limit SDE

dX̄(t) = b
(
X̄(t),Law(X̄(t))

)
dt+

(∫
Rd1

σ
(
X̄(t),Law(X̄(t))

)
yρt(dy)

)
dt

+ σ
(
X̄(t),Law(X̄(t))

)
dW (t), X̄(0) ∼ νΘ(0).

(2.7)
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Here W is a d1-dimensional standard Wiener process de�ned on some prob-
ability space (Ω̃, F̃ , P̃) carrying a �ltration (F̃t) and ρ is an (F̃t)-adapted
R1-valued random variable such that (X̄, ρ,W ) has distribution Θ under
P̃. The process triple (X̄, ρ,W ) can be given explicitly as the coordinate
process on the probability space (Z,B(Z),Θ) endowed with the canonical
�ltration (Gt) in B(Z). More precisely, the processes X̄, ρ, W are de�ned on
(Z,B(Z)) by

X̄(t, (ϕ, r, w))
.
= ϕ(t), ρ(t, (ϕ, r, w))

.
= r|B(Rd1×[0,t]),W (t, (ϕ, r, w))

.
= w(t).

Here we abuse notation and use ρ(t, .) to denote the restriction of a measure
de�ned on B(Rd1 × [0, T ]) to B(Rd1 × [0, t]). The canonical �ltration is given
by

Gt
.
= σ

(
(X̄(s), ρ(s),W (s)) : 0 ≤ s ≤ t

)
, t ∈ [0, T ].

Notice that ρ(s) takes values in the space of deterministic relaxed controls
on Rd1 × [0, s] with �nite �rst moments.

One of the assumptions we make below (Assumption (A4) in Section 3) is
the weak uniqueness of solutions to Eq. (2.7). If ((Ω̃, F̃ , P̃), (F̃t), (X̄, ρ,W ))

is a weak solution of Eq. (2.7) then P̃◦(X̄, ρ,W )−1 ∈ P(Z). The property of
weak uniqueness can therefore be formulated in terms of probability measures
on B(Z).

De�nition 1. Weak uniqueness is said to hold for Eq. (2.7) if whenever
Θ, Θ̃ ∈ P(Z) are such that Θ, Θ̃ both correspond to weak solutions of
Eq. (2.7), νΘ(0) = νΘ̃(0) and Θ|B(R1×W) = Θ̃|B(R1×W), then Θ = Θ̃.

Thus, weak uniqueness for Eq. (2.7) means that, given any initial dis-
tribution for the state process, the joint distribution of control and driving
Wiener process uniquely determines the distribution of the solution triple.

3 Laplace principle

A function I : P(X ) → [0,∞] is called a rate function if for each M < ∞
the set {θ ∈ P(X ) : I(θ) ≤M} is compact (some authors call such functions
good rate functions). We say that a Laplace principle holds for the family
{µN , N ∈ N} with rate function I if for any bounded and continuous function

9



F : P(X )→ R,

(3.1) lim
N→∞

− 1

N
logE

[
exp
(
−N · F (µN )

)]
= inf

θ∈P(X )
{F (θ) + I(θ)} .

It is well known that in our setting the Laplace principle holds if and only
if {µN , N ∈ N} satis�es a large deviation principle with rate function I

[16: Section 1.2].
Let us make the following assumptions about the functions b, σ and the

family {xi,N} ⊂ Rd of initial conditions:

(A1) For some ν0 ∈ P(Rd), 1
N

∑N
i=1 δxi,N → ν0 as N tends to in�nity.

(A2) The coe�cients b, σ are continuous.

(A3) For all N ∈ N, existence and uniqueness of solutions holds in the strong
sense for the system of N equations given by (2.1).

(A4) Weak uniqueness of solutions holds for Eq. (2.7).

(A5) If uN ∈ UN , N ∈ N, are such that

sup
N∈N

E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2 dt

]
<∞,

then {µ̄N , N ∈ N} is tight as a family of P(X )-valued random variables,
where µ̄N is the empirical measure of the solution to the system of
equations (2.3) under uN .

Assumption (A1) is a sort of law of large numbers for the deterministic
initial conditions. The assumption is necessary for the convergence of the
empirical measures µN associated with the state process. The continuity
Assumption (A2) implies that the coe�cients b, σ are uniformly continuous
and uniformly bounded on sets B × P , where B ⊂ Rd is bounded and
P ⊂ P(Rd) is compact.

Assumption (A3) about strong existence and uniqueness of solutions for
the prelimit model will be needed to justify a variational representation for
the cumulant generating functionals appearing in (3.1), see Eq. (3.2) be-
low. Assumption (A3) and an application of Girsanov's theorem show that
Eq. (2.3) has a unique strong solution whenever

∫ T
0 |u(t)|2dt ≤M P-almost
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surely for some M ∈ (0,∞). In fact, there is a Borel measurable map-
ping hN = (hN1 , . . . , h

N
N ) with hNi : Ω → X , i ∈ {1, . . . , N}, such that, for

P-almost all ω ∈ Ω, the unique strong solution of (2.1) is given as

Xi,N (., ω) = hNi
(
W (., ω)

)
,

and under the above integrability condition on u, the unique strong solution
of (2.3) equals P-almost surely

X̄i,N (., ω) = hNi

(
W (., ω) +

∫ .

0
u(s, ω)ds

)
.

By a localization argument one can now show that (2.3) in fact has a unique
strong solution for all u ∈ UN , which is once more given by the above relation.

Weak uniqueness as stipulated in (A4) for the controlled nonlinear dif-
fusions given by Eq. (2.7) is meant in the sense of De�nition 1. It is typical
that such weak uniqueness holds if it holds for the uncontrolled system (2.2).

Grant Assumption (A1). Then Assumptions (A2) � (A5) are all satis�ed
if b, σ are uniformly Lipschitz (with respect to the bounded Lipschitz metric
on P(Rd)) or locally Lipschitz satisfying a suitable coercivity condition. A
simple example of such a condition on b, σ would be that for some constant
C > 0, all x ∈ Rd and all ν ∈ P(Rd),

2〈b(x, ν), x〉+ tr
(
σσT

)
(x, ν) ≤ C

(
1 + |x|2

)
.

The reason for Assumption (A5) being stated as it is, is that there are
many di�erent sets of conditions on the problem data (i.e., b and σ) and
the initial conditions which imply tightness of the empirical measures of the
X̄i,N . For instance, (A5) is automatically satis�ed if the coe�cients are
bounded. It also holds if b, σ are Lipschitz continuous. More general condi-
tions can be formulated in terms of the action of the in�nitesimal generator
associated with Eq. (2.7), given in (4.2) below, on some �Lyapunov function�
ϕ : Rd → R; also see Subsection 7.1.

For a probability measure Θ ∈ P(Z), recalling that Z = X × R1 ×W,
let ΘX , ΘR denote the �rst and second marginal, respectively. Let P∞ be
the set of all probability measures Θ ∈ P(Z) such that

(i) ∫
R1

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr) <∞,
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(ii) Θ corresponds to a weak solution of Eq. (2.7),

(iii) νΘ(0) = ν0, where ν0 ∈ P(Rd) is the initial distribution from Assump-
tion (A1).

The main result of this paper is the following.

Theorem 3.1. Suppose that Assumptions (A1) � (A5) hold. Then the family

of empirical measures {µN , N ∈ N} satis�es the Laplace principle with rate

function

I(θ) = inf
Θ∈P∞:ΘX=θ

1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr).

Remark 3.2. The above expression for the rate function I is convenient
for proving the Laplace principle. An alternative and perhaps more familiar
form of the rate function is the following. By de�nition of P∞ and since the
control appears linearly in the limit dynamics, we can write

I
(
θ
)

= inf
Θ∈P∞:ΘX=θ

EΘ

[
1

2

∫ T

0
|u(t)|2dt

]
,

where inf ∅ .=∞ by convention, u(t) =
∫
Rd1 yρt(dy), (X̄,W, ρ) is the canon-

ical process on (Z,B(Z)), and Θ-almost surely X̄ satis�es

dX̄(t) = b
(
X̄(t), θ(t)

)
dt+ σ

(
X̄(t), θ(t)

)
u(t)dt+ σ

(
X̄(t), θ(t)

)
dW (t).

The proof of Theorem 3.1 is based on a representation for function-
als of Brownian motion, a martingale characterization of weak solutions of
Eq. (2.7), and weak convergence arguments.

By Assumption (A3), for each N ∈ N, the N -particle system of equations
(2.1) possesses a unique strong solution for the given initial condition. By
Theorem 3.6 in [6], for any F ∈ Cb(X ) the prelimit expressions in (3.1) can
be rewritten as

− 1

N
logE

[
exp
(
−N · F (µN )

)]
= inf

uN∈UN

{
1

2
E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
+ E

[
F (µ̄N )

]}
,

(3.2)

where µ̄N is the empirical measure of the solution to the system of equations
(2.3) under uN = (uN1 , . . . , u

N
N ) ∈ UN . The representation in [6] applies

12



to an in�nite dimensional Brownian motion, and thus strictly speaking the
in�mum would be over a collection of controls indexed by i ∈ N. However,
since those controls with i > N have no e�ect on µ̄N we can and will assume
they are zero.

Based on Eq. (3.2), the Laplace principle will be established in two steps.
First, in Section 5, we establish the variational lower bound by showing that
for any sequence (uN )N∈N with uN ∈ UN ,

lim inf
N→∞

{
1

2
E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
+ E

[
F (µ̄N )

]}

≥ inf
Θ∈P∞

{
1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr) + F (ΘX )

}
.

(3.3)

Second, in Section 6, we verify the variational upper bound by showing that
for any measure Θ ∈ P∞ there is a sequence (uN )N∈N with uN ∈ UN such
that

lim sup
N→∞

{
1

2
E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
+ E

[
F (µ̄N )

]}

≤ 1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr) + F (ΘX ).

(3.4)

To see that those two steps establish Theorem 3.1, �rst observe that

inf
θ∈P(X )

{
F (θ) + inf

Θ∈P∞:ΘX=θ

{
1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr)

}}

= inf
Θ∈P∞

{
1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr) + F (ΘX )

}
.

Hence, in view of (3.2), we have to show that for all F ∈ Cb(X ),

inf
u∈UN

JFN (u)
N→∞−→ inf

Θ∈P∞
JF∞(Θ),

where

JFN (u)
.
=

1

2
E

[
1

N

N∑
i=1

∫ T

0
|ui(t)|2dt

]
+ E

[
F (µ̄N )

]
,

JF∞(Θ)
.
=

1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr) + F (ΘX ).

13



Let ε > 0. For the lower bound, choose uN ∈ UN , N ∈ N, such that
JFN (uN ) ≤ infu∈UN J

F
N (u) + ε. Then (3.3) implies that

lim inf
N→∞

inf
u∈UN

JFN (u) ≥ inf
Θ∈P∞

JF∞(Θ)− ε.

For the upper bound, choose a probability measure Θ ∈ P∞ such that
JF∞(Θ) ≤ infΘ∈P∞ J

F
∞(Θ)+ε. Since infu∈UN J

F
N (u) ≤ JFN (ũ) for any ũ ∈ UN ,

(3.4) implies that

lim sup
N→∞

inf
u∈UN

JFN (u) ≤ inf
Θ∈P∞

JF∞(Θ) + ε.

Since ε > 0 is arbitrary, the assertion follows.
There is a technical observation to be made about the probability spaces

and �ltrations underlying the stochastic control problems, namely that there
is a certain �exibility in the choice of the the stochastic bases. This �ex-
ibility will be needed in establishing the variational upper bound. To be
more precise we note that the representation theorem in [6] holds for any
stochastic basis rich enough to carry a sequence of independent standard
(F̃t)-Wiener processes. The �ltration (F̃t), which is assumed to satisfy the
usual conditions, need not be the �ltration induced by the Wiener processes,
but may be strictly larger. As a consequence of Assumption (A3), the left-
hand side of (3.2) does not depend on the choice of the stochastic basis.
The stochastic optimal control problem on the right-hand side of (3.2) can
therefore be regarded in the weak sense, i.e., the in�mum is taken over all
suitable stochastic bases; see De�nition 4.2 in [34: p. 64]. The de�nition of
the sets UN and Assumption (A5) are to be understood accordingly.

As a consequence of the weak formulation of the control problems, in the
proof of the variational lower bound, the control processes uN , the driving
Wiener processes W 1, . . . ,WN and thus the empirical measures µ̄N could
live on stochastic bases which vary with N . While we do not make this
variation explicit, it is easy to see that the arguments of Section 5, being weak
convergence arguments, do not rely on having a common �ltered probability
space. The variational upper bound, on the other hand, will be established
in Section 6 by taking an arbitrary Θ ∈ P∞ and then constructing a sequence
of control processes and independent Wiener processes so that (3.4) holds.
The prelimit processes will be coordinate processes on a common stochastic
basis which however will depend on the limit probability measure Θ.
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4 Auxiliary constructions

This section collects useful results for characterizing those probability mea-
sures in P(Z) which correspond to a weak solution of (2.7). Let Θ ∈ P(Z).
Recall from (2.6) the de�nition of the mapping νΘ : [0, T ]→ P(Rd) induced
by Θ. The mapping νΘ is continuous. To check this, take any t0 ∈ [0, T ]

and any sequence (tn) ⊂ [0, T ] such that tn → t0. Then for all f ∈ Cb(Rd),
the fact that elements of X are continuous and the bounded convergence
theorem imply∫

Rd

f(x)νΘ(tn)(dx) =

∫
X×R×W

f
(
ϕ(tn)

)
Θ(dϕ×dr×dw)

n→∞−→
∫
X×R×W

f
(
ϕ(t0)

)
Θ(dϕ×dr×dw)

=

∫
Rd

f(x)νΘ(t0)(dx).

Therefore νΘ(tn) → νΘ(t) in P(Rd). The continuity of νΘ implies that the
set {νΘ(t) : t ∈ [0, T ]} is compact in P(Rd).

The question of whether a probability measure Θ ∈ P(Z) corresponds
to a weak solution of Eq. (2.7) or, equivalently, of Eq. (2.5) with ν = νΘ can
be conveniently phrased in terms of an associated local martingale problem.
We summarize here the main facts that we will use; see [32], [23: Sect. 4.4]
and [22: Sect. 5.4], for instance.

Given f ∈ C2(Rd × Rd1), de�ne a real-valued process (MΘ
f (t))t∈[0,T ] on

the probability space (Z,B(Z),Θ) by

MΘ
f

(
t, (ϕ, r, w)

) .
= f

(
ϕ(t), w(t)

)
− f

(
ϕ(0), 0

)
−
∫ t

0

∫
Rd1

AΘ
s (f)

(
ϕ(s), y, w(s)

)
rs(dy)ds,

(4.1)
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where for s ∈ [0, T ], x ∈ Rd, y, z ∈ Rd1 ,

AΘ
s (f)(x, y, z)

.
=
〈
b
(
x, νΘ(s)

)
+ σ

(
x, νΘ(s)

)
y,∇xf(x, z)

〉
+

1

2

d∑
j,k=1

(σσT)jk
(
x, νΘ(s)

) ∂2f

∂xj∂xk
(x, z)

+
1

2

d1∑
l=1

∂2f

∂zl∂zl
(x, z)

+

d∑
k=1

d1∑
l=1

σkl
(
x, νΘ(s)

) ∂2f

∂xk∂zl
(x, z).

(4.2)

The expression involving AΘ
s (f) in (4.1) is integrated against time and the

time derivative measures rs of any relaxed control r. The measures rs are
actually not needed in that we may use r(dy×ds) in place of rs(dy)ds.

The key relation, which we formulate as a lemma, is a one-to-one corre-
spondence between weak solutions of Eq. (2.7) and a local martingale prob-
lem.

Lemma 4.1. Let Θ ∈ P(Z) be such that Θ({(ϕ, r, w) ∈ Z : w(0) = 0}) = 1.

Then Θ corresponds to a weak solution of Eq. (2.7) if and only if MΘ
f is a

local martingale under Θ with respect to the canonical �ltration (Gt) for all

f ∈ C2(Rd × Rd1).

Moreover, in order to show that Θ corresponds to a weak solution of

Eq. (2.7), it is enough to check the local martingale property for those MΘ
f

where the test function f is a monomial of �rst or second order, that is, for

the test functions

(x, z) 7→ xk, k ∈ {1, . . . , d}, (x, z) 7→ xjxk, j, k ∈ {1, . . . , d},
(x, z) 7→ zl, l ∈ {1, . . . , d1}, (x, z) 7→ zjzl, j, l ∈ {1, . . . , d1},
(x, z) 7→ xkzl, k ∈ {1, . . . , d}, l ∈ {1, . . . , d1}.

Proof. See for example the proof of Proposition 5.4.6 in [22: p. 315]. Note
that since the canonical process on the sample space (Z,B(Z)) includes a
component which corresponds to the driving Wiener process, there is no need
to extend the probability space (Z,B(Z),Θ) even if the di�usion coe�cient
σ is degenerate.
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Remark 4.2. There is a technical point here concerning the canonical �l-
tration (Gt) in B(Z). That �ltration is not necessarily Θ-complete or right-
continuous, while in the literature solutions to SDEs are usually de�ned with
respect to �ltrations satisfying the usual conditions (i.e., containing all sets
contained in a set of measure zero and being right-continuous). However, any
stochastically continuous and uniformly bounded real-valued process de�ned
on some probability space (Ω̃, F̃ , P̃) which is a martingale under P̃ with re-
spect to some �ltration (F̃t), is also a martingale under P̃ with respect to
(F̃ P̃

t+), where (F̃ P̃
t ) denotes the P̃-augmentation of (F̃t); see the solution to

Exercise 5.4.13 in [22: p. 392]. The �ltration (F̃ P̃
t+) satis�es the usual condi-

tions. Since the localizing sequence of stopping times for a local martingale
can always be chosen in such a way that the corresponding stopped processes
are bounded martingales it follows that if MΘ

f is a local martingale under Θ

with respect to (Gt) then it is also a local martingale under Θ with respect
to (G̃Θ

t+). The local martingale property of the processes MΘ
f under Θ with

respect to the canonical �ltration (Gt) thus implies that the canonical process
on (Z,B(Z)) solves Eq. (2.7) under Θ with respect to the �ltration (G̃Θ

t+),
which satis�es the usual conditions.

Remark 4.3. The reason why we use a local martingale problem rather
than the corresponding martingale problem is that it gives more �exibility
in characterizing the convergence of Itô processes which are not necessarily
of di�usion type. In Subsection 7.2, we extend the Laplace principle of
Theorem 3.1 to interacting systems described by SDEs with delay. In that
case, the coe�cients b, σ are progressive functionals; thus, they may depend
on the entire trajectory of the solution process up to the current time. An
appropriate choice of the stopping times in the local martingale problem
gives control over the state process up to the current time and not only
at the current time. In particular, the proof of Lemma 5.2 below, where
the local martingale problem is used to identify certain limit distributions,
continues to work also for the more general model of Subsection 7.2.
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5 Variational lower bound

In the proof of the lower bound (3.3) we can assume that

(5.1) E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
≤ 2‖F‖,

since otherwise the desired inequality is automatic. Let (uN )N∈N be a se-
quence of control processes such that (5.1) holds. This implies in particular
that for P-almost all ω ∈ Ω, all N ∈ N, i ∈ {1, . . . , N},

∫ T
0 |u

N
i (t, ω)|dt <∞.

Modifying the sequence (uN ) on a set of P-measure zero has no impact on
the validity of (3.3). Thus, we may assume that uNi (., ω) has a �nite �rst
moment for all ω ∈ Ω.

For each N ∈ N, de�ne a P(Z)-valued random variable by

(5.2) QNω (B ×R×D)
.
=

1

N

N∑
i=1

δX̄i,N (.,ω)(B) · δ
ρi,Nω

(R) · δW i(.,ω)(D),

B×R×D ∈ B(Z), ω ∈ Ω, where X̄i,N is the solution of Eq. (2.3) under uN =

(uN1 , . . . , u
N
N ) and ρi,Nω is the relaxed control induced by uNi (., ω) according

to (2.4). Notice that ρi,Nω ∈ R1. The functional occupation measures QN ,
N ∈ N, just de�ned are related to the Laplace principle by the fact that

1

2
E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
+ E

[
F (µ̄N )

]
=

∫
Ω

[∫
R1

(
1

2

∫
Rd1×[0,T ]

|y|2 r(dy×dt)

)
QNω,R(dr) + F (QNω,X )

]
P(dω),

(5.3)

where QNω,X , Q
N
ω,R denote the �rst and second marginal of QNω ∈ P(Z),

respectively, and we recall that Z = X ×R1 ×W.
Thanks to Assumption (A5) and the bound (5.1), the �rst marginals

of (QN )N∈N are tight as random measures. The next lemma states that
tightness of (QN )N∈N as random measures follows. Thus we are asserting
tightness of the measures γN ∈ P(P(Z)) de�ned by γN (A) = P(QN ∈ A),
A ∈ B(P(Z)).

Lemma 5.1. The family (QN )N∈N of P(Z)-valued random variables is tight.
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Proof. The �rst marginals of (QN )N∈N are tight by Assumption (A5) and
(5.1). Since the third marginals are obviously tight, we need only prove
tightness of the second marginals. Observe that

g(r)
.
=

∫
Rd1×[0,T ]

|y|2 r(dy×dt)

is a tightness function on R1, i.e., it is bounded from below and has compact
level sets. To verify the last property take c ∈ [0,∞) and let Rc

.
= {r ∈ R1 :

g(r) ≤ c}. By Chebychev's inequality, for all M > 0,

(∗) sup
r∈Rc

r
(
{y ∈ Rd1 : |y| > M} × [0, T ]

)
≤ c

M2
.

Hence Rc is tight and thus relatively compact as a subset ofR. Consequently,
any sequence in Rc has a weakly convergent subsequence with limit in R.
Let (rn) ⊂ Rc be such that (rn) converges weakly to r∗ for some r∗ ∈ R. It
remains to show that r∗ has �nite �rst moment and that the �rst moments of
(rn) converge to that of r∗. By Hölder's inequality and a version of Fatou's
lemma (cf. Theorem A.3.12 in [16: p. 307]),

√
T · c ≥ lim inf

n→∞

∫
Rd1×[0,T ]

|y| rn(dy×dt) ≥
∫
Rd1×[0,T ]

|y| r∗(dy×dt).

Let M > 0. By (∗) and Hölder's inequality we have for all r ∈ Rc,∫
{y∈Rd1 :|y|>M}×[0,T ]

|y| r(dy×dt) ≤ c

M
.

Therefore, using weak convergence,

lim sup
n→∞

∫
Rd1×[0,T ]

|y| rn(dy×dt) ≤ c

M
+

∫
{y∈Rd1 :|y|≤M}×[0,T ]

|y| r∗(dy×dt)

≤ c

M
+

∫
Rd1×[0,T ]

|y| r∗(dy×dt).

Since M > 0 may be arbitrarily big, it follows that

lim
n→∞

∫
Rd1×[0,T ]

|y| rn(dy×dt) =

∫
Rd1×[0,T ]

|y| r∗(dy×dt).

We conclude that g is a tightness function on R1. Now de�ne a function
G : P(Z)→ [0,∞] by

G(Θ)
.
=

∫
Z
g(r) Θ(dϕ×dr×dw).
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Then G is a tightness function on second marginals in P(Z), see Theo-
rem A.3.17 in [16: p. 309]. Thus in order to prove tightness of the second
marginals of (QN )N∈N (as random measures) it is enough to show that

sup
N∈N

E
[
G(QN )

]
<∞.

However, this follows directly from (5.1).

In the next lemma we identify the limit points of (QN ) as being weak
solutions of Eq. (2.7) with probability one. The proof is similar in spirit to
that of Theorem 5.3.1 in [23: p. 102].

Lemma 5.2. Let (QNj )j∈N be a weakly convergent subsequence of (QN )N∈N.

Let Q be a P(Z)-valued random variable de�ned on some probability space

(Ω̃, F̃ , P̃) such that QNj
j→∞−→ Q in distribution. Then Qω corresponds to a

weak solution of Eq. (2.7) for P̃-almost all ω ∈ Ω̃.

Proof. Set I
.
= {Nj , j ∈ N} and write (Qn)n∈I for (QNj )j∈N. By hypothesis,

Qn → Q in distribution.
Recall from Lemma 4.1 in Section 4 that a probability measure Θ ∈ P(Z)

with Θ({(ϕ, r, w) ∈ Z : w(0) = 0}) = 1 corresponds to a weak solution of
Eq. (2.7) if (and only if), for all f ∈ C2(Rd×Rd1), MΘ

f is a local martingale
under Θ with respect to the canonical �ltration (Gt), where MΘ

f is de�ned
by (4.1). Moreover, the local martingale property has to be checked only for
those MΘ

f where the test function f is a monomial of �rst or second order.
In verifying the local martingale property of MΘ

f when Θ = Qω for some

ω ∈ Ω̃, we will work with randomized stopping times. Those stopping times
live on an extension (Ẑ,B(Ẑ)) of the measurable space (Z,B(Z)) and are
adapted to a �ltration (Ĝt) in B(Ẑ), where

Ẑ .
= Z × [0, 1], Ĝt

.
= Gt × B([0, 1]), t ∈ [0, T ],

and (Gt) is the canonical �ltration in B(Z). Any random object de�ned
on (Z,B(Z)) also lives on (Ẑ,B(Ẑ)), and no notational distinction will be
made.

Let λ denote the uniform distribution on B([0, 1]). Any probability mea-
sure Θ on B(Z) induces a probability measure on B(Ẑ) given by Θ̂

.
= Θ×λ.
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For each k ∈ N, de�ne a stopping time τk on (Ẑ,B(Ẑ)) with respect to the
�ltration (Ĝt) by setting, for (z, a) ∈ Z × [0, 1],

τk(z, a)
.
= inf {t ∈ [0, T ] : v(z, t) ≥ k + a} ,

where

v
(
(ϕ, r, w), t

) .
=

∫
Rd1×[0,t]

|y| r(dy×ds) + sup
s∈[0,t]

|ϕ(s)|+ sup
s∈[0,t]

|w(s)|.

Note that the mapping t 7→ v((ϕ, r, w), t) is monotonic for all (ϕ, r, w) ∈ Z.
Hence the stopping times have the following properties. The boundedness
of ϕ and w (being continuous functions on a compact interval) and the
boundedness of

∫
Rd1×[0,T ]|y| r(dy×ds) imply that τk ↗ T as k → ∞ with

probability one under Θ̂. The second property of note is that the mapping

Z × [0, 1] 3 (z, a) 7→ τk(z, a) ∈ [0, T ]

is continuous with probability one under Θ̂. To see this, note that for every
z ∈ Z the set

Az
.
= {c ∈ R+ : v(z, s) = c for all s ∈ [t, t+δ], some t ∈ [0, T ], some δ > 0}

is at most countable. However, ẑ 7→ τk(ẑ) fails to be continuous at (z, a)

only when k + a ∈ Az. Therefore, by Fubini's theorem,

Θ̂
(
{(z, a) ∈ Ẑ : τk discontinuous at (z, a)}

)
=

∫
Ẑ
1Az(k+a)Θ̂(dz×da)

=

∫
Z

∫
[0,1]

1Az(k+a)λ(da)Θ(dz)

= 0.

Notice that if MΘ
f is a local martingale with respect to (Ĝt) under Θ̂ =

Θ × λ with localizing sequence of stopping times (τk)k∈N, then MΘ
f is also

a local martingale with respect to (Gt) under Θ with localizing sequence of
stopping times (τk(., 0))k∈N; see Appendix A.1. Thus it su�ces to prove the
martingale property of MΘ

f up till time τk with respect to �ltration (Ĝt) and
probability measure Θ̂.

Clearly, the process MΘ
f (. ∧ τk) is a (Ĝt)-martingale under Θ̂ if and only

if

(5.4) EΘ×λ
[
Ψ ·
(
MΘ
f (t1 ∧ τk)−MΘ

f (t0 ∧ τk)
)]

= 0
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for all t0, t1 ∈ [0, T ] with t0 ≤ t1, and Ĝt0-measurable Ψ ∈ Cb(Ẑ).
To verify the martingale property of MΘ

f (. ∧ τk) it is enough to check
that (5.4) holds for any countable collection of times t0, t1 which is dense in
[0, T ] and any countable collection of functions Ψ ∈ Cb(Ẑ) that generates the
(countably many) σ-algebras Ĝt0 . Recall that the collection of test functions
f for which a martingale property must be veri�ed consists of just monomials
of degree one or two, and hence is �nite. Thus, there is a countable collection
T ⊂ N× [0, T ]2×Cb(Ẑ)×C2(Rd×Rd1) of test parameters such that if (5.4)
holds for all (k, t0, t1,Ψ, f) ∈ T , then Θ corresponds to a weak solution of
Eq. (2.7).

Let (k, t0, t1,Ψ, f) ∈ T . De�ne a mapping Φ = Φ(k,t0,t1,Ψ,f) by

P(Z) 3 Θ 7→ Φ(Θ)
.
= EΘ×λ

[
Ψ ·
(
MΘ
f (t1 ∧ τk)−MΘ

f (t0 ∧ τk)
)]
.

We claim that the mapping Φ is continuous in the topology of weak conver-
gence on P(Z). To check this, take Θ ∈ P(Z) and any sequence (Θl)l∈N ⊂
P(Z) that converges to Θ. Recall the de�nitions (4.1) and (4.2). As a conse-
quence of Assumption (A2) and by construction of the stopping time τk, the
integrand in (5.4) is bounded; thanks to Assumption (A2) and the almost
sure continuity of τk, it is continuous with probability one under Θ̂

.
= Θ×λ.

By weak convergence and the mapping theorem [4: p. 21], it follows that

EΘl×λ
[
Ψ ·
(
MΘ
f (t1 ∧ τk)−MΘ

f (t0 ∧ τk)
)]

l→∞−→ EΘ×λ
[
Ψ ·
(
MΘ
f (t1 ∧ τk)−MΘ

f (t0 ∧ τk)
)]
.

(5.5)

Since the sequence (Θl) converges to Θ, the set {Θl : l ∈ N} ∪ {Θ} is com-
pact in P(Z). Recalling (2.6), we �nd that the set of probability measures
{νΘl

(t) : l ∈ N, t ∈ [0, T ]}∪{νΘ(t) : t ∈ [0, T ]} has compact closure in P(Rd).
We claim that together with Assumption (A2) and the construction of τk,
this implies that

sup
t∈[0,T ],ẑ∈Ẑ

∣∣MΘl
f (t ∧ τk(ẑ), ẑ)−MΘ

f (t ∧ τk(ẑ), ẑ)
∣∣ l→∞−→ 0.

To see this, we consider for example the integral corresponding to the �rst
term in the drift, which is∫ t∧τk(ẑ)

0
〈b(ϕ(s), νΘl

(s)),∇xf(ϕ(s), w(s))〉 ds.
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By the assumed continuity properties of b this converges uniformly in t ∈
[0, T ], ẑ ∈ Ẑ to ∫ t∧τk(ẑ)

0
〈b(ϕ(s), νΘ(s)),∇xf(ϕ(s), w(s))〉 ds,

and a similar result holds for each of the other terms. Since Ψ is bounded,
it follows that∣∣EΘl×λ

[
Ψ ·
(
MΘ
f (t1 ∧ τk)−MΘ

f (t0 ∧ τk)
)]

−EΘl×λ

[
Ψ ·
(
MΘl
f (t1 ∧ τk)−MΘl

f (t0 ∧ τk)
)]∣∣ l→∞−→ 0.

In combination with (5.5) this implies Φ(Θl)→ Φ(Θ).
By hypothesis, the sequence (Qn)n∈I of P(Z)-valued random variables

converges to Q in distribution. Hence the mapping theorem and the conti-
nuity of Φ imply that Φ(Qn)→ Φ(Q) in distribution.

Let n ∈ I. By construction of Qn and Fubini's theorem, for ω ∈ Ω,

Φ(Qnω) = EQn
ω×λ

[
Ψ ·
(
M

Qn
ω

f (t1 ∧ τk)−M
Qn

ω
f (t0 ∧ τk)

)]
=

1

n

n∑
i=1

∫ 1

0
Ψ
(
(X̄i,n(., ω), ρi,nω ,W i(., ω)), a

)
·
(
f
(
X̄i,n(t1 ∧ τ̄ i,nk , ω),W i(t1 ∧ τ̄ i,nk , ω)

)
− f

(
X̄i,n(t0 ∧ τ̄ i,nk , ω),W i(t0 ∧ τ̄ i,nk , ω)

)
−
∫ t1∧τ̄ i,nk

t0∧τ̄ i,nk

Aµ̄nωs (f)
(
X̄i,n(s, ω), uni (s, ω),W i(s, ω)

)
ds
)
da,

where Aµ̄nω is de�ned according to (4.2) with µ̄nω in place of νΘ, and τ̄
i,n
k =

τ̄ i,nk (ω, a) is de�ned like τk((ϕ, r, w), a) with ϕ replaced by X̄i,n(., ω), r re-
placed by ρi,nω , the relaxed control corresponding to uni (., ω), and w replaced
by W i(., ω).

For all a ∈ [0, 1], by Itô's formula, it holds P-almost surely that

f
(
X̄i,n(t1 ∧ τ̄ i,nk ),W i(t1 ∧ τ̄ i,nk )

)
− f

(
X̄i,n(t0 ∧ τ̄ i,nk ),W i(t0 ∧ τ̄ i,nk )

)
−
∫ t1∧τ̄ i,nk

t0∧τ̄ i,nk

Aµ̄ns (f)
(
X̄i,n(s), uni (s),W i(s)

)
ds
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=

∫ t1∧τ̄ i,nk

t0∧τ̄ i,nk

∇xfT
(
X̄i,n(s),W i(s)

)
σ
(
Xi,n(s), µ̄n(s)

)
dW i(s)

+

∫ t1∧τ̄ i,nk

t0∧τ̄ i,nk

∇zfT
(
X̄i,n(s),W i(s)

)
dW i(s),

where τ̄ i,nk = τ̄ i,nk (., a) and τ̄ i,nk , µ̄n, X̄i,n, uni , are random objects on (Ω,F).
By Fubini's theorem and Jensen's inequality, we have

E
[
Φ(Qn)2

]
≤
∫ 1

0
E

[
EQn

ω

[
Ψ(., a) ·

(
M

Qn
ω

f (t1 ∧ τk(., a))−MQn
ω

f (t0 ∧ τk(., a))
)]2
]
da.

For all a ∈ [0, 1], by the Itô isometry and because Ψ(., a) is Gt0-measurable
and τk(., a) is a stopping time with respect to (Gt), it holds that

E

[
EQn

ω

[
Ψ(., a) ·

(
M

Qn
ω

f

(
t1 ∧ τk(., a)

)
−MQn

ω
f

(
t0 ∧ τk(., a)

))]2
]

= E

[
EQn

ω

[
Ψ(., a)·1{τk(.,a)≥t0}

·
(
M

Qn
ω

f

(
t1 ∧ τk(., a)

)
−MQn

ω
f

(
t0 ∧ τk(., a)

))]2
]

= E

[( 1

n

n∑
i=1

∫ t1∧τ̄ i,nk (.,a)

t0∧τ̄ i,nk (.,a)
Ψ(., a) · 1{τ̄ i,nk (.,a)≥t0} ·

(
∇zfT

(
X̄i,n(s),W i(s)

)
+∇xfT

(
X̄i,n(s),W i(s)

)
σ
(
Xi,n(s), µ̄n(s)

))
dW i(s)

)2
]

=
1

n2

n∑
i=1

E

[∫ t1∧τ̄ i,nk (.,a)

t0∧τ̄ i,nk (.,a)

∣∣∣Ψ(., a) · 1{τ̄ i,nk (.,a)≥t0} ·
(
∇zfT

(
X̄i,n(s),W i(s)

)
+∇xfT

(
X̄i,n(s),W i(s)

)
σ
(
Xi,n(s), µ̄n(s)

))∣∣∣2ds]
n→∞−→ 0.

It follows that for each (k, t0, t1,Ψ, f) ∈ T there is a set Z(k,t0,t1,Ψ,f) ∈ F̃
such that P̃(Z(k,t0,t1,Ψ,f)) = 0 and

Φ(k,t0,t1,Ψ,f)(Qω) = 0 for all ω ∈ Ω̃ \ Z(k,t0,t1,Ψ,f).
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Let Z be the union of all sets Z(k,t0,t1,Ψ,f), (k, t0, t1,Ψ, f) ∈ T . Since T is
countable, we have Z ∈ F̃ , P̃(Z) = 0 and

Φ(k,t0,t1,Ψ,f)(Qω) = 0 for all ω ∈ Ω \ Z, (k, t0, t1,Ψ, f) ∈ T .

It follows that Qω corresponds to a weak solution of Eq. (2.7) for P̃-almost
all ω ∈ Ω̃.

The function F in (3.3) is bounded and continuous. The variational lower
bound now follows from Eq. (5.3), Lemmata 5.1 and 5.2, Fatou's lemma and
the de�nition of I.

6 Variational upper bound

Let Θ ∈ P∞. We will construct a sequence (uN )N∈N with uN ∈ UN on a
common stochastic basis such that (3.4) holds:

lim sup
N→∞

{
1

2
E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2dt

]
+ E

[
F (µ̄N )

]}

≤ 1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr) + F (ΘX ).

Let (X̄, ρ,W ) be the canonical process on Z (cf. end of Section 2). Then
((Z,B(Z),Θ), (G̃Θ

t+), (X̄, ρ,W )) is a weak solution of Eq. (2.7). The �ltration
(G̃Θ
t+) satis�es the usual conditions, where (G̃Θ

t ) denotes the Θ-augmentation
of the canonical �ltration (Gt) (cf. Section 4).

Since the relaxed control process ρ appears linearly in Eq. (2.7), it cor-
responds, as far as the dynamics are concerned, to an ordinary (Gt)-adapted
process u, namely

u(t, ω)
.
=

∫
Rd1

y ρω,t(dy), t ∈ [0, T ], ω ∈ Z,

where ρω,t is the derivative measure of ρω at time t. For the associated costs,
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by Jensen's inequality,

E

[∫ T

0
|u(t)|2dt

]
= E

[∫ T

0

∣∣∣∣∫
Rd1

y ρt(dy)

∣∣∣∣2
]

≤ E

[∫ T

0

∫
Rd1

|y|2ρt(dy)

]
= E

[∫
Rd1×[0,T ]

|y|2ρ(dy×dt)

]
,

whence u performs at least as well as ρ. Let ρ̃ be the relaxed control random
variable corresponding to u according to (2.4). In general, ρ̃ 6= ρ. However,
since both (X̄, ρ,W ) and (X̄, ρ̃,W ) are solutions of Eq. (2.7) under Θ and
since the costs associated with u and thus ρ̃ never exceed the costs associated
with ρ, we may and will assume that ρ = ρ̃.

De�ne a probability space (Ω∞,F∞,P∞) together with a �ltration (F∞t )

as the countably in�nite product of (Z,B(Z),Θ) and (G̃Θ
t+), respectively. For

a typical element of Ω∞ let us write ω = (ω1, ω2, . . .). For i ∈ N de�ne

W i,∞(t, ω)
.
= W (t, ωi), u∞i (t, ωi)

.
= u(t, ωi), ω ∈ Ω∞, t ∈ [0, T ].

Let ρi,∞ be the relaxed control random variable corresponding to u∞i . By
construction, (ρi,∞,W i,∞), i ∈ N, are independent and identically distributed
with common distribution the same as that of (ρ,W ). In particular, W i,∞,
i ∈ N, are independent d1-dimensional standard Wiener processes.

For N ∈ N, let X̃1,N , . . . , X̃N,N be the solution to the system of SDEs

dX̃i,N (t) = b
(
X̃i,N (t), µ̃N (t)

)
dt+ σ

(
X̃i,N (t), µ̃N (t)

)
u∞i (t)dt

+ σ
(
X̃i,N (t), µ̃N (t)

)
dW i,∞(t), X̃i,N (0) = xi,N ,

where µ̃N (t) is the empirical measure of X̃1,N , . . . , X̃N,N at time t. Thus,
X̃i,N solves Eq. (2.3) with the same deterministic initial condition as before,
but on a di�erent stochastic basis.

For each N ∈ N de�ne, in analogy with (5.2), a P(Z)-valued random
variable according to

Q̃Nω (B ×R×D)
.
=

1

N

N∑
i=1

δX̃i,N (.,ω)(B) · δ
ρi,∞ω

(R) · δW i,∞(.,ω)(D),

26



B ×R×D ∈ B(Z), ω ∈ Ω∞. In analogy with (5.3) we have

1

2
E∞

[
1

N

N∑
i=1

∫ T

0
|u∞i (t)|2dt

]
+ E∞

[
F (µ̃N )

]
=

∫
Ω∞

[∫
R1

(
1

2

∫
Rd1×[0,T ]

|y|2 r(dy×dt)

)
Q̃Nω,R(dr) + F (Q̃Nω,X )

]
P∞(dω).

(6.1)

Since (ρ̃i,∞,W i,∞), i ∈ N, are i.i.d., the second and third component of
(Q̃N )N∈N are tight. Tightness of the �rst component is an immediate con-
sequence of Assumption (A5). Thus, (Q̃N )N∈N is tight as a family of P(Z)-
valued random variables.

Let Q̃ be any limit point of (Q̃N )N∈N de�ned on some probability space
(Ω̃, F̃ , P̃). By Lemma 5.2 and its proof, it follows that, for P̃-almost all
ω ∈ Ω̃, Q̃ω corresponds to a weak solution of Eq. (2.7). Moreover, since
(ρi,∞,W i,∞), i ∈ N, are i.i.d. with common distribution (under P∞), the
same as that of (ρ,W ) (under Θ), Varadarajan's theorem [15: p. 399] implies
that, for P̃-almost all ω ∈ Ω̃,

Q̃ω|B(R1×W) = Θ ◦ (ρ,W )−1,

that is, the joint distribution of the second and third component of the
canonical process on Z under a typical Q̃ω equals the joint distribution of
the control and Wiener process with which we started.

By Assumption (A4), weak sense uniqueness holds for Eq. (2.7). There-
fore, for P̃-almost all ω ∈ Ω̃,

Q̃ω = Θ ◦ (X̄, ρ,W )−1.

In view of Eq. (6.1), the above identi�cation of the limit points establishes
(3.4), the variational upper bound.

7 Remarks and extensions

A feature of the weak convergence approach to large deviations is its �exi-
bility. To illustrate this point we show in Subsection 7.2 how to extend the
Laplace principle established in Theorem 3.1 to weakly interacting systems
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described by stochastic delay (or functional) di�erential equations. Before,
in Subsection 7.1, we compare our result to the classical large deviation
principle (LDP) established in [10].

7.1 Comparison with existing results

In this subsection we compare our results with the now classical work [10].
One of the main assumptions in the latter work is the non-degeneracy of
the di�usion coe�cient σ. Although the expression for the rate function
(see Eq. (7.1) below) is well-de�ned even if the di�usion matrix σσT is not
invertible, the assumption of non-degeneracy is important in the proof of the
LDP. Additionally, weak interaction is allowed only through the drift term.
Proofs proceed by �rst establishing a local version of the LDP which is then
lifted to a global result using careful exponential probability estimates.

The approach taken in the current paper does not require any exponential
estimates and proofs cover the setting of a degenerate σ and models with
weak interactions in both the drift and di�usion coe�cient. The signi�cant
additional assumption made in the current work over [10] is (A3)�we require
strong existence and uniqueness of solutions to Eq. (2.1) whereas the cited
paper only assumes weak existence and uniqueness.

Of somewhat lesser signi�cance is the di�erence in the topology consid-
ered on P(Rd) and the space over which the LDP is formulated. In par-
ticular, in [10] the drift coe�cient b need not be continuous on the entire
product space Rd × P(Rd), where P(Rd) is equipped with the topology of
weak convergence, but only on Rd ×M∞, where M∞ is a set of probabil-
ity measures on B(Rd) which satisfy certain moment bounds in terms of a
�Lyapunov function� ϕ : Rd → R. The set M∞ is equipped with the �in-
ductive� topology induced by ϕ [10: Section 5.1]. Additional assumptions
in terms of this Lyapunov function are imposed which in particular ensure
that (µN (t))0≤t≤T is a M∞-valued process with continuous sample paths
(see (B.2)�(B.4) in [10: Section 5.1]). With some additional work, we can
relax Assumption (A2) on the continuity of b, σ in their second argument
and, under Lyapunov function conditions analogous to (B.2)�(B.4), obtain
an LDP in a space similar to the one used by [10], namely C([0, T ],M∞). A
minor di�culty, with the approach taken here, in working withM∞ is that
the inductive topology is not metrizable. However, one can proceed as fol-
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lows. Let Pλ(Rd) be the set of all probability measures ν ∈ P(Rd) such that∫
λ(x)ν(dx) < ∞, where λ(x) = |x|k0(|x|, |x|) for some (suitable) symmet-

ric, continuous, non-negative and non-decreasing function k0 [cf. 28: p. 123].
The topology of λ-weak convergence, i.e., weak convergence plus convergence
of λ-moments, makes Pλ(Rd) a Polish space; cf. Theorems 6.3.1 and 6.3.3 in
[28: pp. 130-134]. Instead of (A2), we would assume that b, σ are continuous
as functions de�ned on Rd × Pλ(Rd) with Pλ(Rd) carrying the topology of
λ-weak convergence. The function λ plays the role of the Lyapunov func-
tion ϕ used in [10: Section 5.1]. The only further modi�cation would regard
Assumption (A5). In addition to tightness of the sequences of empirical
measures (µ̄N ), one would have to guarantee that the time marginals µ̄N (t)

stay in Pλ(Rd). An appropriate condition (which would be analogous to
conditions (B.2)�(B.4) in [10: Section 5.1]) could be formulated in terms of
the Lyapunov function.

The expression for the rate function as given in Eq. (1.5) in [10] is di�erent
from the form given in Theorem 3.1 of the current paper. For simplicity we
consider the case where σ is the identity matrix. The rate function (called
�action functional� in [10]) S is given by

(7.1) S
(
θ(.)
)

=
1

2

∫ T

0
sup

f∈D:〈θ(t),|∇f |2〉6=0

|〈θ̇(t)− L(θ(t))∗θ(t), f〉|2

〈θ(t), |∇f |2〉
dt

if θ(.) : [0, T ] → M∞ is absolutely continuous and S(θ(.)) = ∞ otherwise.
Here D is the Schwartz space of test functions Rd → R with continuous
derivatives of all orders and compact support and L(θ(t))∗ is the formal
adjoint of the generator L(θ(t)), which operates on f ∈ D according to

L(θ(t))(f)(x)
.
= 〈b(x, θ(t)),∇f(x)〉+

1

2

d∑
j,k=1

∂2f

∂xj∂xk
(x).

Probability measures on B(Rd) are interpreted as elements ofD′, the Schwartz
space of distributions consisting of all continuous linear functionals on D.
Absolute continuity of θ(.) and the time derivatives θ̇(t) are de�ned accord-
ingly. With an abuse of notation, for ψ ∈ D′ and f ∈ D, ψ(f) is written as
〈ψ, f〉. The operator L(θ(t))∗ maps elements of D′ to D′.

As mentioned in Remark 3.2, for the special case where σ is the identity
matrix the family {µN (.), N ∈ N} satis�es a large deviation principle with
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rate function

(7.2) I
(
θ
)

= inf
Θ∈P∞:ΘX=θ

EΘ

[
1

2

∫ T

0
|u(t)|2dt

]
,

where inf ∅ .=∞ by convention, u(t) =
∫
Rd1 yρt(dy), (X̄,W, ρ) is the canon-

ical process on (Z,B(Z)) and Θ-almost surely X̄ satis�es,

dX̄(t) = b
(
X̄(t), θ(t)

)
dt+ u(t)dt+ dW (t).

In order to see the relation between the rate functions (7.1) and (7.2) we
proceed, somewhat formally, as follows. Let Θ ∈ P∞ be such that for some
measurable function v : [0, T ] × Rd → Rd1 with v(t, .) ∈ D for all t ∈ [0, T ],∫
Rd1 yρt(dy) = ∇v(t, X̄(t)), Θ-almost surely. We denote the collection of all
such Θ by P1

∞. Let θ ∈ P(X ) be such that, for some Θ ∈ P1
∞, θ = ΘX . Fix

such a Θ. Under Θ, the �rst component X̄ of the canonical process solves

dX̄(t) = b
(
X̄(t), θ(t)

)
dt+∇v

(
t, X̄(t)

)
dt+ dW (t).

For f ∈ D, applying Itô's formula to X̄, we get

f(X̄(t+h))− f(X̄(t))

=

∫ t+h

t
L(θ(s))(f)(X̄(s))ds+

∫ t+h

t
∇f(X̄(s)) · ∇v(s, X̄(s))ds

+M(t+h)−M(t),

where M is a (Gt)-martingale under Θ. Taking expectations in the above
display, dividing by h and sending h→ 0, we obtain

〈θ̇(t)− L(θ(t))∗θ(t), f〉 = 〈θ(t),∇f · ∇v(t, .)〉 , t ∈ [0, T ].

Then

sup
f∈D:〈θ(t),|∇f |2〉6=0

|〈θ̇(t)− L(θ(t))∗θ(t), f〉|2

〈θ(t), |∇f |2〉
= sup

f∈D:〈θ(t),|∇f |2〉6=0

|〈θ(t),∇f · ∇v(t, .)〉|2

〈θ(t), |∇f |2〉

= 〈θ(t), |∇v(t, .)|2〉
= EΘ

[
|u(t)|2

]
.

Since the above relation holds for every Θ ∈ P1
∞ satisfying θ = ΘX , we get

S
(
θ(.)
)

= inf
Θ∈P1

∞:ΘX=θ
EΘ

[
1

2

∫ T

0
|u(t)|2dt

]
.
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A formal relation between the rate functions (7.1) and (7.2) is now appar-
ent. Making this connection more precise requires some work. In particular
one needs to argue that the in�mum of the cost in the rate function (7.2)
can be restricted to Markov controls of the form u(t) = ∇v(t, X̄(t)).

7.2 Processes with delay

Our approach allows one to treat more general Itô equations than those of
di�usion type with very little additional e�ort. A good example are SDEs
whose coe�cients are allowed to depend on the entire past of the state tra-
jectories. Let us make this more precise. Suppose that the coe�cients b,
σ are progressive functionals de�ned on [0, T ] × X × P(Rd), where we re-
call that X = C([0, T ],Rd); that is, b, σ are Borel measurable and for each
t ∈ [0, T ], b, σ restricted to [0, t] × X × P(Rd) is measurable with respect
to B([0, t]) × GXt × B(P(Rd)) where GXt is the σ-algebra generated by the
coordinate process on X . Eq. (2.1), the prelimit equation for an individual
particle (the i-th out of N), takes the form

(7.3) dXi,N (t) = b
(
t,Xi,N , µN (t)

)
dt+ σ

(
t,Xi,N , µN (t)

)
dW i(t),

The system of N equations given by (7.3) is a system of stochastic functional
di�erential equations or stochastic delay di�erential equations (SFDEs or
SDDEs). The corresponding uncontrolled limit equation reads

(7.4) dX(t) = b
(
t,X,Law(X(t))

)
dt+ σ

(
t,X,Law(X(t))

)
dW (t),

while the controlled versions of (7.3) and (7.4) will be

(7.5)

dX̄i,N (t) = b
(
t, X̄i,N , µ̄N (t)

)
dt+ σ

(
t, X̄i,N , µ̄N (t)

)
ui(t)dt

+σ
(
t, X̄i,N , µ̄N (t)

)
ui(t)dW

i(t)

(7.6)

dX̄(t) = b
(
t, X̄,Law(X̄(t))

)
dt+

(∫
Rd1

σ
(
t, X̄,Law(X̄(t))

)
yρt(dy)

)
dt

+σ
(
t, X̄,Law(X̄(t))

)
u(t)dW (t)

respectively. In Eq. (7.5) ui is the i-th component of u = (u1, . . . , uN ) for
some u ∈ UN , while ρ in Eq. (7.6) is an adapted R1-valued random variable
as in Eq. (2.7).
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The Laplace principle can now be established in the same way as above
except for two points which need modi�cation. Those are the formulation
of the local martingale problem in Section 4 and the continuity assumption
(A2). Let us denote by (A3') � (A5') the analogues of Assumptions (A3) �
(A5), which are obtained by replacing all references to Equations (2.1), (2.2),
(2.3), (2.7) with Equations (7.3), (7.4), (7.5), (7.6), respectively.

As to the martingale problem, we have to rede�ne the processesMΘ
f and

the �generators� AΘ
s (f) according to

MΘ
f

(
t, (ϕ, r, w)

) .
= f

(
ϕ(t), w(t)

)
− f

(
ϕ(0), 0

)
−
∫ t

0

∫
Rd1

AΘ
s (f)

(
ϕ, y, w(s)

)
rs(dy)ds,

where for s ∈ [0, T ], ϕ ∈ X , y, z ∈ Rd1 ,

AΘ
s (f)(ϕ, y, z)

.
=
〈
b
(
s, ϕ, νΘ(s)

)
+ σ

(
s, ϕ, νΘ(s)

)
y,∇xf(ϕ(s), z)

〉
+

1

2

d∑
j,k=1

(σσT)jk
(
s, ϕ, νΘ(s)

) ∂2f

∂xj∂xk
(ϕ(s), z)

+
1

2

d1∑
l=1

∂2f

∂zl∂zl
(ϕ(s), z)

+
d∑

k=1

d1∑
l=1

σkl
(
s, ϕ, νΘ(s)

) ∂2f

∂xk∂zl
(ϕ(s), z).

Notice that the test functions f are still elements of C2(Rd × Rd1). With
these rede�nitions, Lemma 4.1 continues to hold.

Assumption (A2) about the continuity of b, σ has to be modi�ed in
order to account for the time dependence and supplemented by a condition
of uniform continuity and boundedness, which is automatically satis�ed in
the di�usion case.

(A2') The functions b(t, ., .), σ(t, ., .) are continuous, and uniformly contin-
uous and bounded on sets B × P whenever B ⊂ X is bounded and
P ⊂ P(Rd) is compact, uniformly in t ∈ [0, T ].

De�ne the set P?∞ of probability measures on B(Z) as the set P∞ in
Section 3, replacing reference to Eq. (2.7) with Eq. (7.6). Then the following
large deviation (or Laplace) principle holds.
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Theorem 7.1. Grant Assumptions (A1), (A2') � (A5'). Then the family of

empirical measures {µN , N ∈ N} associated with Equations (7.3) satis�es

the Laplace principle with rate function

Ĩ(θ) = inf
Θ∈P?

∞:ΘX=θ

1

2

∫
R

∫
Rd1×[0,T ]

|y|2 r(dy×dt)ΘR(dr).

Note that there is also a simpler looking form of the rate function as in
Remark 3.2. The proof of Theorem 7.1 is completely analogous to that of
Theorem 3.1 given in Sections 5 and 6. The proof of Lemma 5.2, in particular,
and speci�cally the use of the local martingale problem and randomized
stopping times there was tailored to �t not only the di�usion case, but the
case of dynamics with delay as well.

Lastly, note that we could further generalize our model to include the case
of coe�cients b, σ which also depend on the past of the empirical process. In
this case, b, σ would be progressive functionals de�ned on [0, T ]×X ×P(X ),
and a Laplace principle could be established in the same way as before.
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A Appendix

A.1 Local martingales with respect to (Ĝt) and (Gt)

Let the notation be that of the proof of Lemma 5.2 in Section 5. Let Θ ∈
P(Z), f ∈ C2(Rd), and set M(t)

.
= MΘ

f (t), t ∈ [0, T ]. Notice that M is a
random object de�ned on (Z,B(Z)) with values in X = C([0, T ],Rd), which
can be identi�ed with the random object living on (Ẑ,B(Ẑ)) given by

Z × [0, 1] 3 (z, s) 7→ (M(t, z))t∈[0,T ] ∈ X .

Let k ∈ N. Suppose that M(. ∧ τk) is a martingale under Θ̂ = Θ × λ with
respect to the canonical �ltration (Ĝt) in B(Ẑ). Set

τ◦k (z)
.
= τk(z, 0), z ∈ Z.

We claim thatM(.∧τ◦k ) is a martingale under Θ with respect to the canonical
�ltration (Gt) in B(Z).

Proof. Since τk is a (Ĝt)-stopping time and Ĝt = Gt × B([0, 1]), t ∈ [0, T ], it
follows that τ◦k is a (Gt)-stopping time. Moreover, τ◦k is also a (Ĝt)-stopping
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time, because Gt can be identi�ed with Gt × {∅, [0, 1]}, t ∈ [0, T ], and (Gt ×
{∅, [0, 1]}) is a sub�ltration of (Ĝt).

Let s, t ∈ [0, T ], s ≤ t. We have to show that

EΘ [M(t ∧ τ◦k ) · 1Z ] = EΘ [M(s ∧ τ◦k ) · 1Z ] for all Z ∈ Gs.

Since M(. ∧ τk) is a martingale under Θ̂ with respect to (Ĝt) and τ◦k is also
a (Ĝt)-stopping time, it follows that M(. ∧ τk ∧ τ◦k ) is a martingale under Θ̂

with respect to (Ĝt). Yet for all (z, t) ∈ Ẑ,

(τk ∧ τ◦k )(z, t) = τk(z, t) ∧ τk(z, 0) = τk(z, 0) = τ◦k (z)

by construction of τk and de�nition of τ◦k . Hence we know that

EΘ̂

[
M(t ∧ τ◦k ) · 1Ẑ

]
= EΘ̂

[
M(s ∧ τ◦k ) · 1Ẑ

]
for all Ẑ ∈ Ĝs.

Let Z ∈ Gs. Then Z × [0, 1] ∈ Ĝs and, by Fubini's theorem,

EΘ [M(t ∧ τ◦k ) · 1Z ] =

∫
Z
M(t ∧ τ◦k (z)) · 1Z(z) Θ(dz)

=

∫
[0,1]

∫
Z
M(t ∧ τ◦k (z) · 1Z×[0,1](z, a) Θ(dz)λ(da)

=

∫
Z×[0,1]

M(t ∧ τ◦k (z) · 1Z×[0,1](z, a) Θ̂(dz×da)

= EΘ̂

[
M(t ∧ τ◦k ) · 1Z×[0,1]

]
= EΘ̂

[
M(s ∧ τ◦k ) · 1Z×[0,1]

]
=

∫
Z×[0,1]

M(s ∧ τ◦k (z) · 1Z×[0,1](z, a) Θ̂(dz×da)

= EΘ [M(s ∧ τ◦k ) · 1Z ] .
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