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Summary. We establish large deviation principles for the stationary and the indi- 
vidual empirical fields of Poisson, and certain interacting, random fields of 
marked point particles in IR~. The underlying topologies are induced by a class 
of not necessarily bounded local functions, and thus finer than the usual weak 
topologies. Our methods yield further that the limiting behaviour of conditional 
Poisson distributions, as well as certain distributions of Gibbsian type, is gov- 
erned by the maximum entropy principle. We also discuss various applications 
and examples. 

1 Introduction 

The theory of large deviations provides appropriate probabilistic tools for some 
fundamental problems of Equilibrium Statistical Mechanics: the existence of 
pressure in the thermodynamic limit, its relation to entropy, the typical behav- 
iour of extensive quantities under energy constraints, and the equivalence of 
Gibbs ensembles. In fact, many of the basic ideas of this theory were developed 
first in Statistical Physics, and the progress in the last two decades was mainly 
to reveal the universality of these ideas in quite a number of probabilistic areas, 
and to find the proper general perspectives and techniques. Although it is only 
natural to apply these achievements to the original problems of Statistical 
Mechanics, this seems to be done so far only in the context of lattice systems 
(see [3, 8, 17] and the literature cited there) and not for systems of particles 
in Euclidean space. It is true that such continuous systems can be viewed as 
lattice systems, but the class of interactions which can be handled in this way 
is rather restricted, see [17]. It is the object of this paper to initiate the study 
of large deviation principles for continuous systems by means of their own 
natural properties, in particular by the powerful theory of Palm measures. (After 
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completion of this work we learned that weaker results in the same direction 
are obtained independently in a part of [143.) 

The basic objects which we consider are the following. Let co be a configura- 
tion of particles in IR d, i.e., in the case of unmarked particles a locally finite 
subset of IR d. (Later on, the particles will be allowed to have a mark describing 
their type or internal degrees of freedom.) Also, let (A,) be a fixed sequence 
of cubes increasing to ]R d. We will be concerned with the asymptotic behaviour 
of two different types of empirical fields of a configuration co in A, as n--~ oo. 
On the one hand, we consider the familiar stationary empirical fields 

(1.1) R.,o~=]A.[ -1 S 5ox~o,.,dx. 
An 

Here we write [A,] for the volume of A,, 0~: co- -*co-x  denotes the spatial 
translation of configurations by the vector - x ,  and we use the standard trick 
of replacing co by the periodic continuation co (") of its restriction to A,. This 
periodization has the advantage of making R,,o stationary (i.e. invariant under 
translations), and makes no difference in the limit n ~ oe. Besides the simple 
spatial average appearing in (1.1) one can also form an average over all particle 
positions in A,. This idea leads to the measure 

(1.2) o _ 
x ~ a ) ( ~ A  n 

which will be called the individual empirical field in A,. Particle-position averages 
as in (1.2) are of primary interest in Statistical Physics because the energy per 
volume relative to any particle interaction can be written as such an average. 
They also play a major role in the statistical analysis of point processes, cf. 
[10]. As a matter of fact, o o R,,o~ is intimately related to R,,~. Namely, R,,~, is 
just the Palm measure of the stationary point random field R,,o~. This key obser- 
vation will allow us to obtain all results on the asymptotics o of R,,~, as simple 
corollaries to the corresponding results for R,,~,. 

Here is an outline of our main results. Let Q o R~-1 denote the distribution 
of the random probability measure R,: co ~ R,,o~ when the particle configuration 
co is distributed according to the stationary Poisson point random field (2 of 
a given intensity. Similarly, let Q o(R~ - 1 be the distribution of the random 
measure R,~ co ~R~ under {2. Our basic result is a large deviation principle 
for the distributions (2 o R~- 1 in the limit n--+ oo. The rate function I is simply 
the (negative) specific entropy relative to (2, and the underlying topology is 
chosen in such a way that the mapping from the stationary point random fields 
to their Palm measures becomes continuous, even if the latter are equipped 
with the weak* topology associated with the class of all bounded local functions. 
The large deviation principle for the sequence Q o (R ~ 1 can therefore be derived 
from the contraction principle. Also, a general extension principle of large devia- 
tion theory allows us to replace the Poisson point random field (2 by a point 
random field of Gibbsian type at least if the interaction satisfies some (unfortu- 
nately rather restrictive) stability condition. 

The basic result for (2oR21 is proven along the general lines of [SJ. This 
method shows the intimate connection between the principles of large deviations 
and maximum entropy. That  is, with little additional effort we also obtain a 
result on the limiting behaviour of conditional probabilities of (2 under condi- 
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tions on Rn or R ~ and of Gibbsian probabilities with periodic boundary condi- 
tion. The limits are precisely those which maximize the specific entropy under 
the given constraint, or which minimize the specific free energy, thus giving 
rise to what is known in Statistical Mechanics as the equivalence of ensembles. 

The precise statement of the results above is given in Sect. 3. This section 
also contains two applications, namely the principles of large deviations and 
maximum entropy for the empirical distribution L, of particle marks and, in 
the one-dimensional case, for the empirical process R,* of particle spacings. 
Section 4 contains a number of illustrating examples, including a gas model 
of Curie-Weiss type, the Widom-Rowlinson model, and one-dimensional models 
with nearest-particle interaction (which are related to renewal processes). Most 
proofs are deferred to Sect. 5. In Sect. 2 below we introduce the set-up, recall 
a number of basic facts, establish the Palm relation between the empirical fields 
R. and R ~ and discuss their ergodic behaviour. 

2 Preliminaries 

2.1 Marked point random fields 

To describe random systems of marked points (or particles) in the space 1R a 
we proceed as follows. Let S=IR ~, Ns be the Borel a-algebra on S, and 2 the 
Lebesgue measure on (S, ~s)- We often write t41 for 2(A). By cg we denote 

d 

the set of all open cubes in S of the form A = ]-[(qi, qi+P) with q=(q~ . . . .  , qa)eS 
i = 1  

and p > 0. p is called the side length of A. We also let (An) be a fixed sequence 
of cubes A, eCg with side lengths Pn such that A n I"IU as n ~ oo. 

Furthermore we introduce a mark space E which is equipped with a complete, 
separable metric d E, the associated Borel a-algebra Nz, and a finite a priori 
measure # on E with p(E)>0.  The phase space for a particle is X = S  x E. A 
standard choice for a product  metric d x turns X into a complete separable 
metric space with Borel a-algebra Nx = Ns | ~e .  

Examples. (1) If E is a singleton, X can be identified with S. This is the case 
when the particles have no mark. The total mass # ( E ) > 0  of p then just plays 
the role of an intensity ( = particle density) parameter. 
(2) If E = ] R  a and/~ is a centered Gaussian distribution having a positive multiple 
of the identity matrix as covariance matrix, we are in the classical physical 
case where each particle is equipped with a velocity having a Maxwellian distri- 
bution. 
(3) If E =  c~([0, oo), N d) and /~ is the Wiener measure, then each particle is 
equipped with a realization of Brownian motion which may be thought of as 
a description of its time evolution. 

As should be evident from Examples (2) and (3), it is often reasonable to 
consider not only bounded functions on E but also unbounded functions satisfy- 
ing a suitable growth condition. To this end we fix a measurable function 

: E --* [1, oo) which is related to/~ via the condition 

(2.1) l~(ear for all a > 0 ,  
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and we shall confine our attention to functions on E which are dominated 
by a multiple of 0- Clearly, a possible choice is 0 - 1. 

A configuration of marked particles in IR d without multiple occupancies 
can be described by a pair (~, (u~)~), where the set ~ S  of occupied places 
is locally finite, in that {c~A is finite for each AeCg, and u~eE is the mark 
of the particle at position x ~ {. It is convenient to describe such a configuration 
by the counting measure 

(2.2) co = ~ 6( . . . .  

on (X, Nx). Counting measures of this form (i.e., without multiple occupancies) 
are called simple. Thus our configuration space is the set f2 of all simple counting 
measures on (X, ~x)- (This choice of f2 is natural because the Poisson point 
random fields considered later are supported on configurations without multiple 
occupancies.) For  each B ~ x ,  the counting variable N(B): co--co(B) on (2 
describes the number of particles which are such that the pair (position, mark) 
belongs to B. In particular, for each A ~ s  we write NA=N(AxE) for the 
number of particles which are located in A. Also, for each A eNs  and measurable 
h: E --+ [0, oo) we introduce the variable 

N]=NA(h): co~ ~ h(u) co(dx, du). 
A x E  

A particularly important  role will be played by the random variables NA*, A~cg. 
Clearly, if 0 = 1 then NA ~ = NA. The space f2 will be equipped with the o.-algebra 

= O.(N(B):B~Nx) generated by all counting variables. It is well-known [ l l l  
that @ is the Borel o--algebra for the Polish topology ~a which is generated 
by the variables co-~ ~ g dco where g: X-~  IR is bounded and continuous with 
spatially bounded support. 

For  each A~cg we shall consider also the set of configurations of particles 
which are located in A, namely ~2 A ={NAc = 0}. ~A is a Ga and thus again Polish. 
The associated Borel o.-field JA on f2 A coincides with the restriction of g to 
~2A, and the restriction mapping rA: ~2~f2 A, rA(oJ)=eo('c~AxE), is J~-- 
~A-measurable. Furthermore, W = o-( U r -  1~o~ ,,in c.  An7" 

n ~ l  

We also need to introduce the shift group O=(O~)x~s acting on f2 via 
(Oxco)(B)=co(B+x), where B+x={(y+x, u): (y, u)eB}. The mapping 0: S x f2 
--+f2, O(x, co)= O~co, and all O~ are measurable [11]. 

Any probability measure P on (g2, o~) is called a (simple) marked point random 
field on X. We often write P(f) for the P-integral of a measurable function 
f on g2. P is said to be stationary if PoO21=P for each xeS. We say P is 
of first O-order if P(NAO)< +oe  for each A~Cg. Since for a stationary P the 
measure Ns~A-+P(Na*) is invariant under translations, a stationary P is of 
first 0-order  if and only if there exists a number z*(P)<oe,  the O-intensity 
of P, such that P(NOa)=-zo(P)IAI for all A e ~ s .  Since 0 > 1, it then also follows 
that P(N~)=z(P)IAI for all A~N s and a finite number z(P) which is called 
the intensity of P. We denote by ~ the set of all marked point random fields 
on X of first 0-order, and we write ~o for the set of all stationary point random 
fields on X with finite 0-intensity. The natural o.-fields on N and ~o, which 
we denote by ~ and Xo, are defined as the smallest o.-fields for which all evalua- 
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tion mappings eA: P ~ P ( A ) ,  Aef f ,  are measurable. It is obvious that for each 
measurable function f on s the mapping ei: P ~ P(f)  is also measurable, pro- 
vided it is well-defined. Z is the Borel a-field for the weak topology % on 

based on the topology re,  and the same holds for Zo since ~o is %-closed, 
cf. [11]. 

Nevertheless, in this paper we shall consider a finer topology ~ on ~ defined 
as follows. A function f :  Y2~N is called local if f is measurable relative to 
r ~ l ~  for some A~Cg. f will be called tame if ]f]<b(l+N~ for some A~Cg 
and a constant b < oo. We let ~ denote the linear space of all tame local func- 
tions. The topology "c~ of local convergence is then defined as the smallest topolo- 
gy on ~ for which the mappings ei: P-- ,P(f) ,  f ~ ,  are continuous. It follows 
easily from the portmanteau theorem that indeed zzo ~ %. 

From now on we assume that ~ is equipped with z~. The ~ -c losed  subset 
~o will be equipped with the induced topology. Observe that the 0-intensity 
functional z ~ and the intensity functional z on ~o are z~-continuous. 

Next we recall the concept of Palm measure of a stationary marked point 
random field. We summarize its basic properties in a remark which can be 
proved in complete analogy to the well-known unmarked case [12]. 

Remark 2.1 For  each P ~ o  there exists a unique finite measure pO on (~2 ~ ~ o )  
= (E x s N~ | ~ ) ,  the Palm measure of P, such that 

(2.3) ~ f ( x ,  u, Ox09) 09(dx, du) P(d09)=~f(x,  u, o9) dx P~ d09) 

for all measurable functions f :  S x E x s ~ [-0, oo), and therefore 

(2.4) pO(g) = ~  lc(x ) g(u, 0~09) co(dx, du) P(d09) 

for all measurable g: E x ~2 ~ [0, oo) and arbitrary CeN s with ]C] = 1. In particu- 
lar, pO is supported on the set {(u, co)eE x s {(0, u)} = 1}, and for the marginal 
Pe = pO (. x f2) of pO on (E, ~E) we have 

(2.5) P(N(B))=2| for all B e ~ x  

and po (E x s 12v(E ) = z (P), p O (0 | i )=  #e (0)=  z~ (P)-/2v is called the mark in- 
tensity measure of P. 

We now consider the mapping re~ P ~ po on ~o. By definition, po belongs 
to the set/d{ ~ of all finite measures on (s ~ ~-o) for which the function 0 | 1 : 
(u, c o ) ~ 0 ( u  ) on s ~ is integrable. We call a function g: ( 2 ~  local if it is 
measurable with respect to N E |  for some AeCg, and we write ~oo for 
the set of all local functions g on s ~ which are such that [g[ < b 0 | 1 for some 
b < oo. The topology ~zeo of local convergence o n / d o  is defined as the smallest 
topology on s#  ~ for which the mappings eg: m --+ m(g), g~q,o, on ~g{o are continu- 
ous. We also equip /r with the evaluation a-algebra Z ~ generated by the 
mappings eA, A ~ ~ 

Remark 2.2 The mapping ~o: ~o ~ jgo  defined by ~O(p)=pO is affine, injective, 
measurable and ~ - ~  ~o-continuous. 
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Proof It follows readily from (2.4) that n o is affine and measurable. Also, for 
any geL* ~176 and bounded C the inner integral on the right side of (2.4) belongs 
to ~.  This shows that n ~ is continuous. Finally, (2.3) implies that P can be 
recovered from po, cf. Lemma 12.1.III of [2]. []  

2.2 The empirical fields 

For each n and coeY2A, we denote by co(n) the periodic continuation of co; i.e., 
co(n) = ~ 0~ CO. Observe that the mapping co---, CO(n) is o ~ - - ~ - m e a s u r a b l e .  The 

i ~pnZ  d 

associated stationary empirical field Rn,~ is defined by Eq. (1.1). The definition 
of the individual empirical field R~ however, becomes more subtle in the pres- 
ence of a mark space E. o Rn,~ is now defined as a measure on (2 ~ rather than 
on ~. Namely, in the notation of (2.2), 

(2.6) 0 _ ~(Ux, axCO~.)) Rn,o~-lAn1-1 ~ 6(,,~o~,,,)co(dx, du)=lAnl-~Z 
An x E x ~  

Remark 2.3 For  all n and co we have 
Rn,,~JH , zq'(R,,o,) = ]A, [-1 NaO (co); (1) R,,o,e~o, o o 

(2) R, : co ~ R,,o~ is 4 , - -  Zo-measurable, and 
R~ co --* R~ is ~ , -  Z~ 

(3) o R,,o, is the Palm measure of Rn,~. 

Proof. (1) The stationarity of Rn,~ follows from the periodicity of co("). By 
Remark2.1 and assertion (3), z*(Rn, J=R~174174 
L A n [-1 NA~ (co) which is finite because co (An • E) is finite. 
(2) Obvious. 
(3) We verify Eq. (2.3). Let f :  S • E x Q ~]R+ be measurable. Then 

IAnl ~ f(x, u, OxO ~(dx, du) R.,~(d ~) 

= ~ ~ f ( x - y ,  u, Oxco C")) co(n)(dx, du)dy 
An 

= ~ ~ ~f(x+i-y,u,O~,+i~(n))co(dx, du) dy �9 
i~pn~, a An 

This equals 

~ f (x - -  y, u, Oxco u')) co(d x, du) d y 
S 

because 0x+i co (") = 8~co C") for all i ep, Z d. Since Lebesgue measure is reflection 
invariant we arrive at the expression 

jj f(y, u, Oxco ~")) d y co(d x, du) 

=IA,  I S~f(Y, u, 0 dy R~ dO. [] 
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The remark above shows that the periodization of co has great technical 
advantages. In the topology of local convergence the effect of this periodization 
becomes negligible if n--* 0% as we will now show. It will be convenient to 

r -  1 ~ -measurable function on f2. consider R, as an A, 

Remark 2.4 For  each f e ~  q~ and P ~ o ,  

(2.7) [R,(T)-[A,]  -1 S f o O x d x [ ~ O  
An 

in L 1 (P)-norm as n ~ oo. 

Proof Let Ae(g be such that f is r ~ l ~ - m e a s u r a b l e  and [ f [<b( l+N~ ~ for 
some b>0 .  Then f(Oxco)=f(Oxco (")) for all n and x such that A + x c A ,  and 
all co E f2. Writing 8A, = I{x e A, :(A + x ) \ A ,  + 0}1, we thus obtain 

[R,,~,(T)--[A,[ -1 ~ f(O~co)dx[ 
An 

< [A, 1-1 b S (2 + Ny+ ~ (co (")) + Ua~ ~ (co)) d x. 
OAn 

Since I A, I - 1 [ 8A, I --* 0 as n --, 0% it is sufficient to prove that 

~ (U~*+ x (co (")) + Ny+ ~ (co)) P(d co) = 2 z~'(P) IA ] 

for all P ~ o  and xeS.  But clearly P(N~+x)= z~ lAI . On the other hand, 

N2+ ~ (co(")) P (d co) = P (N2x..) -= z ~ (P) I A x,. ], 

where Ax. .={y6A. :  y + i ~ A + x  for some i~p.TZ, d}. Since [Ax, .J=IA+x]=[A [, 
the remark follows. []  

The empirical fields R. and R ~ exhibit the expected ergodic behaviour as 
n -~ c~. Indeed, suppose PESo is ergodic, i.e., P is extreme in ~o. Wiener's multi- 
dimensional mean ergodic theorem then implies that 

]AnI-I I f o O x d x ~ P ( f )  in LI(P) 
An 

for all feLl (p) .  By the last remark this implies that R , ( f ) ~ P ( f )  in LI(p) for 
all f ~  ~.  It follows that 

(2.8) z~o- lim R , = P  in P-probability. 
? 1 ~  ot~ 

In view of Remarks 2.2 and 2.3 we also obtain that 

(2.9) Z~o-  lim R ~ = pO in P-probability. 
n ~ o o  

The aim of this paper is to show that the convergence in (2.8) and (2.9) 
is exponentially fast, at least if P is a Poisson point random field or not too 
far away from such a field. The speed of this convergence can be described 
in terms of specific entropy. 



184 H.O. Georgii and H. Zessin 

2.3 Poisson random fields and specific entropy 

We let Q denote the Poisson point random field on X with intensity measure 
2~ | #. By definition, Q is the unique (simple) marked point random field such 
that, for any choice of disjoint and spatially bounded sets B~ . . . .  , B, in ~x ,  
the counting variables N(Ba), ..., N(B,) are independent and Poisson distributed 
with parameters 2 |  . . . . .  2 |  It is easily seen that # e = #  and thus 
z(Q)=kt(E), cf. (2.5). Note also that under (2 the marks of all particles are iid 
with distribution ~t/#(E). Later on, we will also consider Poisson random fields 
with a mark intensity measure v different from #. We then shall write QV for 
the sake of distinction. Thus Q = Q". 

Next, we introduce the specific entropy of any P ENo relative to Q. For 
each A~C~ we write PA=PorA ~ for the projection onto (f~a,o~). The relative 
entropy of two measures on the same measurable space is defined by 

(2.10) I (c~;3)={~ 1 - f + f l ~  else.if e = f f l  

It is well known and easy to see that I(~; fl)>0 with equality if and only if 
c~ = ft. For probability measures e and fi we have 

(2.1 i) I (e; fl) = sup [~ (g) -  log fl(eg)], 
g 

where the sup extends over all bounded measurable functions g on the underlying 
space. A proof of (2.11) can be found in [19], for example. It follows readily 
from (2.10) that I(e; fi) equals e(1) times the relative entropy of the normalized 
measures e/a(1) and fl/fl(1), plus the relative entropy of the Poisson distributions 
with parameters ~(1) resp. fi(1). The (negative) specific entropy or mean entropy 
of any PeSo  is now defined as 

(2.12) I(P)= lim IA.1-1 I(P~.; Qa.). 
n--+ oo 

The following properties of I can be proved in the same way as the analogous 
results for lattice systems, cf. [7]. 

Remark 2.5 (1) For all P ~ o ,  

(2.13) I (P) = sup I A I - 1 I (P~; QA). 
A E ~  

In particular, I (P) does not depend on the choice of the sequence (A,). 
(2) The functional I: ~o ~ [0, oe] is affine. 

A further fundamental property of I is stated in the next proposition which 
will be proved in Sect. 5.1. 

Proposition 2.6 The level sets {I <_c} are compact and sequentially compact in 
z~. Thus I is lower semicontinuous relative to z~ and any coarser topology on 

~o. 
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3 Statement of results 

3.1 Large deviations 

Our main result is a large deviation principle for R, relative to Q. Large deviation 
principles for R ~ and certain Gibbsian point random fields then follow as an 
immediate consequence. In fact, we state these principles in the more general 
form of Laplace approximation, i.e., we consider exponential integrals of func- 
tionals F(R,) of R,, or of functions which are asymptotically close to such func- 
tionals. To simplify the statement we introduce the following concept. We say 
that {(F.), F} is an asymptotic empirical functional, if F: ~ o - - . ( - o o ,  ~ ]  is a 
function satisfying F > - b ( l + z  q') for some finite constant b, and (F.) is a 
sequence of ~ -measurable functions F." t2A. --, (-- 0% oo] such that 

(3.1) I I / h i  -1 F . - - f ( e . ) [  =<6,e(1 +zO(R,)) 

for a sequence 0. Here we use the convention o o - o v = 0 .  For  each 
F: ~o ~ ( - ~ ,  ~ ]  we let F u~c and F~sc denote the semicontinuous regularizations 
of F. That  is, F~s r is the largest lower semicontinuous minorant and F "sr the 
lowest upper semicontinuous majorant of F. 

Theorem 3.1 For any asymptotic empirical functional {(F,), F}, 

(3.2) lim sup I A, [ - ~ log QA. (exp ( - F,)) < -- inf [I + Fifo] 

and 

(3.3) lim inf [ A, [ - ~ log QA, (exp (-- F,)) > -- inf [I + FU~C]. 
n--+ o9 

Theorem 3.1 will be proved in Sect. 5.3. As an application we obtain a similar 
result for functionals of the individual empirical fields R ~ Since R ~ = rc~ 
this simply amounts to considering asymptotic empirical functionals with an 
F of the form F = G o n o for some G: J / t ~  ( - 0 %  0o]. In other words, we only 
need to apply the contraction principle [19] to the continuous injection rc ~ 
This gives the following result. 

Corollary3.2 Consider an asymptotic empirical functional of the form 
{(G.), Gore ~ for some G: dg~ ~ ( - -  o% co]. Then 

lim sup [A. I - 1 log Qa. (exp ( -  G.)) < - inf [io + Gist] 
n--~ oo 

and 
lim inf ] A. [ - 1 log Qa. (exp ( -  G.)) > - inf [io + G.SC], 

n--+ o3 

where io: j / l  o ~ [0, oo] is defined by 

SI.(P) if m = po for a (necessarily unique) P ~ ~o 
(3.4) I o (m) 

[ -t- ~ else. 

I ~ has K~o-compact level sets. 
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It is important  to note that Theorem 3.1 and Corollary 3.2 can be extended 
immediately to the case where the Poisson random fields QA. are replaced by 
marked point random fields of Gibbsian type allowing for a dependence of 
particles. These are defined in terms of an asymptotic empirical functional 
{(F,), F} via the formula 

(3.5) Qf = Qa,(e-  v") -~ e-e"  Qa,,. 

For  more details on this straightforward extension we refer to Corollary 1.5 
of [8], and to Boltzmann's principle in [3] and [21]. Some applications will 
be discussed in Sect. 4. 

3.2 The maximum entropy principle 

As we have noted in the introduction, the large deviation principle is intimately 
related to the maximum entropy principle which refers to the asymptotic behav- 
iour of the Gibbsian measures Q~' as n ~ oo. In this context it is convenient 
to think of Q~ as an element o f ~  which is supported on f2A., and it is worthwhile 
to note that Q~ is equal to a conditional probability of the form QA.(']R, sK) 
with KsZo when F ,=  oo I{R.r 

Theorem 3.3 Let {(F,), F} be an asymptotic empirical functional and suppose that 
each F, is a function of R,. If, in addition, 

(3.6) inf [I + Fx~c] = inf [I + F u~c] < ~3 

then (Q~) is sequentially compact, and each accumulation point QF of (Q~) is 
the barycenter of a Borel probability measure on the compact set 

(3.7) M F = {Ps~o: I(P)+ Flsc(P ) =inf  [I + F1~] }. 

By the last sentence we mean that Qe~=~Pw(dP) for a probability measure 
w on the Borel o-algebra on M F. Note that such an integral representation 
makes sense because the evaluation mapping eA is continuous for A t  U r ]  ~ffA 
and thus Borel measurable for all As~-. a ~  

Condition (3.6) is clearly satisfied when F is continuous and not identically 
+ oo on {1< oo}. It is also satisfied when F is convex and { F ~ <  oe} c~ { I<  oo} 
4:0; see, e.g., [8, 211. If M F is a singleton (which certainly holds when F is 
strictly convex) then (Q~) converges to the unique element of M F. As an immedi- 
ate consequence of Theorem 3.3 we obtain again its counterpart  for functionals 
of the individual empirical fields R ~ 

Corollary3.4 Consider an asymptotic empirical functional of the form 
{(G,), Gon~ where G: Jr176 oo], and suppose each G, is a function of 
R, or R ~ I f  

(3.8) inf[I  ~ + Gl~] = inf[-I ~ + G ~ ]  < o% 

then (Q~) is sequentially compact, and each accumulation point of (Q~) is the 
barycenter of a Borel probability measure on the compact set 

(3.9) M G = {P e ~o: I (P) + G1~r (pO) = inf [io + G,~j }. 
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The corollary above can be used to prove the asymptotic equivalence of micro- 
canonical and grand canonical Gibbs distributions for suitable interactions. We 
do not go into this here because the arguments are similar to the lattice case 
discussed in [-3, 8]. Some specific examples will be considered in Sect. 4. 

3.3 Application to the empirical distribution of marks 

Let ~[~ denote the space of all finite measures v on ( E , ~ )  with v(O)<oe, 
equipped with the topology z ~  which is generated by the space s176 4 of all 
measurable functions h: E ~ I R  with I h] < b ~ for some b < oo. For each n >  1 
and coeQA, of the form (2.2) let 

(3.10) L.,o = IA.[-I S~5. co(dx, du)= IA.]-~ ~ 6.x ~ ~/dE 
xe~ 

denote the empirical mark intensity measure of co in A,. L,: co~L,,~o is related 
to the other empirical fields via the identity 

(3.11) L,, = Tc 4 ( R ~ = n4o ~o ( R,,) = #~ . 

Here gE: jC{o ~ d g  E is the marginal projection defined by rc~(m)=m(, x ~2), and 
#R. is as in Remark 2.1. By the definitions of Z~o and zs%, ~ is continuous. 

We consider the relative entropy functional IE: J{4~[0 ,  oo] defined by 
I4(v)=I(v; #), w~ '~ .  14 is convex and strictly convex on its effective domain 
{I4< + or}. The significance of 14 becomes clear from the proposition below 
which will be proved in Sect. 5.2. 

Proposition 3.5 I f  v~d/[~ then for each P ~ o  with #p = v we have 

(3.12) I (P) = Iv (P) + I~ (v), 

where Iv denotes the specific entropy relative to the Poisson point random field 
QV on X with intensity measure 2 | v. Hence 

(3.13) IE(v) = inf I(P), 

and Q* is the unique probability law in ~o attaining the infimum. In particular, 
I E has compact level sets. 

As an obvious consequence of this proposition and Corollaries 3.2 and 3.4 we 
obtain the following large deviation principle of Sanov-type and a limit theorem 
of Csiszar-type; cf. [1]. 

Corollary 3.6 Let H: JAfE-~(--oo, co] be such that H>=-beq, for some b< oo 
and, for each n >= 1, H,: Qa, ~ (-- 0% oo] a measurable function such that 

( 3 . 1 4 )  II(IA.1-1H.--H(Lo))/(1 + L.(O))tl - 0  
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as n--~ ~ .  Then 

and 

lim sup I A, I - 1 log QA, (exp ( -  H,,)) < - inf [I~ + HI~] 
n ---~ oo  

lim inf [ A, [ - ~ log QA, (exp (-- H,)) > -- inf [I~ + H"~] .  
n ~ x 3  

Suppose in addition that each H, is a function of L~ and H satisfies 

(3.15) inf lIE + HI~] = inf[Ie  + H "~] < oo. 

Then (Qff) is sequentially compact, and each accumulation point of (Qff) has the 
form ~ Q~ w(d v) with a BoreI probability measure w on the compact set {tE+ Hl~ 
=min}.  

3.4 Application to one-dimensional systems 

We will now specialize our results to the case of space dimension d = 1. Thus 
S =IR, the real line. We confine ourselves to the case of unmarked particles. 
Hence E is assumed to be a singleton, so that X can be identified with S = IR  
and (~o with (2, and Q is the Poisson point process on IR with intensity z :=g(E)  
> 0. We are interested in the sequence of spacings between the particles. First 
we recall that, for each P ~ o ,  po is supported on the set 

n ~ = co({0}) = 1, c o ( -  0 )=  co(0, oo}, 

cf. [11]. For  each co s ~2 ~ we let a(co)= (~ri(co))i~ Z denote the sequence of spacings 
between the particles of co. By definition, 

a t  ( co )=min{x>0:  co({x})= 1}, 

ai+l(co)---al(0~l+...+...+~,co ) for i=>l, and similarly for i<0 .  The mapping or: 
co~a(co)  is a bimeasurable bijection from (2 ~ onto the sequence space ~2 *~= 
(0, oo) Z with its usual a-algebra [11]. For  each P ~ o  we let P~ = P ~  denote 
the image of pO under a. It is well-known [11] that P e  is invariant under 
the shift ~ on ( ~ .  Hence P~ ~J//{~, the set of all finite z-invariant measures 
on f2 e. We equip ~/~f with the evaluation a-algebra and the topology z~o. 
induced by the class 2 '~ of all bounded cylinder functions on f2 ~. 

Remark 3.7 The mapping ne : ~o ~ ~**~ defined by 7c e (P) = P~ is affine, measur-  
able, ~ -  zso,-continuous, and injective with image 

or p ( r 0 = l } .  

Here r~: f2 ~ ~ (0, oo) is the projection onto the i-th coordinate. 

Proof. We only prove the continuity of 7c e because all other assertions are 
obvious or well-known [11]. So let h~2, ~ By r-invariance, we may assume 
that h only depends on the coordinates 1, .. . ,  k. For  each t >0 ,  the mapping  
ht=hoal~+...+~<=, ~ on f2 ~ is ~o.~-measurable  and thus belongs to 2,e ~ 
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Remark  2.2 therefore implies tha t  the mapping  P ~ pO (ht) on No is cont inuous.  
But 

sup I P e ( h ) -  p0 (h0] ~ IPhiP sup p (r I + . . .  + rk > t) 

< k  I[hil/t. 

Hence  P ~ P ~ (h) is a uni form limit of cont inuous  functions. [ ]  

Fo r  each n_> 1 and c o ~ A .  we consider the empirical spacing process R ~ 
- -  n , r  

k 

= ~c *~ (R,,~). More  explicitly, if co = ~ 3~ with x 1 < . . .  < xk and (xi)i~ is the canon-  
i=1 

ical enumera t ion  of the points of co(") then 

k 

(3.16) Re,,o) = I A ,  I - I  ~ 6(~+j+ ~-x,+~),~ 
j = l  

Up to the intensity factor co(A,)/]A,[, R e thus equals the average of the Dirac n , r  

measures at the finitely many  translates of the periodic sequence of spacings 
between the particles of f2 ("). We define a functional  I s : d / ~  --. [0, oo I by setting 
I e ( p ) = z  if p = 0 ,  

(3.17) Ie(p)=p(1)  lira 1 
k~o~ k I (p~  ..... ~/p(1); 7 ~) 

if p (1) > 0 and p (r 0 = 1, and I e (p) = oo if p 6~z * (~'o)- In (3.17), 7 stands for the 
exponent ia l  distr ibution on (0, oo) with parameter  z=p(E),  and P~I ..... k~ 
=po(r 1 . . . . .  rk) -1. This means that, in the nontr ivial  case, IS(p) is precisely 
the (negative) specific en t ropy  of the normal ized measure p/p(1) relative to 7, 
times the total  mass p (1) of p. The  significance of I # (p) comes from the following 
result of Papangelou  [151; cf. also [2]. 

Proposit ion 3.8 For each P ~ o ,  I (P)= Ie(Pe)  �9 

(As a mat te r  of fact, this equat ion  is p roved  in [153 under  two hypotheses  
(I) and (II) which can be shown to hold except when I (P)=ov=Ie (P*) .  We 
omit  the details.) The following corol lary to Theorems  3.1 and 3.3 is now immedi-  
ate. 

Corol lary3 .9  In the setting described above, let G: ~ e  ~ ( - o o ,  co] be such 
that G (p) >= - b (1 + p (1)) for some b < ov and, for each n >= 1, G,: ff~An ~ ( - -  00, 001 

a measurable function such that 

II([A. 1-1 G , -  G(Rff))/(1 + IA, l-  1Na.)ll -+ 0 

a s  n --+ oo. T h e n  

and 

lira sup f A~ ] - 1 log QA. (e - G.) < _ inf [ I  # + GI~r 
n---~ co 

lim inf I A, [ - 1 log QA. (e-  a,,) => _ inf [ I  * + GUSr 1 . 
n--~ oo 
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I f  in addition, each G, is a function of R, and the right sides of the preceding 
inequalities are equal and finite then (Q~,) is sequentially compact and each accumu- 
lation point of (Q~) has the form ~ Pvw(dp) with a Borel probability measure 
w on the compact set {I#+Glsc=min}.  Here Pa is the unique element of ~o 
with ~#(Pa) =p .  

4 Examples 

This section contains some typical applications of the results above. In the 
first three examples, the underlying asymptotic empirical functionals only depend 
on the empirical mark intensity measures L,;  so these examples refer to Corol- 
lary 3.6. The subsequent examples are devoted to the more interesting case of 
particle systems with a position-dependent interaction which can be expressed 
in terms of the individual empirical fields R ~ 

Example 4.1 The ideal gas. Here we consider Example (2) of Sect. 2.1. That  
is, we set E = I R  a and think of the elements v~E as the possible velocities of 
the particles. The a priori mark distribution # is the standard Maxwellian veloci- 
ty distribution, i.e., #(d v) = (2 rc)-a/2 exp [ - I v  [2/2] d v. (We refrain from consider- 
ing the more general case of dispersion + 1 and intensity # 1 because this gives 
no additional insight.) A natural choice for the growth function $ is $(v) = 1 + Iv I, 
v~E. We are going to apply Corollary 3.6 to functionals H on +/d~ which only 
depend on the intensity v(E)>O and the (normalized) mean m(v)=v(v)/v(E) of 
v~C/E. Here we write v for the identity function on E, and we leave m(v) unde- 
fined when v=0.  Note that for each n >  1 and coEf2a,, L,,o~(E) is just the particle 
density of co in A,, whereas m(L.,,,) is the average velocity (= th e  velocity of 
the barycenter) of the particles in co. We consider the events 

A,={co~Y2A : a<L,,~,(E)<b, Im(L,,~)[>c}, 

where 0 < a < b < oo and 0 < c < Go. These correspond to the set 

K = {v~#r a<v(E)<b, Im(v)l>c}. 

In view of our choice of ~, we have ICXP~ and v~L# a. Hence K is z~-open, 
and its closure is obtained by admitting equality in the inequalities defining K. 

Let #,, be the Gauss distribution on E with mean m d R  a and standard covari- 
ance. Following the strategy of the proof of Proposition 3.5 it is easy to show 
that, for each q > 0, q/~,, is the unique measure minimizing I~ among all v ~ +/H~ 
with v(E)= q and re(v)= m, and this minimum is given by J(q, I m 1), where 

J ( q , r ) = l - q + q l o g q + q r 2 / 2 ,  q,r>O. 

We thus can conclude that (3.15) holds for H =  oo 1Ko, and Corollary 1.6 yields 
that 

and 

lira IA, 1-1 IOgQA,(A,)= --J(q*, c) 
n--+ oo 

z~--  lira Q~,('[A,)=Q*'.=~ Q :urn p~(dm). 
n ~  oo 
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Here q*=(e-C2/2v a)/x b, and p~ stands for the normalized surface measure on 
the sphere {[" 1= e}. (For the second assertion we use the fact that the conditional 
distributions QA,('IAn) are invariant under simultaneous rotation of all veloci- 
ties.) It is no surprise that the limiting measure Q* is a mixture of Poisson 
point random fields with Maxwellian velocity distributions with means of modu- 
lus e, but is less obvious and interesting to note that the intensity q*=z(Q*) 
depends on the choice of e. This shows that the condition of untypically large 
average velocities favours small particle numbers. []  

Example 4.2 A Curie-Weiss gas model. Here we let E be the unit sphere in 
R a, and the elements s e e  are thought of as the possible spins of the particles. 
We let # denote the normalized surface measure (resp., for d = 1, the equidistribu- 
tion) on E, and we set ~ =  1. We are interested in the functional H on ~/g~ 
defined by 

H(v)= -Iv(a)[2/2v(E) (ve~e \{0}) ,  

where a: E ~ E  stands for the identity map. For  v - 0  we set H(v)=0.  H is 
continuous and satisfies H(v)> - v  (E)/2 for all v e J/dE. For  each n > 1 and co e ~2a. 
we define Hn (co)= [A, [H(L,,,o). More explicitly, if co = ~ 6(x,~) with a finite non- 
empty ~ c A ,  and s~eE then ~r 

H , ( c o ) = - ( c a r d 0 - 1 � 8 9  ~, s~.sr. 
x,yer 

Thus H,  is the Hamiltonian of a system of spinning particles in A, where any 
two particles x, yE~ interact with an exchange energy - ( c a r d 0  -1 sx.sy. We 
will apply Corollary 3.6 to the functions {(fl H,), fi H}, where fl > 0 is a tempera- 
ture parameter. So we need to determine min[l~+flH] and the measures on 
E for which this minimum is attained. To this end we introduce the probability 
measures 

#h = eh'~ #/# (eh'~), h e r d .  

It is easy to see that for each melR a with [ml< 1 there exists some h=h(m)elR e 
with #h(a)=m. Now let vEJg~ and suppose v is not supported on a single 
point. Writing q = v(E), we can find an helR e such that v(a)= q #h(a). A straight- 
forward computation yields 

(4.1) IE(v) + fl H (v)= l (v; q #h) + Ja(q, [hi), 

where Ja is defined as follows. Let a l :  E ~ [--1,  1] denote the projection on 
the first coordinate and set q~(r)=log #(e '") ,  relR. By rotational invariance of 
# we have I#h(~r)l =qr for all h e r  e. Now Jp: [0, oe) 2 ~ I-0, oe) is given by 

(4.2) Jp (q, r) = 1 - q + q log q + q ~t~ (r) 

with ~p (r) = r rp' (r) -- f ~o' (r)2/2 - ~p (r). 
F rom (4.1) we conclude that infEIe+fH]=infJp and { I E + f H = m i n }  

={q#h: Jp(q, [hJ)=min}. To find the minimal points of Je we first seek those 
of ~ .  Since ~'r162 and ~p"(r)is the variance of 0-1 relative 
to #~r,o ..... o), ~}(r) can only vanish when ~o'(r)= r/f. This equation always admits 
the solution r =0 .  If d=l  or d>3 ,  a result of Ellis and Newman [4] shows 
that r is concave on [0, Go). Since cp (4) (0)= #(~r 4 ) -  3 #(a~)2 < 0, this implies that 
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the function r--+(o'(r)/r is strictly decreasing on [0, oo). In the case d=2 ,  the 
same conclusion can be derived by means of an explicit expansion of eL Conse- 
quently, if qr 1/fl then ~}(r)=0 only when r=0 ,  whereas in the case 9"(0) 
>l/fi there exists a unique r*=r(fl)>O such that qo'(r*)=r*/fl and thereby 
~b~(r*)<0= ~(0) .  Noticing further that q0"(0)=/l(o-~)=#( la[2)/d= 1/d we end 
up with the following conclusion: 

For 0 </3 < d, #~ attains its minimum 0 precisely at r = 0, whence Ja reaches 
its minimum 0 exactly when q=  1, r=0 .  In the case fi>d, q)a has a negative 
minimum which is attained at r* only, and {Jp=min} ={(q*, r*)}, where q*= 
q(fl)..=exp [ -#a ( r* ) ]  > 1. Corollary 3.6 thus implies that 

lim [A,[ l logQA,~(e-an")=f,O if 0 < f l < d ,  
0-+~o ~q*-- i  if fi>d, 

and 

limQ~n=fQ,~.-, r for O<fl<d, 
, ~  ~ :=JQq*"hpr,(dh ) for fi>d. 

Here Pr* stands for the normalized surface measure on the sphere {heIRd: 
I hl =r*}, and we have used that Q~n is invariant under simultaneous rotation 
of all spins. Hence, at the critical point fi = d there is not only a transition 
of the average magnetization of typical configurations from 0 to the modulus 
m(fl)=~o'(r(fi))>O, but also a change of the particle density from 1 to q(fi)> 1. 
To conclude, we remark that the behaviour of q(fi) and m(fl) near the critical 
point is given by 

. . d + 2  
q ( f l ) - i  ~ f - ( f l - d )  2 and m(fl)~d-l(d+2)l/2(fi-d) 1/2 as fl+d. 

We also note that the results above can easily be extended to the case when 
the spin space E equals the whole Nd and # is suitably chosen. [] 

Example 4.3 Brownian particles with constraints on the displacement of their 
barycenter. In this example we set E={~ecg([0, 1],1Re): ((0)=0}. Each ~eE 
is interpreted as a possible time evolution of a particle; that is, a particle at 
position x with mark ( is considered to move along the path (x+((t))o~t<_ 1 
during the time interval [0, 1]. E is equipped with the uniform metric and the 
Wiener measure # on the associated Borel a-algebra N~. We choose the growth 
function 0(~)= 1+ [1~[[, where ]1" I[ is the sup-norm. By abuse of notation, we 
also use the symbol ~ (t) to denote the projection mapping { ---* ~ (t) on E, 0 <_ t <_ 1. 
We consider the expected path tl(v)=(v(((t))/v(E))o<_t<=l of any renege, v~=0. 
Since IUt) l< 0 for all t, the dominated convergence theorem shows that t/(v)eE 
for all 0 q= veJr  E. Moreover, it is easily seen that the mapping v -+ t/(v) on J ~ \ { 0 }  
becomes continuous if E is equipped with the topology of pointwise convergence. 
Let ok, c E be open in this topology and define 

A. = {Na--> 1, r/(L.)e~}. 

Note that for each (o= ~, 6(x,~_x)~z~'~an 
xe{ 

r/(L.,~o) = ((card ~)-i ~ ~ (t)) ~ 
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describes the path of displacements of the gravicenter of the particles in co. 
So A, is the event that this path belongs to the prescribed set ~//. To apply 
Corollary 3.6 we recall that, for each t/eE, Ig takes a finite value on {veJgg: 
v (E)= l ,  t/(v)=q} if and only if t/ is absolutely continuous, and in this case 
we have 

1 

m i n I ~ ( { v ~ :  v(E)= 1, q(v)=tl})=J(q),= �89 1 10(t)l 2 dt 
0 

and the unique measure attaining this minimum is #~, the Wiener measure 
with mean r/, i.e., with deterministic drift 0. This is a well-known fact in connec- 
tion with Schilder's theorem on large deviations of Brownian motion; see, for 
example, [-5]. Using the remark below (2.11) we conclude that 

minI~({veJde: v = 0  or ~(v)=~})= l - e  -J(~) 

with unique minimizing measure v = e -  J (")/%, provided t 1 e E is absolutely contin- 
uous. Suppose now q/ i s  convex and contains an absolutely continuous q with 
J (t/) < oo. Then c* ..=rain J (cl ~ )  = inf J (~//) < o% and there exists a unique q*e cl s/g 

-c* 
with J(q*)=c*. Setting # * = e  #7* we thus obtain from Corollary 3.6 that 

rx~-  lira QA.(.IA,)=Q v*. 
n ~ o o  

We note again that the condition of an untypical displacement of the barycenter 
leads to a lowering of the intensity from the a priori value 1 to the value 
e -c*. []  

So far we only considered functionals of the empirical mark distribution 
L. which contains no information on the position of the particles. We now 
turn to the more general case of functionals of the individual empirical fields 
R ~ Namely, we consider asymptotic empirical functionals {(G,), G} with a func- 
tional G of the form G=egoTc~ p ~ p O ( g )  on ~o, where g: (u, co)~g(u, co) is 
a function on ~2 ~ which should be interpreted as the contribution of a particle 
at the origin of type u to the total energy of all particles of co. Formally, this 
includes the case when G, is the Hamiltonian (with periodic boundary condition) 
relative to a translation invariant pair interaction. Unfortunately, the associated 
function g fails to be bounded even if the pair interaction is bounded with 
bounded support, so that this important  case does not fit directly into our 
setting. Fortunately, it is not too difficult to adapt our techniques to the case 
of hard core interactions [-9], and using some ideas of [-14] one can also treat 
the case of superstable interactions. Here we will discuss two other interesting 
types of interaction which are covered by the results of this paper. 

Example 4.4 The Widom-Rowlinson model. This is a model of possibly penetrat- 
ing balls whose interaction depends on their degree of penetration. Let B denote 
the unit ball (or any other bounded figure) in N d and E = [-0, q] for some q > 0. 
A particle at position x with mark r~E is visualized as the ball x+rB with 
center x and radius r. We set r  1 and let p be any finite measure on E. 
For  each n >  1 and c o ~ a .  we consider the expression 

G.(co)=l U (x+rB).l- F, [(x+rB).l 
(x,r)~o~ (x,r)~o 
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which measures the degree of overlap of the periodized balls 

(x +rB),={y~An: y+ i~x +rB for some i~pn;g d} 

with (x, r)eco. Here we have identified co with its support. Gn(co ) is the Hamilton- 
ian of Widom and Rowlinson [20] in An with periodic boundary condition. 
As we will see below, the one-particle contribution to Gn(co ) is given by the 
function 

g(r, co)= - ~ [1 - co(B(y)) -1]  dy, 
rB 

where (r, co)6f2 ~ and B(y)={(x, r)eS x E: yex+rB} corresponds to the set of 
all balls containing y. We note first that co(B(y))>l whenever (0, r)sco and 
yerB. Hence O>g>-qeLB[ and thereby g e ~  ~ The associated functional 
G: P ~ pO(g) on ~o is therefore continuous. Using (2.3) and the reflection invar- 
lance of Lebesgue measure, we see that this functional is given by 

G(P)= - - ~  l~.(--x) [-1 --co(B(-- x))-1] d x P~ do)) 

= - ~  1.~+~8(0)[1- co(U(O))-1] co(dx, dr) n(d co) 

= - P (l~N(mo))>= 1~ [N(B (0))- 1]) 

= P (N (B (0)) > 1) - P (N (B (0))). 

In particular, for each n >  1 and coef2a, we find 

I An I G(R,.o~) = j" [l(a:,,-,(,(o))~ 1}- Oy co(n) (B (O))] d y = G,(co). 
An 

We consider the asymptotic empirical functionals {(fl G,), fi G}, where fi> 0 is 
a temperature parameter. (Note that Widom-Rowlinson Hamiltonians with 
other than periodic boundary conditions would also satisfy (3.1).) First, Corol- 
lary 3.2 asserts that the "pressure" 

p(fl)= lim [A,1-1 lOgQA,,(e -~ . )  
n~oo 

exists and equals -inf[I~ This is usually called the Gibbs variational 
formula. Using the extension of Theorem 3.1 which was mentioned around (3.5), 
we obtain further that the distribution of R, under the periodic Gibbs distribu- 
tion Q~G satisfies a large deviation principle with rate function IaG=I+flG 
+p(fi). Finally, Corollary 3.4 shows that each accumulation point of the 
sequence (QpG) belongs to the convex compact set MaG= {I~a=0}. M Ca coin- 
cides with the set of all Gibbs measures for the Widom-Rowlinson interaction 
at inverse temperature ft. To see this one might identify O with (Ot0,1)d) e~ by 
subdividing S into disjoint unit cells, and then apply the variational principle 
of Lanford and Ruelle, cf. Theorem 15.39 of [7]. In particular, if d =  1 or fl 
is small we may conclude from Theorems 8.39 and 8.7 of [7] that M Ba contains 
a unique element P~. Thus in this case Q~O__,p~ as n--, o% and P~ is also the 
limit of microcanonical Gibbs distributions; cf. the discussion in Sect. 2.3 of 
[8]. On the other hand, it is known [18, 20] that M p~ is not a singleton when 
d>2 ,  fi is large, and #=Zbq for some specific large number z=z(f i )>0.  This 
is the reason for the physical interest in this model. [] 
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Example 4.5 One-dimensional systems with nearest-particle interaction. Here we 
consider the setting of Sect. 3.4, i.e., d =  1 and E is a singleton. We fix any 
bounded measurable function ~o: (0, oo )o lR  (which is not constant Lebesgue- 
almost everywhere) and look at the functions 

G,=JA,[ R~ = IA, I R2(cpora) 

k 

on f2z., n >  1. For each n and oJ= ~ 6~,ef2a, with xa < ... <xk we have 
i = 1  

k - 1  

Gn((D)= 2 @ ( X i + l - - X i ) ~ - q ) ( X l ~ - p n - - X k ) "  
i = 1  

That is, G, is the Hamiltonian in A, with periodic 
the interaction potential ~o between nearest particles. 
events 

boundary condition for 
We are interested in the 

(4.3) A , =  {cosQa : G,(co)>aco(A,)} 

that the interaction energy per particle exceeds a given number a, Clearly, A, = 
{R2 eK,}, where 

Ka = { p ~ / ~  : p(q~orl)>ap(1)}. 

Ka is convex and zr To apply Corollary 3.9 we note first that 

inf Ie(p) =inf{p 1 (1) I(pl/pl (1); 7): P, (r) = 1, Pl ((P) > a Pl (1)} 
p~Ka 

=inf{c~(r) -~ I(e; 7): e(~0)>a}. 

Here r stands for the identity map on (0, oo), the first infimum extends over 
all finite measures pl on (0, oo) which are the one-dimensional marginal of 
some peK ,  c~ {I~< oo} and the second over all probability measures a on (0, oo) 
with the stated properties. (Note that c~(r)< oo whenever I(c~; 7)< oo.) To identify 
the second infimum we introduce the function 

(4.4) c(b) =inf{I(e;  7): c~(qS) = b}, 

where ~=(~o, r), b s R  2, and the inf extends over all probability measures c~ 
on (0, oo) with a(qS)=b. Clearly, c(b)>O with equality precisely for 
b=v(~)=(V(q0), 1/z). It is well-known that 

(4.5) c (b) = sup [t. b - log 7 (eVe)], 
tE~2 

and c is essentially strictly convex and essentially smooth, cf. [16]. Moreover, 
for each b eint {c < oo } the supremum in (4.5) is reached precisely for t = grad c (b), 
and the associated measure 7t = e t'~ 7/7(e re) is the unique e attaining the infimum 
in (4.4). Finally, if a~(ess-infq), ess-sup~o) then there exists some m > 0  with 
(a,m)eint{c<oo}, and thus a unique ma>O which minimizes the function 
m ~ c(a, m)/m. Also, using the essential strict convexity of c and the fact that 
c(7((p ), z -~ )=0  one readily sees that the function J:  a~c(a,  m,)/ma is strictly 
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increasing on (7(cp), ess-sup ~o), and the essential smoothness of c implies that 
J is continuous. It is also easy to check that J ( a ) < z  for all these a. Combining 
all these facts we can conclude that 

inf I ~ (p) = min I ~ (p) = c (a, m,)/ma = J (a), 
p~Ka pEClKa 

and the unique measure pec lK~  minimizing I e is p=mal(;:gradc( . . . .  ))~. Corol- 
lary 3.9 thus gives the following result: If 7(~0)<a<ess-sup ~p and A. is defined 
by (4.3) then 

and 

lira IA.1-1 lOg QA.(An)= - J (a) 
n m o ~  

lim QA.('iA~) = P~, 
n--* oo 

where P a t i o  is the stationary renewal process with spacing distribution 
7grade( . . . .  ). Note that the second component of grad c(a, ma) equals J (a )>0 ,  
whence m~ is larger than the value of m which minimizes c(a, .). This means 
that the spacing distribution of P~ is not the distribution 0~ which minimizes 
I(~; 7) under the constraint ~(q0)> a, but a distribution with a larger expectation. 
In other words, the intensity of P~ is smaller than one might expect at a first 
sight. [] 

The preceding example is only one of the simplest applications of Corol- 
lary 3.9. More generally, one can consider conditional probabilities involving 
functions of two subsequent spacings, and show that these converge to Wold 
processes (with a Markovian distribution of spacings). Even more generally, 
it is also clear how point processes with a Gibbsian distribution of spacings 
appear as limits of suitable conditional Poisson distributions. 

5 Proofs 

5.1 Equiintegrability of  tame local functions 

Here we deal with some problems which arise from the fact that the class Xe 
defining the topology z~,, on No contains all tame, rather than only all bounded, 
local functions. (Recall that it is this choice of Y which makes the Palm mapping 
no: p__.pO continuous.) Namely, we will show that, for each A~Cg and c>0 ,  
the function Na ~ is equiintegrable relative to all P in the level set {I<=c}. In 
particular, this will give us the compactness of {I___ c} in the topology z~. We 
shall use the following easily verified properties of the Poisson random field Q. 

Lemma 5.1 For all bounded A eYis and measurable functions h: E -~ [0, oo), 

(5.1) Q (exp [1 ?CA log N~]) < oo 

and 

(5.2) Q (exp Na (h)) = exp [[ A [ # (e h - 1)]. 

Here is the above-mentioned result on the equiintegrability of Na ~ 
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Lemma5.2  For each c>=O, e>0,  and bounded A e N  s there exists some 
b=b(c, ~, A)<oo such that for all P e { I  <=c} 

P (N*z IIN,~ > ~) < e. 

Proof Let e, ~, A be given and P r  arbitrary. We set a=4rAIc/e.  In 
view of assumption (2.1) and the dominated convergence theorem, there exists 
a number s > 0 such that 

3:=#(exp [a O l ~ , > J  - 1)<ea/4 IAI- 

From formulas (2.11) and (2.13) we can conclude that for each r 2 l~-measurable  
function f >  0 

(5.3) P ( f )  - log Q(e j) <= I(Pa; ez) < I A I c. 

Applying this to f=aN~(r I~>,1) and using (5.2) we obtain that 

P (Nz (~ 1~0 > ~;)) = I A ] c/a + I A I 3/a < ~/2. 

Setting f =  { Nz log Nz in (5.3) and using (5.1) we find further that 

P (Nz log Nd) < 2 ] A ] c + 2 log (2 (exp [�89 Nj log Nz"]) 

=-: C 1 < 0(3. 

Hence, for sufficiently large n we have 

P ( Nz l ~N ~ > j <= c l/log n < e/4 s. 

Observe now that 

We thus can write 

e (Ny 1 ~N*~ > b~) --6 < s P (N~ 1 ~N*~ > b~) + P (N~ (r 1 ~, >,~)) 

< s P(Nz l~u~ >0~) + s n P(N~*> b) + e/2 

< 3 e/4 + s n P (N~)/b. 

On the other hand, 

P (Nze) < s P(N~) + e/2 <=s n + 3 e/4=:c2. 

The lemma thus follows by choosing b so large that s n ca/b < ~/4. [] 

The lemma above is an essential ingredient of our arguments. Here we will 
use it to show that the level sets of I are compact in our topology zz~. 

Proof of  Proposition 2.6 It follows immediately from (2.13) and (2.11) that I 
is lower semicontinuous. Hence, its level sets are closed. To prove their compact- 
ness we let ~ b  denote the space of all bounded local functions and zze~ the 
associated topology on ~o- By the same arguments as in Propositions 15.14, 
4.9 and 4.15 of [7] it follows that the level sets of I are compact and sequentially 
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compact in zsob. (Note that any additive set function on the algebra U ra l~a  
A c ~  

which is a-additive on each ralo~a admits a unique extension to a measure 
on ~" because each (f2 A, ~@A) is standard Borel.) It is thus sufficient to show 
that the topologies zz~ and r~  coincide on {I<c} for any c>0 .  So let f e ~  
and A e cd be such that I f ] <  b(1 + N~) for some b < oo. For  each n eN ,  the func- 
tion f ,  = f  I(N~=<,~ then belongs to ~b,  and Lemma 5.2 shows that ez. converges 

to e s uniformly on {l<c} as n--+ oo, Hence e s is zso~-continuous on {I<c}, 
and this implies that z~ = z ~  on {I < c}. []  

5.2 Comparison of different Poisson random fields 

In this subsection we study the relationship between Q and Q" for an arbitrary 
v e , / ~ .  In particular, we shall prove Proposition 3.5. The basic fact is stated 
in the lemma below. 

Lemma 5.3 Suppose v ~  E is p-continuous with density h. Then, for each bounded 
A eNs,  Q'A is Q~-continuous with density 

(5.4) f~ = exp [Nz (log h) + I A ](p ( E ) -  v (E))]. 

Here we use the convention that f~=O on the set {N(A x {h=0})>0}.  

Proof. Obvious. []  

Proof of Proposition 3.5 Let vedg E and P e ~ o  with pp=V be given. To begin, 
we note that if I (P )<oo  then v~p .  Indeed, for each CeNs  with I C [ = l  we 
have Pc~Qc because/(Pc;  Qc)<=I(P) �9 Therefore, if BeN~ is such that p (B)=0  
then Q(N(CxB))=O and thus v(B)=pp(B)=P(N(CxB))=O. Consequently, 
both sides of (3.12) are infinite except when v~p .  We thus can assume that 
v ~ p with a density h. 

Let A ecg be given. By the definition offX in (5.4), 

P~(f~>O)=P(N(A x {h=O})=O)= 1 

because P(N(A x {h=O}))=[AIv(h=O)=O. Hence PA~Qa if and only if Pa ~ Q~, 
and in this case we have 

I (P~; QA) = P~ (log d P~/d Q~A + log f~) 

= I(PA ; Q~)+)o| V(1A | log h)+ ]A I(#(E)--v(E)) 

=I(P~; Q~A)+IAI IE(V). 

This identity holds trivially if neither P~ ~ QA nor P~ ~ Q~. Dividing by [A [ and 
taking the sup over A we arrive at (3.12). The rest of the proposition is obvious 
because Iv(P) > 0 with equality if and only if P = QL []  
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5.3 Large deviations for R, 

We will now prove our first main result, Theorem 3.1. So let {(F,), F} be an 
asymptotic empirical functional. Our first step consists in showing that there 
is no loss in assuming that F >  1 + z  q' and F , > 0  for all n. 

Lemma 5.4 Let b e n  and define 

V*=F+b(l+z~) ,  F*=F,+b(IA,  I+N~,). 

Also, let Q*= Q~* be the Poisson point random field with mark intensity measure 
#*=ebb#,  and I*=Iu. the corresponding specific entropy functional. Then 
{(F*), F*} is an asymptotic empirical functional, and inequalities (3.2) and (3.3) 
hold if and only if they hold for the starred quantities. 

Proof The first claim is obvious. Next, Lemma 5.3 shows that 

[A,[ - 1 l o g  * - e * _  -1 QA,(e ) - c + ] A , [  log Qa,(e-V"), 

where c=#(E)-p*(E)--b.  On the other hand, since Iup(P ) is independent of 
Q resp. Q* we conclude from (3.12) and (2.10) that 

I * = I - c - b ( l  + z~'). 

Since z ~ is continuous, Fls* -- Fls r + b (1 + z ~) and thus I* + Fls* = I + Fls ~ -- c, and 
a similar identity holds for the upper semicontinuous regularization. The lemma 
is now obvious. []  

By hypothesis on {(F,), F}, the constant b in Lemma 5.4 can be chosen so 
large that F * >  1 + z  q'. We thus can and will assume that F >  l + z  q'. We can 
also assume that 6.~< 1 for all n. It then follows from (3.1) that F , > 0  for all n. 

We first derive the upper bound (3.2). We follow the lines of [8] but need 
to go into the details because of some additional technicalities. We can assume 
that Qa , ( e - e - )>0  for all n. The measures Q F in (3.5) are thus well-defined. 
By (2:10), 

(5.5) --[An[ -1 logQa,(e-e")--lA.[ -a l(Qe,; Qa,)+IA,  I -a Qe,(F,). 

We thus seek a lower bound of the expressions on the right. To deal with 
the first term we introduce the measure 

(5.6) (~,F=[A,[-1 ~ O V, oO;~dx, 
An 

where he - v Q . _  ~ dQ" o Of a is the shift-periodic point random field with period 
i~pnZ 

p,=]A,I TM relative to which the configurations in the disjoint blocks As+i , 
iep,2~ e, are iid with distribution Q v. 

Lemma S.S For all n, 0 ~  o and I(Q~)<JA,] -a I(Q~; Qa,). 

As a matter of fact, the preceding inequality is even an identity, as can be 
shown using convex analysis or an analogue of Theorem 15.20 of [-7]. We do 
not need this fact here. 
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Proof. Clearly, 0e is stationary. Moreover, since F , > 0  we have Q F < c, QA,~ for 
some cn < Go and thus 

OV,(N~A.)=QV,(N~A.)<c, Q(NA~)= Cn IAnl #(~)< ~ .  

Hence Q, v has finite tp-intensity. 
In view of the product structure of 0,VoS~ -1, I(Q,eoS~ -1) (as defined by the 

limit (2.12)) exists and equals an= [A,[- I I (Q~;  QA.); cf. the proof of Proposi- 
tion 16.34 of [-7]. It is also easily seen that for each A ~cd and x ~S  

I ((0.~ o 0 ;  1)~; 0~)_-<IA +'"1 an, 

where A +'n= {y ~ S: ds (y, A)< diam An}. Letting A run through the sequence (Ak) 
we thus conclude from the dominated convergence theorem that 

an--lira IAk[ -alA.1-1 S I(((2e,~ a " h~, 0~)  d x. 
k ~  ~ A .  

By (2.11), relative entropy is a measure convex function of its first argument. 
The last expression is therefore not less than 

limlAk] 1 i  -v - ( ( Q n ) A ~ ;  QA~)= I(QV.) �9 
k-~ o~3 

This proves the second assertion of the lemma. [] 

To estimate the second term on the right side of (5.5) we introduce the 
lower convex envelope 

(5.7) _F= sup {ez: fe~.~, ez<F} 

of F. 

Lemma 5.6 For all n we have 

[An]-~ QF(Fn)>F(QVR,) v v _ - -6n( l+qn) ,  

where QnF R, = S Rn, ~, QF ( d oo ) ~ ~o and qn = ~' ( Qn 

Qn Rn. Its ~-intensity Proof. Since all Rn,,o are stationary, so is their mixture v 
is given by 

z ~, (QV Rn) = Q~ (z ~' (Rn)) = I An 1-1 QF (N~A.) 

which is finite because Fn>O. Thus Qe, R , ~ s .  Also, for each f ~  with e i < F  
we obtain from (3.1) that 

[An[ -1 V,> Rn(f)-bv~(1 + z~'(Rn)). 

Integrating this with respect to Q v and taking the supremum over f we 
arrive at the stated inequality. [] 

The next step consists in showing that the measures O~ and v Qn R, are asymp- 
totically identical. 
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Lemma 5.7 Suppose that lirn sup I(Q, v) < oQ. Then 

2 0 1  

lim [ ( ~ ( f ) -  Q.~ R . ( f ) ]  = 0  
n-Coo 

for all f 6 ~.  

Proof Let f e S r  be given and A~cg be such that f is r21~-measurab le  and 
]f] <b(1 + N  I )  for some b < oo. Proceeding as in the proof  of Remark 2.4 we 
then find that 

] (~  ( f ) _  Q V R. (f)[ 

<]A,I  -~ ~ [Q,F(lfo0x])+ I [f(O~ co("))[ Q,V(dco)] d x  
OAn 

< 2 b l A ,  I -~ [~A,I+Zb[A,]  -~ ~ O.F,(NY+,)dx 
OA~ 

because 

I N~+x(co(")) QV,( d oJ) = Q~(N~x.. ) = OV,(N~+:,). 

For any a > 0 we may write further 

IA,] -1 ~ QF(Ny+x)dx 
c~An 

<a[A,]  -1 I~?A,I+[A,1-1 ~ Q~(N~+xl~+=>a~)dx 
An 

= a I An ] -1 r OA, I+ (~,V(NJ~ l(u~ >,)). 

By Lemma 5.2, the last term can be made arbitrarily small (uniformly in n) 
by choosing a sufficiently large. The lemma thus follows by letting first n ~ oo 
and then a ~ o o .  []  

Lemma 5.8 

lim sup ] A, [ - 1 log QA,, (e- F~) < _ inf [I  + F] .  
/i.-+oo 

Proof Suppose the contrary. Then there exists a number c< inf [ I+_FJ  such 
that 

--]A.] -1 logQa.(e-V.)<c 

for infinitely many n. Equation (5.5) and Lemmas 5.5 and 5.6 then imply that 

(5.8) I(OD + f_(Qr. R , ) -  6~(1 + q e) < c 

for these n. Since F > l + z  ~ ' =  and l + z O - e - s _  f - f ~  - I + N , ~  e ~ ,  we have F > l + z  ~  
and thus _F(Q, e R , ) -  6,v(1 + q v) > 0. Hence I(QV,) < c for infinitely many n Proposi- 
tion 2.6 now implies the existence of a subsequence ~e (Q,k)k >= 1 which converges 
to some P e {I__< c}. By Lemma 5.7, P is also the limit of the sequence F (Q,k R.k)k > a" 
Hence qr. k --+ zq'(P) < oo and therefore 6.Vk(l + q v) ~ 0 as k ~ o0. Letting n = nk ~-oe 
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in (5.8) and using the lower semicontinuity of I and _F we thus find that I(P) 
+ F ( P ) <  c, in contradiction to the choice of c. []  

The upper bound (3.2) follows immediately from the last and the next lemma. 

Lemma 5.9 inf [I + F]  = inf [I + F1j .  

The proof of the corresponding Lemma 4.5 in [8] only rests on some general 
structural properties which hold also in the present setting. 

We now turn to the lower bound (3.3). Its proof follows a standard device 
which is outlined in [5~, for example. We mention some details because addition- 
al care is needed. We must show that 

(5.9) lim inf ] A. [ - t log QA. (e- v.) > _ [I (P) + F ~~ (P)] 
n ~ o o  

for each P e ~  o for which the expression on the right is finite. We can assume 
that P is ergodic relative to O. Indeed, if P, is defined by formula (5.6) with 
Q v replaced by P~, then I(P,)<I(P) by an analogue of Lemma 5.5, and thus 
P, ~ P by an analogue of Lemma 5.7 combined with Remark 2.5. Thus for each 

> 0 there is some n with 

I (P)+ F'~r e > I (P,)+ FU~r 

and it is easily seen that each P, is ergodic. 
Next, it follows from (2.8) and McMillan's theorem in the version of Fritz 

[6] or Nguyen and Zessin [13] that, for each e>0 ,  PA,(An,~)--+I as n ~ ,  
where 

An,~ = {V (R.) < V us~ (P) + 5, d nA./d QA. < exp I An L(I (P) + e)}. 

Thus we can write, using Jensen's inequality in the last step, 

IAnt -1 lOgQA.(e-e")~IA.] -~ logQa.(e -e~ 1~.,o) 

> -- F us~ ( P ) -  I (P)-- 2 e + I A. ] - ~ log PA. (e- 0.~IA~ ~ + ~*(R.)) 1A.,~). 

>-Fusc (p ) - I (P) -2e - - f i v . ( I+z*(P)PA. (An , , ) -~ )+IA . [  -~ IOgPA.(A.,~). 

In the limit n ~ ~ ,  ~ --* 0 we arrive at (5.9). 

5.4 The maximum entropy principle 

In this final subsection we shall prove Theorem 3.3. As we have stated in the 
introduction, this proof is based on the very same ideas as that of the upper 
bound (3.2). First of all, it follows from (3.3) and hypothesis (3.6) that Qa~(e -~") 
> 0 eventually. The measures Q e in (3.5) are thus well-defined for all sufficiently 
large n. Next, we can again assume without loss that F >  1 + z* and F ,>  0 for 

(Q). =Q. these n. For, if {(F*), F*} and Q* are defined as in Lemma 5.4 then . v* v 
for all n for which Q r is defined, and (M*)V*= M v because I * +  FI* c and I +Fl~c 
differ only by a finite constant; ef. the proof of Lemma 5.4. 

By Eq. (5,5) and Lemmas 5.5 and 5.6, 

~ F  F I(Qn)+ F_ (Q. R . ) -  3.v(1 +q~)<= -IAn1-1 lOgQa.(e--F"). 
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C o m b i n i n g  this inequa l i ty  with the lower  b o u n d  (3.3), hypo thes i s  (3.6), and  Lem-  

m a  5.9 we ob t a in  

(5.10) lira sup [ I  (QF) + F e _F(Q~ R , ) -  c5~ (1 + qf)] 

< i n f  [-I + F ]  < oe. 

Since F > 1 + z ~ and  thus F_> 1 + z ~ and  6~ < 1 eventual ly ,  this impl ies  tha t  Q~ 

eventua l ly  be longs  to a level set of  I.  P r o p o s i t i o n  2.6 thus shows tha t  a sui table  

subsequence  -F  Q,k converges  to some Q~E~o.  F o r  any  such subsequence  (nk) 
and  Q~ we conc lude  f rom L e m m a  5.7 tha t  also F ~ e Q,kRn~ Q o o, and  the reby  q,~ 
-~ zO(Q~) < o% as k ~ oo. Since I a n d  _F are  lower  semicont inuous ,  we therefore  

ob t a in  f rom (5.10) tha t  I (Q~)+F(QF)<in f [ I+F_] .  Tha t  is, QF  belongs  to the 

c o m p a c t  set { I + F = m i n } .  By L e m m a  4.8 of  [8] this set consists  of  all ba ry -  

centers  of  Borel  p r o b a b i l i t y  measures  on M F = {I + Fls c = rain}. Therefore  it on ly  

remains  to observe  tha t  the sequences ((~f) and  (QF) have  the same set of  accumu-  

la t ion  points .  This  fol lows f rom L e m m a  5.7 and  the fact that ,  under  our  hypo the -  

ses on F,, Q , e R , = Q ~  on r - l ~  a~," cf. L e m m a  4.6 of  [8]. The  p r o o f  of  T h e o r e m  3.3 

is thus  complete .  
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