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Abstract. We investigate large deviations for the empirical measure of the position
and momentum of a particle traveling in a box with hot walls. The particle travels
with uniform speed from left to right, until it hits the right boundary. Then it is
absorbed and re-emitted from the left boundary with a new random speed, taken
from an i.i.d. sequence. It turns out that this simple model, often used to model
the interaction of a free particle with a heat bath, displays unusually complex large
deviations features that we explain in detail. In particular, if the tail of the update
distribution of the speed is sufficiently oscillating, then the empirical measure does
not satisfy a large deviations principle, and we exhibit optimal lower and upper
large deviations functionals.

1. Introduction

We consider the motion of a particle in a box [0, 1[. The particle moves with
uniform velocity v1 from left to right, until it reaches 1 and it is instantaneously
absorbed and re-emitted at 0 with a new random speed v2. Then the particles
travels again through the box with constant speed, and so on. If the sequence (vi)i≥1

is i.i.d. the stochastic motion we have described is Markovian and arises naturally
in the simulation of a heat bath Eckmann and Young (2004, 2006); Larralde et al.
(2003); Lin and Young (2010); Mej́ıa-Monasterio et al. (2001). In this paper our
main goal is to study the large deviations of the law of the empirical measure of the
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canonical coordinates (qt, pt) representing position and momentum of this process.
In spite of the simple description enjoyed by the Markov process (qt, pt), it features
unusual large deviations properties.

0 1

1.1. A non-standard large deviations principle. A wide literature deals with large
deviations of the empirical measure of Markov processes, after the seminal work
of Donsker and Varadhan Donsker and Varadhan (1975). However, neither their
theory or its extensions can be applied in this case, nor they would provide the
right result. On one hand, we prove that even the existence of a large deviations
principle can fail for certain choices of the marginal law of the i.i.d. sequence (vi)i.
On the other hand, when large deviations exist, the associated rate functional can
differ from the related Donsker-Varadhan functional. The main point is that, if
the random variables exp(c/vi) have infinite expectation for some c > 0, then the
probability for the particle to assume a slow velocity of order t−1 before time t
is not negligible at the large deviations level as t → +∞. Thus, when looking at
events of exponentially small probability, the empirical measure may show features
quite far from its typical behavior, and in particular it may concentrate on measures
which are singular with respect to the invariant measure of (qt, pt) (we recall that
this cannot happen if the correct large deviations functional coincides with the
Donsker-Varadhan one).

Another approach to study the large deviations of the empirical measure of the
process, would be to use the inversion map for processes depending on an underlying
renewal process, see Duffy and Rodgers-Lee (2004). However this method is effective
only if the sequence 1/vi of times of return to 0 is bounded, and indeed in the general
case one obtains with this approach the wrong rate functional.

In other words, the presence of long tails in the distribution of the return time
1/vi leads standard approaches to fail, and requires a specific analysis. The heavy
tails phenomenon induces a slow convergence to the invariant measure (when it
exists), and results of the Donsker-Varadhan type are not allowed. It also induces
a lack of regularity of the inversion map, and thus renewal techniques cannot be
applied directly as well.

1.2. Setting and notation. At time t = 0 the particle is at position q0 ∈ [0, 1[ with
speed p0 > 0, so that the time of the first collision with the wall at 1 is

T0 = T0(q0, p0) :=
1 − q0
p0

.

We consider an i.i.d. sequence (vi)i=1,2,... such that vi > 0 a.s. for all i. When the
particle reaches 1 for the i-th time, it is re-emitted from 0 with speed vi. The time
to reach 1 again is then τi := 1/vi. We denote the law of τi by ψ(dτ) and the law
of vi = 1/τi by φ(dv).

Let us then consider the classical delayed renewal process associated with (τn)n≥1

Tn := T0 + τ1 + · · · + τn, n ≥ 0.
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The right-continuous process (qt, pt)t≥0 is now defined by

(qt, pt) = F (q0, p0, t, (τn)n≥1) :=
{

(q0 + p0t, p0) if t < T0,
( t−Tn−1

τn
, 1
τn

)

if Tn−1 ≤ t < Tn, for some n ≥ 1.

(1.1)

Next we define the empirical measure of the process (qt, pt)t≥0 as

µt :=
1

t

∫

[0,t[

δ(qs,ps) ds ∈ P([0, 1[×R+)

where, for X a metric space, we denote by P(X) the set of Borel probability mea-
sures on X , equipped with its narrow (weak) topology.

We first state some basic properties of the process (qt, pt)t≥0 to be proved in
section 7. Next, we introduce our main results, concerning large deviations princi-

ples for the law P
(q0,p0)
t of µt, when the set P([0, 1[×R+) is equipped with its weak

topology.

1.3. Basic properties. We define the family of operators

Ptf(q, p) := E(f(F (q, p, t, (τn)n))), (q, p) ∈ [0, 1[×R+, (1.2)

for all bounded Borel function f : [0, 1[×R+ 7→ R, where F is defined in (1.1). The
following result easily proved:

Proposition 1.1. The process (qt, pt)t≥0 is Markov and (Pt)t≥0 has the semigroup
property: Pt+s = PtPs, t, s ≥ 0.

For any probability measure µ on R+×[0, 1] such that µ(p) :=
∫

p µ(dq, dp) ∈ R
∗
+

let us set

µ̃(dq, dp) :=
1

µ(p)
p µ(dq, dp).

For any π = π(dp) ∈ P(R+) with π(p) :=
∫

p π(dp) ∈ R
∗
+ we also set

π̃(dp) :=
1

π(p)
p π(dp). (1.3)

and we denote by Pπ the law of an i.i.d. sequence (vi)i≥1 with marginal distribution
π, i.e.

Pπ := ⊗i∈Z
∗
+
π(dvi). (1.4)

Proposition 1.2. Let π ∈ P(R+) with π(p) ∈ R
∗
+. Under Pπ̃, µt ⇀ dq⊗ π a.s. as

t→ +∞.

1.4. Large deviations rates. In this section we define the rate functionals I and Ī

for the large deviations of (P
(q0,p0)
t )t>0, and some preliminary notation is needed.

First, for convenience of the reader, we recall here the

Definition 1.3. Let (Pt)t>0 ⊂ P([0, 1[×R+). For two lower semicontinuous func-
tionals I, Ī : P([0, 1[×R+) → [0,+∞], (Pt)t>0 satisfies

- a large deviations upper bound with speed t and rate I, if

lim
t→+∞

1

t
logPt(C) ≤ − inf

u∈C
I(u) (1.5)

for each closed set C ⊂ P([0, 1[×R+)



742 R. Lefevere, M. Mariani and L. Zambotti

- a large deviations lower bound with speed t and rate Ī, if

lim
t→+∞

1

t
logPt(O) ≥ − inf

u∈O
Ī(u) (1.6)

for each open set O ⊂ P([0, 1[×R+).

The family (Pt)t>0 is said to satisfy a large deviations principle if both the upper
and lower bounds hold with same rate I = Ī.

For X a metric space, µ ∈ P(X) and f ∈ L1(X, dµ), µ(f) ≡ µ(f(x)) ≡
∫

µ(dx)f(x) denotes the integral of f with respect to µ. For µ, ν probability mea-
sures on X , H(ν |µ) is the relative entropy of ν with respect to µ, this notation is
used regardless of the space X .

For ` ∈ [0, 1] we define the measure λ` ∈ P([0, 1[) as

λ`(dq) :=

{

`−11[0,`[(q) dq if ` ∈]0, 1]

δ0(dq) if ` = 0
(1.7)

where dq is the Lebesgue measure on [0, 1[. Let us define Ω0 ⊂ P([0, 1[×R+) as

Ω0 :=
{

µ(dq, dp) = π(dp) dq, π ∈ P(R∗
+), π(p) < +∞

}

(1.8)

and Ω ⊂ P([0, 1[×R+) as

Ω :=
{

µ(dq, dp) = α1π(dp) dq + α2 δ0(dp) dq + α3 δ0(dp)λ`(dq) :

αi ∈ [0, 1], α1 + α2 + α3 = 1, π ∈ P(R∗
+), π(p) < +∞, ` ∈ [0, 1)

} (1.9)

where here and hereafter we understand π(p) :=
∫

p π(dp) ∈]0,+∞].
If µ ∈ Ω then the writing (1.9) is unique up to the trivial arbitrary choice of

π or ` when respectively α1 = 0 or α3 = 0. We adopt throughout the paper the
convention

0 · ∞ = 0. (1.10)

Definition 1.4. Let

ξ := sup
{

c ∈ R : φ(ec/p) < +∞
}

∈ [0,+∞], (1.11)

ξ̄ := − lim
δ↓0

lim
ε↓0

ε logφ([ε(1 − δ), ε(1 + δ)[) ∈ [0,+∞]. (1.12)

If moreover π ∈ P(R+) satisfies π(p) < +∞, define π̃ as in (1.3). Then the
functionals I and Ī are defined as

I(µ) :=

{

α1π(p)H
(

π̃
∣

∣φ
)

+ (α2 + α3 `
−1) ξ if µ ∈ Ω is given by (1.9)

+∞ otherwise
(1.13)

Ī(µ) :=

{

α1π(p)H
(

π̃
∣

∣φ
)

+ α2 ξ + α3 `
−1 ξ̄ if µ ∈ Ω is given by (1.9)

+∞ otherwise
(1.14)

Lemma 1.5. For any φ ∈ P(R∗
+) we have ξ̄ ≥ ξ ≥ 0 and therefore Ī ≥ I.

Proof : If c < ξ then φ(ec/p) < +∞ and therefore

φ([ε(1 − δ), ε(1 + δ)[) =

∫

[ε(1−δ),ε(1+δ)[

e−c/pec/p φ(dp) ≤ e−c/(ε(1−δ))φ(ec/p)
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so that

ξ̄ = − lim
δ↓0

lim
ε↓0

ε logφ([ε(1 − δ), ε(1 + δ)[) ≥ c

and letting c ↑ ξ we have the result. �

The following example shows that the inequality ξ̄ ≥ ξ can be strict.

Example 1.6. Let φ :=
1

Z

∑

j≥0

e−2j

δ2−j . Then ξ = 1 and ξ = +∞.

Proof : For c ≥ 0
∫

ec/p φ(dp) =
1

Z

∑

j≥0

e(c−1)2j

which is finite if and only if c < 1, so that ξ = 1. On the other hand, it is easy to
check that for δ < 1/2 and εj = 3 2−j, φ([εj(1−δ), εj(1+δ)[) = 0, so that ξ = +∞.

�

However, for many cases of interest one has ξ = ξ. For instance, if φ is such that

φ([0, p[) = exp

(

−
ξ + L(p)

p

)

, p ≥ 0,

for some function L continuous at 0, then ξ = ξ. This is for instance the case
if φ(dp) = exp−ξ p ξ−1p−2dp for some ξ > 0 (which corresponds to exponential
interarrival times) or φ(dp) = pκ−1M(p)dp for some κ > 2 and some function M
slowly varying at 0 (which yields ξ = 0 and interarrival times with polynomial
decay).

1.5. Main results. Recall that a functional J : P([0, 1[×R+) → [0,+∞] is good if
its sublevel sets are compact, namely if the set {µ ∈ P([0, 1[×R+) : J(µ) ≤ M}
is compact for all M ≥ 0. In other words, a functional is good iff it is coercive
(namely its sublevel sets are precompact) and lower semicontinuous (namely the
sublevel sets are closed).

Proposition 1.7. The functionals I and Ī are good.

We can now state the main result of this paper.

Theorem 1.8. For all (q0, p0) ∈ [0, 1[× ]0,+∞[, the sequence (P
(q0,p0)
t )t>0 satisfies

a large deviations upper bound with with speed t and rate I, and a large deviations
lower bound with with speed t and rate Ī.

The sequence (P
(q0,p0)
t )t≥0 satisfies a large deviations principle with speed t and

good rate I iff ξ = ξ̄.

1.6. A comparison with previous work. We note that in Lefevere et al. (2011a)
we have studied a large deviations principle for the empirical measure of renewal
processes, which turns out to be strictly related to Theorem 1.8. We recall the
definition of backward recurrence time process (At)t≥0 and the forward recurrence
time process (Bt)t≥0 are defined by

At := t− SNt−1, Bt := SNt − t, t ≥ 0,
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where S0 := 0, Sn := τ1 + · · · + τn, n ≥ 1, and

Nt :=

∞
∑

n=0

1(Sn≤t) = inf {n ≥ 0 : Sn > t}

is the number of renewals before time t > 0, see Asmussen (2003). Then we can
see that, in our context, if T0 = 0 then

qt =
Bt

At +Bt
, pt =

1

At +Bt
, t > 0.

Therefore one could expect that a LDP for (At, Bt)t≥0 yields an analogous LDP
for (qt, pt)t≥0 by a contraction principle. However, (qt, pt)t≥0 is not a continuous
function of (At, Bt)t≥0, in particular if At+Bt → +∞ then qt can oscillate in [0, 1].
Indeed, the LDP for the empirical measure of (At, Bt)t≥0 at speed t holds for any
inter-arrival distribution for the i.i.d. sequence (τi)i≥1 and the rate functional is
similar to I in (1.13), but it does not contain the last term with `−1ξ, see Lefevere
et al. (2011a).

In Lefevere and Zambotti (2010); Lefevere et al. (2011b, 2010) our random speed
particle in a box is used to construct a class of dynamics which can model the
transport of heat in certain materials and which displays anomalous large devia-
tions properties, in particular a lack of analyticity of the LD rate functionals of
certain physical observables like the energy current. The results of this paper clar-
ify such anomalies, which are related with the appearance of the additional terms
multiplying ξ in the expression (1.13) of I.

Finally, we note that the process (qt, pt)t≥0 is a simple example of a piecewise
deterministic process, see Davis (1993); Jacobsen (2006). For other results on large
deviations of a class of piecewise deterministic processes, see Faggionato et al.
(2010).

2. The rate functionals

In this section we study the rate functionals I and I defined in (1.13) and, respec-
tively, (1.14). We recall that any µ ∈ Ω can be written in the form (1.9); however
π or ` are not uniquely defined if α1 = 0 or α3 = 0 respectively. In order to have a
notational consistency and avoid to distinguish all different cases, throughout this
section we set π = φ whenever α1 = 0 and ` = 1/2 whenever α3 = 0.

We denote by Cb(R+) the space of all bounded continuous functions on R+ =
[0,+∞[.

Lemma 2.1. For all π ∈ P(R+) and a > 0

π(p) H
(

π̃
∣

∣φ
)

= sup
ϕ

(π(pϕ) − π(p) log φ(eϕ))

= sup
ϕ :φ(eϕ)=a

(π(pϕ) − π(p) log φ(eϕ)) = sup
ϕ :φ(eϕ)=1

π(pϕ)

where the suprema are taken over ϕ ∈ Cb(R+).

Proof : It is well known that

H
(

π̃
∣

∣φ
)

= sup
ϕ∈Cb(R+)

(π̃(ϕ) − logφ(eϕ)) .
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Now, suppose that φ(eϕ) = a > 0 and set ψ := ϕ− log a. Then

π(pϕ) − π(p) log φ(eϕ) = π(pψ) − π(p) log φ(eψ)

and φ(eψ) = 1. Therefore the quantity

sup
ϕ :φ(eϕ)=a

(π(pϕ) − π(p) logφ(eϕ)) = sup
ϕ :φ(eϕ)=1

(π(pϕ) − π(p) log φ(eϕ))

does not depend on a > 0 and is equal to

sup
a

sup
ϕ :φ(eϕ)=a

(π(pϕ) − π(p) log φ(eϕ)) = sup
ϕ

(π(pϕ) − π(p) logφ(eϕ))

= π(p) H
(

π̃
∣

∣φ
)

.

�

The proof of Proposition 1.7 is splitted in the two following proofs for I and I.

Lemma 2.2. The sublevels of I are compact.

Proof : Let (µn)n ⊂ P([0, 1[×R+) be a sequence of probability measures such that

lim
n→+∞

I(µn) < +∞. (2.1)

We need to prove that (µn)n is precompact (coercivity of I) and that for any limit
point µ of (µn), limn→+∞ I(µn) ≥ I(µ) (lower semicontinuity of I). Notice that
(2.1) implies µn ∈ Ω for n large enough, i.e. by (1.9), we have

µn(dp, dq) = α1,n πn(dp)dq + α2,n δ0(dp)dq + α3,n δ0(dp)λ`n(dq) (2.2)

with πn(p) < +∞.
Coercivity of I. Let us first show that

lim
n→+∞

µn(p) < +∞ (2.3)

By the bound (2.1) and the definition (1.13) of I

µn(p) ≤
C

H(π̃n|φ)

for some finite constant C ≥ 1. On the other hand, by (2.2)

µn(p) = α1,n πn(p) ≤ πn(p) =
1

π̃n(p−1)

and thus

lim
n
µn(p) ≤

C

limn H(π̃n|φ) ∨ π̃n(p−1)

The denominator in the right hand side is uniformly bounded away from 0. Indeed,
if there is a subsequence (π̃nk

)k along which H(π̃nk
|φ) vanishes, then π̃nk

⇀ φ, and
thus lim infk π̃nk

(p−1) ≥ φ(p−1) > 0. Thus (2.3) holds.
For each M > 0, the set ΩM := {µ ∈ Ω : µ(p) ≤ M} is compact, and by (2.3),

µn ∈ ΩM for some M large enough and for any n. Thus (µn)n is precompact.

Semi-continuity of I. Let µ ∈ P(R+) be such that along some subsequence, again
denoted (µn)n, µn ⇀ µ. Passing to subsequences, still labeled by n for notational
simplicity, we can assume that αi,n → ᾱi for i = 1, 2, 3 and `n → ¯̀ ∈ [0, 1] as
n→ +∞. Note that, in general, one could have that ᾱi 6= αi and ¯̀ 6= `.
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Since µn(p) = α1,n πn(p) is uniformly bounded by (2.3), if ᾱ1 > 0 then (πn)n is
compact in P(R+). Therefore, up to passing to a further subsequence

lim
n
α1,n πn = ᾱ1

(

βζ + (1 − β)δ0
)

(2.4)

for some β ∈ [0, 1] and ζ ∈ P(R+) such that ζ({0}) = 0 and ζ(p) < +∞. In the
same way

lim
n
α3,nλ`n = ᾱ3λ¯̀.

Thus patching all together, we have µ ∈ Ω, in particular

µ(dp, dq) = α1π(dp) dq + α2 δ0(dp) dq + α3 δ0(dp)λ`(dq),

with






































α1 = ᾱ1β

α2 = ᾱ2 + ᾱ1(1 − β) + ᾱ31{1}(¯̀)

α3 = ᾱ31[0,1[(¯̀)

π = ζ if α1 > 0

(2.5)

and π ∈ Ω0 is chosen arbitrarily whenever α1 = 0. Therefore, we want to prove
that

lim
n→+∞

I(µn) = lim
n→+∞

[

µn(p)H(π̃n|φ) +
(

α2,n + α3,n`
−1
n

)

ξ
]

≥ µ(p)H(π̃|φ) +
(

α2 + α3 `
−1
)

ξ,

with the usual convention 0 · ∞ = 0. Since

lim
n→+∞

(

α2,n + α3,n `
−1
n

)

≥ ᾱ2 + ᾱ3
¯̀−1 = α2 + α3 `

−1 − ᾱ1(1 − β)

to conclude we are left to prove

lim
n→+∞

µn(p)H(π̃n|φ) ≥ ᾱ1β µ(p)H(π̃|φ) + ξ ᾱ1(1 − β). (2.6)

Recall that

µn(p)H(π̃n|φ) = α1,n πn(p) sup
ϕ∈Cb(R+)

(

π̃n(ϕ) − logφ(eϕ)
)

= α1,n sup
ϕ∈Cb(R+)

(

πn(pϕ) − πn(p) logφ(eϕ)
)

.

By a limiting argument, it is easily seen that the supremum in the above formula
can be taken over the set of measurable functions ϕ such that

eϕ ∈ L1(R+, φ), p 7→ pϕ(p) ∈ L1(R+, πn). (2.7)

Let us fix c ≥ 0 such that φ(ec/p) < +∞. For δ > 0, let χ = χδ : R+ → [0, 1] be
a smooth decreasing function such that χ(p) = 1 for p ∈ [0, δ] and χ(p) = 0 for
p ≥ 2δ. For δ > 0 and ϕ ∈ Cb(R+), consider the test function

ϕδ(p) =
c

p
χ(p) + (1 − χ(p))ϕ(p), p > 0.

Since c < ξ, then ϕδ satisfies the integrability conditions (2.7) and therefore

µn(p)H(π̃n|φ) ≥α1,n

(

πn(pϕδ) − πn(p) logφ(eϕδ )
)

=α1,n

[

c πn(χ) + πn(p(1 − χ)ϕ) − πn(p) logφ
(

eϕδ
)]

.
(2.8)
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If now

φ(eϕ) < 1, (2.9)

then for each c < ξ there exists δ0(c, ϕ) such that for each δ < δ0(c, ϕ)

φ(eϕδ ) ≤ 1. (2.10)

In particular, if ϕ ∈ Cb(R+) satisfies (2.9) and δ < δ0(c, ϕ), then the logarithm in
the last line of (2.8) is negative. By (2.4) then

lim
n→+∞

µn(p) H(π̃n|φ) ≥

≥ ᾱ1(1 − β)c+ ᾱ1β π(p(1 − χ)ϕ) − ᾱ1β π(p) log φ(eϕδ ).

Since π({0}) = φ({0}) = 0 and eϕδ ≤ ec/p ∈ L1(φ), as δ ↓ 0 we have χ = χδ ↓ 1{0}

and by dominated convergence

π(p(1 − χ)ϕ) → π(pϕ), φ(eϕδ ) → φ(eϕ).

Finally, taking the limit c ↑ ξ, we obtain that the inequality

lim
n
µn(p)H(π̃n|φ) ≥ ᾱ1(1 − β)ξ + ᾱ1β π(pϕ) − ᾱ1β π(p) logφ(eϕ)

= ᾱ1(1 − β) ξ + ᾱ1β π(p)
[

π̃(ϕ) − logφ(eϕ)
]

,
(2.11)

with the usual convention 0 ·∞ = 0, holds for any ϕ ∈ Cb(R+) satisfying (2.9). By
Lemma 2.1, taking the supremum of the quantity in square brackets in the last line
of (2.11) over all ϕ satisfying (2.9), we obtain (2.6). �

Lemma 2.3. The sublevels of I are compact and I is lower semicontinuous.

Proof : Since I ≤ I, then
{

I ≤M
}

⊆ {I ≤M} and therefore by Lemma 2.2
{

I ≤M
}

is pre-compact. Let us now show lower semi-continuity. We set J := I − I ≥ 0 and
we remark that

J(µ) =

{

α3 `
−1
(

ξ − ξ
)

if µ ∈ Ω is given by (1.9)

+∞ otherwise

with the usual convention 0 · ∞ = 0. Since Ω is closed in P([0, 1[×R+), then J is
lower semi-continuous; indeed, the only non trivial case is for a sequence Ω 3 µn ⇀
µ such that α3,n → 0, and in this case by (2.5) above µ ∈ Ω must be given by (1.9)

with α3 = 0. Therefore J(µ) = 0 ≤ limn J(µn), since ξ ≥ ξ. �

The next lemma will be used in the following.

Lemma 2.4. Let

Ω̄ :=
{

µ ∈ Ω : (1.9) holds with α2 = 0, ` > 0
}

(2.12)

Then Ω̄ is I-dense in P([0, 1[×R+), namely for each µ ∈ P([0, 1[×R+) such that

I(µ) < +∞ there exists a sequence (µn)n in Ω̄ such that µn ⇀ µ and limn I(µn) ≤
I(µ).

Proof : Since I(µ) < +∞ then µ ∈ Ω and it can be written as in (1.9). If α3 = 1,
then we consider `n := `+ 1/n and

µn(dq, dp) := δ0(dp)λ`n(dq),

where n ∈ Z+ is large enough to have `+ 1/n < 1. Therefore we can suppose that
α1 + α2 > 0. In what follows, if α1 = 0 then π := γ.
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Let c := max{ξ − ε, 0} for ε > 0 and define

µn(dq, dp) := (α1 + α2)πn(dp) dq + α3δ0(dp)λ`(dq),

where

πn(dp) :=
1

α1 + α2

(

α1

1]1/n,+∞[(p)π(dp)

π(]1/n,+∞[)
+ α2

ec/p1[0,1/n](p) γ(dp)
∫

[0,1/n] e
c/p γ(dp)

)

.

Then µn ∈ Ω̄ and µn ⇀ µ. Note that

lim
n

H(π̃n |φ) = α1 H(π̃ |φ) + α2 c ≤ α1 H(π̃ |φ) + α2 ξ

and from this it follows easily that limn I(µn) ≤ I(µ). �

3. Preliminary estimates

3.1. Law of large numbers. In this section we prove Proposition 1.2, which will
come useful in the following.

Proof of Proposition 1.2: By (3.3), it is enough to prove that Pπ̃-a.s. µt ⇀ dq ⊗ π
as t→ +∞. For all f ∈ C([0, 1] × R+) we have

µt(f) =
1

t

Nt
∑

i=1

1

vi

∫ 1

0

f(q, vi) dq +
1

t vNt+1

∫ vNt+1(t−SNt)

0

f(q, vNt+1) dq.

By the strong law of large numbers a.s.

lim
n→+∞

1

n

n
∑

i=1

1

vi

∫ 1

0

f(q, vi) dq =

∫ 1

0

π̃(f(q, p)/p) dq =
1

π(p)

∫ 1

0

π(f(q, p)) dq.

By the renewal Theorem, a.s.

lim
t→+∞

Nt
t

=
1

Eπ̃(τ1)
=

π(p)
∫

p 1
p π(dp)

= π(p) ∈ R
∗
+.

Therefore a.s.

lim
t→+∞

Nt
t

1

Nt

Nt
∑

i=1

1

vi

∫ 1

0

f(q, vi) dq =

∫ 1

0

π(f(q, p)) dq

On the other hand, by the law of large numbers a.s.

lim
n→+∞

Sn
n

= π̃(1/p) =
1

π(p)
,

so that a.s.

lim
t→+∞

SNt

t
= lim

t→+∞

SNt

Nt

Nt
t

= 1, lim
t→+∞

t− SNt

t
= 0.

It follows that a.s.

lim
t→+∞

∣

∣

∣

∣

∣

1

t vNt+1

∫ vNt+1(t−SNt)

0

f(q, vNt+1) dq

∣

∣

∣

∣

∣

≤ lim
t→+∞

t− SNt

t
‖f‖∞ = 0.

�
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3.2. A simplified empirical measure. We consider the case of a particle which is
emitted from q = 0 at time t = 0 with initial speed v1 = 1/τ1. In other words, we
suppose that T0 = 0 and we consider the (undelayed) classical renewal process

S0 := 0, Sn := τ1 + · · · + τn, n ≥ 1,

and the corresponding counting process

Nt :=

∞
∑

n=1

1(Sn≤t), t ≥ 0.

We define the process (qt, pt)t≥0, where

(qt, pt) = F (t, (τn)n≥1) := (vNt+1 (t− SNt) , vNt+1)

=

(

t− Sn−1

τn
,

1

τn

)

if Sn−1 ≤ t < Sn, n ≥ 1, t ≥ 0.

Then, for any initial condition (q0, p0) ∈ [0, 1[× ]0,+∞[, the process (qt, pt) can be
written in terms of (qt, pt)t≥0

(qt, pt) =







(q0 + p0t, p0) if t < T0,

(qt−T0
, pt−T0

) if t ≥ T0.
(3.1)

We consider now the empirical measure µt of (qt, pt)t≥0

µt :=
1

t

∫

[0,t[

δ(qs,ps) ds ∈ P([0, 1[×R+), t > 0,

and we denote by Pt the law of µt. An explicit computation shows that for all
measurable f : [0, 1] × R+ → R bounded from below

µt(f) =
1

t

Nt
∑

i=1

1

vi

∫ 1

0

f(q, vi) dq +
1

t vNt+1

∫ vNt+1(t−SNt)

0

f(q, vNt+1) dq. (3.2)

By (3.1), for any initial condition (p0, q0) and t ≥ T0,

µt =
1

t

∫ T0

0

δ(q0+sp0,p0) ds+
t− T0

t
µt−T0

,

so that

‖µt − µt−T0
‖Tot ≤

2T0

t
, t ≥ T0, (3.3)

where ‖ ·‖Tot denotes the total variation norm. Therefore, the large deviations rate
functionals of (µt)t≥0 and (µt)t≥0 are the same, see Dembo and Zeitouni (2010,
Chap. 4), and thus Theorem 1.8 is equivalent to the following

Theorem 3.1. The sequence (Pt)t>0 satisfies a large deviations upper bound with
with speed (t) and rate I and a large deviations lower bound with with speed t and
rate Ī.
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4. Upper bound at speed t

4.1. A heuristic argument. Let us show the basic idea of the upper bound. Let
us suppose for simplicity that ξ = 0. We want to estimate from above for A a
measurable subset of P([0, 1[×R+)

1

t
logPt(A) =

1

t
log Eφ

(1(µt∈A) e
−tµt(f) etµt(f)

)

≤ − inf
π∈A

π(f) +
1

t
log Eφ

(

etµt(f)
)

where we choose an arbitrary f : R+ 7→ R such that φ(ef/v) = 1. For such f one
can see that

1

t
log Eφ

(

etµt(f)
)

= 0

and then we obtain

lim sup
t→+∞

1

t
log P(µt ∈ A) ≤ − sup

f :φ(ef/p)=1

[

inf
π∈A

π(f)

]

.

By a minimax argument

sup
f :φ(ef/p)=1

[

inf
π∈A

π(f)

]

= inf
π∈A

[

sup
f :φ(ef/p)=1

π(f)

]

= inf
π∈A

[

sup
ϕ:φ(eϕ)=1

π(pϕ)

]

.

By Lemma 2.1, the quantity in square brackets is equal to π(p)H(π̃ |φ) and we
have the upper bound.

4.2. Exponential tightness.

Lemma 4.1.

lim
M→+∞

lim
t→+∞

1

t
log P(µt(p) > M) = −∞. (4.1)

In particular the sequence (Pt)t>0 is exponentially tight with speed t, namely

inf
K⊂⊂P([0,1[×R+)

lim
t→+∞

1

t
logPt(K) = −∞.

Proof : Note that by (3.2), if btMc ≥ 1

{µt(p) > M} =

{

Nt
t

+
t− SNt

t τNt+1
> M

}

⊂
{

Nt + 1 > btMc
}

=
{

SbtMc ≤ t
}

Therefore by the Markov inequality

P(µt(p) ≥M) ≤ P
(

SbtMc ≤ t
)

≤ et E
(

e−SbtMc
)

= et−btMc log c

where c−1 := E
(

e−1/v1
)

< 1. The inequality (4.1) follows by taking the lim sup as
t→ +∞ and M → +∞. Since for any M > 0 the set {µ ∈ P([0, 1[×R+) : µ(p) ≤
M} is compact, exponential tightness follows. �

4.3. Free energy. For f ∈ Cc([0, 1] × R+) we set

f̄(q, v) :=
1

q

∫ q

0

f(r, v) dr, (q, v) ∈ ]0, 1] × R+.

Let Λ be the set of all bounded lower semicontinuous functions f : [0, 1[×R+ 7→ R

such that

Cf :=

∫

]0,+∞[

φ(dv) ef̄(1,v)/v < 1 (4.2)
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and

Df := sup
s>0

∫

(0,1/s]

φ(dv) esf̄(sv,v) < +∞. (4.3)

Proposition 4.2. For all f ∈ Λ

sup
t>0

Eφ

(

etµt(f)
)

= sup
t>0

Eφ

(

exp

(
∫ t

0

f(qs, ps) ds

))

≤
Df

1 − Cf
< +∞. (4.4)

Proof : Since Cf > 0, we can introduce the probability measure

φf (dv) :=
1

Cf
φ(dv) e

f̄(1,v)
v

and denote by ζn the law of Sn under Pφf
. Then we can write by (3.2)

Eφ

(

exp

(
∫ t

0

f(qs, ps) ds

))

= Eφ

(1(Nt=0) exp
(

tf̄(tv1, v1)
))

+

∞
∑

n=1

Eφ

(1(Nt=n) exp

(

n
∑

i=1

f̄(1, vi)

vi
+ (t− Sn) f̄((t− Sn)vn+1, vn+1)

))

=

∫ 1
t

0

φ(dv) et f̄(tv,v) +

∞
∑

n=1

∫ t

0

Cnf ζn(ds)

∫

]0,1/(t−s)[

φ(dv) e(t−s) f̄((t−s)v,v)

≤ Df

∞
∑

n=0

Cnf =
Df

1 − Cf
.

�

Lemma 4.3. For all µ ∈ Ω

sup
f∈Λ

µ(f) ≥ I(µ). (4.5)

Proof : For ϕ ∈ Cc(R+), c < ξ, δ > 0 and m ∈ (0, 1), let

fc,δ,ϕ,m(r, p) := pϕ(p) + c1[0,δ[(p)
1[0,m[(r)

m
, (r, p) ∈ [0, 1[×R+.

Then
1

p
f̄c,δ,ϕ,m(1, p) = ϕ(p) +

c

p
1[0,δ[(p), p ∈ R

∗
+.

Notice that
∫

(0,1/s]

φ(dv) esf̄c,δ,ϕ,m(sv,v) =

∫

(0,1/s]

φ(dp) exp
(

∫

[0,ps)

dr
fc,δ,ϕ,m(p, r)

p

)

=

∫

(0,1/s]

φ(dp) exp
(

psϕ(p) +
c

p
1[0,δ[(p)

(ps) ∧m

m

)

≤ e‖ϕ‖∞

∫

(0,+∞)

φ(dp) e1∨(c/p)

which is bounded uniformly in s, so that (4.3) holds for f = fc,δ,ϕ,m. Let now
a < 1. If

φ(eϕ) = a < 1 (4.6)

then there exists δ0 = δ0(c, ϕ) such that for all δ < δ0

Cfc,δ,ϕ,m
= φ

(

eϕ+ c
p1[0,δ[

)

< 1
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and therefore fc,δ,ϕ,m ∈ Λ. Now, if µ is given by (1.9) then

µ(fc,δ,ϕ,m) = α1π(pϕ) + c α2 + c α3 min

{

1

`
,

1

m

}

.

Since π(pϕ) = µ(p) π̃(ϕ) then

sup
f∈Λ

µ(f) ≥ sup
ϕ

sup
c,m

sup
δ
µ(fc,δ,ϕ,m)

= µ(p) sup
ϕ

{π̃(ϕ) − logφ(eϕ)} + µ(p) log a+ (α2 + α3`
−1) ξ

(with the usual convention 0 · ∞ = 0) where the supremum on δ is performed over
[0, δ0(c, ϕ)[, the supremum on (c,m) over [0, ξ[× [0, 1[ and the supremum on ϕ over
ϕ ∈ Cc(R+) satisfying (4.6). By Lemma 2.1 the supremum over ϕ satisfying (4.6)
does not depend on a and equals µ(p)H(π̃|φ), so that finally

sup
f∈Λ

µ(f) ≥ sup
a<1

{

µ(p)H(π̃|φ) + (α2 + α3`
−1)ξ + µ(p) log a

}

= I(µ).

�

Proof of Theorem 1.8, upper bound: For M > 0, let ΩM =
{

µ ∈ Ω : µ(p) ≤ M
}

and

RM := − lim
t→+∞

1

t
logPt(Ω

c
M ).

For A measurable subset of P([0, 1[×R+) and for f ∈ Λ, by (4.4),

1

t
logPt(A) =

1

t
log Eφ

(

etµt(f)e−tµt(f)1A

)

≤
1

t
log
[

e−t infµ∈A µ(f)
Eφ

(

etµt(f)
)]

≤ − inf
µ∈A

µ(f) +
1

t
log

Df

1 − Cf

and therefore

lim
t→+∞

1

t
logPt(A) ≤ − inf

µ∈A
µ(f). (4.7)

Let now O be an open subset of P([0, 1[×R+). Then applying (4.7) for A = O∩ΩM

lim
t→+∞

1

t
log Pt(O) ≤ lim

t→+∞

1

t
log
[

2 max(Pt(O ∩ ΩM ),Pt(Ω
c
M ))

]

≤ max

(

− inf
µ∈O∩ΩM

µ(f),−RM

)

= − inf
µ∈O∩ΩM

µ(f) ∧RM

which can be restated as

lim
t→+∞

1

t
logPt(O) ≤ − inf

µ∈O
If,M (µ) (4.8)

for any open set O and any f ∈ Λ and M > 0, where the functional If,M is defined
as

If,M (µ) :=

{

µ(f) ∧RM if µ ∈ ΩM

+∞ otherwise

Since f is lower semicontinuous and ΩM compact, If,M is lower semicontinuous.
By minimizing (4.8) over f ∈ Λ and M > 0 we obtain for every open set O

lim
t→+∞

1

t
logPt(O) ≤ − sup

f,M
inf
µ∈O

If,M (µ)
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and by applying the minimax lemma Kipnis and Landim (1999, Appendix 2.3,
Lemma 3.3), we get that for every compact set K

lim
t→+∞

1

t
logPt(K) ≤ − inf

µ∈O
sup
f,M

If,M (µ)

i.e. (Pt)t≥0 satisfies a large deviations upper bound on compact sets with speed t
and rate

Ĩ(µ) := sup{If,M (µ), M > 0, f ∈ Λ}, µ ∈ P([0, 1[×[0,+∞[),

and since limM→+∞RM = +∞ by Lemma 4.1

Ĩ(µ) ≥ sup{If (µ), f ∈ Λ}

where

If (µ) :=











µ(f) if µ ∈ Ω

+∞ otherwise

Thus Ĩ(µ) ≥ I(µ) by Lemma 4.3. Therefore (Pt)t≥0 satisfies a large deviations
upper bound with rate I on compact sets, and by the exponential tightness proved
in Lemma 4.1, it satisfies the full large deviations upper bound on closed sets. �

5. Lower bound at speed t

We are going to prove the lower bound in Theorem 1.8.

Proposition 5.1. For every µ ∈ Ω there exists a family Qt of probability measures
on P([0, 1[×R+) such that Qt ⇀ δµ and

lim
t→+∞

1

t
H(Qt |Pt) ≤ Ī(µ).

Proof : Let us first suppose that µ ∈ Ω̄ as in (2.12), i.e.

µ(dq, dp) = απ(dp) dq + (1 − α)λ`(dq) δ0(dp) (5.1)

with α ∈ [0, 1] and π ∈ P(R+), m := π(p) ∈ R
∗
+, ` ∈ ]0, 1[. Notice that µ(p) =

απ(p) ∈ R+.
Suppose first that µ(p) = 0, i.e. α = 0. In this case, we define by P

t,δ the law on

R
Z
∗
+

+ such that under P
t,δ the sequence (vi)i≥1 is independent and

(1) v1 has distribution

P
t,δ (v1 ∈ dv) = φ

(

dv
∣

∣Kt

)

, Kt :=

[

`(1 − δ)

t
,
`(1 + δ)

t

[

(2) for all i ≥ 2, vi has law φ.

Under P
t,δ, µt is a.s. equal to

µt =
1[0,tv1](dq)

tv1
δv1(dp).

Let us set Qt := P
t,δ ◦ µ−1

t . Then we have

lim
δ↓0

lim
t↑+∞

Qt = δµ.

Moreover
H(Qt |Pt) ≤ H

(

P
t,δ |Pφ

)

= − logφ(Kt),
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so that

lim
t→+∞

1

t
H(Qt |Pt) ≤ − lim

δ↓0
lim
ε↓0

ε

`
logφ([ε(1 − δ), ε(1 − δ))) = `−1 ξ = I(µ).

We suppose now that α ∈ ]0, 1[ and therefore µ(p) = απ(p) > 0. We set Tt :=
bµ(p) tc and we suppose that t ≥ 1/µ(p). Let us also fix δ ∈ ]0, (1 − α)/2[. Let

us define by P
t,δ the law on R

Z
∗
+

+ such that under P
t,δ the sequence (vi)i≥1 is

independent and

(1) for all i ≤ Tt, vi has law π̃
(2) vTt+1 has distribution

P
t,δ (vTt+1 ∈ dv) = φ

(

dv
∣

∣Kt

)

, Kt :=
[ `− δ

(1 − α− δ)t
,

`+ δ

(1 − α+ δ)t

[

(3) for all i ≥ Tt + 2, vi has law φ.

Let us set Qt := P
t,δ ◦ µ−1

t . Let us prove now that

lim
δ↓0

lim
t↑+∞

Qt = δµ. (5.2)

By the law of large numbers, under Pπ̃ we have a.s.

lim
t→+∞

STt

t
= lim

t→+∞

STt

Tt

Tt
t

=
1

µ(p)
αµ(p) = α < 1.

However STt has the same law under Pπ̃ and under P
t,δ, so we obtain

lim
t→+∞

P
t,δ

(∣

∣

∣

∣

STt

t
− α

∣

∣

∣

∣

≥ δ

)

= lim
t→+∞

Pπ̃

(∣

∣

∣

∣

STt

t
− α

∣

∣

∣

∣

≥ δ

)

= 0. (5.3)

Therefore, if we set

At :=

{
∣

∣

∣

∣

STt

t
− α

∣

∣

∣

∣

≤ δ, STt+1 > t, |vTt+1(t− STt) − `| ≤ δ

}

then, by (5.3) and by the definition of Kt above, we obtain that for all δ ∈ ]0, (1 −
α)/2[

lim
t→+∞

P
t,δ (At) = 1.

Moreover on At we have Nt = Tt and therefore by (3.2) on At

µt(dq, dp) =
dq

t

Tt
∑

i=1

δvi(dp)

vi
+ λvTt+1(t−STt)

(dq) δvTt+1(dp). (5.4)

Then for any f ∈ Cb([0, 1] × R+) we have

P
t,δ(|µt(f) − µ(f)| > ε) ≤ P

t,δ({|µt(f) − µ(f)| > ε} ∩At) + P
t,δ(Act )

and we already know that P
t,δ(Act) → 0 as t → +∞. Now, by (5.4), by the law of

the large numbers and by the definition of At

lim
δ↓0

lim
t→+∞

P
t,δ ({|µt(f) − µ(f)| > ε} ∩At) = 0

and we obtain (5.2).
Now we estimate the entropy

H(Qt |Pt) ≤ H
(

P
t,δ |Pφ

)

= TtH(π̃|φ) − log φ(Kt), (5.5)
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so that

lim
δ↓0

lim
t↑+∞

1

t
H(Qt|Pt) ≤ µ(p)H(π̃|φ) − (1 − α)`−1lim

δ↓0
lim
ε↓0

ε logφ([ε(1 − δ), ε(1 − δ)[)

= µ(p)H(π̃ |φ) + (1 − α)`−1ξ = I(µ).

Then there exists a map t 7→ δ(t) > 0 vanishing as t ↑ +∞ such that Qt :=

Qt,δ(t) → δµ and limt t
−1 H(Qt |Pt) ≤ I(µ).

Let now µ ∈ Ω \ Ω̄. Then, by Lemma 2.4 we can find a sequence (µn)n in Ω̄
such that µn ⇀ µ and limn I(µn) ≤ I(µ). Moreover, we now know that there exists
for all n a family Qn

t of probability measures on P([0, 1[×R+) such that Qn
t ⇀ δµn

and

lim
t→+∞

1

t
H(Qn

t |Pt) ≤ Ī(µn).

With a standard diagonal procedure we can find a family Qt such that Qt ⇀ δµ
and

lim
t→+∞

1

t
H(Qt |Pt) ≤ Ī(µ).

�

6. Optimality of the bounds

In this section we show that, for ξ < ξ, the law of µt satisfies a large deviations
lower bound and a large deviations upper bound with different rate functionals.

Let us set γ ∈ P([0, 1[×]0,+∞[) as

γ(dq, dp) :=

{

1
φ(1/p)

1
p φ(dp)λ1(dq) if φ(1/p) = 1/ψ(τ) ∈ ]0,+∞[

δ0(dp)λ1(dq) if ψ(τ) = +∞

For α, ` ∈ ]0, 1[ and δ > 0, let Aα,`
δ be the ball of radius δ in P(X × [0, 1[) centered

at αγ + (1 − α)λ` with respect to the standard Prohorov distance. We want to
prove that there exist subsequences (tk)k and (sk)k such that

lim
δ→0

lim
k

1

tk
logPtk

(

Aα,`
δ

)

= −(1 − α)`−1ξ,

lim
δ→0

lim
k

1

sk
logPsk

(

Aα,`
δ

)

= −(1 − α)`−1ξ̄.

Since the upper and the lower bound are proved, it is enough to prove that there
exist subsequences (tk)k and (sk)k such that

lim
δ→0

lim
k

1

tk
logPtk

(

Aα,`
δ

)

≥ −(1 − α)`−1ξ, (6.1)

lim
δ→0

lim
k

1

sk
logPsk

(

Aα,`
δ

)

≤ −(1 − α)`−1ξ̄. (6.2)

The inequality (6.1) follows in the same way as the lower bound. Take Qt to
be the law of µt when (τi)i is a sequence of independent variables with law ψ but
for i = bαt/ψ(τ)c, for which τi has law ψ( · |τ ≥ t(1 − α)/`). Then H(Qt |Pt) ≤
− logψ([t(1 − α)/`,+∞[) and

lim
t

1

t
H(Qt |Pt) ≤ lim

t
−

1

t
logψ([t(1 − α)/`,+∞[) =

(1 − α)

`
ξ.
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On the other hand µt ⇀ αγ+(1−α)λ` under Qt. Therefore the inequality in (6.1)
is obtained along a subsequence (tk) realizing the liminf in the above formula.

We prove now the inequality (6.2). Note that for t > 0,

µt =
SNt

t

Nt
∑

i=1

τ(xi)

SNt

δxi ⊗ λ1 +
t− SNt

t
δxNt+1 ⊗ λ t−SNt+1

τ(xNt+1)

.

Let

Ω1 :=
{

µ(dq, dp) = απ(dp)λ1(dq) + (1 − α) δv(dp)λ`(dq) :

α ∈ ]0, 1[, π ∈ P(R+), π(p) < +∞, ` ∈ [0, 1), v ≥ 0
}

and notice that we can define a one-to-one map

Ω1 3 µ 7→ (α, π, `, v) ∈ ]0, 1[×P(R+) × [0, 1) × R+.

Moreover, if Ω1 3 µn ⇀ µ ∈ Ω1, it is easy to see that necessarily the associ-
ated (αn, πn, `n, vn) also converge to (α, π, `, v) ∈ ]0, 1[×P(R+) × [0, 1) × R+, and
conversely. Therefore, there exists δ1 > 0 such that

{

µt ∈ Aα,`
δ

}

⊆

{

∣

∣

∣

SNt

t
− α

∣

∣

∣
≤ δ1,

∣

∣

∣

t− SNt

τNt+1
− `
∣

∣

∣
≤ δ1

}

,

so that

Pt

(

Aα,`
δ

)

≤ Pt

(

SNt ≤ t(α + δ1),
t− SNt

τNt+1
≤ `+ δ1

)

.

Now, let us calculate for 0 ≤ β < 1 and h ∈ [0, 1[

P

(

SNt ≤ βt,
t− SNt

τNt+1
≤ h

)

=

∞
∑

n=1

P

(

Sn ≤ βt, τn+1 ≥
t− Sn
h

,Nt = n

)

≤

∞
∑

n=1

P

(

Sn ≤ βt, τn+1 ≥
(1 − β)

h
t

)

=

∞
∑

n=1

P (Sn ≤ βt) P

(

τn+1 ≥
(1 − β)

h
t

)

= ψ

([

(1 − β)

h
t,+∞

[) ∞
∑

n=1

P (Sn ≤ βt) = ψ

([

(1 − β)

h
t,+∞

[)

E (Nβt) .

Therefore, recalling that E(Nt/t) stays bounded, by the definition of ξ̄

lim
t

1

t
log P

(

SNt ≤ βt,
t− SNt

τNt+1
≤ h

)

≤ lim
t

1

t
logψ

([

(1 − β)

h
t,+∞

[)

+ lim
t

1

t
log E (Nβt) = −

(1 − β)

h
ξ̄

so that

lim
t

1

t
logPt

(

Aα,`
δ

)

≤ −
(1 − α)

`
ξ̄.

Therefore (6.2) is obtained along a subsequence realizing the limsup in the above
fomula.
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7. The Donsker-Varadhan rate functional

As we have shown in the previous sections, the Markov process (qt, pt)t≥0 dis-
plays a non-trivial behavior at the large-deviations level. In this final section we
compute the functional that would be expected, should one apply näıvely the stan-
dard Donsker-Varadhan theory.

7.1. The generator. We want to compute the infinitesimal generator (L,D(L)) of
the process (qt, pt, t ≥ 0), in the following weak sense: we say that f ∈ D(L) if
f : [0, 1] × R+ 7→ R is bounded continuous and there exists a bounded continuous
Lf : [0, 1]× R+ 7→ R such that

Ptf(q, p) = f(q, p) +

∫ t

0

PsLf(q, p) ds, ∀ t ≥ 0, (q, p) ∈ [0, 1]× R+,

where (Pt)t≥0 is the transition semigroup of (qt, pt, t ≥ 0) defined in (1.2). Then
we have the following

Proposition 7.1. The domain D(L) of L contains the set of bounded continuous

f : [0, 1] × R+ 7→ R such that (q, p) 7→ p∂f∂q is bounded continuous and

f(1, p) =

∫

R+

f(0, 1/τ)ψ(dτ), ∀ p ∈ R+, (7.1)

and for such functions Lf = p∂f∂q .

Proof : We recall that we denote the law of τi by ψ(dτ) and the law of vi = 1/τi by
φ(du). The law of Sn := τ1 + · · ·+ τn is denoted as usual by the n-fold convolution
ψn∗ and we recall that Tn = T0 + Sn. Then we can write

Ptf(q0, p0) =

= 1(t<T0) f(q0 + p0t, p0) + 1(t≥T0)

∞
∑

n=1

E

(1(Tn−1≤t<Tn) f

(

t− Tn−1

τn
,

1

τn

))

= 1(t<T0) f(q0 + p0t, p0)+

+ 1(t≥T0)

∞
∑

n=1

∫

[0,t−T0]

ψ∗(n−1)(ds)

∫

]t−T0−s,+∞[

ψ(dτ) f

(

t− T0 − s

τ
,
1

τ

)

= 1(t<T0)f(q0 + p0t, p0)+

+ 1(t≥T0)

∫

[0,t−T0]

U(ds)

∫

]t−T0−s,+∞[

ψ(dτ) f

(

t− T0 − s

τ
,
1

τ

)

where we recall that Tn = T0(q, p) + τ1 + · · ·+ τn and we set ψ∗0(ds) = δ0(ds) and

U([a, b]) =
∞
∑

n=1

∫ b

a

ψ∗(n−1)(ds) = δ0([a, b]) +
∞
∑

n=1

∫ b

a

ψ∗n(ds), 0 ≤ a ≤ b.

The renewal measure U(ds) gives the average number of collisions in the time
interval ds. Let now g : [0, 1]× ]0,+∞[ 7→ R bounded and continuous. We define

I1(t) :=

∫

[0,1[×R+

dp dq g(q, p)1(t<T0(q,p)) Ptf(q, p)

=

∫

R+

dp

∫ (1−tp)+

0

dq g(q, p) f(q + tp, p),
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I2(t) :=

∫

[0,1[×R+

dp dq g(q, p)1(t≥T0(q,p)) Ptf(q, p)

=

∫

[0,1[×R+

dp dq g(q, p)1(q≥1−tp)

∫

[0,t− 1−q
p ]

U(ds)·

·

∫

]t− 1−q
p −s,+∞[

ψ(dτ) f

(

t− 1−q
p − s

τ
,
1

τ

)

=

∫

R
3
+

ψ(dτ) U(ds) dp

∫ 1∧(1+(s−t+τ)p)+

1∧(1+(s−t)p)+
dq g(q, p) f

(

t− 1−q
p − s

τ
,
1

τ

)

.

Let us take the derivative in t

İ1(t) =
d

dt
I1(t) =

∫ 1
t

0

dp p

[
∫ 1−tp

0

dq g(q, p) fq(q + tp, p) − g(1 − tp, p) f(1, p)

]

=

∫

[0,1[×R+

dp dq g 1(t<T0) PtLf −

∫

R+

dp g(1 − tp, p)1(1−tp≥0) f(1, p),

İ2(t) =
d

dt
I2(t) =

=

∫

R
3
+

ψ(dτ) U(ds) dp

∫ 1∧(1+(s−t+τ)p)+

1∧(1+(s−t)p)+
dq

1

τ
g(q, p) fq

(

t− 1−q
p − s

τ
,
1

τ

)

+

∫

R
3
+

ψ(dτ) U(ds) dp p1(0≤1+(s−t)p≤1) g(1 + (s− t)p, p) f
(

0, τ−1
)

−

∫

R
3
+

ψ(dτ) U(ds) dp p1(0≤1+(s−t+τ)p≤1) g(1 + (s− t+ τ)p, p) f
(

1, τ−1
)

.

Since ψ ∗ U = U − δ0, if f satisfies the boundary condition (7.1) above, the last
term is equal to

−

∫

R
2
+

U(ds) dp p1(0≤1+(s−t)p≤1) g(1 + (s− t)p, p)

∫

R+

ψ(dτ) f
(

0, τ−1
)

+

∫

R+

dp p1(0≤1−tp) g(1 − tp, p)

∫

R+

ψ(dτ) f
(

0, τ−1
)

.

By summing all terms, we obtain that for f satisfying (7.1)

∫

[0,1[×R+

g (Ptf − f)dp dq =

∫

[0,1[×R+

g

∫ t

0

PsLf ds dp dq.

On the other hand, if f ∈ D(L) then we must have İ1(t) + İ2(t) →
∫

g Lf dq dp as
t→ 0. Now

İ1(0+) =

∫

R+

dp p

[
∫ 1

0

dq g(q, p) fq(q, p) − g(1, p) f(1, p)

]

and since U(ds) = δ0(ds) + 1]0,+∞[(s)U(ds)

İ2(0+) =

∫

R+

dp p g(1, p)

∫

R+

ψ(dτ) f(0, τ−1).
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Therefore
∫

[0,1[×R+

g Lf dq dp =

=

∫

R+

dp

∫ 1

0

dq g(q, p) p fq(q, p) +

∫

R+

dp p g(1, p)

∫

R+

ψ(dτ) (f(0, τ−1) − f(1, p)).

If this is true for all bounded continuous g, then f must satisfy (7.1) above. �

7.2. The Donsker-Varadhan functional. We want now to show now that the func-
tional

IDV (µ) = sup
g∈D(L),g>0

(−〈g−1Lg〉µ) (7.2)

differs from the correct large-deviations functional I.

Proposition 7.2. For all µ ∈ Ω, recall (1.9), we have

IDV (µ) = µ(p) H
(

π̃
∣

∣φ
)

. (7.3)

Proof : By assumption

µ(dq, dp) = α1π(dp) dq + α2 δ0(dp) dq + α3 δ0(dp)λ`(dq).

Then for g ∈ D(L)

−〈g−1Lg〉µ = − α1

∫

π(dp) p

∫ 1

0

∂

∂q
log g = α1

∫

π(dp) p log
g(0, p)

g(1, p)

=α1

∫

π(dp) p log g(0, p)− α1

∫

π(dp) p log

(

∫

R+

φ(du) g(0, u)

)

=α1π(ph) − α1π(p) log(φ(eh)) = µ(p)
(

π̃(h) − log(φ(eh))
)

where h(p) := log g(0, p). By Lemma 2.1, we can conclude. �

Comparing (7.3) with (1.13) one sees that the standard formula (7.2) fails to
take into account the non-trivial terms where α2 and α3 appear.
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