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Large deviations and the Boltzmann entropy formula
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Abstract. In the last decade, the theory of large deviations has become
a main tool in statistical mechanics especially in the study of non-equilibrium.
In a rational reconstruction of the story, one must recognize the ideal connec-
tion and debt of some recent work, to discussions taking place at the be-
ginning of the twentieth century. The famous equation S = k lnW usually
attributed to Boltzmann, actually written in this final form by Planck on his
route to the quantum hypothesis, was interpreted by Einstein as a large devia-
tion formula. This interpretation, on which he based his theory of thermody-
namic equilibrium fluctuations, has been a source of inspiration in recent de-
velopments of non-equilibrium statistical mechanics. In this paper, we briefly
illustrate this aspect.

1 The interpretation of the Boltzmann formula at the beginning of

the XXth century

It is typical in physics that the same formula or related equations may be inter-
preted differently by different authors or in different times. Think, for example, of
the Maxwell equations before and after the special relativity: the concept of aether
disappears. Or it may happen that an incomplete formulation takes its final form in
the work of an author not coinciding with the first proponent who remains however
the father of the idea. A case of this type is to a certain extent the principle of inertia
attributed to Galileo who however did not distinguish between a uniform motion in
a straight line and a uniform circular motion. In fact his followers, in particular his
pupil Torricelli, gave the more restricted modern interpretation. The case we are
considering in this paper is particularly interesting as three main figures of modern
physics are involved.

The fundamental relationship between entropy and probability

S = k lnW, (1)

where W is the so-called number of complexions or thermodynamic probability,
that is the number of microscopic states compatible with the values of the macro-
scopic parameters, and k the Boltzmann constant, was written in this form for the
first time by Planck. It is in fact a fundamental step in his theory of the black body
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radiation leading to the quantum hypothesis see, for example, Planck (1901). A de-
tailed discussion is given in his book Vorlesungen über die Theorie der Wärmes-

tralung (Planck (1913)). This is the second revised edition published by Planck
in 1913 and is based on lectures given in 1906–1907. The formula was used by
Einstein as a large deviation formula on which he based his theory of opalescence
in fluids at equilibrium (Einstein (1910a)). This is probably the first appearance
of large deviation estimates in statistical physics. We now briefly recall the Boltz-
mann formulation and the point of view of Planck and Einstein.

Boltzmann

The standard reference for Boltzmann is Lectures on Gas Theory (Boltzmann
(1896)). After introducing in Section 5 the quantity H , often called Boltzmann
entropy,

H =

∫

f lnf dω, (2)

where f is the distribution of molecules in the velocity space of a single molecule
at time t and dω a volume element in this space, he proves that H , due to the
effect of molecular collisions, decreases monotonically with time, the famous H -
theorem. In the subsequent Section 6, he discusses the probabilistic interpretation
of H for the ideal gas where an explicit calculation is possible. The physical in-
terpretation is analysed in Section 8 where he remarks, by computing the entropy
of the ideal gas, that except for a proportionality factor, the sign and an additive
constant, it can be identified with H . The proportionality factor is the same for all
gases and coincides with the gas constant R.

Planck

Planck writes the connection between entropy and probability in the form (1) with
no additive constant and this is the main difference with respect to Boltzmann.
After providing a general argument showing that the relationship between entropy
and probability must be of the form

S = k lnW + const, (3)

he emphasizes that k must be a universal constant the same for a terrestrial as
for a cosmic system. The constant is later identified with the so-called Boltzmann
constant k = R/N , R is the gas constant, N Avogadro’s number, and evaluated
numerically. The argument goes as follows. Assume that there exists a general re-
lationship between entropy and probability S = f (W) and consider a system made
of two far apart subsystems so that W = W1W2. Since the entropy from thermo-
dynamics is additive, we must have f (W1W2) = f (W1) + f (W2). The general
solution of this functional equation is given by (3). Let us quote some of his com-
ments.



496 G. Jona-Lasinio

“Nevertheless our equation (1) differs in its meaning from the corresponding one of
Boltzmann. Firstly, Boltzmann’s equation lacks the factor k, which is due to the fact
that Boltzmann always used gram-molecules, not the molecules themselves, in his cal-
culations. Secondly, and this is of greater consequence, Boltzmann leaves an additive
constant undetermined in the entropy S as is done in the whole of classical thermo-
dynamics, and accordingly there is a constant factor of proportionality, which remains
undetermined in the value of the probability W .
In contrast with this, we assign a definite absolute value to the entropy S. This is a
step of fundamental importance which can be justified only by its consequences. As we
shall see later, this step leads necessarily to the ‘hypothesis of quanta’ and moreover it
also leads, as regards radiant heat, to a definite law of distribution of energy of black
radiation, and, as regards heat energy of bodies, to Nerst’s heat theorem.”

There is in fact a direct connection between determining the additive constant
and the hypothesis of quanta. Fixing the constant makes the relationship between
entropy and probability well defined. The question is then how to calculate W .
Specifying the state of a molecule requires giving the coordinates and momenta
corresponding to its degrees of freedom. These parameters form a continuous
space so that in order to count the number of microscopic states compatible with
the macroscopic state we have to divide it into separate parts, the region elements
in the terminology of Planck. Then we can count the number of ways to assign the
molecules to the different region elements. The hypothesis of quanta is that these
region elements have a definite finite magnitude, the same for all of them.

We quote again Planck:

“. . .the calculation of the entropy of a system of N molecules in a given thermodynamic
state is, in general, reduced to the single problem of finding the magnitude G of the
region elements of the state space. That such a definite finite quantity really exists is
a characteristic feature of the theory we are developing, as contrasted to that due to
Boltzmann, and forms the content of the so called hypothesis of quanta. . . .As is readily
seen, this is an immediate consequence of the proposition that the entropy S has an
absolute, not merely relative, value; . . . .”

Einstein

Einstein takes quite a radical view (Einstein (1910a)) on Boltzmann formula:

“Boltzmann’s principle can be expressed by the equation

S =
R

N
lnW + const, (4)

W is commonly equated with the number of different possible ways (complexions) in
which the state considered—which is incompletely defined in the sense of a molecular
theory, by parameters of a system—can conceivably be realized. To be able to calcu-
late W , one needs a complete theory of the system under consideration. If considered
from a phenomenological point of view equation (4) appears devoid of content.
However, Boltzmann’s principle does acquire some content independent of any elemen-
tary theory if one assumes and generalizes from molecular kinetics the proposition that
the irreversibility of physical processes is only apparent.”
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“For let a state of a system be determined in the phenomenological sense by the vari-
ables λ1, . . . , λk that are observable in principle. To each state Z, there corresponds
a combination of values of these variables. If the system is externally closed then the
energy—and in general no other function of the [microscopic] variables—is constant.
Let us think of all the states of the system that are compatible with the energy value, and
denote them by Z1, . . . ,Zi . If the irreversibility of the process is not one of principle,
in the course of time, the system will pass through these states again and again. On this
assumption, one can speak of the probability of individual states in the following sense:
suppose we observe the system for an immensely long time θ and determine the frac-
tion τ1 during which the system is in the state Z1; then τ1/θ represents the probability
of the state Z1. The same holds for the probability of the other states. . . .”
“It follows from (4) that

W = const · e(N/R)S . (5)

The order of magnitude of the constant is determined by taking into account that for the
state of maximum entropy (entropy S0) W is of the order of magnitude one, so that we
then have, with order of magnitude accuracy,

W = e(N/R)(S−S0). (6)

From this, we can conclude that the probability dW that the quantities λ1, . . . , λk lie
between λ1 and λ1 + dλ1, . . . , λk and λk + dλk is given, in order of magnitude, by the
equation

dW = e(N/R)(S−S0)dλ1, . . . , dλk, (7)

in the case when the system is determined only incompletely by λ1, . . . , λk .”

The article Einstein (1910a) continues by expanding the entropy around the
maximum S0 and developing the theory of opalescence of fluids as due to fluctua-
tions of the thermodynamic state of the system.

The attitudes of Planck and Einstein reflect a deep change in the character of
theoretical physics at the beginning of the XXth century, a change largely due to
them. While the interpretation of theories of the XIXth century was often sup-
ported by mechanical models (Maxwell) and/or philosophical credos (Helmholtz,
Hertz), a principle of modern theoretical physics is that a hypothesis has to be
evaluated by its verifiable empirical consequences, independently of any model
possibly supporting it. This implies in particular much more freedom in the in-
terpretation and use of formulas or equations. The only requirement is that all
symbols appearing in them represent quantities accessible, at least in principle,
experimentally. It is in this logic that Planck disposes of the undetermined con-
stant in Boltzmann formula or Einstein uses entropy, which is thermodynamically
accessible, to calculate probabilities. Einstein’s point of view on Boltzmann is fur-
ther clarified in a lecture at the Zürich Physical Society (Einstein (1910b)).

In 1931 Onsager (1931a, 1931b), in the same vein as Einstein (1910a) that
he quoted, made use of Boltzmann formula in the study of fluctuations in non-
equilibrium phenomena under the condition of small deviations from equilibrium.
The theory was developed further by Onsager and Machlup (1953) where fluc-
tuations of time trajectories of thermodynamic variables were considered under
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the same hypotheses. In the next section, we discuss how it is possible to give
an effective phenomenological meaning to a formula like (6) in the more gen-
eral situation of stationary states non necessarily close to equilibrium. Typically
we think of systems in contact with thermostats at different temperatures and/or
reservoirs characterized by different chemical potentials and under the action of
external fields. The result represents a step forward with respect to Onsager and
Onsager–Machlup theory.

2 Non-isolated systems out of equilibrium

The main idea of a recently developed study of non-equilibrium stationary states
known under the name of Macroscopic Fluctuation Theory (Bertini et al. (2015))
is to start with the analysis of large macroscopic fluctuations in such states. This
means searching for extensions of formulas like (6) or (7). The first difficulty en-
countered is how to define theoretically and empirically non-equilibrium analogs
of thermodynamic functionals like entropy or free energy. In other words, the ques-
tion is what to put in the exponent.

To discuss this problem, we need to analyze the meaning of the difference S−S0

in (6). In an isolated system energy is conserved so that, if the volume remains
constant, S − S0 = −

F−F0
T

where F is the Helmholtz free energy. The quantity
F0 − F represents the minimal work to bring the equilibrium state to the state
corresponding to F at constant temperature and volume.

The concept of minimal work is meaningful also in non-equilibrium and can
be taken as a generalization of the free energy. However, we have to show that
it can be calculated in terms of macroscopic quantities paralleling the calculation
of the equilibrium entropy in terms for example, of specific heats. As far as the
probability of a state is concerned, also in nonequilibrium it can be given a phe-
nomenological meaning in terms of ergodic theory using Einstein argument.

The difference with respect to an isolated system, or one in equilibrium with its
environment, is that currents are flowing through the system. Currents are empir-
ically related to spacial gradients of the thermodynamic variables and to external
fields. The relationship is typically expressed by diffusion coefficients and conduc-
tivities and it is reasonable to expect that the minimal work to create a fluctuation
can be calculated in terms of these quantities. In fact, it can be shown that the calcu-
lation of the minimal work can be reduced to the solution of a variational problem
if we restrict sufficiently the class of systems considered. We shall concentrate on
purely diffusive systems.

The macroscopic dynamics of diffusive systems is described by hydrodynamic
equations provided by conservation laws and constitutive equations, that is equa-
tions expressing the current in terms of the thermodynamic variables. More pre-
cisely on the basis of a local equilibrium assumption, at the macroscopic level the
system is completely described by a local multicomponent density ρ(t, x) and the
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corresponding local currents j (t, x), see, for example, Fitts (1962). Their evolution
is given by the continuity equation and the constitutive equation which expresses
the current as a function of the density. Namely,

{

∂tρ(t) + ∇ · j (t) = 0,

j (t) = J
(

ρ(t)
)

,
(8)

where we omit the explicit dependence on the space variable x.
For diffusive systems, the constitutive equation takes the form

J (ρ) = −D(ρ)∇ρ + χ(ρ)E, (9)

where the diffusion coefficient D(ρ) and the mobility χ(ρ) are d × d symmetric
and positive definite matrices, E is an external field. These equations must be sup-
plemented with boundary conditions expressing the interaction with the reservoirs.
The diffusive regime is revealed in (9) by the absence of inertial terms. Equations
(8) and (9) are macroscopic dynamical phenomenological laws of wide applicabil-
ity. The input they require are the transport coefficients D,χ which are measur-
able quantities. Systems for which the current at time t can be expressed in terms
of thermodynamic variables at the same time, as in (9), are called Markovian in-
dependently of whether the microscopic dynamics is Markovian or not (Callen
(1985)).

We now sketch how for these systems the calculation of the minimal work to
create a fluctuation can be reduced to the solution of a macroscopic variational
principle, so that a detailed microscopic theory is not necessary. An important re-
mark: the theory of stationary states includes as a particular case equilibrium and
the usual thermodynamic free energy can be recovered via a dynamical calcula-
tion. This follows from the fact that in local equilibrium, which is necessary for
the validity of the phenomenological equations, there is a relationship between the
transport coefficients and the equilibrium free energy usually called Einstein rela-
tion. This is given by D(ρ) = χ(ρ)f ′′(ρ) where f ′′(ρ) is the second derivative of
the equilibrium free energy density.

Consider a system in a stationary state characterized by a time independent
solution ρ̄ of the hydrodynamic equations and suppose that, due to a fluctuation,
a value of the density ρ0 is attained which is also the initial point of an arbitrary
trajectory ρ(t). Let in addition j (t) − J (ρ(t)) be a fluctuation of the current with
respect to the value prescribed by the constitutive equation. The current j and the
density ρ must always be connected by the continuity equation ∂tρ(t)+∇ · j (t) =

0. The cost of this fluctuation will consist of two terms: the cost necessary to create
the initial condition and the cost necessary to follow the trajectory (j (t), ρ(t)).
We shall denote the first term by V (ρ0) and in non-equilibrium will represent the
analog of S0 − S. It turns out that the second term is proportional to the energy
dissipated by the extra current j (t) − J (ρ(t))

I[T0,T1](ρ, j) =
1

4

∫ T1

T0

dt

∫

	
dx

[

j − J (ρ)
]

· χ(ρ)−1[

j − J (ρ)
]

. (10)
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For a simple interpretation of this formula, think of an electric circuit. In this case
χ−1 is the resistance and the double integral in (10) is the energy dissipated by
j (t) − J (ρ(t) according to Ohm’s law. The factor 1/4 is fixed by the Gaussian
nature of the stochasticity responsible for the fluctuations and by the consistency
with equilibrium.

Using the Markovian hypothesis, we can now write the probability of the joint
fluctuations of density and current in a stationary state

P
((

ρε(t), jε(t)
)

≈
(

ρ(t), j (t)
)

, t ∈ [T0, T1]
)

≍ exp
{

−ε−d
R[T0,T1](ρ, j)

}

, (11)

where

R[T0,T1](ρ, j) = V
(

ρ(T0)
)

+ I[T0,T1](ρ, j). (12)

Let us explain the meaning of the various symbols. The parameter ε is a dimension-
less scaling factor, that is, the ratio between the microscopic length scale (typical
intermolecular distance) and the macroscopic one. The factor ε−d is of the order of
the number of particles in a macroscopic volume. The role of Avogadro’s number
in (6) is played here by ε−d . With ρε(t), jε(t), we denote the empirical density
and current corresponding to a coarse graining over a small macroscopic volume.
Clearly these quantities depend on ε.

It is not difficult to see that the functional V (ρ) is related to I[T0,T1](ρ, j) by
projection

V (ρ) = inf
ρ(t),j (t) :
∇·j=−∂tρ

ρ(−∞)=ρ̄,ρ(0)=ρ

I[−∞,0](ρ, j), (13)

where ρ̄ is the stationary solution.
In a large deviation, perspective equations (11)–(12) can be considered as a gen-

eralization of the Boltzmann entropy formula incorporating the macroscopic dy-
namics. They are applicable to equilibrium and non-equilibrium stationary states
of diffusive systems. For the study of current fluctuations, Bodineau and Derrida
proposed what they called an additivity principle (Bodineau and Derrida (2004)).
The predictions of this principle coincide with those of (11)–(12) when the most
probable current fluctuations are associated to time independent density profiles.
However, this is not always the case as it is revealed by the existence of dynami-
cal phase transitions. The general fluctuation formulas (11)–(12) were established
in Bertini et al. (2005). They were inspired and supported by the study of micro-
scopic models, the stochastic lattice gases, but they can be taken as a principle of
the non-equilibrium thermodynamics of diffusive systems to be validated by its
consequences.

Equation (11) has already been applied to several problems for which we refer
to Bertini et al. (2015). It is remarkable that when compared with microscopic
models amenable to an effective mathematical treatment its predictions coincide
with exact microscopic computations.



Large deviations and the Boltzmann entropy formula 501

Acknowledgments

The content of this note is an outcome of innumerable discussions with L. Bertini,
A. De Sole, D. Gabrielli and C. Landim in the course of our long-standing collab-
oration. I am grateful to Kirone Mallick for a critical reading.

References

Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2005). Current fluctuations
in stochastic lattice gases. Phys. Rev. Lett. 94, 030601.

Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2015). Macroscopic fluctu-
ation theory. Available at arXiv:1404.6466.

Bodineau, T. and Derrida, B. (2004). Current fluctuations in diffusive systems: An additivity princi-
ple. Phys. Rev. Lett. 92, 180601.

Boltzmann, L. (1896). Vorlesungen über Gastheorie. Leipzig: J. A. Barth. English translation Lec-

tures on Gas Theory. New York: Dover Publications, 1995.
Callen, H. (1985). Thermodynamics and an Introduction to Thermostatistics, 2nd ed. New York:

Wiley.
Einstein, A. (1910a). Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemis-

chen in der Nähe des kritischen Zustandes. In The Collected Papers of Albert Einstein. Annalen

der Physik 33, 1275–1298. Princeton: Princeton Univ. Press.
Einstein, A. (1910b). Sur le principe de Boltzmann et quelques conséquences qui en découlent immé-

diatement. Talk given at the Zürich Physical Society. French translation in Einstein 1905–2005,

Poincaré Seminar 2005. Basel: Birkhäuser.
Fitts, D. D. (1962). Nonequilibrium Thermodynamics. New York: McGraw-Hill.
Onsager, L. (1931a). Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426.
Onsager, L. (1931b). Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279.
Onsager, L. and Machlup, S. (1953). Fluctuations and irreversible processes. Phys. Rev. 91, 1505–

1512; 1512–1515. MR0057765
Planck, M. (1901). Über das Gesetzder Energieverteilung im Normalspektrum. Annalen der Physik

4, 553.
Planck, M. (1913). Vorlesungen über die Theorie der Wärmestralung. Leipzig: J. A. Barth. English

translation The Theory of Heat Radiation. New York: Dover Publications. MR0111466

Dipartimento di Fisica
Università di Roma “La Sapienza”

and Istituto Nazionale di Fisica Nucleare
Piazzale A. Moro 2
Roma 00185
Italy
E-mail: gianni.jona@roma1.infn.it

http://arxiv.org/abs/arXiv:1404.6466
http://www.ams.org/mathscinet-getitem?mr=0057765
http://www.ams.org/mathscinet-getitem?mr=0111466
mailto:gianni.jona@roma1.infn.it

	The interpretation of the Boltzmann formula at the beginning of the XXth century
	Boltzmann
	Planck
	Einstein

	Non-isolated systems out of equilibrium
	Acknowledgments
	References
	Author's Addresses

