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LARGE DEVIATIONS AND RUIN PROBABILITIES 
FOR SOLUTIONS TO STOCHASTIC 
RECURRENCE EQUATIONS WITH 

HEAVY-TAILED INNOVATIONS 

BY DIMITRIOS G. KONSTANTINIDES AND THOMAS MIKOSCH1 

University of the Aegean and University of Copenhagen 

In this paper we consider the stochastic recurrence equation Yt = 

At Yt-1 + Bt for an i.i.d. sequence of pairs (At, Bt) of nonnegative random 

variables, where we assume that Bt is regularly varying with index K > 0 
and EAK < 1. We show that the stationary solution (Yt) to this equation has 

regularly varying finite-dimensional distributions with index K. This implies 
that the partial sums Sn = Y1 + - + Yn of this process are regularly varying. 
In particular, the relation P(Sn > x) - clnP(Y > x) as x -+ oc holds 
for some constant cl > 0. For K > 1, we also study the large deviation 

probabilities P(Sn - ES,n > x), x > Xn, for some sequence Xn -- oc whose 

growth depends on the heaviness of the tail of the distribution of Y1. We 
show that the relation P (Sn - E Sn > x) - c2n P(Y1 > x) holds uniformly for 
x > x, and some constant c2 > 0. Then we apply the large deviation results 
to derive bounds for the ruin probability /(u)= P(sup>1 ((Sn - ESn) - 

itn) > u) for any t > 0. We show that * (u) - c3uP(YI > u) -l(K - 1)-1 
for some constant c3 > 0. In contrast to the case of i.i.d. regularly varying 
Yt's, when the above results hold with cl = c2 = c3 = 1, the constants cl, c2 
and c3 are different from 1. 

1. Introduction. The stochastic recurrence equation 

(1.1) Yt = At Yt-1 + Bt, t E Z, 

and its stationary solution have attracted much attention over the last years. Here 

((At, Bt)) is an i.i.d. sequence of pairs of nonnegative random variables At and Bt. 
[In what follows, we write A, B, Y,...., 

for generic elements of the stationary 
sequences (At), (Bt), (Yt), etc. We also write c for any positive constant whose 
value is not of interest.] 

Major applications of stochastic recurrence equations are in financial time series 

analysis. For example, the squares of the GARCH process can be embedded in 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 1993 

a stochastic recurrence equation of type (1.1); we refer to Section 8.4 in [15] 
for an introduction to stochastic recurrence equations and [1] and [23] for 
recent surveys on the mathematics of GARCH models, their properties and 
relation with stochastic recurrence equations. The stochastic recurrence equation 
approach has also proved useful for the estimation of GARCH and related models; 
see [27, 37, 38]. In a financial or insurance context, the stochastic recurrence 

equation (1.1) has natural interpretations. For example, Bt can be considered as 
annual payment and At as a discount factor. The value Yt is then the aggregated 
value of past discounted payments. In a life insurance context, (Yt) is referred to 
as a perpetuity; see, for example, [14]. Stochastic recurrence equations have also 
been used to describe evolutions in biology; see [2] and the references therein. 

It will be convenient to use the notation 

1 
As,..., 

At, s 
< 
t, 

1, s > t, 

It is well known [5] that, under the assumptions E log+ A < oo and E log+ B < Xo, 
(1.1) has a unique strictly stationary ergodic causal solution (Yt) [i.e., Yt is a 
function only of (As, Bs), s < t] if and only if 

(1.2) -oo 
• 

E log A < 0. 

In what follows, we always assume these conditions to be satisfied. The stationary 
solution has representation 

t t-1 

(1.3) Yt= E Hi+,tBi 
= 
Bt? 

+- 
li+,tBi, te• 

Z. 

i=--00 1=--00 

We say that any nonnegative random variable Z and its distribution are regularly 
varying with index K if its right tail is of the form 

L(x) 
P(Z > x) , x > 0, 

XK 

for some K > 0 and a slowly varying function L. A result of Kesten [21] shows that 
the stationary solution to the stochastic recurrence equation (1.1) has regularly 
varying distribution, under quite general conditions on A and B. We cite this 
benchmark result for comparison with the results we obtain in this paper. 

THEOREM 1.1 (Kesten [21]). Assume that the following conditions hold: 

SFor some > , EAE < 1. 
* The set 

{log(an ... al) : n > 1, an ... al > Oand an, ..., a ie the support of PA) 

generates a dense group in IR with respect to summation and the Euclidean 
topology. Here PA denotes the distribution of A. 
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1994 D. G. KONSTANTINIDES AND T. MIKOSCH 

* There exists Ko > 0 such that 

(1.4) EAKo > 1, 

and E(AKO log+ A) < oo. 

Then the following statements hold: 

1. There exists a unique solution K e (0, KO] to the equation 

EAK =1. 

2. If E BK < c, there exists a unique strictly stationary ergodic causal solution 

(Yt) to the stochastic recurrence equation (1.1) with representation (1.3). 
3. If EBK < oo, then Y is regularly varying with index K > 0. In particular, there 

exists c > 0 such that 

P(Y > x) -, cx-K, x --* 00. 

Condition (1.4) is crucial. Goldie and Grtibel [17] show that P(Y > x) can 

decay exponentially fast to zero if (1.4) is not satisfied. Notice that (1.4) ensures 
that the support of A is spread out sufficiently far. 

The set-up of this paper is different from the one in Kesten's Theorem 1.1. The 
latter result is surprising insofar that a light-tailed distribution of A (such as the 

exponential or the truncated normal distribution) can cause the stationary solution 

(Yt) to (1.1) to have a marginal distribution with Pareto-like tails. In this paper we 

consider the case when B is regularly varying with index K and A has a lighter 

right tail than B. In this case the conditions of Kesten's theorem are not met. 
In particular, we always assume that EAK < 1. The marginal distribution of the 

stationary solution (Yt) turns out to be regularly varying with the same index K as 

the innovations Bt. 
It is the objective of this paper to study the interplay of the regular variation 

of Y and the particular dependence structure of the Yt's with respect to the partial 
sums 

Sn = Y1 + + Yn, n L1. 

Due to (multivariate) regular variation of the finite-dimensional distributions 

of (Yt), Sn is regularly varying with index K, and we establish the precise tail 

asymptotics for P (Sn > x) for fixed n and as x --+ o. We will see that, in contrast 

to i.i.d. regularly varying random variables Yr (cf. Lemma 1.3.1 in [15]), the 
relation 

P(Sn > x) 
lim = 1, n > 2, 

x-+*oo n P(Y > x) 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 1995 

does not hold for the stationary solution (Yt) to (1.1), neither under the 
conditions of Kesten's theorem nor under the conditions imposed in this paper; 
see Section 3.3. We will show in Proposition 3.3 that 

l P(Sn > x) 
lim x-o p(Y > x) 

(1.5) 

=E( Hi + (1 - EA) E Hi , n > 2. 

i=1 t=0 i=0 

A question which is closely related to (1.5) concerns the large deviations of the 

partial sum process (Sn). In this case, one is interested in the asymptotic behavior 
of the tail P(Sn > xn) for real sequences (x,) increasing to infinity sufficiently 
fast. Classical results (see, e.g., [8, 29, 30]; cf. the surveys in Section 8.6 in [15] 
and [24]) say that, for i.i.d. (Yt) and thresholds x, -+ o00, the relation 

P(Sn 
> Xn) 

~ nP(Y > xn) 
(1.6) 

SP(max(Y, ..., Yn) > xn) 

holds. For reasons of comparison, we quote a general large deviation result for 
i.i.d. random variables. 

THEOREM 1.2. Assume that B > 0 is regularly varying with index K > 0. 

1. ([29, 30]) Assume that K > 2. Then 

P (Bt - EB) > x = D(x/V/)(1 + o(1)) + nP(B > x)(1 + o(l)), 

as n -+ 0o and uniformly for x > ,, 
where V = 1 - 0 is the right tail of the 

standard normal distribution function D. In particular, 

P ( (Bt - EB) > x = 
q(x/V/)(1 + o(1)) 

(t=1 

uniformlyfor I < x < IanlTogn and a < Kc - 2, and 

P (Bt - EB) > x=nP(B >x)(1 + o(1)) 

uniformly for x > ,,anlogn and a > K - 2. 

2. ([8]) Assume that K E (1,2). Then 

(1.7) P (Bt - EB) > x 
=-nP(B 

> x)(1 + o(1)), 

as n 
--+ 

o and uniformly for x > ancn, where (an) satisfies nP(B > an) 
~ 1 

and (cn) is any sequence satisfying cn -+ 0o. 
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1996 D. G. KONSTANTINIDES AND T. MIKOSCH 

The uniformity of these large deviation results refers to the fact that the error 
bounds hold uniformly for the indicated x-regions. For example, in the case 
K E (1, 2), (1.7) means that 

p(E nI(Bt -EB) > x) 
(1.8) lim sup - 1 = 0, 

n-+x cxn nP(B > x) 

where x, = 
anCn. 

We will show in Theorem 4.2 that the following analog to Theorem 1.2 holds, 
under the more restrictive condition that (At) and (Bt) are independent: 

P(Sn - ESn > x)K 00-K 
(1.9) lim sup - (1 - EAK)E IHi 0. 

n+eX>Xn nP(Y > x) i 

The question about large deviations is closely related to the ruin probability of 
the random walk (Sn). Given that EY < oo, this is the probability 

(u)-= 
P( sup[(Sn - ESn)- tn]> 

u), 
u, 4 > 0. 

(n>1 

It is one of the very well studied objects of applied probability theory, starting 
with classical work by Cram6r in the 1930s. For i.i.d. regularly varying and, more 

generally, subexponential Yt's, the asymptotic behavior of fr (u) as u --+ *o was 
studied by various authors; see Chapter 1 in [15]. The following benchmark result 
is classical in the context of ruin for heavy-tailed distributions. We cite it here for 

comparison with the results of this paper. 

THEOREM 1.3. Assume that B is regularly varying with index K > 1. Then 

for any ut > 0, 

P sup (Bt-EB)-gn >u 
~,-- 

uP(B > u), u -- 00. 
n>l t=1K - 1 

In Theorem 4.9 we prove an analogous result for (Yt): 

1 1 1 
(1.10) #(u) 

~-- (1-- 
EAK)E rli uP(Y > u). 

K 
i=0 

The results of this paper are derived by applications of the heavy-tailed large 
deviations heuristics. In the case of i.i.d. Yt's, this means that a large deviation 

of the random walk S, from its mean E Sn must be due to exactly one unusually 
large value Yt, whereas the Ys's for s - t are small compared to Yr. We refer 
to [35] for a review on these heuristics which can be exploited in the context 
of various applied probability models. For dependent Yt 's, as considered in this 

paper, the large deviations heuristics has to be combined with the understanding 
of the dependence structure of the random walk Sn exceeding high thresholds. In 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 1997 

the proof of the ruin probability result, it turns out that the ruin probability of the 
random walk (Sn) behaves very much like the ruin probability of the random walk 

E= B Ct, where Ct = t 1t+1,i, t E Z. This is another stationary sequence, 
but, under the conditions of this paper, its marginal distributions have tails less 

heavy than (Bt). Since we assume independence of (At) and (Bt), hence, of (Ct) 
and (Bt), in Section 4.2, it is likely that a large value of S, is now caused by a large 
value Bt Ct, which in turn is caused by a large value of Bt. We make this intuition 

precise by showing (1.10). 
The results (1.5) on the tail of S, for fixed n, (1.9) on the large deviations of (Sn) 

and (1.10) on the ruin probability of (S,) and their analogs for i.i.d. Yt 's illustrate 
some crucial differences between the behavior of a random walk with dependent 
and independent heavy-tailed step sizes far away from the origin. The constants 
on the right-hand sides of (1.5), (1.9) and (1.10), which differ from those in the 
case of i.i.d. regularly varying Yt 's, can be considered as alternative measures of 
the extremal clustering behavior of the Yt's. Similar results were obtained only 
for a few classes of stationary processes (Yt). Those include results by Mikosch 
and Samorodnitsky [25, 26] on large deviations and ruin for random walks with 

step sizes which constitute a linear process with regularly varying innovations or a 

stationary ergodic stable process, and by Davis and Hsing [9] on large deviations 
for random walks with infinite variance regularly varying step sizes. So far the 
known results do not allow one to draw a general picture which would allow 
one to classify stationary sequences of regularly varying random variables Yt 
with respect to their extremal behavior of the random walk with negative drift 

((Sn - E Sn) - gn). The cited results and also those of the present paper are 

steps in the search for appropriate measures of extremal dependence in a stationary 
sequence by studying the behavior of suitable functionals acting on the sequence. 

The paper is organized as follows. In Section 2 we give conditions under which 
the stationary solution (Yt) to the stochastic recurrence equation (1.1) has regularly 
varying finite-dimensional distributions. In Section 3 we consider applications of 
this property to the weak convergence of related point processes, the central limit 
theorem of (Sn) and the partial maxima of (Yt). In Section 4.1 we study the large 
deviations of (S,n) and in Section 4.2 we give our main result on the asymptotic 
behavior of the ruin probability * (u). Since the proofs of the main results are 

quite technical, we postpone them to particular sections at the end of the paper. 
The proof of Theorem 4.2 will be given in Section 5 and the one of Theorem 4.9 
in Section 6. 

2. Regular variation of the solution to the stochastic recurrence equation. 

2.1. Preliminaries. We start with some auxiliary results in order to establish 

regular variation of Y. In what follows, we write F(x) = 1 - F(x) for the right tail 
of any distribution function F. 
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1998 D. G. KONSTANTINIDES AND T. MIKOSCH 

LEMMA 2.1 (Davis and Resnick [12]). Let F be a distribution function 
concentrated on (0, oc). Assume Z1, . . . , Zn are independent nonnegative random 

variables satisfying 

P(Zi > x) 
(2.1) lim = ci 

x--* F (x) 

for some nonnegative finite values ci, where F(x) = P(Z1 < x), and 

P(Zi > x, Zj > x) 
(2.2) lim = 0, i # j. 

x-00 F(x) 

Then 

P(Z1 
+-.. 

+ Zn > x) 
lim 

r_= 
c + 

... 
+ Cn . x--).0 F(x) 

We will frequently make use of the following elementary property which was 

proved by Breiman [7] in a special case. We refer to it as Breiman's result and 

prove a uniform version of it for further use. 

LEMMA 2.2 (Breiman [7]). Let ?, r be independent nonnegative nondegen- 
erate random variables such that ? is regularly varying with index Kc > 0 and 
E 

qK+E 
< OO for some F > 0. Then for any sequence x, - co, 

P(?r 
> 

x) lim sup - EPqK = 0. 
n 

x>_x, 
P(? > x) 

This means that the product ? r inherits regular variation from (. 

PROOF. Fix M > 0. Then 

P (rl > x) 
A(x)=P - E K 

P( > x) 

f1M[ 
P(?y > 

x) - yK] dP(qi< 
,M] P(y > x) 

)/ P($y > x) 

dP(• < 
y) 

- E lK I(M,00) (1) +> dP(q < y) 
(M,00) P($ > x) 

= AI(X) - A2 + A3(x). 

Obviously, 

lim A2 =0. 

M--+ 
o 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 1999 

Moreover, the uniform convergence theorem for regularly varying functions 

(see [4]) implies that, for every fixed M > 0, 

supAi(x) sup P(?y > x) yK 
dP(q 

j y) 
X>Xn X>Xn 10,M] P ( > x) 

P(?y > x) K 
< sup sup ) yK - 0. 

X>Xn y<M P(? > x) 

An application of the Potter bounds for regularly varying functions (see [4], 

page 25) yields, for x, x/y > xo, for sufficiently large x0 > 0 and all y > M > 1, 
that 

P(' > x/y) K+E 

P(4 > x) 

Hence, 

sup IA3(x)I 
< 

sup y+dP( y) 
+ sup P( > 

x/x) 
X>Xn x>xn <y<x/xo n P( > x) 

-+0 

by first letting n -+ 00 and then M -- oc, since EK+e < 00oo. This proves the 
lemma. O 

We now turn to the stochastic recurrence equation (1.1). After n iterations, we 
obtain 

n 

(2.3) Yn = 
-1n 

Yo + E t+1,n Bt. 
t=1 

As in Section 1, we assume that ((At, Bt)) is an i.i.d. sequence of pairs of 

nonnegative random variables At and Bt. In addition, suppose that B is regularly 
varying with index K > 0 and EAK+S < oo for some 3 > 0. Then Breiman's result 

(Lemma 2.2) applies: 

P(1Ii-1Bi > x) 
(2.4) 

P 
(EAK)i-1 as x -+ o. 

P(B > x) 

The following result will be crucial for the property of regular variation of 
the finite-dimensional distributions of the stationary solution (Yn) to (1.1). For 
its formulation, we assume that Yo = c in (2.3) for some constant c. We use the 

same notation (Yn) in this case, slightly abusing notation since (Yn) is then not the 

stationary solution to (1.1). 

PROPOSITION 2.3. Assume B is regularly varying with index Kc > 0 and 

EAK+3 < oc for some S > O. Then the following relation holds for fixed n 1 
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2000 D. G. KONSTANTINIDES AND T. MIKOSCH 

and Yn defined in (2.3) with Yo = c: 

n-1 

P(Yn > x) ~ P(B > x) L(EAK)i as x -+ oo. 
i=O 

PROOF. We write 

Zo = 
-nc, Zt = It- IBt, t = 1,..., n. 

Observe that 

n n n 

Yn = 

-nc+ 
cZIt+,nBt d 

= nc+ HtBt = Zt. 
t=1 t=1 t=O 

We have, for 1 < i < j < n, 

P(Zi > x, Zj > x) 5 P(I-I-1 min(Bi, li,j-1Bj) > x). 

Since EAK+" < oo and B is regularly varying with index K, we can find a function 

g(x) -- o0 such that g(x)/x -+ 0, and P(max(Ai, Hi) > g(x)) = o(P(B > x)). 
Hence, for i < j, 

P(Zi > x, Zj > x) 

P(B > x) 

P(Hi-1 min(Bi, H-i,j-1Bj) > x, max(Ai, H1i) > g(x)) 

P(B > x) 

P(-i-1 min(Bi, Fli,j_-lBj) > x, max(Ai, HFi) < g(x)) 

P(B > x) 

P(max(Ai, Hi) > g(x)) P(i-l Bi > x, Hi+l,j-l Bj > x/g(x)) 

P(B > x) P(B > x) 

= o(1) + (EAK)j-2P(B > x/g(x))(l + o(1)) -- 0. 

In the last step we made multiple use of Breiman's result and the independence of 

Hi-1 Bi and H"i+l,j-1Bj. By Markov's inequality, we also have, for 1 < i < n, 

P(Zo > x, Zi > x) P(Zo > x) n (EAK?+)nx-_K- << < C --0. 
P(B > x) - P(B > x) - P(B > x) 

Hence, we are in the framework of Lemma 2.1 with co = 0 and ci = (EAK)i- 

i = 1, ..., n; see (2.4). This proves the proposition. O 

2.2. Univariate regular variation of Y. In this section we indicate regular 
variation of the marginal distribution of the stationary solution to the stochastic 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2001 

recurrence equation (1.1). From Proposition 2.3 and the representation (1.3) of the 

stationary solution (Yt), we conclude that 

P(Y > x) P(E i-Bi>x) n-1 
(2.5) liminf > lim P( =1U= (EA>K)). 

x--oo P(B > x) 
-x*oc 

P(B > x) 
i=O 

Letting n -+ 00 yields a lower bound for P(Y > x). This relation suggests that 

(2.6) P(Y > x) P(B > 
x)Z(EAK)i, x - 

:00, i=O 

holds under the conditions that B is regularly varying with index K > 0 and 
EAK < 1. Obviously, only if the latter condition holds, relation (2.6) is meaningful. 
This also means that the conditions of Kesten's Theorem 1.1 cannot be satisfied. In 
that case, the index of regular variation Kc of Y satisfies EAK = 1 and EBK < 00. 

Since in our case B is assumed to be regularly varying with index K, the moment 
condition on B is not necessarily met either. 

PROPOSITION 2.4 (Grey [18]). Assume that B is regularly varying with index 

Kc > 0, EAK+8 < oo for some 3 > 0 and EAK < 1. Then a unique strictly stationary 
solution (Yt) to the stochastic recurrence equation (1.1) exists and satisfies 

(2.7) P(Y > x) P(B > x)(1 - EAK)-. 

PROOF. The function g(h)= EAh satisfies g(0) = 1, g(K) < 1 and it is 
continuous and convex in [0, iK]. Therefore, g'(0+) = E log A < 0 and (1.2) and 
E log+A < oo hold. Moreover, since EBY < oo for y < K, E log+ B < oo is 
satisfied and, hence, a unique stationary solution (Yt) to (1.1) exists. 

Relation (2.7) follows from Theorem 1 in [18]. O 

2.3. Regular variation of the finite-dimensional distributions of (Yt). In what 

follows, we assume that the conditions of Proposition 2.4 are satisfied. The latter 
result states that the marginal distribution of the stationary sequence (Yn) is 

regularly varying with the same index K as the innovations Bt. It is the aim 
of this section to extend this result to the finite-dimensional distributions of the 

process (Yt). 
For this reason, we introduce the notion of regular variation for an m-dimensio- 

nal random vector: the vector Ye E R' is regularly varying with index K > 0 if there 
exists a nonnull Radon measure [t on the Borel o-field S of [0, oo]m \ {0} such 
that 

nP(a,'Y e 
") 

4 L. 

Here the sequence (an) satisfies P(IYI > an) 
~ n-1, -4 denotes vague conver- 

gence in S, and g is a measure with the property 
/z(t.) 

= 
t-Kya(.) for all t > 0; 
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see [32] for an introduction to regular variation, related point process convergence 
and vague convergence. An equivalent way to characterize the limiting measure it 
is via a presentation in spherical coordinates. This means that, for every fixed t > 0 
and (a,) as above, 

nP(IYI > 
tan, Y/YI E ) t- 4 P(O E 

.), 
where I I is any fixed norm, --+ refers to vague convergence on the Borel au-field 
of the unit sphere Sd-1 corresponding to this norm and 0 is a vector with values 
in Ed-1. Its distribution is referred to as the spectral distribution of Y. 

For fixed m > 1, we have 

Ym 
= 

(Y1 
.. 

Ym)' 

S(H, 1l2, .. , m)'Yo + B1, B2 + A2BI,..., Bm + j 1-i+1,mBi) 

SF 
\ / 1 / 0 0 (0o 

112 112,2 1 0 

13 r12,3 113,3 0 

= . 
Yo + B1 + B2 + " .+ Bm 

"I -2,m-1 2-3,m-1 0 

\ /I \ 12,m / \ 3,m I \ 1 

: AoY0o + AlB1 + -B - - + AmBm. 

Notice that Ao and Yo are independent, and so are Ai and Bi for every i. Since 

EIjAi K?+6 < for some 6 > 0 and Yo, B1, ..., Bm are independent and regularly 
varying with index K, a multivariate version of Breiman's result (cf. [1, 33]) applies 
to conclude that each of the vectors AoY0, A B1, ..., Am Bm is regularly varying 
with index K with corresponding limiting measures go, .... , I-m. We mention that 
the normalizing sequences for these vectors are of the same size since, by the one- 
dimensional Breiman result and Proposition 2.4, as x - * o, 

P(IAoYol > x) EIAolKP(Yo > x) - EIAoIK(1 - EAK)-1P(B > x), 

P(IAiBi I > x)- E Ai K P(B > x), i = 
-1.... 

m. 

We choose one normalizing sequence (a,) for all vectors such that nP(IAol Yo > 

an) - 1. We can characterize Ai via its spectral distribution. Indeed, by Breiman's 

result, we have, for any Borel set S C Sd- 1 whose boundary has mean zero with 

respect to the spectral distribution, 

nP(IAi Bi > tan,Ai/AiI E S) t-KnP(B > an)E[IAilKIS(Ai/IAil)1, 

and, therefore, the spectral distribution of Ai Yi for these sets S is given by 

E[ IAi I S(Ai/ Ai 1)1 

EIAilK 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2003 

Adapting the proof of Lemma 2.1 in [12] to the multivariate case, it follows that 

Ym is regularly varying with index K and limiting measure 

(2.8) it(dx) = [o(dx) + cIl t1(dx) +- . + cm Lm (dx), 

where 

E IAilK 
ci = (1 - EAK), 

EIAolK 

provided that the following relations holds for any Borel sets C1, C2 C [0, oo]m \ 
{0} which are bounded away from zero: 

nP(anlAi 

Bi E C, a, Aj Bj E C2) -- 0, O < i < j < m, 

where we write Bo = Yo for the sake of simplicity. Since C1 and C2 are bounded 

away from zero, there exists M > 0 such that IxI > M for all x e C1, C2. Therefore, 
for i < j and any y > 0, 

{an1Ai 
Bi E CI, an'Aj Bj E C2} 

C {JAilBi > anM, |AjlBj > anM} 

C {yBi > Man, yBj > 
Man} 

U {yBi > Man, IAjlI(y,oo)(IAjl)Bj 
> Mani 

U {yBj > Man, IAilI(y,00)(IAil)Bi > Man) 

U {IAi I I(y,o)(IAi l)Bi > Man, IAj I(y,oo)(IAj1)Bj > Man, 

= D1 U ... U D4. 

By definition of (an) and the independence of Bi and Bj, it follows immediately 
that nP(D1) -- 0. A similar approach applies to D2 since Bi is independent of 

BjAj and, by Breiman's result, 

nP(D2) n nP(y Bi > Man)EIAjIKIJ(Y, )(Aj 1I)P(Bj > Man) -* 0. 

Similarly, 

nP(D3) < nP(lAill(y,oo)(lAi1)Bi > Man) 

,- nE Ai IK (yoo)(IAil)P(Bi > Man), 

and by, the Lebesgue dominated convergence, 

lim lim sup nP (D3) = 0. 
y - n --+ *c 

The relation nP(D4) -- 0 can be proved in the same way. 
We summarize our findings. 

PROPOSITION 2.5. If the conditions of Proposition 2.4 hold, then the 

finite-dimensional distributions of the stationary solution (Yt) to the stochastic 
recurrence equation (1.1) are regularly varying with index Kc and limiting measure 

given in (2.8). 
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2004 D. G. KONSTANTINIDES AND T. MIKOSCH 

3. Some applications of the regular variation property. In this section we 
consider some applications of the property of regular variation of the solution 

(Yt) to the stochastic recurrence equation (1.1). In particular, we are interested 
in functionals of the Yt's and their limit behavior. The results include the central 
limit theorem for the partial sums of the sequence (Yt) and limit theory for its 

partial maxima. 

3.1. A remark about the strong mixing property of (Yt). Recall that a 

stationary ergodic sequence (Yt) is said to be strongly mixing if 

ak = sup IP(A n B) - P(A)P(B)I -- 0, 
AEa(Ys,s<O), BEa(Ys,s >k) 

and it is said to be strongly mixing with geometric rate if there are constants 
r e (0, 1) and c > 0 such that ak < crk for all k > 1; see [34], compare [13]. Under 

general conditions, the latter property is satisfied for the stationary solution (Yt) of 
the stochastic recurrence equation (1.3). 

PROPOSITION 3.1. Assume E A < 1, E Be < oo for some F > 0. Then the 

stochastic recurrence equation (1.1) has a stationary ergodic solution (Yt) which 
is also strongly mixing with geometric rate if one of the following conditions holds: 

1. The Markov chain (Yt) is ik-irreducible, that is, there exists a measure it such 

that, for any Borel set R in the support supp(Y) of Y with A (R) > 0, the relation 

n?=I 
P (Yn E RIYo = x) > 0 holds. 

2. An = A(En) and Bn 
= B(En), where A(x) and B(x) are polynomial functions 

of x and (En) are i.i.d. random variables. Moreover, A(0) < 1 and E1 has an 
a.e. positive Lebesgue density on [0, xo] for some 0 < xo < oo. 

PROOF. Strong mixing of (Yt) with geometric rate under (k-irreducibility 
follows from Theorem 2.8 in [1], using standard results on mixing Markov 

chains; see [22]. For polynomial An and Bn, the mixing property follows from 
Theorem 4.5 in [27] or from Theorem 4.3 in [28]. 

REMARK 3.2. Squared GARCH processes satisfy a (in general multivariate) 
version of (1.1). They were found to be strongly mixing with geometric rate; 
see [6] who proved (k-irreducibility with Ak Lebesgue measure. A sufficient 
condition for (k-irreducibility is that Ak(R) > 0 for any R C supp(Y) implies 
P(Aix + B1 E R) = P(AlYo + B1 E RIYo =x) > 0. This is satisfied if 

Alx 
+ BI 

has an a.e. positive density on supp(Y) with respect to Lebesgue measure (i for 

every x E supp(Y). Alternatively, it suffices to show that P(Yn E RIYo = x) > 0 

for sufficiently large n (possibly depending on x and R). The latter condition is 
often more difficult to verify. 

The relation P(Ajx + B1 e RJYo = x) > 0 also holds if (k(R) > 0 for g 

Lebesgue measure and At and Br have a joint independent multiplicative factor 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2005 

which has an a.e. positive density on (0, 0 ), that is, At = FtAt and Bt = FtBt, 
where (Ft) is an i.i.d. sequence and for every t, Ft and (At, Bt) are independent. 
The squared ARCH(1) process satisfies this condition if its innovations have a 

positive Lebesgue density on the real line; see [10] where the innovations of the 

ARCH(1) process were assumed to be i.i.d. Gaussian, but the same methodology 
can be used in the general case. 

3.2. The central limit theorem. If the assumptions of Propositions 2.4 and 3.1 

hold, we may conclude from Propositions 2.4, 2.5 and 3.1 that there exists a 

unique stationary solution (Yt) to the stochastic recurrence equation (1.1) which 

is strongly mixing with geometric rate and which has regularly varying finite- 

dimensional distributions with index K > 0. 
If K > 2, a standard central limit theorem for stationary ergodic martingale 

difference sequences applies to (Yt) and no further mixing condition is needed. 

Indeed, we have 

n-1/2(Sn - ESn) 

n n 

= n-1/2 [(At 
- 

EA)Yt-1 + (Bt - EB)] + n-1/2EA L(Yt-1 
- EY). 

t=1 t=1 

Hence, 
n 

n-1/2(Sn 
- ESn) = n-1/2(1 - EA)-1 L[(At - 

EA)Yt-1 + (Bt - EB)] + op(l). 

t=1 

The sequence [(At - EA)Yt-1 + (Bt - EB)] is a stationary ergodic martingale 
difference sequence with respect to the filtration Ft = a ((Ax, Bx), x < t). 
Therefore, the central limit theorem from [3], Chapter 23, applies: 

n-1/2(Sn 
- ESn) - N(O, ay), 

where a2 = var(Y). Notice that EA < 1 since EAK < 1, K > 2 and g(h) = EAh 

is a convex function. 
If K < 2, infinite variance limits may occur for (Sn); see [9, 10]. The proof relies 

on a point process argument for the lagged vectors Yt(m) = (Yt, ..., Yt+m)' which 

is identical to the proof of Theorem 2.10 in [I1] and requires regular variation of 

the finite-dimensional distributions and the strong mixing condition for (Y,) with 

geometric rate. It implies weak convergence of the point processes 

n 

(3.1) Nn 
= 

Ey,(m)/an 
N. 

t=l 

The limiting Poisson point process N is described in [1] and (an) is a sequence 
satisfying nP(Y > an) 

~ 1. 
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2006 D. G. KONSTANTINIDES AND T. MIKOSCH 

The convergence result (3.1) and the arguments in [1, 9, 10] imply the weak 

convergence of the partial sums, sample autocovariances, sample autocorrelations 
and the partial maxima of the sequence (Yt). For details, we refer to the mentioned 
literature. For example, if K e (0, 2) \ { 1 }, 

d 

an 
(Sn - bn) - ZK, 

where ZK is totally skewed to the right infinite variance K-stable random 

variable, bn = ESn for K > 1 and bn = 0 for K < 1. (We refer to [36] for an 

encyclopedic treatment of stable distributions and processes.) The proof of the 
weak convergence of the sample autocovariances and sample autocorrelations 

is identical to the one treated in [1] for solutions to the stochastic recurrence 

equation (1.1). 
Moreover, 

1 d 

an 
max(Y, ... , Yn) RK(0), 

where P (RK < x) = e-x- , x > 0, is the Fr6chet distribution function with shape 
parameter K, P(RK(0) < x) = [P(RK, x)]o and 0 E (0, 1) is the extremal index 
of the sequence (Yt). See [15] for an introduction to extreme value theory and, 
in particular, Section 8.1, where the notion of extremal index is treated. Extreme 

value theory for the solution (Yt) to (1.1), under the conditions of Kesten's 
Theorem 1.1, was studied in [19]. In their Theorem 2.1, they calculate 

0 P max Ai y KK -1 dy. 
J \ j>l .1 

We mention that the same proof as in [19] [with n /K replaced by (an) as above] 

applies under the conditions of Proposition 2.4, when Kesten's result does not 

apply. Indeed, an inspection of their proof shows that it only requires the structure 
of the stochastic recurrence equation (1.1), the definition of (an), the regular 
variation of (Yt) and the existence of some h > 0 such that EAh < 1. 

The definition of the extremal index 0 implies that, for xn > an, 

P(max(Y,1 ..., Yn) > Xn) 
- OnP(Y > x,). 

This is in contrast to i.i.d. Yt's, where this relation holds with 0 = 1. In the 
i.i.d. case we also know that P(Sn - ESn > Xn) 

-- P(max(Yi, ..., Yn) > xn) 
for suitable sequences (xn) with x, --+ oc. The various results proved in this 

paper, including Proposition 3.3 and Theorem 4.2, show that the exceedances of 
the random walk (Sn) and of the partial maxima (max(Yi,..., Yn)) above high 
thresholds have different asymptotic behavior which is also different from the case 
of i.i.d. Yt 's. 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2007 

3.3. Regular variation of sums. In what follows we study the tail behavior of 
the sums 

Sn = Y1 +'-++ Yn 

for fixed n > 1 under the assumptions of Proposition 2.5. It follows from 

Proposition 2.5 that all linear combinations of the lagged vector Ym are regularly 
varying with index K. In particular, S, is regularly varying with index K. In this 
section we give a precise description of the tail asymptotics of P (Sn > x) for fixed 
n as x -- oo. 

We have 

n n n 

(3.2) Sn=f Hi Yo + t+1,i Bt = Yo i + Bt 
Et+1,i. 

i=1" t= i=1 t=1 i=t 

Write 
n n 

Zo=Yo li 
and Zt=Bt-t+1i,i, t=1,..., n. 

i=1 i=t 

Notice that Yo is independent of E H1i and Bt is independent of E-=t Ht+l,i. 
Now an argument similar to the one in the proof of Proposition 2.3 shows that, for 
0 < s < t <n, 

P(Zt > x, Zs > x) 

---0, 
x -+ 00. 

P(Zo > x) 

Also notice that the same result holds if Yo = c is a constant initial value. An 

application of Lemma 2.1 yields the following result. 

PROPOSITION 3.3. Assume that the conditions of Proposition 2.4 hold. If (Yn) 
is the stationary solution to the stochastic recurrence equation (1.1), then 

P(Sn 
> x) \KK n-( 

- 
) nK 

( 
(3.3) lim P(S 

- 

> x) 
- 

) 
EAK)-1E IE 

1Hi .J (3.3) P(B > x) . X-*CO P(B > x) (i=l t=0 i=o 

If (Yn) satisfies the stochastic recurrence equation (1.1) with Yo = c for some 
constant c, then 

lim P(S = E 
i 

- 
x--, P(B > x) 

.0 
i t=0(i= ) 

For comparison, assume for the moment that 
(Yt) 

is an i.i.d. sequence Y1 = Y 

and Y has the stationary distribution given by (1.3). Then for every fixed n> 1, 

P(YI +"" 
+ Y, > x) 

(3.4) lim =1. 
x-?oo nP(Y > x) 
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This is the subexponential property of a regularly varying distribution; see [15], 
Section 1.3.2 and Appendix A3 for an extensive discussion of subexponential 
distributions. Property (3.4) does not remain valid for dependent stationary 
sequences with regularly varying finite-dimensional distributions. This was shown 
in [25] for the case of linear processes. In that case the limiting constant in (3.4) is, 
in general, different from 1 and depends on the coefficients of the linear process. 
Proposition 3.3 shows that a similar behavior can be expected for other nonlinear 

stationary processes. In particular, by Proposition 3.3, relation (3.3) can be re- 
written in the form 

P(Sn 
> x) n,,)n-1 

t 

(3.5) lim = E 
l'i 

+ (1 
- 

EAK) E 
"1i 

. 

(3.5) 
x-o P(Y > x) i=1 t=0 i=0 

It is interesting to observe that a similar relationship holds if the (At, Bt)'s 
satisfy the conditions of Kesten's Theorem 1.1. In that case, the condition 

EAK = 1 is needed for regular variation of the stationary solution (Yt) to the 
stochastic recurrence equation (1.1) with index K > 0. Assume, in addition, that 

EBK+3 and EA'K+ are finite for some 6 > 0. Then we may conclude from the 

representation (3.2), regular variation of Yo and Breiman's result that 

P(SJ >x) n K 
lim = E ? i 

x-00 P(Y > x) 
i=l1 

In a sense, this is the limiting result in (3.5) for EAK = 1. 

4. Large deviations and ruin probabilities. 

4.1. Results on large deviations. In this subsection we couple the increase of 
x with n to obtain probabilities of large deviations of the type 

P(Sn - ESn > x) - nECK P(B > x) uniformly for x > xn, 

and appropriate sequences xn --+ oo. Here C is a generic element of the stationary 
sequence 

00 

(4.1) Ct = t+,,i, t E Z. 
i=t 

We start with an auxiliary result, where we collect some useful properties of this 

sequence. 

LEMMA 4.1. Assume that (At) is an i.i.d. sequence and EAK < 1 for some 
K >0. 

1. The sequence (Ct) defined in (4.1) is well defined and strictly stationary. 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2009 

2. The random variable C has finite pth moment if and only if EAP < co for 
p > 0. 

3. The sequences (Ct) and (Dt) given by (4.2) have the same finite-dimensional 
distributions. If A has an a.e. positive Lebesgue density on [0, xo] for some 

xo 0 c , then (Dt) is strongly mixing with geometric rate. 

PROOF. 1. The sequence (Ct) has the same distribution as the sequence 

(4.2) Dt= E ri+i,t, t E Z. 
i=-o- 

The latter satisfies the stochastic recurrence equation 

t-1 

(4.3) Dt 
= 

1 + At 
1i+1,t-1 

= 1 + At 
Dt-1, 

t E Z. 
1 =--oo 

It constitutes a unique strictly stationary sequence if E log A < 0 and E log+ A < 

0o, see (1.2), which is satisfied if EAK < 1 for some K > 0. 
2. From (4.3), the independence of Dr-1 and At and the stationarity of (Dt), 

d 
we conclude that Dt has finite pth moment if and only if At has. Since D = C, the 
statement follows. 

3. Follows from the second part of Proposition 3.1 with A(x) = x, B(x) = 1, 
Ei = Ai. F 

In the following result we assume, in addition, that the sequences (At) and (Bt), 
hence, (Ct) and (Bt), are independent. Although we conjecture that this assump- 
tion can be avoided, we need the independence at various technical steps in the 

proof. 

THEOREM 4.2. Assume that (At) and (Bt) are independent i.i.d. sequences of 
nonnegative random variables, B is regularly varying with index K > 1, EAK < 1 
and EA2K < 00. Consider a sequence of positive numbers such that nP(B > 

xn) -+ 0 and, for every c > 0, 

lim sup P var(BI[o,x](B)) Ct2> CX2/logx n --* cX >X 
nt= 

Then the large deviation relations 

P(S, - ESn > x) =0 (4.5) lim sup -EC' 
-0 ~(4.4) 

n--xxn 

nP(B > x) 

11( t=1 
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and 

P(Sn - ESn < -x) 
(4.6) lim sup = 0 

n 
ocx>x, nP(B > x) 

are satisfied. 

The proof of the theorem is rather technical and therefore postponed until 
Section 5. 

REMARK 4.3. The validation of (4.4) is, in general, difficult. Sufficient 
conditions for (4.4) can be verified by assuming certain mixing conditions on (Ct); 
see Lemma 4.6 below and Lemma 4.1 part 3. 

REMARK 4.4. Theorem 4.2 is applicable for finite or infinite variance 

sequences (Bt). The infinite variance comes into the picture in condition (4.4). 
For K > 2, var(BI[o,x](B)) -- c for some finite c > 0. Hence, condition (4.4) 
can be formulated without var(BI[o,x](B)). If K < 2 or K = 2 and var(B) = 00o, 

var(BI[o,x](B)) --+ oc. In particular, for K = 2, var(BI[o,x](B)) is a slowly varying 
function which increases to infinity. If K e (1, 2), an application of Karamata's 
theorem yields, for some c > 0, var(BI[o,x](B)) ~ cx2P(B > x) --+ oo. 

REMARK 4.5. The literature on large deviations for sums of stationary heavy- 
tailed random variables is rather sparse. The case of linear processes Yt = 

•~ _ , pjZt-j for i.i.d. regularly varying sequences (Zt) was treated in [25]. 
In this case, the limit of (P(Sn - ESn > x)/(nP(Y > x)) is approximated 
uniformly for x > cn, any positive c. The limit depends in a complicated way on 
the coefficients 

/oj 
and on the coefficient of regular variation. Davis and Hsing 

[9] seems to be the only reference, where large deviation results were proved 
for general regularly varying stationary sequences, assuming certain mixing 
conditions and K < 2. They exploit point process convergence results and express 
the limit of the sequence (P (Sn > xn )/(n P (Y > xn)) in terms of the limiting point 
process, which is difficult to interpret. Unfortunately, their approach seems to work 

only in the case of infinite variance random variables. 

We continue by giving some sufficient conditions for the validity of the 
relation (4.4). 

LEMMA 4.6. Assume A has an a.e. positive Lebesgue density on its support 
[0, xo] for some xo < oo, B is regularly varying with index K and EAK < 1 for 
some K > 1. 

1. Assume 

(4.7) sup n(K+y)/-I(x/ 
var(Bl[o,x](B)) logx )-(Y+K)/P(B > x) - 

0 
X>Xn 

and EAK+Y < oc for some y such that K + y > 2. Then relation (4.4) holds. 
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2. Assume that C < c a.s. for some constant c > 0 and for some d, 8 > 0, 

e-d(x/ V)2/(logx var(Bl[o,x](B))) 
e-(X•/ 

)n-" 
(4.8) sup + sup 

--+ 
0. 

x>xn nP(B > x) x>x nP(B > x) 

Then relation (4.4) holds. 

REMARK 4.7. In particular, (4.4) holds for (Xn) with (4.8) if A < co for some 

constant co < 1 and B is regularly varying with index K > 1. Indeed, then EAd < 1 
for all d > 0 and C < 

'i=0o ci= (1 - co)-' 

REMARK 4.8. We discuss the conditions on the x-regions where (4.4) holds. 
If K > 2, var(B) < oo. Writing P(B > x) = x-KL(x) for some slowly varying 
function L, (4.7) is satisfied if 

(4.9) [n(K+y)/2-1XnY] sup [(logx)(K+Y)/2/L(x)] --+ 0. 
x >_Xn 

Since (logx)(K+Y)/2/L(x) < x", for every 8 > 0 and sufficiently large x, 

(4.9) holds if xn = no5+3 with S > y-1 (K/2 - 1). This 8 can be chosen the closer 

to zero the more moments of A exist, that is, the larger y can be chosen. These 

growth rates are comparable to the case of i.i.d. Yt's for K > 2, see Theorem 1.2, 
where one could choose x, = c n log n for some constant c > 0. Such precise 
results are hard to derive in the case of dependent Yt 's. 

If K E (1, 2), a similar remark applies. Then xn can be chosen of the order 

n(1'K)+6 for some S > 0 which is in agreement with the order of magnitude of 

(xn) for i.i.d. sequences, see again Theorem 1.2. 
Notice that, under the above conditions, x, = cn can be chosen in most cases of 

interest for K > 1. 

d 
PROOF. By Lemma 4.1 part 3, the sequence (Dr) 

= (Ct) is strongly mixing 
with geometric rate and so is (Nt Dt), where the i.i.d. standard normal sequence 
(Nt) is assumed to be independent of (Dt). This follows by standard results on 

strong mixing; see, for example, [13]. 

By Markov's inequality, for every y > 0 and y > 0 such that EAK+Y < 00, 

n( n 

(K+y)/2 

P C2 > y < Y-(Y+K)/2E C2 

(4.10) = -( )/2E 
DtNt 

EINI(+Y)/2 
t=1 

< 
c(n/y)(yK)/2. 
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In the last step we applied a moment estimate for sums of strongly mixing random 
variables with geometric rate and used the fact that y + K > 2; see [13], page 31. 

Applying (4.10) for x > 1, d > 0, we obtain 

P(var(BI[o,x](B)) nl Ct2 > dx2/logx) 

nP(B > x) 

(x//log x var(BI[o,x](B)))-(Y+K)n(K+Y)/2 
<C 

nP(B > x) 

and the right-hand side converges to zero uniformly for x > xn, by virtue of 

assumption (4.7). 

Similarly, if C < c a.s., applying an exponential Markov inequality for h > 0, 

n 

-1/2 (D 2)(y hn- N 
N(0, 

2N 

t=zl 

where o2 = var(D). Moreover, 

Ee(h2/2)n- 1 C2 < Ee(h2/2)C2< 
00. 

Applying a domination argument, the central limit theorem and assumption (4.8) 

prove that 

P(var(BI[o,x](B)) 
En=l 

C2 > dx2/logx) 

nP(B > x) 

e-(h2/2)d(x/4',-)2/(log 
x var(Blo0,xl(B))) 

<c -+0. nP(B > x) 

The estimates for P(EnL (Ct - EC) > x) can be derived in a similar fashion. If 

EAK+Y < co, we have 

P (CtL-EC) >x x(y)E (Ct-EC) 

y 

t=1 t=1 

< 
cx-+)n(i+y)/2 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2013 

Now assume C < c a.s. Since (Ct) is strongly mixing with geometric rate, the 

following exponential bound holds (see [13], page 34). For any e < 0.5, there 
exists a constant h > 0 such that 

P (Ct - EC) > x < e-h(x//)n-E 

This concludes the proof. D 

4.2. Results on ruin probabilities. In this subsection we study the ruin 

probability 

*(u)-= 

P(sup((Sn 
- ESn) - 

gn) > 
u) 

when the initial capital u --+ oc and it > 0. Here (Yt) is the unique stationary 

ergodic solution to (1.3), (At) and (Bt) are independent and satisfy the conditions 

of Theorem 4.2. In particular, we assume that Kc > 1. Then EB < co and EA < 1 
since EAK < 1. In particular, EY = EB(1 - EA)-1 = EBEC is well defined. 
This choice and the strong law of large numbers ensure that the random walk 

((Sn - ESn) - fLn)n>o has a negative drift. 

THEOREM 4.9. Assume that the conditions of Theorem 4.2 hold, that Kc > 1 
and xn = cn is a possible threshold sequence for every c > 0. Moreover, assume 
there exists y > K such that ECK+ < o00. Assume that (Ct) is strongly mixing 
with geometric rate. Then we have, for any A1 > 0, 

_ 
(u) 1 1 

(4.11) lim = 
ECK- u- oo uP(B > u) / 

tc 
- 1 

We postpone the proof of Theorem 4.9 to Section 6. 

REMARK 4.10. The assumption that Theorem 4.2 holds for xn = cn is not 

really a strong restriction. Indeed, we discussed in Remark 4.8 that this condition 
is satisfied under very mild conditions. 

REMARK 4.11. This result is similar to the case of i.i.d. Yt 's; see Theorem 1.3 

above. To compare with the latter one, we mention that (4.11) can be reformulated 

by using Proposition 2.4: 

_(u)_ 1 1 
lim = (1 - EAK)ECK u-+0 uP(Y > u) / - 1 
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2014 D. G. KONSTANTINIDES AND T. MIKOSCH 

5. Proof of Theorem 4.2. We will make use of the decomposition 

n n 00oo n oo 

Sn Y i + Bt t+l,i 
- Bt ilt+l,i 

i=1 t=1 i=t t=1 i=n+1 
(5.1) 

= Sn,l + Sn,2 - Sn,3. 

PROOF OF (4.5). We start with an upper bound. Observe that, for small e > 0, 

P(Sn - ESn > x) 

< P(Sn,i - ESn,I > xe/2) 

+ P(Sn,2 - ESn,2 > x(l - e)) + P(-Sn,3 + ESn,3 > xr/2) 

= II(x) + I2(X) + 3(X). 

We bound the Ij's in a series of lemmas. 

LEMMA 5.1. We have 

Ij (x) lim sup sup = 0, j = 1, 3. 
n-+oo x>xn nP(B > x) 

PROOF. We start with II. The random variable Yo is regularly varying with 
index K, by virtue of Proposition 2.4, and independent of (Hi). Moreover, 

i=1 i=1 

We also see that 

n EYEA 

ESn,, 
= EY (EA)' -EA 

= c 
. 

1-EA 
i=1 

The expectation EA is smaller than one since EA' < 1 for some K > 1 and g(h) = 

EAh is a convex function; see the discussion in the proof of Proposition 2.4. An 

application of Breiman's result (Lemma 2.2) and Proposition 2.4 yield that, for 

independent C, Y, 

IW(x) P(ISn,I - ES,,I I > ex/2) 
sup < sup 

xx, nP(B > x) x>x, nP(B > x) 

P(Y(C- 1) > ex/2- c') 
(5.2) < sup 

xx,, 
nP(B > x) 

P(Y > ex/2)E(C - 1)K 
<c sup -+ 0. 

xx,, nP(B > x) 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2015 

For Breiman's result, one needs that ECK+" < oo for some 3 > 0. This condition 
is satisfied since EA2K < oo, by virtue of Lemma 4.1 part 2. 

Now we turn to 13. We have 

n 00 n 

(5.3) Sn,3 = Btlt+l,n+l n+2,i= ACn+i Btllt-1 
t=1 i=n+l t=1 

00 

(5.4) AC L Bt1It- 
= ACY', 

t=1 

where Y', A, C are independent and Y - Y'. Similar arguments as for II show that 

1I3(x) P(ISn,3 - ESn,31 > xe/2) 
(5.5) sup < sup -+ 0. 

x>x nP(B > x) ->xx nP(B > x) 

This proves the lemma. O 

LEMMA 5.2. We have 

lim lim sup sup I2(x) 
-ECK) 

<0. 
e4o n-+oo x>x, nP (B > x) 

PROOF. Write, for any 6 > 0, 

Qn,1()= U {Bt >x, Bs > Sx}, 
1<t<s<n 

Qn,2() ={maxBt< 3x, 

n 

Qn,3() 
= U {Bt > 8x, Bs 6x, 1 < s t < n}. 

t=1 

Then 

12(X) P({Sn,2 - ESn,2 > x(1 - )} ) Qn,1 ()) 
nP(B > x) nP(B > x) 

P({Sn,2 
- ESn,2 > x(1 - 

E)} 
q Qn,2(Q)) 

nP(B > x) 

P({Sn,2 
- ESn,2 > x(1 - 

E)} n Qn,3(0)) 

nP(B > x) 

= 12,1(x)+ 12,2(x) + 12,3(x). 

Obviously, for any S > 0, 

lim sup I2,1 (X) = 0. 
n -+ 00 

X>X 
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2016 D. G. KONSTANTINIDES AND T. MIKOSCH 

Writing for any t E Z, x > 0, 

Bt,x = Bt l[o,x](Bt), 

we obtain 

p((n L7 (Bt,x Ct - E BI,x EC) > (1 - e)x) 
sup 12,2 (x) < sup t= 

X >Xn xx>,n nP(B > x) 

Notice that 

P(Ei) P(E2) 
sup 12,2(x) < sup + sup , 

x>_xn x>_x,, 
nP(B > x) x>x,, nP(B > x) 

where 

El = (Bt,3x - EBI,sx)Ct > 0.5(1 - e)x 
t=l 

E2 = 
EBI,8x 

L(Ct - EC) > 0.5(1 - )x 
. 

t=l 

Conditioning on (Ct) and using the Fuk-Nagaev inequality (inequality (2.79) on 

page 78 in [31] with p = 2K), we have, with EC2K < C0, 

E[P(EII(Ct))] 

< cE -(0.5(1 e)2K 2K 

t=1 

t= 1 

1 

< CX-2KnEC2K 

(5.6) 
+ cE exp -c(0.5(1 - e)x)2 var(Bl,sx) C2 

X I{var(Bl,sx) 

Ln_ 
C2dx2/logx}) 

+ P var(Bl,x) C~2 > dx2 log x 
t=1 

= J1(x) + J2(x) + J3(x), 

where d > 0 is chosen small enough such that d' = d'(d) = c[0.5(1 - e)]2/d is 

large enough, implying 

s z(x) e-c(0.5(1-E))2 logx/d x-d' 
sup < sup = sup --+ 0. 
xx,, nP(B > x) 

-xx,, 
nP(B > x) 

x>x, 
nP(B > x) 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2017 

We also have 

Jl(x) sup -- 0. 
x>x, nP(B > x) 

The relations 

J3(x) P(E2) 
sup 

--- 
0 and sup 

P 
-+ 0 

x>Xn nP(B > x) x>Xn nP(B > x) 

follow by assumption (4.4). Collecting the above estimates, we proved, for every 8, 

lim sup 12,2(x) = 0. 
n--+oo >Xn 

Thus, it remains to show that 

(5.7) limlimlim sup sup (12,3(x) - ECK) < 0. 
e4O 40 n--o00 X>Xn 

We have 

12,3(X) < 
P 

BtCt + (BsCs - EBEC) >x(1-F), 
t=1 s= 1,s:t 

Bt > 8x, max 

Bs< 

Sx 
1<s<n,s t 

x (nP(B > x))-' 
n 

P(Bt min(Ct, 8-1(1 - 28)) > (1 - 2E)x) 

t=l 
nP(B > x) 

+ E (BsCs - EEBEC) > xe, 

t=l s=1,sot 

Bt>Sx, max Bs<8 x ~ (nP(B(>x))- 1<s<n,st / 

P(B1 min(C1,6-1(1 
- 2F)) > (1 - 2e)x) 

P(B > x) 

+ P (BsCs - EBEC) > xe, 
t= 1 s=l,s st 

max 

Bs<5 

8x P(B > 
Sx) 

x (nP(B > x))-1 

= L1(x) + L2(x). 
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2018 D. G. KONSTANTINIDES AND T. MIKOSCH 

By Breiman's result, 

lim lim lim sup 
-40 60 

n--+o 

sup [(L(x) 
E[(min(C, -1(1 - 

2,)))K] 

x>_x 

(1 - 2E)K 

?(E 
[(min(C, 8-'(1 

- 

2e)))K]- 
EC) =0. 

(1 
- 

2e)" 

Similar calculations as for 12,2(x) yield that, for every 8, E, 

lim sup L2(x) = 0. 
n - oo x >Xn 

We conclude that (5.7) holds. This completes the proof of the lemma. O 

Lemmas 5.1 and 5.2 prove that 

(5.8) lim sup sup 
P(S, 

ECK < 0. 
n-+oo 

X>Xn 
nP(B > x) 

We conclude the proof of (4.5) with the bound 

(5.9) lim sup sup ECK 
P(S - ES > x) 

0. 
n--oc00 x>Xn 

nP(B > x) 

Arguing as for (5.8), we see that, for any S > 0, uniformly for x > xn, 

P(Sn - ESn > x) 

nP(B > x) 

P({Sn,2 
- ESn,2 > 

x} 
) Qn,2(6)) 

nP(B > x) 

P({Sn,2 - ESn,2 > x} ) Qn,30()) 
nP(B > x) 

= KI(x) + K2(x). 

It follows by analogous arguments as for I2,2(x) that 

K1(x) 
sup --+ 0. 

xx, nP(B > x) 

Write, for e > 0, 

Lt = {Btmin(Ct,8-l(1 
-- 

e)) > (1 + e)xl, t EZ. 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2019 

As regards K2(x), we have 

n n 

K2(x) = P BtCt + BsCs > xx+nEBEC, Bt > 8x, 
t=1 s= 1,s:At 

max Bs< x)) 
s<n,sot 

x(nP(B > x))-' 

n P(Lt) 
> 

[P(B1 _ 
•x)]n-1 

n 
( 

t= nP(B > x) 

- (P( L (BsCs - EBEC) < -ex + EBEC 
t=1 s=1,sAt 

n Lt n 

smax 
Bs < Sx ) 

x(nP(B > x))-' 

= K2,1(x) - K2,2(X). 

Since nP(B > 8Xn) -* 0, we have 

sup I[P(B < 8x)]n-1 - 1 -+ 0. 
x>xn 

Therefore and by regular variation of B, 

(5.10) sup ((1 + E)-K E[min(C, 8-1(1 + 8))] 
- 

K2z,(x)) - 0. 
X>Xn 

Write 

Tn,t = 
(Bs,3xCs 

- EBEC) < -ex + EBEC . 
s=l,s t 

As regards K2,2(x), we have, for 0 < m < M < oo, 

nP(B > x)K2,2(x) 
n n 

< L 
P(Tn,t 

n Lt n {Ct <m}) + P(Tn,t n Lt n {Ct > M}) 
t=1l t=l 

+ P(Tn,t n Lt n {Ct e (m, M]}) 
t=1 

= K2,2,1(x) + K2,2,2(x) + K2,2,3(x). 
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2020 D. G. KONSTANTINIDES AND T. MIKOSCH 

Then for small 8 > 0, by the uniform convergence theorem for regularly varying 
functions, 

K2,2,1(x) P(mB > (1 + E8)x) 
lim lim sup < lim lim sup 

m--On--X>Xn nP(B > x) m-Of-on-+~Ox>x, P(B > x) 

= lim mK(I + E)-K = 0. 
m--*0 

Moreover, by Breiman's result and Lebesgue dominated convergence, 

K2,2,Z(X) lim lim sup 
m-)-n-6x>xn, nP(B > x) 

. 
i . P(CI{Ic>MB > (1 + e)x) 

= lim lim sup 
M oon- xoo x, P(B > x) 

= lim E(CK (M')(C))(1 + E)-K 
M--*oo 

= 0. 

Finally, using the same method of proof as for 12,2(x), 

K2,2,3 (x) 
sup 
x>Xn, nP(B > x) 

n 

< sup n-lc P(Tn,t) 
X>Xn t=1 

< sup P 
L(Bs,3xCs 

- EBEC) -ex/2 + sup P(BI,sxC > xE/2) 
X>Xn =X >xn 

-+0. 

Taking the above bounds and, in particular, (5.10) into account, we conclude that 

lim sup ((1 + e)-KE[min(C, 8-1(1 + 
E))]K - K2(x)) = 0, 

n.x 
>Xn 

and letting 8 4 0, e , 0, (5.9) follows. 
The proof of relation (4.5) is now complete. O 

PROOF OF (4.6). The proof is similar to the one for (4.5). It follows from 
relations (5.2) and (5.5) that it suffices to show 

P(Sn,2 - ESn,2 < -xr) 
sup -> 0 

x>xn nP(B > x) 

for any r > 0. We proceed similarly as for 12(x) and use the same notation. Then 
for any 8 > 0, 

P({Sn,2 - ESn,2 < -xr} n Qn, I(8)) P(s n,1(p) sup < sup -+ 0. 
xxs nP(B > x) 

x>_x 
nP(B > x) 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2021 

Moreover, by the uniform convergence theorem for regularly varying functions, 

P({Sn,2 
- ESn,2 - 

-xr} l Qn,3(8)) 
lim lim sup 

--oo n-+Xoox, nP(B > x) 

P(B > Sx) 
< lim lim sup 

--co n--c>Xn P(B > x) 

=lim -K = 0. 

Finally, uniformly for x > xn, sufficiently large n, 

P({Sn,2 - ESn,2 < 
-xr)} Qn,2(6)) 

nP(B > x) 

P(Entl(Bt,bxCt - EBlsxEC) < -xr +nECE(BI(sx,o)(B))) 

nP(B > x) 

P(jtn Z(Bt,8xCt - EBI,sxEC) < -xr/2) 

nP(B > x) 

Here we used the fact that, by Karamata's theorem, since x > xn and n P(B > 

x,) -+ 0, 

nECE(BI(3x,0)(B)) < cnxP(B > x) < cnxP(B > xn) = o(x). 

Hence, 

P(En 1(Bt,6x - EB1,6x)Ct < -xr/4) < t= 
nP(B > x) 

P(EBisx t=, (Ct - EC) < -xr/4) 

nP(B > x) 

= 
EI(X) + 2(X). 

The relation 
SUPxx, E2(x) -- 0 follows from assumption (4.4). The relation 

supx>x, E1(x) -+ 0 follows by another application of the Fuk-Nagaev inequality 
in the same way as for P (EI) in combination with assumption (4.4). O 

6. Proof of Theorem 4.9. We will use the notation 

To = 0O, Tn = (Y1 - EY) + - - - + (Yn - EY), n >1. 

Proof of the upper bound. First, we show the relation 

•(u) 1 1 
(6.1) lim sup < E C/ 1 

u- o uP(B > u) - L Kc - 1 

by a series of auxiliary results. Before we proceed with them, we give some 
intuition on the steps of the proof: 
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2022 D. G. KONSTANTINIDES AND T. MIKOSCH 

* In Lemmas 6.1 and 6.2 we show that the event 
{supn,,</M(Tn 

- Lin) > u} does 

not contribute to the order of 4' (u) for sufficiently large u and M. 
* In Lemma 6.3 we show that the order of f (u) is essentially determined by the 

event D(u) = 
{supn>u/M((Et=u/M](Bt 

- EB)Ct - Ian) > u}. 
* In Lemma 6.4 we show that it is unlikely that D(u) is caused by more than one 

large value Bt > Ot for any 0 > 0. 
* In Lemma 6.5 we show that it is unlikely that D(u) occurs if all Bt's in the sum 

Ent_[uM 
(Bt 

- EB)Ct are bounded by 0(t + u). 
* In Lemma 6.6 we finally show that D(u) is essentially caused by exactly one 

unusually large value Bt > 8(pit + u), whereas all other values Bs, s 0 t, are of 
smaller order. This lemma also gives the desired upper bound (6.1) of 4 (u). 

LEMMA 6.1. For any It > 0, 

limlim P(supn<u/M(Tn - n) > u) 
lim lim sup = 0. 

M--+00 u-+oo uP(B > u) 

PROOF. We have 

(6.2) P sup (Tn - pn) > u) P(T[u/M] > u - EY[u/M]). 
\n<u/M / 

For sufficiently large M, (1 - EY/M) > 0. Then an application of the large 
deviation result of Theorem 4.2 yields that the right-hand side in (6.2) is of the 

order 

~ c[u/M](1 - EY/M)-KP(B > u), u -+ 00. 

The latter estimate implies the statement of the lemma by letting M -- oc. D[ 

LEMMA 6.2. We have, for any [z > 0, 

P(SUPn>_uM(Tfu/M] 

- aLn) > u) lim lim sup 
Pu M(Tn) = 0. 

M--o u->00 uP(B > u) 

PROOF. We have, by virtue of the large deviation results, 

P(suPn>u/M(T[u/M] - in) > u) 

uP(B > u) 

P(T[u/M] > u + 1}[u/M]) 
- uP(B > u) 

[u/M]P(B > u(1+ ?L/M)) 
" C u 

-- 
00, 

uP(B > u) 

ScM- (1 + ,a/M)-y -O0, M -+ oo. O 
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RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2023 

In the light of the two lemmas, it suffices to bound the probability 

J(u) = P sup [(T, - 
Tru/M]) 

- (1 - 
)-n] 

> (1 

-)u••) \n>u/M / 

for fixed M > 0 and any small e > 0. By (5.1) and by virtue of Breiman's result, 
for large u, 

J(u) <P Yo Fli 

+ sup (BtCt - EBEC) - (1 - e)gln > (1 - 2e)u 
n>u/M t=[u/M]+l 

< P Yo li > Eu 

+ P sup (BtCt - EBEC) - (1 - e)jtn > (1 - 3e)u 
n>u/M t=[u/M]+1 

S 
-KP(Y > u)E(C - 1)K 

+ P sup ( (BtCt - EBEC) - (1 - e)In > (1 - 3E)u 
n>u/M t=[u/M]+1 

< cP(Y > u) 

+ P sup ( (Bt - EB)Ct - (1 - e/2)gln 
> (1 -4e)u 

n>u/M t=[u/M]+1 

(+P sup EB L (Ct- EC)-ettn/2 > eu 
n>u/M t=[u/M]+1 

= J1(u) + 
J2(u) 

? J3(u). 

We show that 

J3(u) = o(uP(Y > u)). 

LEMMA 6.3. Assume (Ct) is strongly mixing with geometric rate and 
E CK+Y < oo for some y > K. Then for any M, g > 0, 

SP(SUPn>u/M(Lt=[u/M]1 (Ct - EC) - pLn) > u) 
lim = 0. 

u-oO uP(B > u) 
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2024 D. G. KONSTANTINIDES AND T. MIKOSCH 

PROOF. We have, by Markov's inequality, 

P sup [(Ct - EC) - n > u 
n>u/M t=[u/M]+1 

< P (Ct - EC) > gn + u 

n=[u/M] t=[u/M]+l 
(6.3) 

S (,nf + u)-(K+Y)E (Ct - EC) 
n=[u/M] t=[u/M]+1 

00 

< c (n +u)-(K+)n(K+y)/2 
n=[u/M] 

In the last step we applied the moment estimate 

E n-1/2 (Ct 
- EC) < c, 

t=1 

which is valid for strongly mixing sequences with geometric rate if y > K and 
E CY•K < oc, see, e.g., [13], page 31. An application of Karamata's theorem 
shows that (6.3) is of the order 

, 
cu1-(K+y)/2 = o(uP(B > u)), 

for y > K. O 

Thus, it remains to estimate J2(u). We proceed by a series of lemmas. 

LEMMA 6.4. For every 0 > 0, 

P (Bt > Ot for at least two t > u) = o(u P(B > u)). 

PROOF. We have, by Karamata's theorem, 

P(Bt > Ot for at least two t > u) 
00 

S P(Bt > Ot, Bj > Oj for some j l t) 
t=[u] 

< 
i P(B > Ot) P(B > Oj) 
t=[u] j=[u],j#t 

Sc[uP(B > u)]2, 

from which the statement of the lemma follows. O 
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LEMMA 6.5. Assume (Ct) is strongly mixing with geometric rate, 

ECK+ < 00 for some y > K. Then for every M, A, 0 > 0, 

J(u) = P(Au) = o(uP(B > u)), 

where 
n 

Au = U (Bt - EB)Ct > (1 - 4e)(An + u), 

n>[u/M] t=[u/M]+1 

B <0(j + u) for all j= [u/M]+1,...,n . 

PROOF. We have 

00 n 

J(u) 5< P ( (Bt - EB)Ct > (1 - 4e) (An + u), 
n=[u/M] t=[u/M]+l 

max 
Bj 

<_ 

0(n + u) 
j=[u/M]+1,...,n (n + 

00 n 

n=-IM 
PIL (Bt,o(n+u) - B, 

O(n+u))Ct 
> (1 - 48)(n + u) 

n=[u/M] t=[u/M]+1 

where 

Bt,x = Bt I[o,x] (Bt), x > 0. 

Analogously to (5.6), an application of the Fuk-Nagaev inequality, conditionally 
on (Ct), yields, for d > 0 and d' = d'(d) > 0, 

00 00 

J(u) < c n(n + U)-2Kc C (n+u)-d' 
n=[u/M] n=[u/M] 

+ c I P 
var(Bl,0(n+u)) n=[u/M] ( 

n 

x E C2 > d[(1 - 4e)(An + u)]2/log((1 
- 

4E)(An + u)) 
t=1 

= J1(u)+ J2(u)+ J3(u). 

Choosing d > 0 sufficiently small such that d' becomes sufficiently large, an 

application of Karamata's theorem yields 

Jl(u) < cu2-2x = o(uP(B > u)) 

This content downloaded from 195.251.162.52 on Sun, 19 May 2013 14:26:23 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


2026 D. G. KONSTANTINIDES AND T. MIKOSCH 

and 

J2(u) < cuI-d' = o(uP(B > u)). 

An application of (4.10) yields, for y > K, 

00 
+ 

2 -(K+y)/2 

(6.4) J3(u) 
< c n(+)/2 (n+U)2 

) 

n=[u/M] log(ALn + u) var(Bl,o(n+u)) 

If K > 2, var(Bi,x) is slowly varying and if K e (1, 2), var(BI,x) - cx2P(B > x). 
This follows by Karamata's theorem. These facts and (6.4) ensure that J3(u) = 

o(uP(B > u)). This proves the lemma. O 

Finally, we bound J2(u) and obtain the desired upper bound (6.1) in the 

theorem. 

LEMMA 6.6. The following result holds: 

J2(u) 1 1 lim lim sup < E CK 
S0 u--oo uP(B > u) 

- 
iA 

- 1 

PROOF. By virtue of Lemmas 6.4 and 6.5, 

S J2 (u) 
lim sup 
u-Coo uP(B > u) 

P(Un>u/M{ n-=[u/M]+(Bt 
- EB)Ct > (1 - 4e)(Aun + u)} n As) 

< lim sup 
u-+00 uP(B > u) 

where, for any 8 > 0, 

00 

As= U {Bt > 8(lt + u), Bs < 8(Ls + u) for all s> [u/M], s # t}. 
t=[u/M] 

Hence, 

S J2 (u) 
lim sup 
u-+oo uP(B > u) 

E•tl 
P(BI min(Ci, 8- (1 - 5e)) > (1 - 5e)(At + u)) 

< lim sup 

u-+u< 
uP(B > u) 

0 
P(B > 8(Alt + u)) 

+ limsup 
u t=[u/M] uP(B > u) 

x P 
•U/ •I (Bs - EB)Cs > (1 -4e)(Ln + u) 

t>n[u/M] s=[u/M]+1 
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u U /M]+ (Bs - EB)Cs > 
e(•,n 

+ u) 
n>t s=[u/M]+1,s t 

n {Bs < 
6(is + u), all s , t} 

= lim sup K1 (u) + lim sup K2(u). 
u- +0 u-o00 

Similar arguments as for J(u) above show that 

" P(B > 8(ttt + u)) 
K2(u)=o(1) =o(). 

t[u/M] 
uP(B > u) 

t=UluM] 

An application of Breiman's result and Karamata's theorem yields 

11 
K1(u) ~ (1 - 5)-K E[min(Cl, 8-1(1 - 

5e))] /LK--i 

Noticing that 

limlim(1 - 5e)-K E[min(Ci, 8-1(1 - 58))]K = ECK, 

the lemma is proved. D 

Proof of the lower bound. Now we want to prove that 

fr(u) 1 1 
(6.5) lim inf > ECKI u- *o uP(B > u) - 

/K -1 

Again, we proceed by a series of auxiliary results. We start with a short outline of 
the steps in the proof: 

* In Lemmas 6.7 and 6.8 we show that the order of V (u) is essentially determined 

by the event 

D(u) = sup ]+ (BtCt - EBEC) - n > u . 

n1u/M t=[u/M]+1 

* In Lemma 6.9 we complete the lower bound (6.5) of * (u) by first showing that 

D(u) is essentially determined by the event 

D(u) = 
s 
s1up 

~ 
(Bt-EB)Ct-n '>uE. 

nsu/M 
t=[u/M]+1 

The probability of D(u) is bounded from below by intersecting D(u) with the 
union of the events {Bt > 8(/t + u), Bs < 8(/t + u), for all s # t}, that is, Bt is 

unusually large, whereas all the other Bs's are smaller. 
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LEMMA 6.7. For every s, M, p. > 0, 

Vf(u) > L (u) + o(uP(B > u)), 

where 

Ll(u)= P( sup (Tn- 
T[u/M]-/n)>u( 

+ 
e)). 

n>[u/M] 

PROOF. We have 

Vr(u) > 
P( sup (Tn 

- 
T[uiM] 

- 
Ln) 

+ 
T[u/MI 

> u 

n>[u/M] 

> P sup (Tn - 
T[u/M] 

- 
l n)> (l 

+ 
e)u, T[u/M]> E-u 

n>[u/M] 

>P( sup (Tn - T[uM] - n)> (1 )u - 

P(T[u/M]<-u), n>[u/M] 

but, by (4.6), 

P(T[u/M] < -Eu) 
= o(uP(B > u)). 

This concludes the proof. D 

LEMMA 6.8. We have, for any E, it, M > 0, k > 1 and some c > 0, 

Ll(u) >P sup 3 (BtCt - EBEC) - (1 + e)tn > (1 + 3e)u 
n>[u/M] t=[u/M]+1 

- c(EAK)kuP(B > u). 

PROOF. Using the decomposition (5.1) and writing 

( n-k 
R1(k,u)= sup (BtCt - EBEC) - 

(1+)n, n>[u/M] t=[u/M]+ 

we have, for large u, 

Ll(u) > P(Ri(k, u) - R2(k, u) > (1 ? 2E)n) 

SP(RI(k, u) > (1 + 3e)u, -R2(k, u) > -Eu) 

> P(RI(k, u) > (1 + 3s)u) - P(R2(k, u) 
> Eu) 

= 
L2(u) - L3(u). 
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We show that 

L3(u) < c(EAK)kuP(B > u). 

We have, for k > 1, 

L3(u) < P sup Bt 1t+1,n+1Cn+1 
- 

ejn/2 > >u/2 n>[u/M [u/Mt= 

/ n-k 

+ P 
SuPBtt+,n+Cn+- 

En/2 eu/2 
(n>[u/M]t=[u/M]+l 

= L3,1 (u) + L3,2(u). 

Then, by (5.3) and Markov's inequality, for 0 < 5 < 1, 

L3,1(u) <- P • Btlt+l,[u/M]l[u/M]+1,n+lCn+l1 
> (e/2)(gn +u) 

n=[u/M] t=l 

<_ 
P(Yol-l[u/M]+I,n+ICn+1 

> (e/2)(In 
+ u)) 

n=[u/M] 

< c (EAK-)n-[u/M](n +)-K+8 

n=[u/M] 

< cu-K = o(uP(B > u)). 

Moreover, by (5.3) and Breiman's result, 

00 n-k 

L3,2(u) <P Btt+l,n-kln-k+1,n+lCn+l 
> 

(/2)(n 
+ u) 

n=[u/m] t=[u/M]+1 

0c 

< 3 
P(Yonn-k+1,n+1Cn+1 

> (e/2)(,tn +u)) 
n=[u/M] 

< c(EAK)kuP(B > u). O 

Next we bound L2. 

LEMMA 6.9. We have, for every k > 1, 

limliminf L2() > ECK 

4o u--oo 
uP(B > u) - /1 Kc- 1 
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PROOF. Writing 

Rl(k, u) = sup (Bt - EB)Ct - (1 + 2e)itn , 

( n-k 

R2(k, u)= inf EB (Ct - EC) + ELn , u>u/M] t=[u/M]+1l 

we have 

L2(u) > P(Ri(k, u) + R2(k, u) > (1 + 38)u) 

> P(RI(k, u) > (1 + 4E)u, R2(k, u) > -Eu) 

> P(RI(k, u) > (1 + 4e)u) - P(R2(k, u) < -eu) 

= L4(u) - L5(u)- 

Lemma 6.3 and its proof show that 

L5(u) = o(uP(B > u)). 

Now we turn to L4. Writing 

Dt(8, u) = 
{Bs < I( 6s + u) for all s E [[u/M], 00) \ {t}}, 

Et(6, u) = {Bt min(Ct, 8-l(1 + 5e)) > (1 + 5e)(L t + u)}, 

we have, for small 6 > 0, 

L4(u) > 
P t>(itt + 

u)} 
n 

Dt(6, u) 

t=[u/M] 

( n-k 

n sup ru/MI (Br - EB)Cr - (1 + 4)[Ln) 
n>t 

r=[u/M]+1 

> (1 + 48)u}) 

O00 

> P(Et(S, u) nD6(8, u)) 
t=[u/M] 

PV Etn(, u) n Dr\ (, u) 

n~t r=[u/M]+1 
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S(1 + 4)u}) 
00 

> P(El(8, u))P(Bs < 8 (gs + u) for all s> [u/M]) 
t=[u/M] 

P Et (6, u) n Dt (u, 6) 
t= [u/M] 

n sup 1 (Br - EB)Cr - (1 + 4e)Iln 
n>t r=[u/M]+1,r t 

<I(1 + 
4e)U 

- (1 + 
5e)(Gt 

+ u) + EBCt}) 

= L4,1(u) - 
L4,2(U). 

By Breiman's result and Karamata's theorem, as u -- oo, 

L4,1(u) "-- [(1 + 5)-KE[min(C1, 8-1(1 + 5))]KP(B > pIt + u)] 
t=[u/M] 

x P(Bs < 8((gs + u) for all s > [u/M]) 

>(1 +6e)-KE[min(C1, -1(1 + 5e))]K C P(B > pt+ u) 
t=[u/M] 

11 ~ 
(1 + 6e)-KE[min(C1, 6- (1 + 5e))]KII P(B > u). ,L K-1 

We conclude that 

lim lim lim inf 
14,(U) 1 > 

ECK1 1 
e0o 3{o U•c0 uP(B > u) - t Kc 

- 1 

As regards L4,2(u), we have 

L4,2(u) 
< 

c P(B > t + u) 
t=[u/M] 

x P sup L 
(Br-EB)Cr-(1+4) 

n(t r=[u/M]+l,rEt 

( -su - (1 + 

5e)/zt 

+ EBCt 
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OO 

<c c : P(B>t+u) 
t=[u/M] 

n-k 

x P sup (Br - EB)Cr - (1 + 4e)In 
n>t r=[u/M]+l,r#t 

< -Eu 
- (1 + 

5e) 
gt + EBM) 

+ c P(B > t + u)P(C > M) 

t=[u/M] 

= 14,2,1 (U) 14,2,2 (u) 

We have 

lim lim sup 
142,2(U) <c lim P(C > M) = 0. 

M-~ o u-)oo uP(B > u) M-+oc 

Observe that, for large u, 

P sup (Br - EB)Cr - 
(1+4e)n 

n>_t r=[u/M]+I,r:t 

< 
-u 

- 
(1+5e)t 

+ EBM) 

< P (Br - EB)Cr - (1 + 4E)0([u/M] + u) ) -Eu 

(r=[ul/M]+1 ,r:t 

Now an argument similar to the one for Theorem 4.2 shows that 

14,2,1(U) = o(uP(B > u)). 

This proves the lemma. O 

Now a combination of the above lemmas shows that the lower bound (6.5) 

holds. Indeed, we have, for any k 
> 

1, 

lim inf r(u) > lim inf L(u) > 
liminf -L() c(E Ak) 

. 

u-00 uP(B > u) - U-00 uP(B > u) - U-00 uP(B > u) 

Now, observing that EAK < 1, let k 

-- 
0, e 

4 0. This proves the theorem. O 

This content downloaded from 195.251.162.52 on Sun, 19 May 2013 14:26:23 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2033 

Extensions. A careful study of the proofs in the previous sections shows 

that the particular structure of the sequence (Yt) was inessential for the proofs. 
Indeed, we made extensive use of the fact that the random walk (Sn) can be 

approximated by the random walk Sn = Enl BtCt. It is not difficult to see that 

the results of Theorems 4.2 and 4.9 remain valid if Sn is replaced by Sn and the 

following conditions on any stationary sequence (Ct) hold: (Bt) is independent 
of (Ct), (Ct) is strongly mixing with geometric rate, ECK+Y < 00 for some 

y > K and (4.4) holds. Moreover, the assertion of Lemma 4.6 remains valid. 

A stationary sequence Xt = Bt Ct for (Bt) and (Ct) independent is called a 

stochastic volatility model in the econometrics literature; see [11] for some theory 
and further references. 
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