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Abstract

We derive a large deviation principle which describes the behaviour of a diffusion process with

additive noise under the influence of a strong drift. Our main result is a large deviation theorem

for the distribution of the end-point of a one-dimensional diffusion with drift ϑb where b is

a drift function and ϑ a real number, when ϑ converges to ∞. It transpires that the problem

is governed by a rate function which consists of two parts: one contribution comes from the

Freidlin-Wentzell theorem whereas a second term reflects the cost for a Brownian motion to stay

near a equilibrium point of the drift over long periods of time.
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1 Introduction

The Freidlin-Wentzell theorem and its generalisations are well-known large deviation results. This

theorem provides a large deviation principle (LDP) on the path space for solutions of the SDE dX =

b(X )d t +
p
ǫ dB when ǫ converges to 0. The related, but different, problem of the large deviation

behaviour of a diffusion process under the influence of a strong drift is less studied. In this article

we derive an LDP for the behaviour of the endpoint X ϑt of solutions of the R-valued stochastic

differential equation

dX ϑs = ϑb(X ϑs )ds+ dBs for all s ∈ [0, t]

X ϑ0 = z ∈ R
(1.1)

when the parameter ϑ converges to infinity.

For comparison with the Freidlin-Wentzell result one can convert the case of strong drift into the case

of weak noise with the help of the following scaling argument: Define X̃ ϑs = X ϑ
s/ϑ

and B̃s =
p
ϑBs/ϑ

for all s ∈ [0,ϑt]. Then the process X̃ ϑ is a solution of the SDE

dX̃ ϑs = b(X̃ ϑs )ds+
1
p
ϑ

dBs for all s ∈ [0,ϑt]

X̃ ϑ0 = z

and we have

P(X ϑt ∈ A) = P
�

X̃ ϑ ∈ {ω |ωϑt ∈ A}
�

.

The rescaled problem looks more similar to the situation from the Freidlin-Wentzell theory, but now

the event in question depends on the parameter ϑ. Thus the Freidlin-Wentzell theorem still does not

apply easily. Therefore a more sophisticated proof will be required.

The text is structured as follows: In section 2 we state our main result and two corollaries. Since

the proof of the theorem is quite long we give an overview of the proof of our theorem in section 3.

The proof itself is spread over sections 4, 5 and 6.

The result presented in this text was originally derived as part of my PhD-thesis [Vos04].

2 Results

Recall that a family (X ϑ)ϑ>0 of random variables with values in some topological space X satisfies

the LDP with rate function I : X → [0,∞], if it satisfies the estimates

lim inf
ϑ→∞

1

ϑ
log P(X ϑ ∈ O)≥− inf

x∈O
I(x)

for every open set O ⊆X and

lim sup
ϑ→∞

1

ϑ
log P(X ϑ ∈ A)≤− inf

x∈A
I(x)

for every closed set A⊆X . The family (X ϑ)ϑ>0 satisfies the weak LDP if the upper bound holds for

every compact (instead of closed) set A ⊆ X . For details about the theory of large deviations we

refer to [DZ98].

Our main result is the following theorem together with the corollaries 2 and 4.
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Theorem 1. Let b : R → R be a globally Lipschitz C2-function with lim inf|x |→∞ |b(x)| > 0. Assume

that there is an m ∈ R with b(x) = 0 if and only if x = m and with b′(m) 6= 0. Furthermore let z ∈ R,

t > 0 and for every ϑ > 0 let X ϑ be the solution of the SDE

dX ϑs = ϑb(X ϑs )ds+ dBs for s ∈ [0, t], and

X ϑ0 = z.
(2.1)

Then the family (X ϑt )ϑ>0 satisfies the weak LDP on R with rate function

Jt(x) = V m
z (Φ)−Φ(z) + t(Φ′′(m))−+ V x

m(Φ)+Φ(x) (2.2)

for all x ∈ R, where Φ satisfies b = −Φ′, V b
a (Φ) is the total variation of Φ between a and b, and

(Φ′′(m))− denotes the negative part of Φ′′(m), i.e. (Φ′′(m))− = 0 if Φ′′(m) ≥ 0 and (Φ′′(m))− =
|Φ′′(m)| if Φ′′(m)< 0.

Note that the condition b = −Φ′ defines Φ only up to a constant, but the rate function Jt does not

depend on the choice of this constant.

In the theorem V b
a (Φ) can be interpreted as the “cost” for the process of going from a to b. Using

b = −Φ′ we find

V b
a (Φ) =
¯

¯

∫ b

a

|b(x)| d x
¯

¯

for any a, b ∈ R. The term (Φ′′(m))− can be interpreted as the “cost” of staying near m for a unit of

time. This term only occurs, if the equilibrium point m is unstable.

Given the sign of b′(m) the rate function from the theorem can be simplified because the drift b

has only one zero. The following corollary describes the case of b′(m) < 0, which corresponds to

attracting drift. In this case the weak LDP from the theorem can be strengthend to the full LDP.

Corollary 2. Under the conditions of theorem 1 with b′(m)< 0 the following claims hold.

a) For every t > 0 the family (X ϑt )ϑ>0 satisfies the weak LDP on R with rate function

Jt(x) = 2
�

Φ(x)−Φ(m)
�

for all x ∈ R. (2.3)

b) If b is monotonically decreasing, then the family (X ϑt )ϑ>0 satisfies the full LDP with rate function Jt .

In the situation of corollary 2 the rate function is independent of the interval length t and of the

initial point z. This makes sense, because for strong drift we would expect the process to reach the

equilibrium very quickly. Because we have lim inf|x |→∞ |b(x)| > 0 the potential Φ converges to +∞
for |x | →∞ and Jt is a good rate function. In fact the rate function coincides with the rate function

of the LDP for the stationary distribution as given in theorem 3 (This is an easy application of the

Laplace principle, see e.g. [Vos04] for details).

Theorem 3. Let Φ: Rd → R be differentiable and such that exp(−2Φ(x)) is a probability density on

R
d . Let Φ be bounded from below with Φ∗ = inf{Φ(x) | x ∈ Rd } > −∞. Finally let b = −gradΦ be

Lipschitz continuous.

Then for every ϑ ≥ 1 the stochastic differential equation

dX ϑ = ϑ b(X ϑ)d t + dW
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has a stationary distribution µϑ and for every measurable set A⊆ Rd we have

lim
ϑ→∞

1

ϑ
logµϑ(A) =−ess infx∈A 2

�

Φ(x)−Φ∗
�

.

Proof. (of corollary 2) a) Since we assume that m is the only zero of the drift b, for b′(m) < 0 the

point m is the minimum of Φ. In this case we have V m
z (Φ) = Φ(z)− Φ(m), V x

m(Φ) = Φ(x)− Φ(m)
and Φ′′(m)> 0, so the rate function simplifies to the expression given in formula (2.3).

b) To strengthen the weak LDP to the full LDP we have to check exponential tightness, i.e. we have

to show that for every c > 0 there is an a > 0 with

lim sup
ϑ→∞

1

ϑ
log P
�

|X ϑt −m|> a
�

<−c

(for reference see lemma 1.2.18 from [DZ98]). We use a comparison argument to obtain this

estimate.

Using the assumption lim inf|x |→∞ |b(x)| > 0 we find that exp(−2ϑΦ) is integrable and SDE (2.1)

has a stationary distribution with density proportional to exp(−2ϑΦ). Let X ϑ be a solution of (2.1)

with start in z and Y ϑ be a stationary solution, both with respect to the same Brownian motion.

Then we get the deterministic differential equation

d

d t
(X ϑt − Y ϑt ) = ϑ
�

b(X ϑt )− b(Y ϑt )
�

for the difference between the processes. First assume X ϑ0 − Y ϑ0 ≥ 0. Because for X ϑt − Y ϑt = 0 the

right hand side vanishes, the process X ϑt − Y ϑt can never change its sign and stays positive. Since b

is decreasing we have b(X ϑt )− b(Y ϑt )≤ 0 and we can conclude

0≤ X ϑt − Y ϑt ≤ X ϑ0 − Y ϑ0 .

For the case X ϑ0 − Y ϑ0 ≤ 0 we can interchange the roles of X and Y to obtain the estimate

0≤ Y ϑt − X ϑt ≤ Y ϑ0 − X ϑ0 .

Combining these two cases gives

|Y ϑt − X ϑt | ≤ |Y
ϑ

0 − X ϑ0 |= |Y
ϑ

0 − z|.

Using

|X ϑt −m| ≤ |X ϑt − Y ϑt |+ |Y
ϑ
t −m|

≤ |z − Y ϑ0 |+ |Y
ϑ
t −m|

≤ |z −m|+ |Y ϑ0 −m|+ |Y ϑt −m|
we can conclude

P
�

|X ϑt −m|> a
�

≤ P
�

|Y ϑ0 −m|+ |Y ϑt −m|> a− |z −m|
�

≤ P
�

|Y ϑ0 −m|>
a− |z −m|

2

�

+ P
�

|Y ϑt −m|>
a− |z −m|

2

�

= 2P
�

|Y ϑ0 −m|>
a− |z −m|

2

�

.
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Now let c > 0. Then using theorem 3 we can find an a > 0 with

lim
ϑ→∞

1

ϑ
log P
�

|Y ϑ0 −m|>
a− |z −m|

2

�

≤−c

and using the above estimate we get

lim
ϑ→∞

1

ϑ
log P
�

|X ϑt −m|> a
�

≤−c.

Since this is the required exponential tightness condition, the proof is complete.

The case of repelling drift, i.e. of b′(m)> 0, is described in the following corollary.

Corollary 4. Under the conditions of theorem 1 with b′(m) > 0, for every t > 0 the family (X ϑt )ϑ>0

satisfies the weak LDP on R with constant rate function

Jt(x) = 2
�

Φ(m)−Φ(z)
�

− tΦ′′(m). (2.4)

Proof. (of corollary 4) In the case b′(m) > 0 the point m is the maximum of Φ and because of

V m
z (Φ) = Φ(m)−Φ(z), V x

m(Φ) = Φ(m)−Φ(x) and Φ′′(m)< 0 we get

Jt(x) =
�

Φ(m)−Φ(z)
�

−Φ(z)− tΦ′′(m) +
�

Φ(m)−Φ(x)
�

+Φ(x)

= 2
�

Φ(m)−Φ(z)
�

− tΦ′′(m)

for all x ∈ R.

The corollary shows that in the case of repelling drift the rate function does not depend on x . In

particular it is not a good rate function. Here it is impossible to strengthen the weak LDP to the full

LDP because we have

lim
ϑ→∞

1

ϑ
log P(X ϑt ∈ R) = 0 6= 2

�

Φ(m)−Φ(z)
�

− tΦ′′(m).

3 Overall Structure of the Proof

The remaining part of this text contains the proof of theorem 1. Since the proof is quite long, we

use this section to give an overview of the proof. All the technical details are contained in sections

4, 5, and 6.

Let X ϑ be a solution of the SDE (1.1). From the Girsanov formula we know the density of the

distribution of X ϑt w.r.t. the Wiener measureW: assuming X ϑ0 = 0 and b = −∇Φ we get

P(X ϑt ∈ A) =

∫

1A(ωt)exp
�

ϑF(ω)− ϑ2G(ω)
�

dW(ω) (3.1)

where

F(ω) = Φ(ω0)−Φ(ωt) +
1

2

∫ t

0

Φ′′(ωs) ds and

G(ω) =
1

2

∫ t

0

b2(ωs) ds.
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For large values of ϑ the ϑ2G term dominates over the ϑF term and we show that the only paths

which contribute for the large deviations behaviour of X ϑt are those, which correspond to very small

values of G. These paths run quickly to the equilibrium point m of the drift b, stay close to this

point for most of the time, and shortly before time t move quickly into the set A. Assuming for the

moment A= B(a,δ) with a small δ > 0, we get

P(X ϑt ≈ a)≈ exp
�

ϑ(Φ(0)−Φ(a) +
t

2
Φ′′(m))
�

∫

1{ωt≈a} exp
�

−ϑ2G(ω)
�

dW(ω)

and thus

lim
ϑ→∞

1

ϑ
log P(X ϑt ≈ a)

≈ Φ(0)−Φ(a) +
t

2
Φ′′(m) + lim

ϑ→∞

1

ϑ
log

∫

1{ωt≈a} exp
�

−
ϑ2

2

∫ t

0

b2(ωs) ds
�

dW(ω).

(3.2)

Lemma 26 in section 6 resolves the technical details which are hidden in the ≈-signs here and also

gives the required upper and lower limits for (3.2).

To evaluate the integral on the right hand side of (3.2) we use the following result about upper and

lower limits in Tauberian theorems of exponential type. The theorem is proved in [Vos04]. It is a

generalisation of de Bruijn’s theorem (see theorem 4.12.9 in [BGT87]).

Theorem 5. Let X ≥ 0 be a random variable and A an event with P(A) > 0. Define the upper and

lower limits

r̄ = lim sup
λ→∞

1
p
λ

log E(e−λX 1A) and r
¯
= lim inf
λ→∞

1
p
λ

log E(e−λX 1A)

as well as

s̄ = lim sup
ǫ→0

ǫ log P(X ≤ ǫ,A) and s
¯
= lim inf

ǫ→0
ǫ log P(X ≤ ǫ,A).

Then −r̄2/4= s̄ and for the lower limits we have the sharp estimates −r
¯

2 ≤ s
¯
≤−r

¯

2/4.

Using theorem 5 we can reduce the original problem to the calculation of exponential rates like

lim
ǫ↓0
ǫ log P
�

∫ t

0

b2(Bs) ds ≤ ǫ, Bt ≈ a
�

.

In section 4 we examine the situation that during a short time interval the process runs from 0 to m

or from m to a respectively while still keeping
∫

b2(ωs) ds small. This will be used for the initial and

the final section of the path. As indicated in section 1 we can rescale the problem in these domains

and apply the known results for weak noise. The problem here is to identify the infimum of the rate

function.

In section 5 we examine the situation that
∫

b2(ωs) ds is small over a long interval of time. This

will be used to study the middle section of the path. We will use theorem 5 again to deduce the

probability for this case from the known Laplace transform of
∫ t

0
B2

s ds.

Finally, in section 6, we fit these two results together to complete the proof of theorem 1. This

part of the proof is modelled after the proof of proposition 6 which we give below. We want to

use X1, X2, X3 =
∫

b2(Bs) ds where the integral is taken over the initial, middle, and final section of
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the path respectively. Since these random variables are not independent, we cannot directly apply

proposition 6 but have to use an enhanced version of the proof. This is provided in lemma 27.

We give the full prove of proposition 6 here, because we will need the proposition itself in the proof

of lemma 23, and also because we hope that reading the proof of proposition 6 might make it easier

to follow the proof of lemma 27 below.

Proposition 6. Let X1, . . . , Xn be independent, positive random variables with

lim inf
ǫ↓0

ǫ log P
�

Xk ≤ ǫ
�

=−b2
k and lim sup

ǫ↓0
ǫ log P
�

Xk ≤ ǫ
�

=−c2
k

where bk, ck ≥ 0 for k = 1, . . . , n. Then we have

lim inf
ǫ↓0

ǫ log P
�

X1+ · · ·+ Xn ≤ ǫ
�

≥−(b1+ · · ·+ bn)
2

and

lim sup
ǫ↓0

ǫ log P
�

X1+ · · ·+ Xn ≤ ǫ
�

≤−(c1+ · · ·+ cn)
2.

Proof. Let δ > 0. Since the simplex

Sǫn =
�

(ǫ1, . . . ,ǫn) ∈ Rn
≥0

¯

¯ ǫ1+ · · ·+ ǫn ≤ ǫ
	

is compact and covered by the open sets
�

(ǫ1, . . . ,ǫn) ∈ Rn
¯

¯ ǫ j < α jǫ for j = 1, . . . , n
	

for

α1, . . . ,αn > 0 with α1+ · · ·+αn = 1+δ, we can find a finite set

Dδn ⊆
�

α ∈ Rn
>0

¯

¯ α1+ · · ·+αn = 1+δ
	

(3.3)

with

Sǫn ⊆
⋃

α∈Dδn

�

(ǫ1, . . . ,ǫn) ∈ Rn
≥0

¯

¯ ǫ j ≤ α jǫ for j = 1, . . . , n
	

for all ǫ > 0. This gives

P
�

X1+ · · ·+ Xn ≤ ǫ
�

≤
∑

α∈Dδn

P
�

X1 ≤ α1ǫ, . . . , Xk ≤ αkǫ
�

.

and for the individual terms in the sum we can use the relation

lim sup
ǫ↓0

ǫ log P
�

X1 ≤ α1ǫ, . . . , Xk ≤ αkǫ
�

= lim sup
ǫ↓0

ǫ log

n
∏

k=1

P
�

Xk ≤ αkǫ
�

=−
n
∑

k=1

c2
k

αk

.

Let a =
∑n

k=1αk, pk = αk/a, and dk = ck/pk for k = 1, . . . , n. Applying Jensen’s inequality to the

random variable which takes value dk with probability pk gives

c2
1

α1

+ · · ·+
c2

n

αn

≥
(c1+ · · ·+ cn)

2

∑n

k=1αk

(3.4)

1485



where equality holds if and only if there is a λ ∈ R with λαk = ck for k = 1, . . . , n. Thus we get

lim sup
ǫ↓0

ǫ log P
�

X1 ≤ α1ǫ, . . . , Xn ≤ αnǫ
�

≤−
(c1+ · · ·+ cn)

2

1+δ

for every α ∈ Dδn . Using lemma 1.2.15 of [DZ98] we can conclude

lim sup
ǫ↓0

ǫ log P
�

X1+ · · ·+ Xn ≤ ǫ
�

≤ max
α∈Dδn

lim sup
ǫ↓0

ǫ log P
�

X1 ≤ α1ǫ, . . . , Xn ≤ αnǫ
�

≤−
(c1+ · · ·+ cn)

2

1+ δ

for every δ > 0 and thus

lim sup
ǫ↓0

ǫ log P
�

X1+ · · ·+ Xn ≤ ǫ
�

≤−(c1+ · · ·+ cn)
2.

From (3.4) we know that we should choose αk proportional to bk in order to get the optimal lower

bound. This leads to the estimate

lim inf
ǫ↓0

ǫ log P
�

X1+ · · ·+ Xn ≤ ǫ
�

≥ lim inf
ǫ↓0

ǫ log P
�

Xk ≤
bk

b1+ · · ·+ bn

ǫ, k = 1, . . . , n
�

= lim inf
ǫ↓0

ǫ log

n
∏

k=1

P
�

Xk ≤
bk

b1+ · · ·+ bn

ǫ
�

≥
n
∑

k=1

b1+ · · ·+ bn

bk

lim inf
ǫ↓0

ǫ log P
�

Xk ≤ ǫ
�

=−
n
∑

k=1

b1+ · · ·+ bn

bk

b2
k

=−(b1+ · · ·+ bn)
2

which completes the proof.

4 Reaching the Final Point

The results of this section help to estimate the probability that the path travels quickly between

the equilibrium point of the drift and the final resp. initial point. Here Schilder’s theorem (see

theorem 5.2.1 in [DZ98]) can be applied and we will reduce the evaluation of the rate function to a

variational problem.

The main result of this section is the following proposition which describes the large deviation

behaviour of the event
1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ
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when ǫ ↓ 0, where the final point Btǫ stays in a fixed, compact set. Evaluating the rate for fixed

t > 0 is difficult, but it transpires that there is an explicit representation for the limit of the rate as t

tends to infinity.

Proposition 7. Let Pz be the distribution of a Brownian motion with start in z and B be the canonical

process. Let b : R→ R be a C2-function with lim inf|x |→∞ |b(x)| > 0. Assume that there is an m ∈ R
with b(x) = 0 if and only if x = m and with b′(m) 6= 0. Then for every pair of compact sets K1, K2 ⊆ R
we have

lim sup
t→∞

lim sup
ǫ↓0

ǫ log sup
z∈K1

Pz

�1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ, Btǫ ∈ K2

�

≤−
1

4
inf

z∈K1

inf
a∈K2

�

¯

¯

∫ m

z

|b(x)| d x
¯

¯+
¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

and for every z ∈ R and every open set O ⊆ R we have

lim inf
t→∞

lim inf
ǫ↓0

ǫ log Pz

�1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ, Btǫ ∈ O
�

≥−
1

4
inf
a∈O

�

¯

¯

∫ m

z

|b(x)| d x
¯

¯+
¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

.

The modulus of the integrals is taken to properly handle the cases m < z and a < m. The proof of

proposition 7 is based on the following two lemmas. Lemma 8 evaluates the infimum of the rate

function from Schilder’s theorem. Since the proof of lemma 8 is quite long, we defer the proof until

the end of the section. We will write C0([0, t],R) =
�

ω ∈ C([0, t],R)
¯

¯ω0 = 0} as an abbreviation.

Lemma 8. Let v : R → [0,∞) be a positive C2-function with lim inf|x |→∞ v(x) > 0 and m ∈ R with

v(x) = 0 if and only if x = m and v′′(m)> 0. For a, z ∈ R and β ≥ 0 define

M
a,z,β
t =
n

ω ∈ C[0, t]

¯

¯

¯ω0 = 0,ωt = a− z,
1

2

∫ t

0

v(ωs + z) ds = β
o

and

J(a, z) =
1

4

�

¯

¯

∫ m

z

p

v(x) d x
¯

¯+
¯

¯

∫ a

m

p

v(x) d x
¯

¯

�2

.

Consider the rate function

It(ω) =

(

1

2

∫ t

0
|ω̇|2 ds, if ω is absolutely continuous, and

+∞ else.

Let K1, K2 ⊆ R be compact sets with m /∈ K1 ∩ K2 and B ⊆ R+ be bounded with 0 ∈ B. Then we have

inf
n

It(ω)

¯

¯

¯ω ∈
⋃

β∈B

M
a,z,β
t

o

−→
1

sup B
J(a, z) for t →∞, (4.1)

uniformly over all a ∈ K2 and z ∈ K1.

1487



Lemma 9. Let M
a,z,β
t be as in lemma 8. Then for every pair K1, K2 ⊆ R of compact sets the set

M =
⋃

z∈K1

⋃

a∈K2

⋃

0≤β≤1

M
a,z,β
t

is closed in C0([0, t],R).

Proof. By definition of the sets M
a,z,β
t we have

M =
⋃

z∈K1

n

ω ∈ C[0, t]

¯

¯

¯ω0 = 0,ωt + z ∈ K2,
1

2

∫ t

0

v(ωr + z) dr ≤ 1
o

.

Assume that ω ∈ C0([0, t],R) \ M . Then either ωt + z /∈ K2 for all z ∈ K1, i.e. ωt lies outside the

compact set K2− K1, or

1

2

∫ t

0

v(ωr + z) dr > 1

for every z ∈ K2, i.e.

inf
z∈K2

1

2

∫ t

0

v(ωr + z) dr > 1

because K2 is compact and v and the integral are continuous. In both cases we can find an ǫ > 0,

such that the ball B(ω,ǫ) also lies in C0([0, t],R)\M . Thus M is the complement of an open set.

With these preparations in place we can now give the proof for proposition 7.

Proof. (of proposition 7) We want to apply Schilder’s theorem [DZ98, theorem 5.2.1] and to eval-

uate the rate function using lemma 8. Let K1, K2 ⊆ R be compact. Define the process B̃ by setting

B̃r = (Brǫ − z)/
p
ǫ for every r > 0. Then B̃ is a Brownian motion with start in 0 and we get

Pz

�1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ, Btǫ ∈ K2

�

s = rǫ
= Pz

�1

2

∫ t

0

b2(Brǫ) dr ≤ 1, Btǫ ∈ K2,
�

= P
�1

2

∫ t

0

b2(
p
ǫB̃r + z) dr ≤ 1,

p
ǫB̃t + z ∈ K2

�

= P
�p
ǫB̃ ∈
⋃

a∈K2

⋃

β≤1

M
a,z,β
t

�

and thus

sup
z∈K1

Pz

�

Btǫ ∈ K2,
1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ
�

≤ P
�p
ǫB̃ ∈
⋃

z∈K1

⋃

a∈K2

⋃

β≤1

M
a,z,β
t

�

.
(4.2)
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Since from lemma 9 we know that the set
⋃

z∈K1

⋃

a∈K2

⋃

β≤1 M
a,z,β
t is closed in the path space

�

C0[0, t],‖ · ‖∞
�

, we can apply Schilder’s theorem to get

lim sup
ǫ↓0

ǫ log sup
z∈K1

P
�p
ǫB̃ ∈
⋃

z∈K1

⋃

a∈K2

⋃

β≤1

M
a,z,β
t

�

≤− inf
n

It(ω)

¯

¯

¯ω ∈
⋃

z∈K1

⋃

a∈K2

⋃

β≤1

M
a,z,β
t

o

=− inf
z∈K1

inf
a∈K2

inf
�

It(ω)
¯

¯ω ∈
⋃

β≤1

M
a,z,β
t

	

.

First assume m ∈ K1 ∩ K2. Define the path ω by ωs = 0 for all s ∈ [0, t]. Then clearly we have

ω ∈ M
m,m,0
t for every t and since we find It(ω) = 0 we have

inf
n

It(ω)

¯

¯

¯ω ∈
⋃

β∈B

M
a,z,β
t

o

= 0

for all t ≥ 0. On the other hand we have J(m, m) = 0.

Otherwise the evaluation of the infimum is done in lemma 8. Using v(x) = b2(x) we get v′′(m) =
2(b′(m))2 > 0 and for every η > 0 we can find a t0 > 0, such that

inf
β≤1

inf
�

It(ω)
¯

¯ω ∈ M
a,z,β
t

	

≥ J(a, z)−η

for all z ∈ K1, a ∈ K2 and t ≥ t0. This gives

lim sup
ǫ↓0

ǫ log sup
z∈K1

P
�p
ǫB̃ ∈
⋃

z∈K1

⋃

a∈K2

⋃

β≤1

M
a,z,β
t

�

≤− inf
z∈K1

inf
a∈K2

inf
m∈N

J(a, z) +η

=−
1

4
inf

z∈K1

inf
a∈K2

�

¯

¯

∫ m

z

|b(x)| d x
¯

¯+
¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

+η

for every η > 0. Together with the relation (4.2) this proves the upper bound.

For the lower bound we follow the same procedure. Without loss of generality we can assume that

O is bounded. Here we get

Pz

�

Btǫ ∈ O,
1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ
�

≥ Pz

�

Btǫ ∈ O,
1

2

∫ tǫ

0

b2(Bs) ds < ǫ
�

= P
�p
ǫB̃ ∈
⋃

a∈O

⋃

β<1

M
a,z,β
t

�

where the set

⋃

a∈O

⋃

β<1

M
a,z,β
t =
n

ω ∈ C[0, t]

¯

¯

¯ω0 = 0,ωt ∈ O− z,
1

2

∫ t

0

b2(ωr + z) dr < 1
o
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is open in
�

C0[0, t],‖ · ‖∞
�

. So we can use the lower bound from Schilder’s theorem and lemma 8

to complete the proof.

Corollary 10. Under the assumptions of proposition 7 we have

lim
η↓0

lim inf
t→∞

lim inf
ǫ↓0

ǫ log inf
m−η≤z≤m+η

Pz

�1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ, Btǫ ∈ O
�

≥−
1

4
inf
a∈O

�

∫ a

m

|b(x)| d x
�2

for every open set O ⊆ R.

Proof. For z ∈ R define

M z
t =
n

ω ∈ C[0, t]

¯

¯

¯ω0 = 0,ωt + z ∈ O,
1

2

∫ t

0

b2(ωs + z) ds < 1
o

.

Let δ > 0. Choose an ω̃ ∈ M m
t with It(ω̃) < inf{ It(ω) | ω ∈ M m

t } + δ. Because O is open

and b and the integral are continuous we can find an E > 0, such that for every η < E the ball

Bη(ω̃)⊆ C0([0, t],R) is contained in all of the sets M z
t for m−η < z < m+η. This gives

lim inf
ǫ↓0

ǫ log inf
m−η≤z≤m+η

Pz

�1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ, Btǫ ∈ O
�

= lim inf
ǫ↓0

ǫ log inf
m−η≤z≤m+η

Pz

�p
ǫB ∈ M z

t

�

≥ lim inf
ǫ↓0

ǫ log inf
m−η≤z≤m+η

Pz

�p
ǫB ∈ Bη(ω̃)
�

.

and using Schilder’s theorem and the relation

− inf
�

It(ω)
¯

¯ω ∈ Bη(ω̃)
	

≥−I t(ω̃)> − inf
�

It(ω)
¯

¯ω ∈ M m
t

	

−δ

we find

lim inf
ǫ↓0

ǫ log inf
m−η≤z≤m+η

Pz

�1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ, Btǫ ∈ O
�

≥− inf
�

It(ω)
¯

¯ω ∈ Bη(ω̃)
	

>− inf
�

It(ω)
¯

¯ω ∈ M m
t

	

−δ.

Now we can evaluate the infimum on the right hand side as we did in proposition 7. We get

lim inf
t→∞

lim inf
ǫ↓0

ǫ log inf
m−η≤z≤m+η

Pz

�1

2

∫ tǫ

0

b2(Bs) ds ≤ ǫ, Btǫ ∈ O
�

≥−
1

4
inf
a∈O

�

∫ a

m

|b(x)| d x
�2

−δ

for every η < E. Taking the limit δ ↓ 0 completes the proof.
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The only thing which remains to be done in this section is to give a proof for lemma 8. Before we

do so we need some preparations. For the remaining part of this section we assume throughout that

v is non-negative and two times continuously differentiable and that a, z ∈ R are fixed.

Notation: For x , y ∈ R we will write [x , y] for the closed interval between x and y; in the case

x < y this is to be read as [y, x] instead.

As a first step towards the proof of lemma 8 we get rid of the parameter β .

Lemma 11. Let {0} ⊂ B ⊆ R+ be bounded. Assume that

lim
t→∞

inf
�

It(ω)
¯

¯ω ∈ M
a,z,1
t

	

= J(a, z)

locally uniform in a, z ∈ R. Then the relation (4.1) holds.

Proof. Let β > 0. For ω ∈ M
a,z,β
t define ω̃ by

ω̃r =ωrβ for all r ∈ [0, t/β].

Then we have ω̃0 = 0, ω̃t/β =ωt , and

1

2

∫ t/β

0

v(ω̃r + z) dr
s = rβ
=

1

β

1

2

∫ t

0

v(ωs + z) ds.

Thus ω 7→ ω̃ is a one-to-one mapping from M
a,z,β
t onto M

a,z,1

t/β
.

Because of

It/β(ω̃) =
1

2

∫ t/β

0

˙̃ω2
r dr =

β2

2

∫ t/β

0

ω̇2
rβ dr

s = rβ
=

β

2

∫ t

0

ω̇2
s ds = β It(ω)

we find

inf
�

It(ω)
¯

¯ω ∈ M
a,z,β
t

	

=
1

β
inf
�

It/β(ω)
¯

¯ω ∈ M
a,z,1

t/β

	

.

Now let z ∈ K1 and a ∈ K2. Since m /∈ K1 ∩ K2 every continuous path ω with ω0 = 0 and ωt = a− z

has
1

2

∫ t

0

v(ωs + z) ds > 0,

the set M
a,z,0
t is empty and we find

inf
n

It(ω)

¯

¯

¯ω ∈
⋃

β∈B

M
a,z,β
t

o

= inf
β∈B\{0}

inf
�

It(ω)
¯

¯ω ∈ M
a,z,β
t

	

= inf
β∈B\{0}

1

β
inf
�

It/β(ω)
¯

¯ω ∈ M
a,z,1

t/β

	

.

Now let K1, K2 ⊆ R be compact. Let η > 0 and choose a t0 > 0 with

¯

¯

¯inf
�

It(ω)
¯

¯ω ∈ M
a,z,1
t

	

− J(a, z)

¯

¯

¯≤ η sup B
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for all t > t0, z ∈ K1, and a ∈ K2. Then for every t > t0 sup B and every β > 0 we have

¯

¯

¯inf
n

It(ω)

¯

¯

¯ω ∈
⋃

β ′∈B

M
a,z,β ′

t

o

−
1

β
J(a, z)

¯

¯

¯

=

¯

¯

¯

1

β
inf
�

It(ω)
¯

¯ω ∈ M
a,z,1

t/β

	

−
1

β
J(a, z)

¯

¯

¯≤
η sup B

β

Choosing β = sup B gives

¯

¯

¯inf
n

It(ω)

¯

¯

¯ω ∈
⋃

β∈B

M
a,z,β
t

o

−
1

sup B
J(a, z)

¯

¯

¯≤ η

for all t > t0 sup B, z ∈ K1, and a ∈ K2. Because η was arbitrary, this completes the proof.

Because of It(ω+ z) = It(ω) we can shift every path from M
a,z,1
t by z and get

inf
�

It(ω)
¯

¯ω ∈ M
a,z,1
t

	

= inf
n

It(ω)

¯

¯

¯ω0 = z,ωt = a,
1

2

∫ t

0

v(ωs) ds = 1
o

.

For the moment assume that there is a path ω̃ with It(ω̃) = inf
�

It(ω)
¯

¯ ω ∈ M
a,z,1
t

	

. Later we will

show that such an ω̃ in fact does exist. In order to evaluate the rate function It for this path ω̃, we

solve the Euler-Lagrange equations (see section 12 of [GF63]) for extremal values of It under the

constraint

K(ω) =
1

2

∫ t

0

v(ωs) ds
!
= 1

and with the boundary conditions

ω0 = z and ωt = a.

Because of v ∈ C2(R) we can use theorem 1 from section 12.1 of [GF63] to find that for every

extremal point ω of I , under the given constraints, there is a constant λ, such that ω solves the

equations

ω̈s = λv′(ωs) for all s ∈ (0, t], and ω0 = z (4.3a)

1

2

∫ t

0

v(ωs) ds = 1 (4.3b)

ωt = a. (4.3c)

Existence of solutions: the autonomous second order equation (4.3a) describes the motion of a

classical particle on the real line in the potential −λv. The differential equation can be reduced to

an autonomous first order equation in the plane with the usual trick: defining x(s) = (ωs, ω̇s) and

F(x1, x2) =
�

x2,λv′(x1)
�

the equation becomes

ẋ(s) = F(x(s)) for all s ∈ [0, t].

See e.g. section 5.3 of [BR89] for details. Because v′ and thus F is locally Lipschitz continuous, for

every pair ω0 = z, ω̇0 = v0 of initial conditions and every bounded region we find a unique solution

of the ODE at least up to the boundary of that region (see theorem 8 in section 6.9 of [BR89]).
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There are two degrees of freedom in (4.3a) because we can choose ω̇0 and λ. In the following we

will show, that the two additional conditions (4.3b) and (4.3c) guarantee the existence of a unique

solution to the system (4.3).

For λ = 0 the only solution of (4.3a) and (4.3c) is given by ωs = z + (a− z)s/t for 0 ≤ s ≤ t and

consequently in this case we have

1

2

∫ t

0

v(ωs) ds = th(z, a)

with

h(z, a) =

(

1

2(a−z)

∫ a

z
v(x) d x , if a 6= z, and

1

2
v(z) else.

Since m 6= K1 ∩ K2, z ∈ K1, and a ∈ K2 we have h(z, a) > 0 for every z ∈ K1, a ∈ K2 and because

K1 × K2 is compact we find c = inf(z,a)∈K1×K2
h(z, a) > 0. In the following assume t > 1/c. Then we

know from (4.3b) that every solution of (4.3) has λ 6= 0.

The interpretation as the motion of a classical particle helps us to determine the behaviour of the

solutions. We can use conservation of energy: Because of

∂s

�1

2
ω̇2

s −λv(ωs)
�

= ω̇sω̈s −λv′(ωs)ω̇s = ω̇s

�

ω̈s −λv′(ωs)
� (4.3a)
= 0

we have
1

2
ω̇2

s −λv(ωs) =
1

2
ω̇2

0−λv(ω0) =: E for all s ∈ [0, t]. (4.4)

This conservation law describes the speed for any point of the path: the speed of the path at pointωs

is

|ω̇s|=
p

2(E +λv(ωs)). (4.5)

Thus the rate function It can be expressed as a function of E and λ as follows.

It(ω) =
1

2

∫ t

0

ω̇2
s ds =

∫ t

0

E +λv(ωs) ds

= tE + 2λ, (4.6)

where λ and E are determined by equations (4.3b) and (4.3c).

Because of relation (4.4) we find that whenever ω is a solution of (4.3a) we have E ≥ −λv(ωs) for

all s ∈ [0, t] and the path can only stop and turn at points x with −λv(x) = E. Let x ∈ R be such

a point and assume v′(x) = 0. Then η with ηs = x for all s ≥ 0 is the unique solution of (4.3a)

with η0 = x and η̇0 = 0. Now assume that ωs = x for some s > 0. Then (ωs−r)r∈[0,s] is also a

solution of (4.3a) with start in x and initial speed 0, so we have ωs−r = ηr = x for all r ∈ [0, s].

This shows that a point x 6= z with E = −λv(x) and v′(x) = 0 cannot be reached by a solution ω

of (4.3a). Thus whenever a non-constant path reaches an x ∈ R with E = −λv(x) then we have

ω̈s = λv′(ωs) 6= 0 and the path always changes direction there. Figure 1 illustrates two different

kinds of solution, one where ωs moves monotonically and one where the path reaches a point b

with −λv(b) = E and turns there.
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xz

−λv(x)

E

m a x

z

−λv(x)

E

ma b

Figure 1: This figure illustrates two types of solution for equation (4.3a). Here we only consider the case

λ > 0. The curved line is the graph of the function x 7→ −λv(x). The bold part of the lines corresponds

to the points visited by the path ω. The thick dots are
�

ω0,−λv(ω0)
�

and
�

ωt ,−λv(ωt)
�

. Both

solutions start at z ∈ K1, head towards a neighbourhood of the zero m, and finally reach a point a ∈ K2.

The left hand image shows a free solution, i.e. one with E > 0, the right hand image shows a bound

solution, i.e. one with E ≤ 0 where the path ω turns at the point b with −λv(b) = E.

Since the differential equation (4.3a) is autonomous and since a solution ω changes direction every

time is reaches a point x with −λv(x) = E, the path can reach at most two distinct points of these

nature. In this case the solution oscillates between these points periodically. Thus every solution

of (4.3a) changes direction only a finite number of times before time t.

In order to find the path which minimises the rate function It we need to keep track of the different

possible traces of the path. For the remaining part of this section we use the following notation.

The path (ωs)0≤s≤t is said to have trace T = (x0, x1, . . . , xn) when ω0 = x0, ωt = xn, and the path

ω moves monotonically in either direction from x i−1 to x i for i = 1, . . . , n in order and changes

direction only at the points x1, . . . , xn−1. We use the abbreviation

|T |=
n
∑

i=1

|x i − x i−1|

for the length of the trace and sometimes identify T with the set
⋃n

i=1[x i−1, x i] of covered points to

write min T , max T , v|T , or infx∈T v(x). For positive functions f : R→ R we use the notation

∫

T

f (x) d x :=

n
∑

i=1

¯

¯

∫ x i

x i−1

f (x) d x
¯

¯.

The absolute values are taken to make the integral positive even when x i < x i−1. If a solution ω

of (4.3a) has trace T = (x0, x1, . . . , xn), this then implies that v(x1) = · · · = v(xn−1) = −E/λ

and each of the x1, . . . , xn−1 is either min T or max T . Between the points x i the path is strictly

monotonic, i.e. after the start in z it oscillates zero or more times between min T and max T before

it reaches a at time t. Using this notation we can formulate the following Lemma.

Lemma 12. Let λ, E ∈ R and a trace T = (x0, . . . , xn) be given. Then the following two conditions are

equivalent.
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(j) The unique solution ω: [0, t]→ R of

ω̈s = λv′(ωs) for all s ∈ [0, t]

with initial conditions ω0 = z and ω̇0 = sgn(x1 − x0)
p

2(E +λv(0)) has trace T and solves (4.3b)

and (4.3c).

(ij) We have x0 = z, xn = a, E = −λv(x i) for i = 1, . . . , n − 1, as well as E > −λv(x) for all

min T < x <max T, and the pair (λ, E) solves

∫

T

v(x)
p

E +λv(x)
d x =
p

8 (4.7a)

and

∫

T

1
p

E +λv(x)
d x =
p

2t. (4.7b)

Proof. Assume the conditions from ( j). Then ω is a solution of (4.3a), there are times t0, t1, . . . , tn

with ωt i
= x i for i = 0, . . . , n, and between the times t i the process moves monotonically. For any

integrable, positive function g : R→ R substitution using (4.5) yields

∫ t

0

g(ωs) ds =

n
∑

i=1

∫ t i

t i−1

g(ωs) ds

=

n
∑

i=1

∫ x i

x i−1

g(x)
d x

sgn(x i − x i−1)
p

2(E +λv(x))

=

∫

T

g(x)
p

2(E +λv(x))
d x . (4.8)

Applying (4.8) to the function g = v gives

1
(4.3b)
=

1

2

∫ t

0

v(ωs) ds
(4.8)
=

1
p

8

∫

T

v(x)
p

E +λv(x)
d x .

This is equation (4.7a). Applying (4.8) to the constant function g = 1 gives

t =

∫ t

0

1 ds
(4.8)
=

1
p

2

∫ a

0

1
p

E +λv(x)
d x ,

which is equation (4.7b).

Now assume condition (ij). For i = 1, . . . , n define the function Fi by

Fi(x) =
1
p

2

¯

¯

∫ x

x i−1

1
p

E +λv(x)
d x
¯

¯
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for all x between x i−1 and x i . Then Fi is finite because of (4.7b), strictly monotonic (increasing if

x i > x i−1 and decreasing else), and has Fi(x i−1) = 0. Further define

tk =

k
∑

i=1

Fi(x i).

Equation (4.7b) gives tn = t. Because the functions Fi are monotonic they have inverse functions

F−1
i

and we can define ω: [0, t]→ R by

ω(s) = F−1
i (s− t i−1) for all s ∈ [t i−1, t i].

We will prove that ω satisfies all the conditions from (j).

Because we have t i − t i−1 = Fi(x i) and thus F−1
i
(t i − t i−1) = x i = F−1

i+1
(t i − t i) the function ω is

well-defined on the connection points at times t i and is continuous. This also shows ωt i
= x i for

i = 0,1, . . . , n and especially ω0 = x0 = z and ωt = xn = a.

Because the Fi are differentiable at all points x strictly between x i−1 and x i , the function ω is

differentiable on the intervals (t i−1, t i) with derivative

ω̇s =
1

F ′
i
(ωs)

= sgn(x i − x i−1)
p

2(E +λv(ωs)).

Becauseω is continuous and the limits lims→t i
ω̇s exist, we see thatω is even differentiable on [0, t]

with ω̇0 = sgn(x1− x0)
p

2(E +λv(0)) and ω̇t i
= 0 for i = 1, . . . , n− 1.

Using the same kind of argument again, we find

ω̈s =
sgn(x i − x i−1)

2
p

2(E −λv(ωs))
2λv′(ωs) sgn(x i − x i−1)

p

2(E −λv(ωs)) = λv′(ωs),

first between the t i and then on the whole interval [0, t]. Thus ω really solves the differential

equation from (j).

Using the substitution

1

2

∫ t

0

v(ωs) ds =
1
p

8

∫

T

v(x)
p

E +λv(x)
d x

as in the first part, we also get back (4.3b) from (4.7a).

Now we have reduced the problem of minimising It(ω) over the solutions ω of the system (4.3) to

the problem of minimising

It(E,λ) = tE + 2λ

over the solutions (E,λ) of the system (4.7).

For a trace T define

HT =
�

(E,λ)
¯

¯ E ≥− inf
x∈T
λv(x)
	

⊆ R2

and furthermore define the functions f , g : Ht → [0,∞] by

f (E,λ) =

∫

T

1
p

E +λv(x)
d x
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λ0

E

− inf
x∈T

λv(x)

HT

Figure 2: This figure illustrates the domain HT of the functions f and g. The domain is unbounded in

directions λ → ∞ and E → ∞. It is bounded from below by λ 7→ − infx∈T λv(x), which is equal to

−λ supx∈T v(x) for λ≤ 0 and to −λ infx∈T v(x) for λ≥ 0.

and

g(E,λ) =

∫

T

v(x)
p

E +λv(x)
d x .

Figure 2 illustrates the domain HT . Both functions are finite in the interior of the domain, but can

be infinite at the boundary. The equations (4.7) are equivalent to f (Eλ,λ) =
p

2t and g(E,λ) =
p

8.

For paths which change direction at some point we will find solutions (E,λ) of (4.7), which lay on

the boundary of HT . For paths which go straight from z to a we will find solutions (E,λ) in the

interior of HT .

Lemma 13. Let t > 0 and T be a trace from z ∈ R to a ∈ R such that v|T is not constant. Then there

is at most one solution (E,λ) of (4.7).

Proof. For E >− infx∈T λv(x) we can choose an E∗ between − infx∈T λv(x) and E. Then v(x)/(E∗+
λv(x))3/2 is an integrable upper bound of v(x)/(e+λv(x))3/2 for all e in a (E− E∗)-Neighbourhood

of E. So we can use the theorem about interchanging the Lebesgue-integral with derivatives to get

∂

∂ E
g(E,λ) =−

1

2

∫

T

v(x)
�

E +λv(x)
�3/2

d x < 0.

So for every λ the map E 7→ g(E,λ) is strictly decreasing and there can be at most one Eλ with

g
�

Eλ,λ
�

=
p

8.

With the help of the implicit function theorem we can calculate the derivative of Eλ. Interchanging
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the integral with the derivative as above we get

∂

∂ λ
Eλ = −

∂

∂ λ
g(Eλ,λ)

∂

∂ E
g(Eλ,λ)

= −
(−1

2
)
∫

T
v2(x)
�

Eλ +λv(x)
�−3/2

d x

(−1

2
)
∫

T
v(x)
�

Eλ +λv(x)
�−3/2

d x

= −
∫

T
v2(x) dµ(x)
∫

T
v(x) dµ(x)

where µ is the probability measure, with density

dµ

d x
=

1

Z

�

Eλ +λv(x)
�−3/2

and the normalisation constant is

Z =

∫

T

�

Eλ +λv(y)
�−3/2

d y.

Furthermore for (E,λ) ∈ (HT )
◦ we have

∂

∂ E
f (E,λ) =−

1

2

∫

T

�

E +λv(x)
�−3/2

d x = −
Z

2

and thus

∂

∂ λ

�

f (Eλ,λ)
�

=
∂ f

∂ E
(Eλ,λ)

∂

∂ λ
Eλ +

∂ f

∂ λ
(Eλ,λ)

=
Z

2

∫

T
v2(x) dµ(x)
∫

T
v(x) dµ(x)

−
Z

2

∫

T

v(x) dµ(x)

=
Z

2

∫

T
v2(x) dµ(x)−
�
∫

T
v(x) dµ(x)
�2

∫

T
v(x) dµ(x)

≥ 0.

Equality would only hold for the case of constant v|T . So the map λ 7→ f (Eλ,λ) is strictly increasing

and there can be at most one λ with f
�

Eλ,λ
�

=
p

2t. This completes the proof.

Lemma 14. Let T a trace with m ∈ T and t ≥ 2|T |/
∫

T
v(x) d x. Then equation (4.7) has a solu-

tion (E,λ) with with E,λ > 0.

Proof. Define λ∗ = (
∫

T

p

v(x) d x)2/8 and assume 0< λ≤ λ∗. Then we have

g(0,λ) =

∫

T

v(x)
p

λv(x)
d x =

1
p
λ

∫

T

p

v(x) d x ≥
p

8.
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and the dominated convergence theorem gives

lim
E→∞

g(E,λ) = 0.

Thus for all 0< λ≤ λ∗ there exists an Eλ ≥ 0 with g(Eλ,λ) =
p

8.

Because of g(0,λ∗) =
p

8 we have Eλ∗ = 0. Fatou’s lemma then gives

lim inf
λ↑λ∗

f (Eλ,λ)≥
∫

T

1
p

λ∗v(x)
d x .

Because v is positive and v(m) = 0, we have v′(m) = 0 and v′′(m) ≥ 0. Then by Taylor’s theorem

there exists a c > 0 and a closed interval I ⊆ R with m ∈ I ⊆ T , such that v(x) ≤ c2(x −m)2 for all

x ∈ I . Therefore we find
∫

T

1
p

v(x)
d x ≥
∫

I

1
p

c2(x −m)2
d x =

∫

I

1

c|x −m| d x = +∞

and thus λ 7→ f (Eλ,λ) is a continuous function with

lim
λ↑λ∗

f (Eλ,λ) = +∞.

On the other hand because of g(E0, 0) =
p

8 we have E0 = (
∫

T
v(x) d x)2/8. So for λ= 0 we get

f (E0, 0) =

∫

T

1
p

E0

d x =

p
8
∫

T
v(x) d x

|T |.

Together this shows that for all

t ≥
2|T |
∫

T
v(x) d x

there exists a solution (Eλ,λ) with f (Eλ,λ) =
p

2t.

Lemma 15. There are numbers ǫ, c1, c2 > 0 such that the following holds: For every trace T starting

in K1, ending in K2, and visiting the ball Bǫ(m) there is a non-empty, closed interval A⊆ R, such that

A⊆ T, |A|= ǫ and we have c1 ≤ v(x)≤ c2 for every x ∈ A.

Proof. Because m /∈ K1 ∩ K2 either K1 or K2 has a positive distance from m. Let ǫ be one third

of this distance. Define A′ = { x ∈ R | ǫ ≤ |x − m| ≤ 2ǫ } and let c1 = inf{ v(x) | x ∈ A′} and

c2 = sup{ v(x) | x ∈ A′}.
Each trace starting in K1, ending in K2, and visiting the ball Bǫ(m) either crosses [m− 2ǫ, m− ǫ] or

[m+ ǫ, m+ 2ǫ]. Let A be the crossed interval. Then clearly |A| = ǫ and and because of A ⊆ A′ the

estimates for v hold on A.

Lemma 16. For every η > 0 there is a t1 > 0, such that whenever t ≥ t1, T is a trace from z ∈ K1 to

a ∈ K2 with m ∈ [z, a] and (E,λ) solves (4.7), then we have

¯

¯

¯It(E,λ)−
1

4

�

∫

T

p

v(x) d x
�2
¯

¯

¯≤ η.
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Proof. This case is illustrated in the left hand image of figure 1. Because of m ∈ [z, a], any path

from z to a must visit m and thus we find E > −λv(m) = 0. Thus the only possible trace in this case

is T = (z, a), because the process could only turn at points x where −λv(x) = E.

Now let η > 0. Define L = sup
�

|a− z|
¯

¯ z ∈ K1, a ∈ K2

	

. Then we get

p
2t =

∫

T

1
p

E +λv(x)
d x ≤
∫ a

z

1
p

E
d x ≤

L
p

E

and thus

E ≤
L2

2t2
.

So we can find a t1 > 0 with

Et < η (4.9)

whenever t ≥ t1.

Choosing A, c1, and c2 as in lemma 15 we get

p
8=

∫

T

v(x)
p

E +λv(x)
d x ≥
∫

A

c1
p

E +λc2

d x =
c1|A|
p

E +λc2

and thus

λ≥
c2
1 |A|2− E

8c2

≥
c2
1 |A|2− L2/2t2

8c2

.

So we can choose a small c3 > 0 and increase t1 to achieve λ > c3 whenever t ≥ t1.

Because of

lim
E↓0

∫

T

v(x)
p

E + v(x)
d x =

∫

T

p

v(x) d x

we can find a c4 > 0 with
∫

T

v(x)
p

E + v(x)
d x ≥
p

1−η/J(z, a)

∫

T

p

v(x) d x

for all E ≤ c4. Increase t1 until

L2

2t2c3

< c4

and thus

p
8=

∫

T

v(x)
p

E +λv(x)
d x

≥
1
p
λ

∫

T

v(x)
p

L2/2t2λ+ v(x)
d x

≥
1
p
λ

∫

T

v(x)
p

c4+ v(x)
d x

≥
1
p
λ

p

1−η/J(z, a)

∫

T

p

v(x) d x
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for all t ≥ t1. Solving this for λ we get

2λ≥ (1−η/J(z, a))J(z, a) = J(z, a)−η. (4.10)

Because E is positive we also find

p
8=

∫

T

v(x)
p

E +λv(x)
d x ≤

1
p
λ

∫

T

p

v(x) d x

and thus

2λ≤ J(z, a). (4.11)

For the rate function It equation (4.10) gives

It(E,λ) = Et + 2λ≥ J(z, a)−η

and equations (4.9) and (4.11) give

It(E,λ) = Et + 2λ≤ J(z, a) +η

for all t > t1.

Lemma 17. For every η > 0 there is a t2 > 0, such that whenever t ≥ t2, T is a trace from z ∈ K1 to

a ∈ K2 with m /∈ [z, a], and (E,λ) solves (4.7), then we have

¯

¯

¯It(E,λ)−
1

4

�

∫

T

p

v(x) d x
�2
¯

¯

¯≤ η.

Proof. This case is illustrated in the right hand image of figure 1. Because the path has to change

direction we will have E < 0 in this case. Without loss of generality we can assume that m< a, z. We

call a value b ∈ R admissible if it lies in the interval (m,min(a, z)) and if additionally v(x) > v(b)

for all x > b holds. For admissible values b consider the trace T = (z, b, a) and define

hz,a(b) = 2

∫

(z,b,a)

1p
v(x)−v(b)

d x

∫

(z,b,a)

v(x)p
v(x)−v(b)

d x
.

Using Taylor approximation as in lemma 14, one sees that for b → m the numerator converges

to +∞ and by dominated convergence the denominator converges to
∫

(0,m,a)

p

v(x) d x . So h is a

continuous function with hz,a(b)→∞ for b→ m.

Let ǫ, c1, and c2 and A be as in lemma 15. We would like to find a b ∈ Bǫ(m) with hz,a(b) = t, so we

need an upper bound on

inf
b∈(m,m+ǫ)

ha,z(b) (4.12)

which is uniform in a and z. We find

hz,a(b)≤ 2

supz∈K1,a∈K2

∫

(z,b,a)

1p
v(x)−v(b)

d x

∫

A

c1p
c2

d x
. (4.13)

1501



Because v′′(m) > 0 and lim inf|x |→∞ v(x) > 0, we can decrease ǫ to ensure that v′(x) ≥ v′′(m)(x −
m)/2 for all x ∈ [m, m+ ǫ] and v(x)≥ v(m+ ǫ) for all x ≥ m+ ǫ. Using Taylor’s theorem again we

get

v(x)− v(b) = v′(ξ)(x − b)≥
v′′(m)(b−m)

2
(x − b)

for some ξ ∈ [b, x] for all x ∈ [m, m+ ǫ]. Thus we can conclude

∫

(z,b,a)

1
p

v(x)− v(b)
d x

≤ 2

∫ m+ǫ

b

1
q

v′′(m)(b−m)

2
(x − b)

d x

+

∫ z

m+ǫ

1
p

v(m+ ǫ)− v(b)
d x +

∫ a

m+ǫ

1
p

v(m+ ǫ)− v(b)
d x

≤ 2

r

2

v′′(m)(b−m)

p

m+ ǫ− b

+ 2
1

p

v(m+ ǫ)− v(b)
sup
�

|x −m|
¯

¯ x ∈ K1 ∪ K2

	

.

(4.14)

The right hand side of (4.14) is independent of a and z. So we can take the infimum over all

b ∈ (m, m+ ǫ) and use (4.13) to get the uniform upper bound on (4.12). Call this bound t2.

Now let t > t2. Then for every z ∈ K1 and a ∈ K2 we can find a b ∈ (m, m+ ǫ) with hz,a(b) = t.

Further define λ > 0 by
p

λ=
1
p

8

∫

(z,b,a)

v(x)
p

v(x)− v(b)
d x

and E by

E = −λv(b).

Then for the trace T = (z, b, a) these values E and λ solve

E +λv(b) = 0,
∫

(z,b,a)

v(x)
p

E +λv(x)
d x =

1
p
λ

∫

(z,b,a)

v(x)
p

v(x)− v(b)
d x =
p

8

and

∫

(z,b,a)

1
p

E +λv(x)
d x =

1
p
λ

∫

(z,b,a)

1
p

v(x)− v(b)
d x =
p

2t.

For t →∞ we have b→ m uniformly in a and z,

λ→
1

8

�

∫

(z,m,a)

v(x)
p

v(x)− v(m)
d x
�2

=
1

8

�

∫

(z,m,a)

p

v(x) d x
�2

,
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and again E→ 0 (this time from below). This gives

It(E,λ) =
1

2

∫

T

p

2(E +λv(x)) d x →
1

4

�

∫

(z,m,a)

p

v(x) d x
�2

which proves the lemma.

With all these preparations in place we are now ready to calculate the asymptotic lower bound from

lemma 8.

Proof. (of lemma 8) Because of lemma 11 we can restrict ourselves to the case β = 1, i.e. we have

to prove

lim
t→∞

inf
�

It(ω)
¯

¯ω ∈ M
a,z,1
t

	

= J(a, z)

locally uniformly in a, z ∈ R.

Let K1, K2 ⊆ R be compact with 0 /∈ K1 ∩ K2 and η > 0. Furthermore let z ∈ K1 and a ∈ K2.

Assume first the case m ∈ [z, a]. From lemma 16 we get a t0 > 0, such that for every t > t0 there

exists a solution (E,λ) of (4.7) for the trace T = (z, a) with
¯

¯It(E,λ)− J(a, z)
¯

¯ ≤ η. This t0 only

depends on K1 and K2, but not on z and a.

Now assume the case m /∈ [z, a]. From lemma 17 we again get a t0 > 0, such that for every t > t0

there exists a solution (E,λ) of (4.7) for a trace T = (z, x1, a) with
¯

¯It(E,λ)− J(a, z)
¯

¯ ≤ η and t0

only depends on K1 and K2, but not on z and a.

In either case we can use lemma 12 to conclude, that there exists an ω, which solves (4.3a), (4.3b),

and (4.3c). Because of (4.6) this path has

¯

¯It(ω)− J(a, z)
¯

¯≤ η.

Let c = inf
�

It(ω)
¯

¯ ω ∈ M
a,z,1
t

	

. Because the path ω constructed just now is both, in M
a,z,1
t and

absolutely continuous, we have c <∞. Let Mn = M
a,z,1
t ∩ {ω | It(ω) < c + 1/n }. Because M

a,z,1
t is

closed and It is a good rate function, the sets Mn are compact, non-empty, and satisfy Mn ⊇ Mn+1

for every n ∈ N. So the intersection M =
⋂

n∈NMn is again non-empty. Because every ω̃ ∈ M has

It(ω̃) = c, we see that there in fact exists a path ω̃ for which the infimum is attained. From the Euler-

Lagrange method we know that ω̃ also solves equations (4.3a), (4.3b), and (4.3c). From lemmas 12

and 13 we know that the solution is unique, so ω̃ must coincide with our path ω constructed above

and we get
¯

¯

¯inf
�

It(ω)
¯

¯ω ∈ M
a,z,1
t

	

− J(a, z)

¯

¯

¯≤ η

for all z ∈ K1, a ∈ K2 and t ≥ t0. Since η > 0 was arbitrary this completes the proof of lemma 8.

5 Staying Near the Equilibrium

In this section we study the event that for some drift function b the integral 1

2

∫ t

0
b2(Bs) ds is small. In

contrast to the previous section, here we are considering long time intervals but have no conditions

on the final point. The main result of this section are the following two propositions.
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Proposition 18. Let b : R → R be a differentiable function with b(0) = 0, b′(0) 6= 0 and

lim inf|x |→∞ |b(x)|> 0. Then for every η > 0 we have

lim
ǫ↓0
ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

= lim
ǫ↓0
ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ
�

= −
|b′(0)|2 t2

16
.

Proposition 19. Let b : R → R be a differentiable function with b(0) = 0, b′(0) 6= 0 and

lim inf|x |→∞ |b(x)|> 0. Then for every η > 0 we have

lim
ζ↓0

lim inf
ǫ↓0

ǫ log inf
−ζ<z<ζ

Pz

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

=−
|b′(0)|2 t2

16

and

lim sup
ǫ↓0

ǫ log sup
y∈R

Py

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

=−
|b′(0)|2 t2

16
.

The rest of this section is devoted to the proof of these two propositions. The main idea of the proof

is to use Taylor approximation around the zero of b to reduce the problem to the case of linear b.

We start by proving a result for the case b(x) = x .

Lemma 20. Let B be a one-dimensional Brownian Motion. Then

lim
ǫ↓0
ǫ log Px

�∫ t

0

B2
s ds ≤ ǫ, Bt ∈ A

�

=−
�

t + x2+ ess infz∈A z2
�2

8

for every x ∈ R and every set A with P(Bt ∈ A)> 0 and in particular

lim
ǫ↓0
ǫ log P

�∫ t

0

B2
s ds ≤ ǫ
�

= −
t2

8
.

Proof. Formula (1–1.9.7) from [BS96] gives

∫

1A(ωt)exp
�

−
ϑ2

2

∫ t

0

ω2
s ds
�

dWx(ω)

=

∫

A

p
ϑ
p

2π sinh(tϑ)
exp
�

−
(x2+ z2)ϑ cosh(tϑ)− 2xzϑ

2 sinh(tϑ)

�

dz.

By definition of cosh and sinh there are constants 0< c1 < c2 with

c1e−tϑ/2 ≤
1
p

2π sinh(tϑ)
≤ c2e−tϑ/2 for all ϑ > 1. (5.1)
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(The value 1 is arbitrary, any positive number would do.) Also we can use the relation |2x y | ≤
x2+ y2 to get

(x2+ z2)

2

cosh(γt)− 1

sinh(γt)
≤
(x2+ z2) cosh(γt)− 2xz

2 sinh(γt)
≤
(x2+ z2)

2

cosh(γt) + 1

sinh(γt)

for all x , z ∈ R. Now let η > 0. Because of

cosh(ϑt)± 1

sinh(ϑt)
=

eϑt + e−ϑt ± 1

eϑt − e−ϑt
−→ 1 for ϑ→∞.

we can then find a ϑ0 > 0, such that whenever ϑ > ϑ0 the estimate

x2+ z2

2
(1−η)≤

(x2+ z2) cosh(ϑt)− 2xz

2 sinh(ϑt)
≤

x2+ z2

2
(1+η)

holds for all x , z ∈ R. Thus we can conclude

lim
ϑ→∞

1

ϑ
log Ex

�

exp
�

−
ϑ2

2

∫ 1

0

B2
s ds
�

1A(Bt)
�

= lim
ϑ→∞

1

ϑ
log
p

ϑ

∫

A

1
p

2π sinh(tϑ)
exp
�

−ϑ
(x2+ z2) cosh(tϑ)− 2xz

2 sinh(tϑ)

�

dz

= lim
ϑ→∞

1

ϑ
log

∫

A

e−tϑ/2 exp
�

−ϑ
x2+ z2

2

�

dz

= −
1

2
ess infz∈A

�

t + x2+ z2
�

.

The exponential Tauber theorem [BGT87, theorem 4.12.9] now gives the first equality of the claim.

The second claim follows by taking x = 0 and A= R.

We will also need a version of lemma 20 which holds uniformly in the initial condition x . This is

given in the following lemma.

Lemma 21. Let B be a one-dimensional Brownian Motion and A⊆ R closed. Then

lim
ǫ↓0
ǫ log sup

x∈A

Px

�

∫ t

0

B2
s ds ≤ ǫ
�

=− inf
x∈A

(t + x2)2

8
.

Proof. Let x , y ∈ A with 0 < |x | < |y |. Then the symmetry of Brownian motion and Anderson’s

inequality [And55, corollary 5] applied to the processes X = B+ |x | and Y = B+ |y | gives

Px

�

∫ t

0

B2
s ds ≤ ǫ
�

≥ Py

�

∫ t

0

B2
s ds ≤ ǫ
�

. (5.2)

Now choose x ∈ A with |x |= inf{ |y | | y ∈ A}. Then the estimate (5.2) becomes

Px

�

∫ t

0

B2
s ds ≤ ǫ
�

= sup
y∈A

Py

�

∫ t

0

B2
s ds ≤ ǫ
�

and the claim follows with lemma 20.
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The following lemma gives a set of conditions under which dominated terms can be neglected when

calculating large deviation rate functions. The proof is elementary and we omit it here.

Lemma 22. Let f , g : R+ → R+ be two functions and assume that either one of the two conditions

lim supǫ↓0 ǫ log g(ǫ) ≤ lim infǫ↓0 ǫ log f (ǫ) or lim supǫ↓0 ǫ log g(ǫ) < lim infǫ↓0 ǫ log
�

f (ǫ) + g(ǫ)
�

holds. Then we have

lim inf
ǫ↓0

ǫ log
�

f (ǫ) + g(ǫ)
�

= lim inf
ǫ↓0

ǫ log f (ǫ)

and

lim sup
ǫ↓0

ǫ log
�

f (ǫ) + g(ǫ)
�

= lim sup
ǫ↓0

ǫ log f (ǫ).

In order to make the Taylor approximation work we need upper bounds on the probability that the

process leaves a neighbourhood of the zero of b. This is given by the following lemma.

Lemma 23. Let B be a Brownian motion, a, t > 0, and v : R→ R be a function with v(x) ≥ x2 ∧ a2

for every x ∈ R. Then we have

lim sup
ǫ↓0

ǫ log sup
x∈R

Px

�

∫ t

0

v(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs|> a
�

≤−
1

8

�

t +
1

2
a2
�2

.

Proof. We need to find an upper bound on the exponential rate for the probability of the event

Aǫ =
n

∫ t

0

v(Bs) ds ≤ ǫ, sup
0≤s<t

|Bs|> a
o

,

which is uniform in the initial point B0 = x . First define two interlaced sequences of stopping times

(S j) j∈N and (T j) j∈N0
by letting T0 = 0 and

S j = inf
�

s > T j−1

¯

¯ |Bs| ≥ a
	

T j = inf
�

s > S j

¯

¯ |Bs|= a/2
	

for all j ∈ N. If the initial point B0 = x has |x | > a we have S0 = 0 and |BS0
| > a. Except for this we

have |BS j
| = a. For s ∈ [S j , T j] we have |Bs| ≥ a/2 and thus v(Bs) ≥ a2/4. Outside these intervals

we have |Bs|< a and thus v(Bs)≥ B2
s . Therefore we can conclude

n

∫ T j

S j

v(Bs) ds ≤ ǫ
o

⊆
n

∫ T j

S j

a2/4 ds ≤ ǫ
o

=
n

T j − S j ≤ 4ǫ/a2
o

and for d > 0 also

n

∫ S j

T j−1

v(Bs) ds ≤ ǫ,S j − T j−1 ≥ d
o

⊆
n

∫ S j

T j−1

B2
s ds ≤ ǫ,S j − T j−1 ≥ d

o

⊆
n

∫ T j−1+d

T j−1

B2
s ds ≤ ǫ
o

.
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As an abbreviation define J = ⌈2t/a2⌉+ 1 where ⌈x⌉ = min{n ∈ N | n ≥ x }. We want to split the

set Aǫ into the two parts

Aǫ =
�

Aǫ ∩ {TJ ≤ t}
�

∪
�

Aǫ ∩ {TJ > t}
�

.

The first part corresponds to the case that there are at least J excursions up to the level |Bs|= a and

then back to |Bs| = a/2 before time t. For this case we will get an upper bound on the probability

from the fact that the process has to move very fast during the intervals [S j , T j]. The second part

corresponds to the case that there are at most J − 1 such excursions. This case is more difficult,

because we have to take the intervals between the excursions into account.

First consider the case TJ ≤ t. Here we have

Aǫ ∩ {TJ ≤ t} ⊆
n

J
∑

j=1

∫ T j

S j

v(Bs) ds ≤ ǫ
o

⊆
n

J
∑

j=1

(T j − S j)≤ 4ǫ/a2
o

.

Using the strong Markov property for Brownian motion and the reflection principle we find

Px

�

T j − S j ≤ ǫ
�

≤ P
�

sup
0≤s≤ǫ

Bs > a/2
�

= 2P
�

Bǫ > a/2
�

= 2P
�p
ǫB1 > a/2
�

for all x ∈ R. The basic large deviation result for the standard normal distribution on R now gives

lim
ǫ↓0
ǫ log sup

x∈R
Px

�

T j − S j ≤ ǫ
�

≤−
1

2

�

a/2
�2
=−

a2

8
.

In this situation we can apply proposition 6 to get

lim sup
ǫ↓0

ǫ log sup
x∈R

Px

�

Aǫ ∩ {TJ ≤ t}
�

≤ lim sup
ǫ↓0

ǫ log Px

�
J
∑

j=1

(T j − S j)≤ 4ǫ/a2
�

=
a2

4
lim sup
ǫ↓0

ǫ log Px

�
J
∑

j=1

(T j − S j)≤ ǫ
�

≤−
a2

4

�
J
∑

j=1

a
p

8

�2

≤−
1

8

�

t +
1

2
a2
�2

.

(5.3)

Now consider the case TJ > t. Choose n ∈ N with n > 2J and ǫ > 0 with 4ǫ/a2 < t/n. Define

∆t = t/n, the intervals I1 = [0,∆t] and Ik =
�

(k− 1)∆t, k∆t
�

for k = 2, . . . , n, the index set

Q =
n

(k1, . . . , kℓ) ∈ Nℓ
¯

¯

¯ ℓ ∈ {1, . . . , J}, 1≤ k1 ≤ · · · ≤ kℓ ≤ n
o

,

and the event

Aǫ
(k1,...,kℓ)

= Aǫ ∩
�

S j ∈ Ik j
for j = 1, . . . ,ℓ and Sℓ+1 > t

	

.
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Then we have

Aǫ ∩ {TJ > t}=
⋃

q∈Q
Aǫq.

Choose (k1, . . . , kℓ) ∈ Q. As we have seen above the condition
∫ T j

S j
v(Bs) ds ≤ ǫ implies T j − S j ≤

4ǫ/a2 ≤∆t. Thus on Aǫq we have

S j − T j−1 ≥max
�

(k j − k j−1 − 2)∆t, 0
�

=: d j−1 (5.4)

for j = 1, . . . ,ℓ− 1, where we use the convention k0 = 0. If kℓ < n then we use 5.4 also for j = ℓ

and we have

t − Tℓ ≥max
�

(n− kℓ − 2)∆t, 0
�

=: dℓ.

For kℓ = n it will turn out that we need to treat the right endpoint of the interval specially, here we

define dℓ−1 =max
�

(n− kℓ−1 − 3)∆t, 0
�

.

Let δ > 0 and define Dδ
2ℓ+1

as in (3.3). For α ∈ Dδ
2ℓ+1

further define

Aαǫ
(k1,...,kℓ)

=
n

∫ S1

T0

v(Bs) ds ≤ α1ǫ,

∫ T1

S1

v(Bs) ds ≤ α2ǫ,S1 ∈ Ik1
,

...
∫ Sℓ

Tℓ−1

v(Bs) ds ≤ α2ℓ−1ǫ,

∫ Tℓ

Sℓ

v(Bs) ds ≤ α2ℓǫ,Sℓ ∈ Ikℓ
,

∫ t

Tℓ

v(Bs) ds ≤ α2ℓ+1ǫ,Sℓ+1 > t
o

if kℓ < n and

Aαǫ
(k1,...,kℓ)

=
n

∫ S1

T0

v(Bs) ds ≤ α1ǫ,

∫ T1

S1

v(Bs) ds ≤ α2ǫ,S1 ∈ Ik1
,

...
∫ Sℓ

Tℓ−1

v(Bs) ds ≤ α2ℓ−1ǫ,Sℓ ∈ In,Sℓ+1 > t
o

else. Then we have

Aǫ ∩ {TJ > t}=
⋃

q∈Q
Aǫq ⊆
⋃

q∈Q

⋃

α∈Dδ
2ℓ+1

Aαǫq .
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Assume first the case kℓ < n. Then we get

Px

�

Aαǫ
(k1,...,kℓ)

�

≤ Px

�

∫ T0+d0

T0

B2
s ds ≤ α1ǫ, T1− S1 ≤ 4α2ǫ/a

2,S1 ∈ Ik1
,

...
∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ǫ, Tℓ − Sℓ ≤ 4α2ℓǫ/a

2,Sℓ ∈ Ikℓ
,

∫ Tℓ+dℓ

Tℓ

B2
s ds ≤ α2ℓ+1ǫ,Sℓ+1 > t

�

.

Now we use the strong Markov property of Brownian motion for the stopping times S j and T j .

Because |BT j
|= a/2 and |BS j

|= a are deterministic and the Brownian motion is symmetric we get

Px

�

Aαǫ
(k1,...,kℓ)

�

≤ Px

�

∫ T0+d0

T0

B2
s ds ≤ α1ǫ, T1− S1 ≤ 4α2ǫ/a

2,S1 ∈ Ik1
,

...
∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ǫ, Tℓ − Sℓ ≤ 4α2ℓǫ/a

2,Sℓ ∈ Ikℓ

�

Pa

2

�

∫ dℓ

0

B2
s ds ≤ α2ℓ+1ǫ
�

≤ Px

�

∫ T0+d0

T0

B2
s ds ≤ α1ǫ, T1− S1 ≤ 4α2ǫ/a

2,S1 ∈ Ik1
,

...
∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ǫ,Sℓ ∈ Ikℓ

�

P0

�

sup
0≤s≤4α2ℓǫ/a

2

Bs > a/2
�

Pa

2

�

∫ dℓ

0

B2
s ds ≤ α2ℓ+1ǫ
�

.

Repeating these two steps for j = ℓ− 1, . . . , 0 finally gives

Px

�

Aαǫ
(k1,...,kℓ)

�

≤ Px

�

∫ d0

0

B2
s ds ≤ α1ǫ
�

ℓ
∏

j=1

Pa

2

�

∫ d j

0

B2
s ds ≤ α2 j+1ǫ
�

ℓ
∏

j=1

P0

�

sup
0≤s≤4α2 jǫ/a

2

Bs > a/2
�

.
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In order to use inequality (3.4) we have to calculate the individual rates for the factors on the

right-hand side. Using lemma 21 we get

lim
ǫ↓0
ǫ log sup

x∈R
Px

�

∫ d

0

B2
s ds ≤ ǫ
�

= −
1

8
d2. (5.5)

Using the reflection principle and the basic scaling property of Brownian motion we find

P0

�

sup
0≤s≤4ǫ/a2

Bs > a/2
�

= 2P
�

B4ǫ/a2 > a/2
�

= 2P
�

p

4ǫ/a2B1 > a/2
�

= 2P
�p
ǫB1 > a2/4
�

.

The large deviation principle for the standard normal distribution on R now gives

lim
ǫ↓0
ǫ log P0

�

sup
0≤s≤4ǫ/a2

Bs > a/2
�

= −
1

2

�

a2/4
�2
=−

1

8

�a2

2

�2

. (5.6)

Now we can apply inequality (3.4) to get the combined rate. The result is

lim
ǫ↓0
ǫ log sup

x∈R
Px

�

Aαǫ
(k1,...,kℓ)

�

≤−
1

1+δ

1

8

�
ℓ
∑

j=0

d j + n1

a2

4
+ ℓ

a2

2

�2

,

where n1 =
¯

¯

�

j = 1, . . . ,ℓ
¯

¯ d j > 0
	
¯

¯. Because each of the intervals [S j , T j] can have a non-empty

intersection with at most two of the n intervals Ik we have
∑ℓ

j=0 d j ≥ n−2J and thus n1 ≥ 1. So we

find

lim
ǫ↓0
ǫ log sup

x∈R
Px

�

Aαǫ
(k1,...,kℓ)

�

≤−
1

1+δ

1

8

�n− 2J

n
t +

a2

4
+ ℓ

a2

2

�2

(5.7)

for all α ∈ Dδ
2ℓ+1

and all δ > 0.

Now assume kℓ = n. This case is similar, but needs an additional argument to take care of the case

t ∈ [Sℓ, Tℓ). Here we can no longer use (5.6) for the interval [Sℓ, Tℓ). To work around this we define

a stopping time R by

R= inf
�

s ≥max(Tℓ−1, (n− 2)∆t)
¯

¯ |Bs|= a/2
	

.

Given the event Aαǫ
(k1,...,kℓ)

the process cannot have |Bs| > a/2 for a period of time of length ∆t and

using the special definition of dℓ−1 for this case we get Tℓ − 1+ dℓ−1 ≤ R≤ Sℓ.

Similar to the other case we get then

Px

�

Aαǫ
(k1,...,kℓ)

�

≤ Px

�

∫ T0+d0

T0

B2
s ds ≤ α1ǫ, T1− S1 ≤ 4α2ǫ/a

2,S1 ∈ Ik1
,

...
∫ Tℓ−2+dℓ−2

Tℓ−2

B2
s ds ≤ α2ℓ−3ǫ,

Tℓ−1 − Sℓ−1 ≤ 4α2ℓ−2ǫ/a
2,Sℓ−1 ∈ Ikℓ−1

,
∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ǫ,Sℓ − R≤ 4α2ℓǫ/a

2,Sℓ ∈ In

�

.

1510



Using the strong Markov property for the stopping time R first gives

Px

�

Aαǫ
(k1,...,kℓ)

�

≤ Px

�

∫ T0+d0

T0

B2
s ds ≤ α1ǫ, T1− S1 ≤ 4α2ǫ/a

2,S1 ∈ Ik1
,

...
∫ Tℓ−2+dℓ−2

Tℓ−2

B2
s ds ≤ α2ℓ−3ǫ,

Tℓ−1 − Sℓ−1 ≤ 4α2ℓ−2ǫ/a
2,Sℓ−1 ∈ Ikℓ−1

,
∫ Tℓ−1+dℓ−1

Tℓ−1

B2
s ds ≤ α2ℓ−1ǫ
�

P0

�

sup
0≤s≤4α2ℓǫ/a

2

Bs > a/2
�

.

Now we can continue splitting of terms as in the first case to get

Px

�

Aαǫ
(k1,...,kℓ)

�

≤ Px

�

∫ d0

0

B2
s ds ≤ α1ǫ
�

ℓ−1
∏

j=1

Pa

2

�

∫ d j

0

B2
s ds ≤ α2 j+1ǫ
�

ℓ
∏

j=1

P0

�

sup
0≤s≤4α2 jǫ/a

2

Bs > a/2
�

.

Using equations (5.5), (5.6) and inequality (3.4) as in the first case we get

lim
ǫ↓0
ǫ log sup

x∈R
Px

�

Aαǫ
(k1,...,kℓ)

�

≤−
1

1+δ

�
ℓ−1
∑

j=0

d j + n1

a2

4
+ ℓ

a2

2

�2

≤−
1

1+δ

1

8

�n− 2J − 1

n
t + ℓ

a2

2

�2

(5.8)

for all α ∈ Dδ
2ℓ+1

and all δ > 0. Note that in this case n1 = 0 is possible, this occurs in the case ℓ= 1

and S1 ∈ In, because In was the interval we treated specially.

To estimate the upper exponential rate of Aǫ ∩ {TJ > t} we need to compare all the rates from (5.7)

and (5.8). We get

lim sup
ǫ↓0

ǫ log sup
x∈R

Px

�

Aǫ ∩ {TJ > t}
�

=max
q∈Q

max
α∈Dδ

2ℓ+1

lim sup
ǫ↓0

ǫ log Px

�

Aαǫq
�

≤−
1

1+δ

1

8

�n− 2J − 1

n
t +

a2

2

�2
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for all δ > 0 and large enough n, where the largest bound came from the case ℓ= 1, k1 = n. Letting

first δ ↓ 0 and then n→∞ shows

lim sup
ǫ↓0

ǫ log Px

�

Aǫ ∩ {TJ > t}
�

≤
1

8

�

t +
a2

2

�2
. (5.9)

This gives the upper bound for P(Aǫ). Using the estimates (5.3) and (5.9) we find

lim sup
ǫ↓0

ǫ log sup
x∈R

Px(A
ǫ)≤

1

8

�

t +
a2

2

�2
.

This completes the proof of the lemma 23.

Lemma 24. For every a > 0 and every x ∈ (−a/
p

2,+a/
p

2) we have

lim
ǫ↓0
ǫ log Px

�

∫ t

0

B2
s ds ≤ ǫ, sup

0≤s≤t

|Bs| ≤ a
�

= lim
ǫ↓0
ǫ log Px

�

∫ t

0

B2
s ds ≤ ǫ
�

=−
�

t + x2
�2

8
.

Proof. The second equality is proved in lemma 20. Applying lemma 23 to the function v(x) = x2

we see that

lim sup
ǫ↓0

ǫ log Px

�

∫ t

0

B2
s ds ≤ ǫ, sup

0≤s≤t

|Bs|> a
�

≤−
1

8

�

t +
1

2
a2
�2

< lim inf
ǫ↓0

ǫ log Px

�

∫ t

0

B2
s ds ≤ ǫ
�

.

Thus we can use lemma 22 to prove the first equality.

Now we can combine the results of the previous lemmas to give the proofs of proposition 18.

Proof. (of proposition 18) Choose some 0 < δ < |b′(0)|. Using the Taylor formula b(x) = b′(0)x +
o(x) we find an a > 0 with

�

|b′(0)|+δ
�2

x2 ≥ b2(x)≥
�

|b′(0)| −δ
�2

x2 for all x ∈ [−a, a]. (5.10)

Without loss of generality we may assume that a is smaller than η and also small enough to permit

|b(x)| ≥ a
�

|b′(0)| −δ
�

for all x ∈ R with |x |> a.

We have to calculate the exponential rates of

P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ
�

= P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ a
�

+ P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs|> a
�

.

(5.11)
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Whenever sup0≤s≤t |Bs| ≤ a we can approximate b(x) by b′(0)x as in (5.10). This gives

P
�1

2

∫ t

0

�

|b′(0)|+δ
�2

B2
s ds ≤ ǫ, sup

0≤s≤t

|Bs| ≤ a
�

≤ P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ a
�

≤ P
�1

2

∫ t

0

�

|b′(0)| −δ
�2

B2
s ds ≤ ǫ, sup

0≤s≤t

|Bs| ≤ a
�

.

Both bounds of this estimate can be handled using

lim
ǫ↓0
ǫ log P
�

∫ t

0

cB2
s ds ≤ ǫ, sup

0≤s≤t

|Bs| ≤ a
�

=−c
t2

8
,

which is a consequence of lemma 24.

For the lower bound this gives

lim inf
ǫ↓0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ
�

≥ lim inf
ǫ↓0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ a
�

≥−
�

|b′(0)|+δ
�2

16
t2

whenever δ > 0. For the upper bound we find

lim sup
ǫ↓0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ a
�

≤−
�

|b′(0)| −δ
�2

16
t2. (5.12)

Define v(x) = b2(x)/
�

|b′(0)|−δ
�2

. Then by our choice of a we have v(x)≥ x2 ∧ a2 and lemma 23

gives

lim sup
ǫ↓0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs|> η
�

≤ lim sup
ǫ↓0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs|> a
�

≤−
1

8

�

t +
1

2
a2
�2

�

|b′(0)| −δ
�2

2

<−
�

|b′(0)| −δ
�2

16
t2.

(5.13)

Using only the last three lines of equation (5.13) we see that the upper bound for (5.11) is domi-

nated by (5.12) and from lemma 22 we get

lim sup
ǫ↓0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ
�

≤−
�

|b′(0)| −δ
�2

16
t2
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for all δ > 0. Letting δ ↓ 0 completes the proof of

lim
ǫ↓0
ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ
�

= −
|b′(0)|2 t2

16
.

Utilising lemma 22 again, but this time with the full equation (5.13) also proves the first equality of

the proposition’s claim.

In order to prove proposition 19 we need an additional coupling argument.

Lemma 25. Given x , y ∈ R with |x | ≥ |y | we can choose two Brownian motions Bx and B y on a

common probability space with Bx
0 = x, B

y

0 = y, and |Bx
t | ≥ |B

y
t | for all t ≥ 0.

Proof. Let Bx be any Brownian motion with start in x and B be another one on the same probability

space, but with start in y . Define the stopping time T by

T = inf
�

t ≥ 0
¯

¯ |Bx
t |= |Bt |
	

and the random variable σ by σ = 1 if Bx
T = BT and σ =−1 else. Then the process B y defined by

B
y
t =

(

Bt if t ≤ T , and

BT +σ(B
x
t − Bx

T ) if t > T

is a Brownian motion with |B y
t | < |Bx

t | for t < T and either B
y
t = Bx

t or B
y
t = −Bx

t for t ≥ T . This

proves the claim.

Proof. (of proposition 19) We start by proving the claim about the lim inf. Using proposition 18 we

find

lim inf
ǫ↓0

ǫ log inf
−ζ<z<ζ

Pz

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

≤ lim
ǫ↓0
ǫ log P0

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

= −
|b′(0)|2 t2

16

for every ζ > 0.

Now let κ > 0 and choose a δ > 0 with

−
�

|b′(0)|+δ
�2 (t +δ

2)2

16
> −
|b′(0)|2 t2

16
−κ.

As in the proof of proposition 18 we can use Taylor approximation to find an a > 0 with

b2(x)≤
�

|b′(0)|+ δ
�2

x2

for all x ∈ [−a, a]. Without loss of generality we may assume a ≤min(2δ,η).
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Let ζ < a/2 and z ∈ [−ζ,+ζ]. Then we can use lemma 25 to choose two Brownian motions Bζ and

Bz with B
ζ
0 = ζ, Bz

0 = z, and |Bζt | ≥ |Bz
t | for all t ≥ 0. We find

P
�1

2

∫ t

0

b2(Bz
s ) ds ≤ ǫ, sup

0≤s≤t

|Bz
s | ≤ η
�

≥ P
�1

2

∫ t

0

b2(Bz
s ) ds ≤ ǫ, sup

0≤s≤t

|Bz
s | ≤ a
�

≥ P
�1

2

∫ t

0

�

|b′(0)|+δ
�2
(Bz

s )
2 ds ≤ ǫ, sup

0≤s≤t

|Bz
s | ≤ a
�

≥ P
�1

2

∫ t

0

�

|b′(0)|+δ
�2
(Bζs )

2 ds ≤ ǫ, sup
0≤s≤t

|Bζs | ≤ a
�

for every z ∈ [−ζ,+ζ], and thus

lim inf
ǫ↓0

ǫ log inf
−ζ<z<ζ

Pz

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

≥ lim inf
ǫ↓0

ǫ log Pζ

�1

2

∫ t

0

�

|b′(0)|+ δ
�2

B2
s ds ≤ ǫ, sup

0≤s≤t

|Bs| ≤ a
�

=
1

2

�

|b′(0)|+ δ
�2

lim inf
ǫ↓0

ǫ log Pζ

�

∫ t

0

B2
s ds ≤ ǫ, sup

0≤s≤t

|Bs| ≤ a
�

.

Because ζ < a/2< δ we can use lemma 24 to get

lim inf
ǫ↓0

ǫ log inf
−ζ<z<ζ

Pz

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

≥−
1

2

�

|b′(0)|+δ
�2 (t + ζ

2)2

8

≥−
1

2

�

|b′(0)|+δ
�2 (t +δ

2)2

8

> −
|b′(0)|2 t2

16
−κ

for all sufficiently small κ > 0. Letting ζ ↓ 0 completes the proof of the first claim.

For the second claim first note that

lim sup
ǫ↓0

ǫ log sup
y∈R

Py

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

≥ lim sup
ǫ↓0

ǫ log P0

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

=−
|b′(0)|2 t2

16
,

again by proposition 18.
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Let κ > 0 and choose δ > 0 with

−
�

|b′(0)| −δ
�2 t2

16
<−
|b′(0)|2 t2

16
+ κ.

Using Taylor approximation we can find an a > 0 with

b2(x)≥
�

|b′(0)| −δ
�2

x2

for all x ∈ [−a, a] and by choosing a small enough we can find a smooth, antisymmetric, monotone

function ϕ : R→ R with |b(x)| ≥ |ϕ(x)| for all x ∈ R and ϕ′(0) = |b′(0)| −δ.

Using the coupling argument and proposition 18 again, we get

lim sup
ǫ↓0

ǫ log sup
y∈R

Py

�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

≤ lim sup
ǫ↓0

ǫ log sup
y∈R

Py

�1

2

∫ t

0

ϕ2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

≤ lim sup
ǫ↓0

ǫ log P0

�1

2

∫ t

0

ϕ2(Bs) ds ≤ ǫ, sup
0≤s≤t

|Bs| ≤ η
�

=−
�

|b′(0)| −δ
�2

t2

16

<−
|b′(0)|2 t2

16
+ κ

for all κ > 0. Taking the limit κ ↓ 0 completes the proof of proposition 19.

6 The LDP for the Endpoint

In this section we use the results of the previous section to complete the proof of theorem 1.

Notation. To avoid complicated and hard to read expressions in small print we sometimes write (A)

for the indicator function of the event A during this section.

Lemma 26. Let Φ: R→ R be a C2-function with bounded Φ′′ and let b = −Φ′. Assume that there is

an m ∈ R with b(x) = 0 if and only if x = m and lim inf|x |→∞ |b(x)|> 0. Further assume that there is

a rate function I : R→ [0,∞] with

lim inf
ϑ→∞

1

ϑ
log E
�

exp(−
ϑ2

2

∫ t

0

b2(ωs) ds)1O(Bt)
�

≥− inf
x∈O

I(x)

for every open set O ⊆ R and

lim sup
ϑ→∞

1

ϑ
log E
�

exp(−
ϑ2

2

∫ t

0

b2(ωs) ds)1K(Bt)
�

≤− inf
x∈K

I(x)
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for every compact set K ⊆ R. For ϑ > 0 let X ϑ be a solution of the SDE (1.1) with start in X ϑ0 = 0. Then

for ϑ→∞ the family (X ϑt )ϑ satisfies the weak LDP with rate function J, where J is defined by

J(x) = Φ(x)−Φ(0)−
1

2
tΦ′′(m) + I(x).

Proof. First let O be open, x ∈ O and δ > 0. Then we can find an η with 0< η < δ, Bη(x)⊆ O, and

|Φ(y)−Φ(x)| ≤ δ for all y ∈ Bη(x). Define

F∗(x) = Φ(0)−Φ(x) +
1

2
tΦ′′(m).

Let F and G be as in (3.1). Then we find

lim inf
ϑ→∞

1

ϑ
log P(X ϑt ∈ O)

≥ lim inf
ϑ→∞

1

ϑ
log P(X ϑt ∈ Bη(x))

= lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)
(ωt)exp
�

ϑF(ω)− ϑ2G(ω)
�

dW(ω)

≥ lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)
(ωt)exp
�

ϑ(F∗(x)− 2δ)− ϑ2G(ω)
�

�

|F(ω)− F∗(x)| ≤ 2δ
�

dW(ω)

= F∗(x)− 2δ+ lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)
(ωt)exp
�

−ϑ2G(ω)
�

�

|F(ω)− F∗(x)| ≤ 2δ
�

dW(ω).

By definition of F∗(x) we have

¯

¯F(ω)− F∗(x)
¯

¯=
¯

¯Φ(0)−Φ(ωt) +
1

2

∫ t

0

Φ′′(ωs) ds

−Φ(0) +Φ(x)−
1

2
tΦ′′(m)
¯

¯

≤
¯

¯Φ(x)−Φ(ωt)
¯

¯+
1

2

∫ t

0

¯

¯Φ′′(ωs)−Φ′′(m)
¯

¯ ds.

Thus whenever ωt ∈ Bη(x) and
¯

¯F(ω)− F∗(x)
¯

¯≥ 2δ we find

1

2

∫ t

0

¯

¯Φ′′(ωs)−Φ′′(m)
¯

¯ ds ≥ 2δ−δ = δ.

Because Φ′′ is bounded the above estimate implies that we can find an ǫ > 0 with

¯

¯

¯

�

s ∈ [0, t]
¯

¯ |ωs −m| ≥ δ/t
	

¯

¯

¯> ǫ

1517



for all paths ω with ωt ∈ Bη(x) and
¯

¯F(ω)− F∗(x)
¯

¯ ≥ 2δ. Because m is the only zero of b and

because lim inf|x |→∞ |b(x)|> 0 we have

inf
�

b2(x)
¯

¯ |x −m| ≥ δ/t
	

> 0,

i.e. we can find a g > 0 with G(ω) > g for all paths ω with ωt ∈ Bη(x) and
¯

¯F(ω)− F∗(x)
¯

¯ ≥ 2δ.

Together this gives

lim sup
ϑ→∞

1

ϑ
log

∫

1Bη(x)
(ωt)exp
�

−ϑ2G(ω)
�

(|F(ω)− F∗(x)|> 2δ) dW(ω)

≤ lim sup
ϑ→∞

1

ϑ
log

∫

exp
�

−ϑ2 g
�

dW(ω)

=−∞.

So we can use lemma 22 to conclude

lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)
(ωt)exp
�

−ϑ2G(ω)
�

dW(ω)

= lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)
(ωt)exp
�

−ϑ2G(ω)
�

(|F(ω)− F∗(x)| ≤ 2δ) dW(ω)

and get

lim inf
ϑ→∞

1

ϑ
log P(X ϑt ∈ O)

≥ F∗(x)− 2δ+ lim inf
ϑ→∞

1

ϑ
log

∫

1Bη(x)
(ωt)exp
�

−ϑ2G(ω)
�

dW(ω)

≥ F∗(x)− 2δ− inf
y∈Bη(x)

I(y)

≥ F∗(x)− 2δ− I(x)

for all δ > 0. Letting δ ↓ 0 gives

lim inf
ϑ→∞

1

ϑ
log P(X ϑt ∈ O)≥ F∗(x)− I(x)

and taking the supremum over all x ∈ O on the right hand side proves the lower bound.

Now let K ⊆ R be compact and δ > 0. For each x ∈ K we can find an η > 0 with |Φ(y)−Φ(x)| ≤ δ
whenever y ∈ Bη(x). Because I is lower semi-continuous we can assume I(y) ≥ I(x)− δ for every

y ∈ Bη(x) by choosing η small enough. Using the compactness of K we can cover K with a finite

number of such balls: there are x1, . . . , xn ∈ K and 0< η1, . . . ,ηn < δ with

K ⊆
n
⋃

k=1

Bηk
(xk)
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and the above assumption on Φ and I hold for each k. For k = 1, . . . , n consider F∗(xk) as defined

above. This time we find

lim sup
ϑ→∞

1

ϑ
log P(X ϑt ∈ K)

≤ lim sup
ϑ→∞

1

ϑ
log

n
∑

k=1

P(X ϑt ∈ Bηk
(xk))

= max
k=1,...,n

lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)
(ωt)exp
�

ϑF(ω)− ϑ2G(ω)
�

dW(ω).

Because F is bounded on {ωt ∈ Bηk
(xk)} we can use lemma 22 as above to conclude

lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)
(ωt)exp
�

ϑF(ω)− ϑ2G(ω)
�

dW(ω)

= lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)
(ωt)exp
�

ϑF(ω)− ϑ2G(ω)
�

(|F(ω)− F∗(xk)| ≤ 2δ) dW(ω)

for k = 1, . . . , n. This gives

lim sup
ϑ→∞

1

ϑ
log P(X ϑt ∈ K)

≤ max
k=1,...,n

lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)
(ωt)exp
�

ϑF(ω)− ϑ2G(ω)
�

(|F(ω)− F∗(xk)| ≤ 2δ) dW(ω)

≤ max
k=1,...,n

lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)
(ωt)exp
�

ϑ(F∗(xk) + 2δ)− ϑ2G(ω)
�

�

|F(ω)− F∗(xk)| ≤ 2δ
�

dW(ω)

≤ max
k=1,...,n

F∗(xk) + 2δ

+ lim sup
ϑ→∞

1

ϑ
log

∫

1Bηk
(xk)
(ωt)exp
�

−ϑ2G(ω)
�

dW(ω).

Now we can use the upper bound on the rate of the integral and our choice of ηk to get

lim sup
ϑ→∞

1

ϑ
log P(X ϑt ∈ K)

≤ max
k=1,...,n

F∗(xk) + 2δ− inf
y∈Bδ(xk)

I(y)

≤ max
k=1,...,n

F∗(xk) + 2δ− I(xk) +δ.

and letting δ ↓ 0 completes the proof.
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The following lemma is a generalisation of lemma 20. It helps to determine the rate function I

which is needed to apply lemma 26.

Lemma 27. Let b : R → R be a C2-function with lim inf|x |→∞ |b(x)| > 0. Assume that there is an

m ∈ R with b(x) = 0 if and only if x = m and with b′(m) 6= 0. Then for any compact set K ⊆ R we

have

lim sup
ǫ→0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, Bt ∈ K
�

≤−
1

4
inf
a∈K

�

¯

¯

∫ m

0

|b(x)| d x
¯

¯+
1

2
|b′(m)|t +
¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

and for any open set O ⊆ R we have

lim inf
ǫ→0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, Bt ∈ O
�

≥−
1

4
inf
a∈O

�

¯

¯

∫ m

0

|b(x)| d x
¯

¯+
1

2
|b′(m)|t +
¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

.

Proof. As an abbreviation define v(x) = b2(x)/2 for all x ∈ R. For the proof of the upper bound

choose a compact set K , let δ,τ > 0 and choose Dδ3 as in (3.3). Then for ǫ < t/2τ we have

n

∫ t

0

v(Bs) ds ≤ ǫ, Bt ∈ K
o

⊆
⋃

α∈Dδ3

n

∫ ǫτ

0

v(Bs) ds ≤ α1ǫ,

∫ t−ǫτ

ǫτ

v(Bs) ds ≤ α2ǫ,

∫ t

t−ǫτ
v(Bs) ds ≤ α3ǫ, Bt ∈ K

o

.

Writing (A) for the indicator function of A and using the strong Markov property of Brownian motion

this gives

P
�

∫ t

0

v(Bs) ds ≤ ǫ, Bt ∈ K
�

≤
∑

α∈Dδ3

E
�

(
∫ ǫτ

0
v(Bs) ds ≤ α1ǫ)(

∫ t−ǫτ
ǫτ

v(Bs) ds ≤ α2ǫ)

E
�

(
∫ t

t−ǫτ v(Bs) ds ≤ α3ǫ, Bt ∈ K)
¯

¯Ft−ǫτ
�

�

=
∑

α∈Dδ3

E
�

(
∫ ǫτ

0
v(Bs) ds ≤ α1ǫ)(

∫ t−ǫτ
ǫτ

v(Bs) ds ≤ α2ǫ)

EBt−ǫτ

�

(
∫ ǫτ

0
v(Bs) ds ≤ α3ǫ, Bǫτ ∈ K)

�

�

=:
∑

α∈Dδ3

p(α,ǫ)
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Now let α ∈ Dδ3 be fixed and a > 0. We split the corresponding event further by distinguishing

the two cases
�

supǫτ≤s≤t−ǫτ |Bs − m| > a
	

and
�

supǫτ≤s≤t−ǫτ |Bs − m| ≤ a
	

. Since omitting some

conditions makes the probability only larger, we get

p(α,ǫ)≤ p1(α,ǫ) + p2(α,ǫ)

with

p1(α,ǫ) = sup
y∈R

Py

�

∫ t−2ǫτ

0

v(Bs) ds ≤ α2ǫ, sup
0≤s≤t−2ǫτ

|Bs −m|> a
�

and

p2(α,ǫ) = P
�

∫ ǫτ

0

v(Bs) ds ≤ α1ǫ, |Bǫτ −m| ≤ a
�

sup
y∈R

Py

�

∫ t−2ǫτ

0

v(Bs) ds ≤ α2ǫ, sup
0≤s≤t−2ǫτ

|Bs −m| ≤ a
�

sup
|z−m|≤a

Pz

�

∫ ǫτ

0

v(Bs) ds ≤ α3ǫ, Bǫτ ∈ K
�

.

To calculate the rate for the sum p1(α,ǫ) + p2(α,ǫ) we have to calculate the rates of the individual

terms. Let η > 0. For p1 we can use lemma 23 to get

lim sup
ǫ→0

ǫ log p1(α,ǫ)

≤ lim sup
ǫ→0

ǫ log sup
|y−m|<a/2

Py

�

∫ t−η

0

v(Bs) ds ≤ α2ǫ, sup
0≤s≤t−η

|Bs −m|> a
�

,

≤−
1

8α2

�

t −η+
1

2
a2
�2

.

Since for fixed η this rate become arbitrarily negative when a becomes large, we can choose a large

enough that the rate of p1(α,ǫ) + p2(α,ǫ) is dominated by p2.

To treat the p2-term we apply inequality (3.4) as we did in the proof of proposition 6. From propo-

sition 7 we know the individual rates

lim sup
ǫ→0

ǫ log P
�

∫ ǫτ

0

v(Bs) ds ≤ ǫ, |Bǫτ −m| ≤ a
�

≤−
1

4

�

∫ m

0

|b(x)| d x
�2

r2
1 (τ)

and

lim sup
ǫ→0

ǫ log sup
|z−m|≤a

Pz

�

∫ ǫτ

0

v(Bs) ds ≤ ǫ, Bǫτ ∈ K
�

≤−
1

4
inf
a∈K

�

∫ a

m

|b(x)| d x
�2

r2
2 (τ)
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where limτ→∞ r1(τ) = limτ→∞ r2(τ) = 1, and proposition 19 gives

lim sup
ǫ→0

ǫ log sup
y∈R

Py

�

∫ t−2ǫτ

0

v(Bs) ds ≤ ǫ, sup
0≤s≤t−2ǫτ

|Bs −m| ≤ a
�

≤ lim sup
ǫ→0

ǫ log sup
|y−m|<a/2

Py

�

∫ t−η

0

v(Bs) ds ≤ ǫ, sup
0≤s≤t−η

|Bs −m| ≤ a
�

≤−
|b′(m)|2(t −η)2

16
.

Using inequality (3.4) we get the combined rate

lim sup
ǫ→0

ǫ log p2(α,ǫ)

≤−
1

1+δ

�1

2

¯

¯

∫ m

0

|b(x)| d x
¯

¯r1(τ)

+
1

4
|b′(m)|(t −η) +

1

2
inf
a∈K

¯

¯

∫ a

m

|b(x)| d x
¯

¯r2(τ)
�2

for all α ∈ Dδ3 .

The rate for the sum over all α ∈ Dδ3 is the maximum of the individual rates. The result is

lim sup
ǫ→0

ǫ log P
�

∫ t

0

v(Bs) ds ≤ ǫ, Bt ∈ K
�

≤−
1

1+δ

�1

2

¯

¯

∫ m

0

|b(x)| d x
¯

¯r1(τ)

+
1

4
|b′(m)|(t −η) +

1

2
inf
a∈K

¯

¯

∫ a

m

|b(x)| d x
¯

¯r2(τ)
�2

for all η > 0, δ > 0, and τ > 0. Letting finally τ→∞, δ ↓ 0, and η ↓ 0 gives

lim sup
ǫ→0

ǫ log P
�1

2

∫ t

0

b2(Bs) ds ≤ ǫ, Bt ∈ K
�

≤−
1

4

�1

2

¯

¯

∫ m

0

|b(x)| d x
¯

¯+
1

2
|b′(m)|t + inf

a∈K

¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

.

This proves the upper bound.

For the lower bound: Let ζ,η,τ > 0 and α1,α2,α3 ∈ R with α1 + α2 + α3 = 1. Then for ǫ < t/2τ
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we have

n

∫ t

0

v(Bs) ds ≤ ǫ, Bt ∈ O
o

⊇
n

∫ ǫτ

0

v(Bs) ds ≤ α1ǫ, |Bǫτ −m|< ζ
o

∩
n

∫ t−ǫτ

ǫτ

v(Bs) ds ≤ α2ǫ, |Bt−ǫτ −m|< η
o

∩
n

∫ t

t−ǫτ
v(Bs) ds ≤ α3ǫ, Bt ∈ O

o

and thus we get

P
�

∫ t

0

v(Bs) ds ≤ ǫ, Bt ∈ O
�

≥ E
�

�

∫ ǫτ

0

v(Bs) ds ≤ α1ǫ, |Bǫτ −m|< ζ
o

�

�

∫ t−ǫτ

ǫτ

v(Bs) ds ≤ α2ǫ, |Bt−ǫτ −m|< η
�

E
�

�

∫ t

t−ǫτ
v(Bs) ds ≤ α3ǫ, Bt ∈ O

�

¯

¯

¯Ft−ǫτ
��

≥ E
�

�

∫ ǫτ

0

v(Bs) ds ≤ α1ǫ, |Bǫτ −m|< ζ
�

E
�

�

∫ t−ǫτ

ǫτ

v(Bs) ds ≤ α2ǫ, |Bt−ǫτ −m|< η
�

¯

¯

¯Fǫτ
��

inf
m−η<y<m+η

Py

�

∫ ǫτ

0

v(Bs) ds ≤ α3ǫ, Bǫτ ∈ O
�

≥ P0

�

∫ ǫτ

0

v(Bs) ds ≤ α1ǫ, Bǫτ ∈ (m− ζ, m+ ζ)
�

inf
m−ζ<z<m+ζ

Pz

�

∫ t−2ǫτ

0

v(Bs) ds ≤ α2ǫ, |Bt−2ǫτ −m|< η
�

inf
m−η<y<m+η

Py

�

∫ ǫτ

0

v(Bs) ds ≤ α3ǫ, Bǫτ ∈ O
�

.

First take lower exponential rates for ǫ ↓ 0. The lower exponential rate of the left-hand side is

greater or equal to the sum of the lower rates of the right-hand side. This inequality holds for all

η,τ > 0 and α1,α2,α3 ∈ R with α1+α2+α3 = 1.

Then let τ → ∞. We treat the three terms on the right hand side individually. First term: from
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Lemma 5.1 we know

lim
τ→∞

lim inf
ǫ↓0

ǫ log P0

�

∫ ǫτ

0

v(Bs) ds ≤ α1ǫ, Bǫτ ∈ (m− ζ, m+ ζ)
�

≥−
1

α1

1

4
inf

m−ζ<a<m+ζ

�

¯

¯

∫ m

0

|b(x)| d x
¯

¯+
¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

= −
1

α1

1

4

�

¯

¯

∫ m

0

|b(x)| d x
¯

¯

�2

r1(ζ)

where limζ↓0 r1(ζ) = 1.

Second term: we can make the probability smaller by replacing t − 2ǫτ with t. Then the term is no

longer τ-dependent and using proposition 19 we get

lim inf
ǫ↓0

ǫ log inf
m−ζ<z<m+ζ

Pz

�

∫ t−2ǫτ

0

v(Bs) ds ≤ α2ǫ, |Bt−2ǫτ −m|< η
�

�

≥−
1

α2

|b′(m)|2

16
t2r2(ζ)

where limζ↓0 r2(ζ) = 1.

Third term: using corollary 10 we get

lim inf
ǫ↓0

ǫ log inf
m−η<y<m+η

Py

�

∫ ǫτ

0

v(Bs) ds ≤ α3ǫ, Bǫτ ∈ O
�

≥−
1

α3

1

4
inf
a∈O

�

∫ a

m

|b(x)| d x
�2

r3(η)

where limη↓0 r3(η) = 1.

Combining the three rates we get

lim inf
ǫ↓0

ǫ log P
�

Bt ∈ O,

∫ t

0

v(Bs) ds ≤ ǫ
�

≥−
1

α1

1

4

�

¯

¯

∫ m

0

|b(x)| d x
¯

¯

�2

r1(ζ)

−
1

α2

|b′(m)|2

16
t2r2(ζ)

−
1

α3

1

4
inf
a∈O

�

¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

r3(η).
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and letting first ζ ↓ 0 and then η ↓ 0 yields

lim inf
ǫ↓0

ǫ log P
�

Bt ∈ O,

∫ t

0

v(Bs) ds ≤ ǫ
�

≥−
1

α1

�1

2

∫ m

0

|b(x)| d x
�2

−
1

α2

� |b′(m)|
4

t
�2

−
1

α3

�1

2
inf
a∈O

∫ a

m

|b(x)| d x
�2

for all α1,α2,α3 ∈ R with α1+α2+α3 = 1.

Choosing optimal α1, α2, and α3 as in (3.4) we get

lim inf
ǫ↓0

ǫ log P
�

Bt ∈ O,
1

2

∫ t

0

b2(Bs) ds ≤ ǫ
�

≥−
�1

2

¯

¯

∫ m

0

|b(x)| d x
¯

¯+
|b′(m)|

4
t +

1

2
inf
a∈O

¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

= −
1

4

�

¯

¯

∫ m

0

|b(x)| d x
¯

¯+
|b′(m)|

2
t + inf

a∈O

¯

¯

∫ a

m

|b(x)| d x
¯

¯

�2

.

This completes the proof.

Proof. (of theorem 1) Since the rate function Jt is invariant under space shifts we can without loss

of generality assume z = 0 by replacing Φ with the shifted function Φ( · + z) and starting the SDE

in 0. Since most of the work was already done, the proof consists only of three steps.

First define

H(x) =
1

4

�

¯

¯

∫ m

0

|b(y)| d y
¯

¯+
1

2
|b′(m)|t +
¯

¯

∫

[m,x]

|b(y)| d y
¯

¯

�2

=
1

4

�

V m
0 (Φ)+

1

2
|b′(m)|t + V x

m(Φ)
�2

and v(x) = b2(x)/2 for all y ∈ R. From lemma 27 we know that for every compact set K ⊆ R we

have

lim sup
ǫ→0

ǫ log P
�

∫ t

0

v(Bs) ds ≤ ǫ, Bt ∈ K
�

≤− inf
a∈K

H(a)

and for every open set O ⊆ R we have

lim inf
ǫ→0

ǫ log P
�

∫ t

0

v(Bs) ds ≤ ǫ, Bt ∈ O
�

≥− inf
a∈O

H(a).

Second, let

I(x) = 2
p

H(x) = V m
0 (Φ)+

1

2
|b′(m)|t + V x

m(Φ)
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for all x ∈ R. Then for every set A⊆ R we find

−2
q

¯

¯− inf
x∈A

H(x)
¯

¯=−2
q

inf
x∈A

H(x) = − inf
x∈A

I(x)

and the Tauberian theorem 5 allows us to conclude

lim sup
ϑ→∞

1

ϑ
log E
�

exp(−ϑ2

∫ t

0

v(ωs) ds)1K(Bt)
�

≤− inf
x∈K

I(x)

for every compact set K ⊆ R and

lim inf
ϑ→∞

1

ϑ
log E
�

exp(−ϑ2

∫ t

0

v(ωs) ds)1O(Bt)
�

≥− inf
x∈O

I(x)

for every open set O ⊆ R.

Finally we can use lemma 26 to conclude that the family (X ϑt )ϑ>0 satisfies the weak LDP with rate

function

Jt(x) = Φ(x)−Φ(0)−
1

2
tΦ′′(m) + I(x)

= Φ(x)−Φ(0) + V m
0 (Φ)+ t(Φ′′(m))−+ V x

m(Φ).

This completes the proof of theorem 1.
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