
Tohoku Math. J.
65 (2013), 467–494
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WITH FEYNMAN-KAC FUNCTIONALS AND ITS

APPLICATION TO PINNED POLYMERS
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Abstract. Let ν and μ be positive Radon measures on Rd in Green-tight Kato class
associated with a symmetric α-stable process (Xt , Px) on Rd , and Aνt and Aμt the positive
continuous additive functionals under the Revuz correspondence to ν and μ. For a non-

negative β, let Pβμx,t be the law Xt weighted by the Feynman-Kac functional exp(βAμt ), i.e.,

P
μ
x,t = (Z

μ
x,t )

−1 exp(βAμt )Px , where Zμx,t is a normalizing constant. We show that Aνt /t

obeys the large deviation principle under Pβμx,t . We apply it to a polymer model to identify the

critical value βcr such that the polymer is pinned under the law P
βμ
x,t if and only if β is greater

than βcr. The value βcr is characterized by the rate function.

1. Introduction. We consider a homopolymer consisting of a lot of monomers. Math-
ematically, the homopolymer can be modeled by a path of Brownian motion. Let ({Bt }t≥0, P0)

be the 1-dimensional Brownian motion with starting at the origin and, for β ≥ 0, define

P
βδ0
0,t (dω)= (Z

βδ0
0,t )

−1 exp

(
β

∫ t

0
δ0(Bs(ω))ds

)
P0(dω) ,(1.1)

Z
βδ0
0,t =E0

[
exp

(
β

∫ t

0
δ0(Bs)ds

)]
.(1.2)

Here β means the inverse temperature. The local time at the origin,
∫ t

0 δ0(Bs)ds is regarded
as the energy of the polymer. The polymer is said to be pinned if there exists some κ > 0
such that

lim
t→∞P

βδ0
0,t

(∫ t
0 δ0(Bs)ds

t
> κ

)
= 1 .(1.3)

This notion is introduced by Alexander and Sidoravicius [2]. When the underlying process is
the simple random walk on the integer lattice Zd , Cranston and Molchanov [7] proved that if
d = 1, 2, then for every β > 0 there exists such κ > 0 and if d ≥ 3, then there exists a critical
temperature βcr > 0 such that for any β > βcr, there exists κ > 0 satisfying the equation
(1.3). Our objective is to calculate the supremum of κ satisfying (1.3) and to estimate the
order of convergence of the limit (1.3). In addition, we would like to extend the underlying
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process to symmetric α-stable processes, i.e., Markov processes generated by the fractional
Laplacian (−�)α/2, 0 < α < 2.

For the proof of the equality (1.3), we see that the large deviation principle (LDP) for
the local time of the Brownian motion with respect to the probability measure Pβδ0

0,t is appli-
cable. Hence we first prove the LDP for additive functionals of symmetric α-stable processes
weighted by Feynman-Kac functionals. In fact, the local time is a typical additive functional
corresponding to the Dirac measure. It is proper to realize the energy as an additive functional.
More precisely, for a positive Green-tight Kato measure μ on Rd (μ ∈ K∞

d,α in notation), we
define the energy of polymer by the positive continuous additive functionals (PCAF)Aμt under
the Revuz correspondence to μ. Let us denote

P
μ
x,t (dω) = (Z

μ
x,t )

−1 exp(Aμt (ω))Px(dω) ,

where Zμx,t is the normalizing factor, Zμx,t = Ex[exp(Aμt )]. Zμx,t is called a partition function.
We define the logarithmic moment generating function CN(λ) of Aνt under Pμx,t by

CN(λ) = lim
t→∞

1

t
logEμx,t [exp(λAνt )] , λ ∈ R ,(1.4)

where Eμx,t [·] is the expectation under the probability measure Pμx,t . C
∗
N(z) is the Fenchel-

Legendre transformation of CN(λ), i.e.,

C∗
N(z) = sup

λ∈R

(zλ− CN(λ)) , z ∈ R .(1.5)

We then have the next theorem.

THEOREM 1.1. Let ν, μ ∈ K∞
d,α (α < d ≤ 2α).

(i) For any open set G ⊂ R,

lim inf
t→∞

1

t
logPμx,t

(
Aνt

t
∈ G

)
≥ − inf

z∈GC
∗
N(z) .

(ii) For any closed set F ⊂ R,

lim sup
t→∞

1

t
logPμx,t

(
Aνt

t
∈ F

)
≤ − inf

z∈F C
∗
N(z) .

We apply this theorem to the pinned polymer model in Section 3. The measures μ,
ν ∈ K∞

d,α are interpreted physically as follows: the energy of polymer is determined by ν.
Intuitively, when a moving particle hits the fine support of the measure ν, the energy increases.
The functionalAνt is regarded as the total energy of a polymer of the length t . Here a moving
particle is controlled by the law of the underlying process weighted by the Feynman-Kac
functional exp(Aμt ). The simplest model is that the underlying process is the 1-dimensional
Brownian motion and the measures are μ = ν = δ0. One can compute a spectral function
exactly and show the differentiability of it (see for example, [20, Example 3.1]). For each
β ≥ 0, the polymer is pinned and the upper bound of κ satisfying (1.3) is described by
β. In [2], the case where μ equals ν is treated. However employing Theorem 1.1, we need
not assume that μ equals ν. Theorem 3.3 says that the polymer model has a critical inverse
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temperature βcr > 0 such that the polymer is pinned for every β > βcr, but is not for β ≤ βcr.
That is, the polymer has a phase transition for pinning. We identify the critical value βcr in
(3.2). The critical value βcr is strictly positive if the underlying process is transient. However
βcr is equal to zero if it is recurrent. Moreover, for β > βcr, the supremum of κ satisfying
(1.3) is equal to

z0(β) = d

dλ
C(β)(λ)

∣∣∣
λ=0

.

In [6], this result is obtained for Brownian motions, and our result is regarded as a natural ex-
tension to symmetric α-stable processes. At the last of Section 3, we compute z0(β) explicitly
for the 1-dimensional symmetric α-stable process with 1 < α < 2 and μ = ν = δ0.

The sections from Section 4 are devoted to the proof of Theorem 1.1. The Gärtner-Ellis
theorem is well-known as a useful method for the proof of the LDP. To apply the Gärtner-Ellis
theorem, we need to show the following two facts, namely, the existence of the logarithmic
moment generating function CN(λ) and the differentiability of it. We define a function C(λ)
by

C(λ) = lim
t→∞

1

t
logEx[exp(Aμt + λAνt )] , λ ∈ R .(1.6)

The limit (1.6) coincides with the bottom of the spectrum of the Schrödinger type operator

Hμ+λν = 1

2
(−�)α/2 − μ− λν , λ ∈ R .(1.7)

Namely,

C(λ) = − inf

{
E (α)(u, u)−

∫
Rd

u2dμ− λ

∫
Rd

u2dν ; u ∈ D(E (α)),
∫

Rd

u2dx = 1

}
,(1.8)

where (E (α),D(E (α))), 0 < α < 2, is the Dirichlet form generated by the symmetric α-
stable process. The function C(λ) is called a spectral f unction. The existence of the limit
(1.6) (and thus (1.4)) follows from the Lp-independence of growth bound, which is shown
for Brownian motions in Simon [18] and for more general symmetric Markov processes in
Takeda [21]. Several results on the differentiability of CN(λ) are known for μ ≡ 0. When
α = 2 and the potential ν is a function in a certain Kato class, Arendt and Batty [3] prove that
the function C(λ) is differentiable at λ = 0. More generally, in the case that 0 < α ≤ 2 and
the potential ν is a signed measure in the Green-tight Kato class, Takeda and Tsuchida [23]
show the differentiability. We here prove the differentiability by the argument similar to [23].
Set

λ0 = sup{λ ∈ R ; C(λ) = 0} .(1.9)

For λ > λ0, −C(λ) is the principal eigenvalue of the operator Hμ+λν , thus C(λ) is differen-
tiable on (λ0,∞) by the analytic perturbation theory in [11, Chapter VII]. For λ < λ0, we
get C(λ) = 0 by the same argument as in [22, Lemma 5.1]. Thus it is enough to show the
differentiability of C(λ) at λ = λ0. We see from Theorem 1.2 that C(λ) is differentiable at
λ0, if Hμ+λ0ν is null critical, that is, any Hμ+λ0ν-harmonic function h (i.e., Hμ+λ0νh = 0) is
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not square integrable. We show in Theorem 4.25 the null criticality of it by using the Harnack
inequality.

For a signed measure ν in K∞
d,α, Takeda and Tsuchida constructed the Hλ0ν-harmonic

function h (cf. [23, Definition 4.1]) which is not in L2(dx) but in the extended Dirichlet
space De(E (α)). They first obtain a function u0 attaining the infimum of −C(λ0) by applying
the compactness of the embedding of De(E (α)) intoL2(ν+). The Hλ0ν-harmonic function h is
constructed as a continuous version u0 in [23, Proposition 4.14]. If λ0 ≥ 0, we can construct
the harmonic function by the argument similar to [23]. However, we can not directly follow
the argument in [23], because for μ 
≡ 0, the standing point λ0 may be strictly negative due
to

∫
Rd u

2dμ in (1.8). In Section 4, we construct the function u0 as a minimizer of the form
(4.2) or (4.3) in Lemma 4.2 and show that the function h constructed by u0 is continuous.
We see from Lemma 4.2 and Proposition 4.21 that Hμ+λ0ν is critical. We would like to make
a comment on the condition α < d ≤ 2α (of Theorem 4.25). The harmonic function h is
equivalent to the Green function of the stable process outside of the ball B(1), i.e.,

c

|x|d−α ≤ h(x) ≤ C

|x|d−α , x ∈ Rd \ B(1) .
Hence the condition implies that h is not square integrable and Hμ+λ0ν is null critical. As a
result, the function C(λ) is differentiable at the point λ0. We now obtain the next theorem for
employing Gärtner-Ellis theorem.

THEOREM 1.2. For α < d ≤ 2α and positive measures μ, ν ∈ K∞
d,α, the spectral

function C(λ) is differentiable for all λ ∈ R.

We can show the differentiability for d = 1 < α similarly in [20].
Throughout this paper, m is the Lebesgue measure, B(R) an open ball with radius R

centered at the origin. c, C, . . . are positive constants which may be different at different
occurrences. We denote τR the first exit time of the ball B(R), i.e.,

τR = inf{t > 0 ; Xt 
∈ B(R)} ,
and for a measure ν, dνR = 1B(R)dν.

Acknowledgments. The author would like to express his gratitude to Professors Masayoshi Takeda
and Kaneharu Tsuchida for their careful reading, valuable comments and numerous suggestions. He
would like to thank Professor Yuichi Shiozawa for his referring to a calculation of spectral functions.
His appreciation goes to the unknown referee for careful reading this paper.

2. Preliminaries. Let Mα = (Ω,F ,Ft , θt , Px ,Xt) be a symmetric α-stable process
on Rd with 0 < α ≤ 2. Here {Ft }t≥0 is the minimal (augmented) admissible filtration and
θt , t ≥ 0, is the shift operator satisfying Xs(θt ) = Xs+t identically for s, t ≥ 0. We assume
that α < d ≤ 2α, that is, the process Mα is transient. Let p(t, x, y) be the transition density
function of Mα , and Pt is the semigroup of Mα defined by

Ptf (x) =
∫

Rd

p(t, x, y)f (y)dy = Ex [f (Xt)] .
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Let G(x, y) be its Green function defined by

G(x, y) =
∫ ∞

0
p(t, x, y)dt = C(d, α)|x − y|α−d ,

where C(d, α) = 21−απ−d/2Γ ((d − α)/2)Γ (α/2)−1.

DEFINITION 2.1. (i) A positive Radon measure μ on Rd is said to be in the Kato
class, μ ∈ Kd,α in notation, if

lim
r→0

sup
x∈Rd

∫
|x−y|≤r

G(x, y)μ(dy) = 0 .(2.1)

(ii) A measure μ on Rd is in Green-tight Kato class, μ ∈ K∞
d,α in notation, if μ is in Kd,α

and satisfies

lim
r→∞ sup

x∈Rd

∫
|y|>r

G(x, y)μ(dy) = 0 .(2.2)

Let Gβ(x, y) be the β-resolvent kernel of Mα , i.e.,

Gβ(x, y) =
∫ ∞

0
e−βtp(t, x, y)dt ,

and Gβμ(x) the β-potential of μ, i.e.,

Gβμ(x) =
∫

Rd

Gβ(x, y)μ(dy) .

In particular, we write the 0-potential of μ by Gμ(x) simply.
Let (E (α),D(E (α))) be the Dirichlet form generated by Mα , i.e., for 0 < α < 2,

E (α)(u, v) = 1

2
A(d, α)

∫∫
Rd×Rd\�

(u(x)− u(y))(v(x)− v(y))

|x − y|d+α dxdy ,

D(E (α)) =
{
u ∈ L2(Rd ) ;

∫∫
Rd×Rd\�

(u(x)− u(y))2

|x − y|d+α dxdy < ∞
}
,

where � = {(x, x) ; x ∈ Rd} and

A(d, α) = α2d−1Γ ((α + d)/2)

πd/2Γ (1 − α/2)
.

For α = 2, M2 is the Brownian motion. Its Dirichlet form is the classical Dirichlet integral,
that is,

E (2)(u, v) = 1

2

∫
Rd

∇u · ∇vdx ,

and the domain D(E (2)) is the Sobolev spaceH 1(Rd). Let De(E (α)) be the extended Dirichlet
space, namely, the family of measurable functions u on Rd such that |u| < ∞m-a.e. and there
exists an E (α)-Cauchy sequence {un} of functions in D(E (α)) such that limn→∞ un = u m-a.e.
[10, p. 35]. Then De(E (α)) is a Hilbert space with inner product E (α) because Mα is transient
[10, Theorem 1.5.3].
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For μ ∈ Kd,α, we define a symmetric bilinear form Eμ by

Eμ(u, u) = E (α)(u, u)−
∫

Rd

ũ2dμ, u ∈ D(E (α)) ,(2.3)

where ũ is a quasi-continuous version of u [10, Theorem 2.1.3]. In the sequel, we always
assume that every function u ∈ De(E (α)) is represented by its quasi-continuous version. Since
μ charges no set of zero capacity by [1, Theorem 3.3], the form Eμ is well defined. We see
from [1, Theorem 4.1] that (Eμ,D(E (α))) becomes a lower semi-bounded closed symmetric
form. We call (Eμ,D(E (α))) a Schrödinger form. Denote by Hμ the self-adjoint operator
generated by (Eμ,D(E (α))) where Eμ(u, v) = (Hμu, v). Let Pμt be the L2-semigroup, i.e.,
P
μ
t = exp(−tHμ). We see from [1, Theorem 6.3(iv)] that Pμt admits a symmetric integral

kernel pμ(t, x, y) which is a jointly continuous function on (0,∞) × Rd × Rd . By the
Feynman-Kac formula, the semigroup Pμt is written as

P
μ
t f (x) = Ex[exp(Aμt )f (Xt)] .(2.4)

We provide known facts on the Kato class measures. The following theorem is a Poincaré
type inequality which is derived by Stollman-Voigt [19].

THEOREM 2.2. Let μ ∈ Kd,α. Then for β ≥ 0,∫
Rd

u2dμ ≤ ‖Gβμ‖∞E (α)β (u, u), u ∈ D(E (α)) ,(2.5)

where E (α)β (u, u) = E (α)(u, u)+ β
∫
Rd u

2dx.

We see from [12] that for μ ∈ Kd,α,

lim
β→∞ ‖Gβμ‖∞ = 0 .(2.6)

Therefore the equation (2.5) tells us that for any ε > 0 there exists a positive constant M(ε)
such that ∫

Rd

u2dμ ≤ εE (α)(u, u)+M(ε)

∫
Rd

u2dx, u ∈ D(E (α)) .(2.7)

A positive function h is said to be γ -excessive if h satisfies e−γ tPth(x) ↑ h(x) as t ↓ 0,
for any x. For γ = 0, h is said to be excessive simply. For μ ∈ Kd,α, let Aμt be a positive
continuous additive functional under the Revuz correspondence to μ, i.e., for any f ∈ B+
and any γ -excessive function h (cf. [10, p. 188]),

〈hμ, f 〉 = lim
t→0

1

t
Ehm

[∫ t

0
f (Xs)dA

μ
s

]
.(2.8)

A measure μ ∈ K∞
d,α is known to be Green bounded (cf. [5, Proposition 2.2]), namely,

sup
x∈Rd

Gμ(x) = sup
x∈Rd

Ex [Aμ∞] < ∞ .(2.9)

Taking β = 0 in (2.5), we know that for μ ∈ K∞
d,α∫

Rd

u2dμ ≤ ‖Gμ‖∞E (α)(u, u), u ∈ De(E (α)) ,(2.10)
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and thus L2(μ) contains De(E (α)).
3. Critical value βcr. In this section, we assume the differentiability of C(λ) to apply

Gärtner-Ellis theorem. For a sufficient condition for the differentiability of C(λ), see Section
4 to the last.

We consider a polymer model stated in Introduction. Originally, if a polymer satisfies
(1.3), it is called the pinned polymer. From the equation (1.3), we intuitively see that the
polymer is pressed on the origin in the sense that the occupation time at the origin has at
least liner growth. We want to extend to the polymer models defined by symmetric α-stable
processes Xt on Rd , d ≥ 2. However, the energy of polymer,

∫ t
0 δ0(Xs)ds, is not well-

defined for d ≥ 2. Then we regard it as
∫ t

0 1B(Xs)ds for a small ball B centered at the origin.
Moreover, we extend

∫ t
0 1B(Xs)ds to PCAF Aνt under the Revuz correspondence to ν ∈ K∞

α,d ,

because
∫ t

0 1B(Xs)ds is the typical one of 1B(x)dx ∈ K∞
α,d . Moreover, we extend the weight

exp(
∫ t

0 δ0(Bs)ds) to exp(Aμt ) and set

dP
μ
x,t = 1

Z
μ
x,t

exp(Aμt )dPx ,

where Zμx,t is the normalizing factor. If there exists κ > 0 such that

lim
t→∞P

μ
x,t

(
Aνt

t
> κ

)
= 1 ,

then the polymer is said to be pinned. We then realize that the polymer is pressed on the fine
support of ν. By Theorem 1.1, we have

lim
t→∞

1

t
logPμx,t

(
Aνt

t
> κ

)
= − inf

z>κ
C∗
N(z) .

We denote

N = {z ∈ (0,∞) ; C∗
N(z) = 0} .

The polymer is pinned if and only if N 
= ∅. More precisely,

LEMMA 3.1. It holds that

λ0 < 0 ⇐⇒ N = {z0} ,
λ0 ≥ 0 ⇐⇒ N = ∅ .

Here

z0 = C′
N(0) = C′(0) .

PROOF. Note that CN(λ) = C(λ) − C(0) and the spectral function C(λ) is differen-
tiable, thus z0 is well-defined. Let F(λ) = z0λ + C(0). First we discuss the case of λ0 < 0.
The spectral function C(λ) is strictly increasing on (λ0,∞), which implies that z0 > 0 and
C(0) > 0. We show that z0 belongs to N . Because C(λ) is convex, C(λ)− F(λ) ≥ 0. Thus

C(λ)− λz0 = C(λ)− F(λ)+ C(0) ≥ C(0) .
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Hence we have
C(0) ≤ inf

λ∈R
(C(λ)− λz0) = −C∗(z0) .

On the other hand,

C(0) = (C(λ)− λz0)|λ=0 ≥ inf
λ∈R

(C(λ)− λz0) = −C∗(z0) .

Hence C(0) = −C∗(z0) and so C∗
N(z0) = 0 where C∗

N(z) = C∗(z) + C(0). As a result, for
each z′ > z0, there exists λ′ such that C(λ′) < z′λ′ +C(0) and 0 < C∗(z′)+C(0) = C∗

N(z
′).

Thus (z0,∞) ∩ N = ∅. By the same argument as above, for each z′ ∈ (0, z0), there exists
λ′ < 0 such that z′λ′ + C(0) > C(λ′). Hence we have C∗

N(z
′) > 0 for any z′ ∈ (0, z0), and

thus (0, z0) ∩ N = ∅. Consequently, N = {z0}.
If λ0 > 0, then C(0) = 0. Hence, for any z > 0

C∗
N(z) = C∗(z) ≥ (λz − C(λ))|λ=λ0 = λ0z > 0 .

This implies that N = ∅. If λ0 = 0, the tangent of C(λ) at λ0 is F(λ) ≡ 0. For every z > 0,
there exists λ′ such that zλ′ > C(λ′). Hence

0 < λ′z− C(λ′) ≤ C∗
N(z) ,

which implies that N = ∅.
The converse is trivial. �

We write P (β)x,t = P
βμ
x,t , for β ≥ 0. Let C(β)(λ) the spectral function corresponding to the

Schrödinger type operator Hβμ+λν = 2−1(−�)α/2 − βμ− λν. Theorem 1.1 tells us that

lim
t→∞

1

t
logP (β)x,t

(
Aνt

t
> κ

)
= − inf

z>κ
C
(β)∗
N (z) ,(3.1)

where C(β)∗N (z) is the Fenchel-Legendre transform of C(β)N (λ). We set, for β > 0,

λ0(β) = sup{λ ∈ R ; C(β)(λ) = 0} ,
and

βcr = sup{β ∈ R ; C(β)(0) = 0} .(3.2)

We see from [20, Lemma 4.2] that if the underlying process is recurrent, then βcr = 0, on the
other hand if it is transient, then βcr > 0. Hence we see that for α < d ≤ 2α, βcr is strictly
positive.

LEMMA 3.2. It holds that

0 ≤ β ≤ βcr ⇐⇒ λ0(β) ≥ 0 ,

β > βcr ⇐⇒ λ0(β) < 0 .

PROOF. We consider C(β)(0) as a function of β. Then it is strictly increasing [23,
Lemma 2.4]. Hence, for β > βcr,

C(β)(0) = − inf

{
E (α)(u, u)− β

∫
Rd
u2dμ ;

∫
Rd

u2dx = 1

}
> 0 .
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In addition, for fixed β, C(β)(λ) is strictly increasing in λ on (λ0(β),∞) and C(β)(λ) is equal
to zero on (−∞, λ0(β)) by the definition of λ0(β).

For 0 ≤ β ≤ βcr, C(β)(0) is equal to zero, This implies λ0(β) ≥ 0. For β > βcr,
C(β)(0) > 0, and λ0(β) must be negative. �

Denote

z0(β) = d

dλ
C(β)(λ)

∣∣∣
λ=0

.

By Lemma 3.1 and Lemma 3.2, we have next theorem, which is an extension of Cranston
and Molchanov [7, Corollary 4.2] to symmetric α-stable processes; they consider a polymer
model made of simple random walks whose energy is defined by the local time at the origin.

THEOREM 3.3. If β > βcr, then for any 0 < κ < z0(β),

lim
t→∞P

(β)
x,t

(
Aνt

t
> κ

)
= 1.(3.3)

If 0 ≤ β ≤ βcr, then for any κ > 0, the limit of (3.3) is less than 1, as t → ∞.

For β ≥ 0, d = 1, 1 < α ≤ 2 and μ = ν = δ0, we can compute the spectral function
C(λ) explicitly by [17, Example 4.4],

C(β)(λ) =
{
Cα(λ+ β)α/(α−1) , λ+ β ≥ 0 ,

0 , λ+ β < 0 ,

where Cα = ( 21/α

α sin(π/α)

)α/(α−1). Thus C(β)(λ) is differentiable, and so LDP holds by Gärtner-
Ellis theorem. In addition, we have βcr = 0 and

z0(β) = d

dλ
C(β)(λ)

∣∣∣∣
λ=0

= α

α − 1
Cαβ

1/(α−1) .

Let us compute the rate function C(β)∗N (z). For z > 0,

C(β)∗(z)= max

{
sup
λ≥−β

(λz − C(β)(λ)), sup
λ<−β

(λz− C(β)(λ))

}
= max

{
sup
λ≥−β

(λz − Cα(λ+ β)α/(α−1)), −βz
}

= max

{
1

α

(
αCα

α − 1

)1−α
zα − βz, −βz

}
= 1

α

(
αCα

α − 1

)1−α
zα − βz .

It is easy for us to compute C(β)∗(z) in the case of z ≤ 0. Because C(β)∗N (z) = C(β)∗(z) +
C(β)(0), we have

C
(β)∗
N (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

α

(
αCα

α − 1

)1−α
zα + Cαβ

α/(α−1) − βz , z > 0 ,

Cαβ
α/(α−1) , z = 0 ,

∞ , z < 0 .
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Thus if κ is less than z0(β), then z = z0(β) attains an infimum of C(β)∗N (z) such that

C
(β)∗
N (z0(β)) = 0. Consequently, for any β > 0, the polymer is pinned under κ < z0(β).

Particularly, α = 2 means a case of Brownian motion. In this case, for any β > 0, z0(β) = β.

4. Construction of ground states. We use the same argument as in [23] to construct
a ground state of the critical Schrödinger operator Hμ+λ0ν . In this section, we assume that
λ0 < 0, because the proof for λ0 ≥ 0 is included in [23, Section 4]. Here λ0 is the constant
defined in (1.9).

The spectral function C(λ) is defined by the bottom of spectrum of Hμ+λν , i.e., for μ,
ν ∈ K∞

d,α,

C(λ) = − inf

{
Eμ+λν(u, u) ; u ∈ D(E (α)),

∫
Rd

u2dx = 1

}
, λ ∈ R .(4.1)

It is known in [21] that the function C(λ) coincides with

C(λ) = lim
t→∞

1

t
logEx [exp(Aμt + λAνt )] .

The next lemma is a key to construct a harmonic function of Hμ+λ0ν (see Definition 4.4
below).

LEMMA 4.1 ([23, Lemma 3.1]). If μ ∈ K∞
d,α, then the embedding of De(E (α)) into

L2(μ) is compact.

LEMMA 4.2. For ν, μ ∈ K∞
d,α , the number λ0 < 0 is characterized as follows;

inf

{
E (α)(u, u)− λ0

∫
Rd

u2dν ; u ∈ De(E (α)),
∫

Rd
u2dμ = 1

}
= 1 .(4.2)

Lemma 4.1 tells us that a minimizing sequence in (4.2) or (4.3) below exists.

PROOF. Let us denote

F(λ) = inf

{
E (α)(u, u)− λ

∫
Rd

u2dν ; u ∈ De(E (α)),
∫

Rd

u2dμ = 1

}
.

First we show F(λ0) = 1 by the same argument as in [23, Lemma 2.2]. Suppose F(λ0) < 1.
Then we can choose ψ0 ∈ C∞

0 (R
d) with

∫
Rd ψ

2
0dμ = 1 such that

E (α)(ψ0, ψ0)− λ0

∫
Rd

ψ2
0dν < 1 .

Hence it holds that

E (α)(ψ0, ψ0)−
∫

Rd

ψ2
0dμ− λ0

∫
Rd

ψ2
0dν < 0 .

Let

u0 = ψ0√∫
Rd ψ

2
0dx

.
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Then
∫
Rd u

2
0dx = 1 and

E (α)(u0, u0)−
∫

Rd

u2
0dμ− λ0

∫
Rd

u2
0dν < 0 .

This contradicts C(λ0) = 0.
Next we suppose F(λ0) > 1. Then there exists λ+ ∈ (λ0, 0) such that F(λ+) > 1

because of the continuity of the function F(λ). From λ+ > λ0, we see that C(λ+) > 0.
Hence we can choose ψ0 ∈ C∞

0 (R
d) such that

E (α)(ψ0, ψ0)−
∫

Rd

ψ2
0dμ− λ+

∫
Rd
ψ2

0dν < 0 .

Letting

u0 = ψ0√∫
Rd ψ

2
0dμ

,

we have
∫
Rd u

2
0dμ = 1 and

E (α)(u0, u0)− λ+
∫

Rd

u2
0dν < 1 .

This implies that F(λ+) < 1, which is contrary to F(λ+) > 1. Consequently, we have
F(λ0) = 1.

Finally we show the uniqueness of λ0 satisfying (4.2). For any λ > λ0, C(λ) > 0 and so
F(λ) < 1. We suppose that F(λ1) = 1 for some λ1 < λ0. Since the embedding of De(E (α))
to L2(μ) is compact by Lemma 4.1, there exists the function u1 in De(E (α)) such that u1

attains the infimum of F(λ1)(= 1). Because of the irreducibility of Mα , the function u1 is
strictly positive ν-a.e. Therefore

E (α)(u1, u1)− λ0

∫
Rd

u2
1dν < E (α)(u1, u1)− λ1

∫
Rd

u2
1dν = 1 ,

which contradicts F(λ0) = 1. �

REMARK 4.3. We see from [23, Lemma 2.4.] that if λ0 ≥ 0, then

inf

{
E (α)(u, u) ; u ∈ De(E (α)),

∫
Rd

u2dμ+ λ0

∫
Rd

u2dν = 1

}
= 1 .(4.3)

This can be proved by the same argument as in the proof of Lemma 4.2.

In general, for a signed measure μ = μ+ − μ− ∈ K∞
d,α − K∞

d,α, the operator Hμ =
1/2(−�)α/2 −μ+ +μ− is said to be subcritical, if Hμ possesses the minimal positive Green
functionGμ, that is,

Gμ(x, y) =
∫ ∞

0
pμ(t, x, y)dt < ∞ , x 
= y .
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It was shown in [24] that a necessary and sufficient condition for the operator Hμ being
subcritical is

inf

{
E (α)(u, u)+

∫
Rd

u2dμ− ; u ∈ De(E (α)),
∫

Rd

u2dμ+ = 1

}
> 1 .

Lemma 4.2 tells us that Hμ+λ0ν is not subcritical.
We can choose the function which attains the infimum of (4.2) as follows. There is a

minimizing sequence {un} ⊂ De(E (α)) of (4.2) such that

lim
n→∞

(
E (α)(un, un)− λ0

∫
Rd

u2
ndν

)
= 1 with

∫
Rd

u2
ndμ = 1 for each n .

Let us denote Eλ0ν(u, u) = E (α)(u, u) − λ0
∫
Rd u

2dν. Because of λ0 < 0, the symmetric
form Eλ0ν is non-negative. Thus (De(E (α)), Eλ0ν) is a Hilbert space. Since the minimizing
sequence {un} is bounded in Eλ0ν-norm, we have a subsequence {unj } which converges to
some u0 ∈ De(E (α)) weakly. Moreover, since the embedding of De(E (α)) to L2(μ) is com-
pact, there is a subsequence {u′

n} of {unj } which strongly converges to u0 in L2(μ). Therefore∫
Rd u

2
0dμ = limn→∞

∫
Rd u

′2
ndμ = 1, and thus Eλ0ν(u0, u0) ≥ 1. On the other hand, by the

uniform boundedness principle,

Eλ0ν(u0, u0) ≤ lim inf
n→∞ Eλ0ν(u′

n, u
′
n) = 1 .

Thus u0 attains the infimum of (4.2). We show that the function u0 has a continuous version.
We define the Hμ-harmonicity probabilistically.

DEFINITION 4.4 ([23, Definition 4.1]). A bounded finely continuous function h on
Rd is said to be Hμ-harmonic, if for any relatively compact domain D ⊂ Rd ,

h(x) = Ex[exp(AμτD)h(XτD)] , x ∈ D .(4.4)

Here τD is the first exit time fromD, i.e., τD = inf{t > 0 ; Xt 
∈ D} .

A operator H is said to be critical, if H is not subcritical and admits a positive H-
harmonic function [15, p. 145]. Remark that the operator Hμ+λ0ν is not subcritical (see
Lemma 4.2).

For an excessive function h, we define ph(t, x, y) by

ph(t, x, y) = 1

h(x)
p(t, x, y)h(y) , t > 0 , x, y ∈ {0 < h < ∞} ,(4.5)

and the associated semigroup Pht by

Pht f (x) =
∫

{0<h<∞}
ph(t, x, y)f (y)dy .

Then ph(t, x, y) becomes a transition probability density because

Pht 1(x) = 1

h(x)
Pth(x) ≤ h(x)

h(x)
= 1 .

We call the process generated by ph Doob’s h-transformed process.
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LEMMA 4.5. A positive Hμ+ν -harmonic function h is Pμ+ν
t -excessive.

PROOF. Since the the semigroup Pμt is strongly continuous, limt→0 P
μ+ν
t h(x) = h(x).

For m > 0, let τm be the first exit time from B(m). By Definition 4.4, the function h satisfies

h(x) = Ex[exp(Aμ+ν
τn

)h(Xτn)] , x ∈ B(m)
for any n > m. By the Markov property,

Ex[exp(Aμ+ν
t )h(Xt) ; t < τm]

= Ex[exp(Aμ+ν
t )EXt [exp(Aμ+ν

τn
)h(Xτn)] ; t < τm]

= Ex[exp(Aμ+ν
t )Ex [exp(Aμ+ν

τn
◦ θt )h(Xτn ◦ θt)|Ft ] ; t < τm]

= Ex[exp(Aμ+ν
t + Aμ+ν

τn
◦ θt )h(Xτn ◦ θt ) ; t < τm]

= Ex[exp(Aμ+ν
τn

)h(Xτn) ; t < τm] ≤ h(x) .

Because τm → ∞ as m → ∞, and so

Ex[exp(Aμ+ν
t )h(Xt ); t < τm] → Ex[exp(Aμ+ν

t )h(Xt )] = P
μ+ν
t h(x) ,

we have

P
μ+ν
t h(x) = lim

m→∞Ex[exp(Aμ+ν
t )h(Xt ) ; t < τm] ≤ h(x) .

�

If Mλ0ν is the subprocess of Mα by the multiplicative function exp(λ0A
ν
t ), then u0 is

the first eigenfunction corresponding to the generator of the time changed process of Mλ0ν by
A
μ
t . The time changed process is irreducible, because of

∫
Rd G

λ0ν(x, y)μ(dy) > 0. Hence
u0 > 0, μ-a.e by [8, Theorem 7.3].

Let u0 be the function attaining the infimun of (4.2).

LEMMA 4.6. The measure u0μ is of finite energy integral with respect to Eλ0ν .

PROOF. By Theorem 2.2 and
∫
Rd u

2
0dμ = 1, for any f ∈ De(E (α)),∫

Rd

|f |u0dμ≤
(∫

Rd

f 2dμ

)1/2(∫
Rd

u2
0dμ

)1/2

≤
(

‖Gμ‖∞E (α)(f, f )
)1/2

≤
{
‖Gμ‖∞

(
E (α)(f, f )− λ0

∫
f 2dν

)}1/2

= ‖Gμ‖1/2∞ ‖f ‖Eλ0ν .

�

REMARK 4.7. If λ0 ≥ 0, the measure u0(μ + λ0ν), where u0 ∈ De(E (α)) attains
the infimum of (4.3), is of finite energy integral with respect to E (α). In fact, for η(λ0) :=
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μ+ λ0ν ∈ K∞
d,α, we see that∫

Rd

|f |u0dη(λ0)≤
(∫

Rd

f 2dη(λ0)

)1/2(∫
Rd

u2
0dη(λ0)

)1/2

≤
(

‖Gη(λ0)‖∞E (α)(f, f )
)1/2

= ‖Gη(λ0)‖1/2∞ ‖f ‖E (α) .
The function u0 is also characterized as

E (α)(u0, f )− λ0

∫
Rd

u0f dν =
∫

Rd

u0f dμ, for all f ∈ De(E (α)) .(4.6)

Hence Lemma 4.6 implies that for all f ∈ De(E (α)),
Eλ0ν(u0, f ) =

∫
Rd

u0f dμ = Eλ0ν(Gλ0ν(u0μ), f ) .

We see, in addition, that

u0(x)=Gλ0ν(u0μ)(x)

=Ex

[∫ ∞

0
exp(λ0A

ν
t )u0(Xt )dA

μ
t

]
> 0 , m-a.e.

We define the function h by

h(x) = Ex

[∫ ∞

0
exp(λ0A

ν
t )u0(Xt)dA

μ
t

]
.(4.7)

REMARK 4.8. For λ0 ≥ 0, the function h is the same one as defined by (4.8) in [23],
i.e.,

h(x) = Ex

[∫ ∞

0
u0(Xt )dA

μ+λ0ν
t

]
.

We now prove that h is a bounded continuous function.

LEMMA 4.9. The function h is finely continuous.

PROOF. By [10, Theorem A.2.7], we have only to show the right continuity of h(Xs) in
s. Because of the Markov property,

h(Xs)=EXs

[∫ ∞

0
exp(λ0A

ν
t )u0(Xt)dA

μ
t

]
=Ex

[∫ ∞

0
exp(λ0A

ν
t (θs))u0(Xt+s)dAμt (θs)

∣∣∣∣ Fs] .
Noting Aμt (θs) = A

μ
t+s−Aμs and so dAμt (θs) = dA

μ
t+s , we see that the right-hand side equals

Ex

[∫ ∞

0
exp{λ0(A

ν
t+s − Aνs )}u0(Xt+s)dAμt+s

∣∣∣∣Fs]
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= exp(−λ0A
ν
s )Ex

[∫ ∞

0
exp(λ0A

ν
t+s)u0(Xt+s)dAμt+s

∣∣∣∣Fs].
Setting u = s + t , we have

Ex

[∫ ∞

s

exp(λ0A
ν
u)u0(Xu)dA

μ
u

∣∣∣∣Fs]
= Ex

[∫ ∞

0
exp(λ0A

ν
u)u0(Xu)dA

μ
u

∣∣∣∣Fs]−Ex
[∫ s

0
exp(λ0A

ν
u)u0(Xu)dA

μ
u

∣∣∣∣Fs] ,
and thus

h(Xs)= exp(−λ0A
ν
s )

{
Ex

[ ∫ ∞

0
exp(λ0A

ν
u)u0(Xu)dA

μ
u

∣∣∣∣ Fs](4.8)

−
∫ s

0
exp(λ0A

ν
u)u0(Xu)dA

μ
u

}
.

Since the filtrationFs is right continuous, the first term is also right continuous. Consequently,
we have the right continuity of h(Xs). �

We see from [10, Lemma 4.1.5] that if h(x) = u0(x) m-a.e., then h(x) = u0(x) q.e.
Hence [10, Theorem 4.1.2] leads us to the next lemma.

LEMMA 4.10. The function h is strictly positive and satisfies

h(x) = Ex

[∫ ∞

0
exp(λ0A

ν
t )h(Xt)dA

μ
t

]
,(4.9)

for all x ∈ Rd .

REMARK 4.11. For λ0 ≥ 0, by [23, Lemma 4.6 and Lemma 4.7], the function h is
finely continuous and satisfies

h(x) = Ex

[∫ ∞

0
h(Xt )dA

μ+λ0ν
t

]
,

for all x ∈ Rd .

We now show that the function h is bounded. For a signed measure μ = μ+ − μ− ∈
K∞
d,α − K∞

d,α, we assume that Hμ is subcritical or critical and h is a positive Hμ-harmonic

function. Let Pμ,ht be the h-transformed semigroup of Pμt , i.e.,

P
μ,h
t f (x) =

∫
{0<h<∞}

1

h(x)
pμ(t, x, y)h(y)f (y)dy .

P
μ,h
t is the L2(h2m)-strongly continuous symmetric Markov semigroup, (Pμ,ht f, g)h2m =
(f, P

μ,h
t g)h2m. Therefore we can define a Dirichlet form (Eμ,h,D(Eμ,h)) generated by the

semigroup Pμ,ht . Let De(Eμ,h) be an extended Dirichlet space of D(Eμ,h). Setting a space

De(Eμ) =
{
u ; u

h
∈ De(Eμ,h)

}
,
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we see that Eμ(u, u) = Eμ,h(u/h, u/h) on De(Eμ) and call the form (Eμ,De(Eμ)) an
extended Schrödinger form [23]. We are able to identify De(Eμ) with the family of m-
measurable functions u on Rd such that |u| < ∞ m-a.e. and there exists an Eμ-Cauchy
sequence {un} ⊂ De(Eμ) such that limn→∞ un = u m-a.e. This is said to be an approxi-
mating sequence for u ∈ De(Eμ). Then, for u ∈ De(Eμ) and its approximating sequence
{un},

Eμ(u, u) = lim
n→∞ Eμ(un, un), u ∈ De(Eμ) .

Generally, if (Eμ,De(E (α))) is a subcritical Schrödinger form, that is, the associated operator
Hμ is subcritical, then (Eμ,De(Eμ)) becomes a Hilbert space by [10, Theorem 1.5.5]. If
(Eμ,De(E (α))) is a critical Schrödinger form then its ground state h belongs to De(Eμ) on
account of [10, Theorem 1.6.3]. We see from Theorem 2.2 that,

Eμ(u, u) = E (α)(u, u)−
∫

Rd

u2dμ ≤ (1 + ‖G|μ|‖∞)E (α)(u, u) ,

thus De(E (α)) ⊂ De(Eμ).
By Lemma 4.2, the Schrödinger type operator is not subcritical. Let w 
≡ 0 be a non-

negative bounded Borel function with compact support, and define ηw = −μ− λ0ν + wdx．
Denote

Hηw = 1

2
(−�)α/2 + ηw .(4.10)

Then, since Hηw is subcritical, we know that

inf

{
E (α)(u, u)− λ0

∫
Rd

u2dν +
∫

Rd

u2wdx ; u ∈ D(E (α)),
∫

Rd

u2dμ = 1

}
> 1 .(4.11)

The operator Hηw has a Green functionGηw(x, y) with

0 < cG(x, y) ≤ Gηw(x, y) ≤ CG(x, y), x 
= y .(4.12)

Let Gηw be the Green operator,Gηwf (x) = ∫
Rd
Gηw(x, y)f (y)dy.

LEMMA 4.12. For a non-negative function ϕ ∈ C0(R
d), Gηwϕ is in De(Eηw).

PROOF. LetGηwβ be a β-resolvent of Hηw . ThenGηwβ ϕ belongs to De(E (α)) andGηwβ ϕ ↑
Gηwϕ as β → 0. We see from the inequality (4.12) that

Eηwβ (G
ηw
β ϕ,G

ηw
β ϕ)= ((Hηw + β)G

ηw
β ϕ,G

ηw
β ϕ)

= (ϕ,G
ηw
β ϕ) ≤ (ϕ,Gηwϕ) ≤ C(ϕ,Gϕ) < ∞ .(4.13)

This impliesGηwβ ϕ approximatesGηwϕ in Eηw -norm, which shows Gηwϕ ∈ De(Eηw ). �

LEMMA 4.13. For any non-negative ϕ ∈ C0(R
d ),

Eηw (Gηwϕ, f ) =
∫

Rd

ϕf dx, f ∈ De(Eηw) .
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REMARK 4.14. If Hηw is subcritical, then the measure ηw is gaugeable, that is,
supx∈Rd Ex [eA

ηw∞ ] < ∞ [24, Theorem 3.1]. Furthermore h0(x) = Ex [eAηw∞ ] is Hηw -harmonic
(see [23]). In fact, we consider Aηw∞ = A

ηw
τD + A

ηw∞ ◦ θτD and then

h0(x)=Ex[eA
ηw∞ ] = Ex[eA

ηw
τD eA

ηw∞ ◦θτD ]
=Ex[eA

ηw
τD Ex[eA

ηw∞ ◦θτD |FτD ]]
=Ex[eA

ηw
τD EXτD [eAηw∞ ]]

=Ex[eA
ηw
τD h0(XτD)] , x ∈ D ,

where D is a bounded domain.

PROOF OF LEMMA 4.13. We consider h-transformed semigroup Pηw,h0
t of Pηwt .

Let (Eηw,h0,Dηw,h0) be the Dirichlet form generated by Pηw,h0
t and denote by Gηw,h0 its

Green operator, i.e.,

Gηw,h0f = 1

h0
Gηw(h0 · f ) .

Then, for a non-negative function ϕ ∈ C0(R
d ),∫

Rd

Gηw,h0
( ϕ
h0

)
· ϕ
h0
h2

0dx =
∫

Rd

Gηwϕ · ϕdx ≤ C

∫
Rd

Gϕ · ϕdx .

Thus [10, Theorem 1.5.4] leads us to that Gηw,h0(ϕ/h0) belongs to De(Eηw,h0) and for any
f ∈ De(Eηw),

Eηw,h0

(
Gηw,h0

(
ϕ

h0

)
,
f

h0

)
=

∫
Rd

ϕf dx .

Noting that

Eηw,h0

(
Gηw,h0

(
ϕ

h0

)
,
f

h0

)
= Eηw,h0

(
Gηwϕ

h0
,
f

h0

)
= Eηw(Gηwϕ, f ) ,

we have Lemma 4.13. �

The next theorem was first obtained by Murata [13, Theorem 2.2] for α = 2, and Takeda
and Tsuchida [23, Theorem 4.8] extended to symmetric α-stable processes. In [23, Theorem
4.8], the constant λ0 is not negative. We extend [23, Theorem 4.8] for λ0 < 0.

THEOREM 4.15. For w ∈ C0(R
d) with w ≥ 0, w 
≡ 0, let ηw = −μ − λ0ν + wdx.

The function h defined in (4.7) satisfies

h(x) =
∫

Rd

Gηw(x, y)h(y)w(y)dy .(4.14)

PROOF. Because of Lemma 4.12,

ϕ ∈ C0(R
d) �⇒ G

ηw
β ϕ ∈ De(E (α)) , β > 0 .
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By the equation (4.6),

E (α)(h,Gηwβ ϕ)−
∫

Rd

hG
ηw
β ϕdμ− λ0

∫
Rd

hG
ηw
β ϕdν = 0 .

Thus,

Eηw (h,Gηwβ ϕ)

= E (α)(h,Gηwβ ϕ)−
∫

Rd

hG
ηw
β ϕdμ− λ0

∫
Rd

hG
ηw
β ϕdν +

∫
Rd

hG
ηw
β ϕ ·wdx

=
∫

Rd

hG
ηw
β ϕ · wdx =

∫
Rd

G
ηw
β (hw) · ϕdx .

The last equation follows from the symmetry of Gηwβ . As β → 0,

Eηw (h,Gηwϕ) =
∫

Rd

Gηw (hw)ϕdx .(4.15)

On the other hand, Lemma 4.13 tells us

Eηw(h,Gηwϕ) =
∫

Rd

hϕdx, for all ϕ ∈ De(Eηw ) .(4.16)

Comparing equations (4.15) with (4.16), we have

h(x)=Gηw(hw)(x)

=
∫

Rd
Gηw(x, y)h(y)w(y)dy, m-a.e.

By the same argument as in Lemma 4.10, we are able to refine from “m-a.e. x” to “any x”. �

We now show the boundedness of h.

LEMMA 4.16. The function h is bounded.

PROOF. Because of the fine continuity of h, there exists a compact set K such that
h(x) ≤ c for any x ∈ K . Let ηK = −μ− ν + IK(x)dx. Then Theorem 4.15 implies

h(x) =
∫

Rd

GηK (x, y)h(y)IK(y)dy .

Since GηK (x, y) is equivalent to G(x, y) by (4.12) and h is bounded on K , it holds that

h(x)≤ c
∫

Rd

GηK (x, y)IK(y)dy ≤ C‖G(IKm)‖∞ < ∞ .

The last inequality derives from IKm ∈ K∞
d,α. �

REMARK 4.17. For λ0 ≥ 0, we see from [23, Lemma 4.9] that the function h is
bounded.

LEMMA 4.18. The function h is Pμ+λ0ν
t -excessive. That is

Ex
[
exp(Aμt + λ0A

ν
t )h(Xt )

]≤ h(x) .
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PROOF. Put

Nt = Ex

[∫ ∞

0
exp(λ0A

ν
s )u0(Xs)dA

μ
s

∣∣∣∣ Ft] .
Then we see from (4.8) that

exp(λ0A
ν
t )h(Xt ) = Nt −

∫ t

0
exp(λ0A

ν
s )u0(Xs)dA

μ
s .(4.17)

By Itō’s formula,

exp(Aμt + λ0A
ν
t )h(Xt ) = exp(Aμt ) exp(λ0A

ν
t )h(Xt )

= exp(Aμt )

{
Nt −

∫ t

0
exp(λ0A

ν
s )h(Xs)dA

μ
s

}
= h(X0)+

∫ t

0
exp(Aμs )

(
dNs − exp

(
λ0A

μ
s )h(Xs)dA

μ
s

)
+

∫ t

0
exp(Aμs ) exp(λ0A

μ
s )h(Xs)dA

μ
s

= h(X0)+
∫ t

0
exp(Aμs )dNs .

Here Nt is martingale, so is the second term of the right-hand side. Taking the expectations,
we have

Ex
[
exp(Aμt + λ0A

ν
t )h(Xt )

]≤ h(x) .

�

REMARK 4.19. For λ0 ≥ 0, we see from [23, Lemma 4.10] that the function h is
excessive.

We see from Lemma 4.18 that h-transformed semigroup Pμ+λ0ν,h
t generates an h2m-

symmetric Markov process. Let us denote by Mμ+λ0ν,h the Markov process generated by
P
μ+λ0ν,h
t . Then Mμ+λ0ν,h is recurrent because of non-subcriticality of Hμ+λ0ν , in particular,

conservative, Pμ+λ0ν,h
t 1 = 1. As a result, the function h is Pμ+λ0ν

t -invariant, i.e.,

P
μ+λ0ν
t h = h .(4.18)

LEMMA 4.20. A finely continuousPμ+λ0ν
t -excessive function is unique up to multipli-

cation.

PROOF. Let h, h′ be Pμ+λ0ν
t -excessive functions. By the excessivity, Pμ+λ0ν

t h′(x) ↑
h′(x) and the function h(x) is strictly positive for all x,

Ex

[
exp(Aμ+λ0ν

t )h(Xt )
h′

h
(Xt )

]
≤ h · h

′

h
(x) , for all t > 0 .

Thus

h′

h
(x)≥ 1

h(x)
Ex

[
exp(Aμ+λ0ν

t )h(Xt)
h′

h
(Xt)

]
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=Eμ+λ0ν,h
x

[
h′

h
(Xt )

]
.

For y ∈ Rd and εn → 0 as n → ∞, σB(y,εn) < ∞, Pμ+λ0ν,h
x -a.s. by [10, Problem 4.6.3],

where B(y, εn) = {z ; |z− y| < εn}. Denote σn = σB(y,εn). Replacing t by σn,

Eμ+λ0ν,h
x

[
h′

h
(Xσn)

]
≤ h′

h
(x) ,

and taking n → ∞, we see that the left-hand side converges to h′/h(y). By Fatou’s lemma,
we obtain

h′

h
(y)=Eμ+λ0ν,h

x

[
lim inf
n→∞

h′

h
(Xσn)

]
≤ lim inf

n→∞ Eμ+λ0ν,h
x

[
h′

h
(Xσn)

]
≤ h′

h
(x) ,

for any x, y. Thus we see also h′(x)/h(x) ≤ h′(y)/h(y). Setting c = h′(x)/h(x) for a fixed
x ∈ Rd , we have h′(y) = ch(y) for every y ∈ Rd . �

PROPOSITION 4.21. The function h is Hμ+λ0ν-harmonic, i.e., for any bounded do-
main D,

Ex[exp(Aμ+λ0ν
τD

)h(XτD)] = h(x) , x ∈ D .
PROOF. Set

Mt = exp(Aμ+λ0ν
t )h(Xt ) .

ThenMt is a martingale. In fact, by the additivity At −As = At−s(θs) for any 0 < s < t and
the Markov property, we obtain

Ex[Mt | Fs] =Ex[exp(Aμ+λ0ν
t )h(Xt) | Fs ]

=Ex[exp(Aμ+λ0ν
s ) exp(Aμ+λ0ν

t − Aμ+λ0ν
s )h(Xt ) | Fs]

= exp(Aμ+λ0ν
s )Ex[exp(Aμ+λ0ν

t−s (θs))h(Xt ) | Fs]
= exp(Aμ+λ0ν

s )EXs [exp(Aμ+λ0ν
t−s )h(Xt−s)] .

We see from the equality (4.18) that

exp(Aμ+λ0ν
s )P

μ+λ0ν
t−s h(Xs) = exp(Aμ+λ0ν

s )h(Xs) = Ms .

That is, Ex[Mt | Fs] = Ms for any 0 < s < t .
On account of the optional stopping theorem, for a bounded domainD of Rd

Ex[exp(Aμ+λ0ν
t∧τD )h(Xt∧τD )] = h(x) .(4.19)

We now show the following claim

inf

{
E (α)(u, u)−

∫
Rd

u2dμ−λ0

∫
Rd

u2dν ; u ∈ D(E (α)D ),

∫
Rd

u2dx=1

}
>0 ,(4.20)
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where E (α)D is the part Dirichlet f orm of E (α) (see [10, Section 4.4]). In fact, if the left-hand

side is equal to zero, then there exists a function u∗ ∈ D(E (α)D ) such that

E (α)(u∗, u∗)− λ0

∫
Rd

u2∗dν =
∫

Rd

u2∗dμ .(4.21)

Note that
∫
Rd u

2∗dμ > 0 because of u∗ > 0 q.e. on D and μ(D) > 0. Then the function

ũ0 = u∗/
√∫

Rd u2∗dμ attains the infimum of (4.2), and thus u∗ > 0 q.e. on Rd as same

argument as in Lemma 4.10 for the function u0. However, this contradicts u∗ = 0 m-a.e. on
Rd \D.

From [23, Lemma 2.2], we see that the equation (4.20) implies

inf

{
E (α)(u, u)− λ0

∫
Rd

u2dν ; u ∈ D(E (α)D ),

∫
Rd

u2dμ = 1

}
> 1 ,

and then μ+ λ0ν is gaugeable on D by [24, Theorem 3.1], that is,

sup
x∈D

Ex[exp(Aμ+λ0ν
τD

)] < ∞ .

We see from [5, Corollary 2.9] that

sup
x∈D

Ex[ sup
0≤t≤τD

exp(Aμ+λ0ν
t )] < ∞ .

Noting that

| exp(Aμ+λ0ν
t∧τD )h(Xt∧τD )| ≤ ‖h‖∞ sup

0≤t≤τD
exp(Aμ+λ0ν

t ) < ∞ ,

we have from the quasi-left continuity of Mα and the bounded convergence theorem

lim
t→∞Ex[exp(Aμ+λ0ν

t∧τD )h(Xt∧τD )] =Ex

[
lim
t→∞ exp(Aμ+λ0ν

t∧τD )h(Xt∧τD )
]

=Ex [exp(Aμ+λ0ν
τD

)h(XτD )] .
The right-hand side is equal to h(x) by the equation (4.19). �

REMARK 4.22. For λ0 ≥ 0, we see from [23, Proposition 4.12] that the function h is
Hμ+λ0ν-harmonic.

Next we show the continuity of h.

LEMMA 4.23. The function h satisfies

h(x) = Ex[h(XτD )] + Ex

[ ∫ τD

0
h(Xt)dA

μ+λ0ν
t

]
.(4.22)

PROOF. Since h is Hμ+λ0ν-harmonic,

h(Xt )=EXt [exp(Aμ+λ0ν
τD

)h(XτD)]
=Ex[exp(Aμ+λ0ν

τD
(θt ))h(XτD+t ) | Ft ]

=Ex[exp(Aμ+λ0ν
τD+t − A

μ+λ0ν
t )h(XτD+t ) | Ft ]
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= exp(−Aμ+λ0ν
t )Ex [exp(Aμ+λ0ν

τD+t )h(XτD+t ) | Ft ]
= exp(−Aμ+λ0ν

t ) exp(Aμ+λ0ν
τD

)h(XτD ) .

Since Mt in Proposition 4.21 is martingale, we have the last equality. For 0 ≤ t ≤ τD ,
Xt ∈ D,

Ex

[∫ τD

0
h(Xt )dA

μ+λ0ν
t

]
= Ex

[∫ τD

0
exp

(
−Aμ+λ0ν

t + Aμ+λ0ν
τD

)
h(XτD )dA

μ+λ0ν
t

]
= Ex

[
exp

(
Aμ+λ0ν
τD

)
h(XτD )

∫ τD

0
exp

(
−Aμ+λ0ν

t

)
dA

μ+λ0ν
t

]
= Ex

[
exp

(
Aμ+λ0ν
τD

)
h(XτD )

{
1 − exp

(
−Aμ+λ0ν

τD

)}]
= Ex

[
exp

(
Aμ+λ0ν
τD

)
h(XτD )

]
−Ex[h(XτD)]

= h(x)− Ex[h(XτD)] .
�

We have the next proposition by the same argument as in [4, Proposition 6.1].

PROPOSITION 4.24. The function h is continuous.

We consider the asymptotic behavior of h as |x| → ∞. Let w be a positive continuous
function with compact support. Suppose that 0 ∈ supp[w] ⊂ B(R). By Theorem 4.15, the
continuity of h and the strict positivity of f ,

c

∫
B(R)

Gηw(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

Gηw(x, y)w(y)dy ,

and by the Green kernel estimate (4.12),

c

∫
B(R)

G(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

G(x, y)w(y)dy .

The Harnack inequality to {G(x, ·)}{x∈B(R)c} says that for any x ∈ B(R)c and y ∈supp[w]
cG(x, y) ≤ G(x, 0) ≤ CG(x, y) .

Therefore we see that

cG(x, 0) ≤ h(x) ≤ CG(x, 0) for x ∈ B(R)c,
namely ,

c

|x|d−α ≤ h(x) ≤ C

|x|d−α .(4.23)

The operator Hμ+λ0ν is said to be positive (resp. null) critical if the ground state h is in (resp.
not in) L2(m). From the equation (4.23), we have the following.
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THEOREM 4.25. The operator Hμ+λ0ν is null critical if and only if α < d ≤ 2α.

REMARK 4.26. For λ0 ≥ 0, we see from [23, Theorem 4.1.5] that the function h(x) =
Ex [

∫ ∞
0 h(Xt )dA

μ+λ0ν
t ] satisfies (4.23). Hence Theorem 4.25 holds for any λ0.

5. An extension of Oshima’s inequality. In this section, we prove a functional in-
equality for critical Schrödinger forms. This inequality is regarded as a version of Oshima’s
inequality. For λ0 ≥ 0, Takeda and Tsuchida [23] prove it. We suppose λ0 < 0.

LEMMA 5.1. Let h be the Hμ+λ0ν-harmonic function constructed in Section 4. Then
the h-transformed semigroup Pμ+λ0ν,h

t of Pμ+λ0ν
t has the strong Feller property.

PROOF. We follow the argument in [9, Corollary 5.2.7]. Let f be a bounded Borel
function and {xn} a sequence so that xn → x as n → ∞. Recall that pμ+λ0ν(t, x, y) is jointly
continuous [1, Theorem 3.10]. By Fatou’s lemma and the continuity of h,

lim inf
n→∞

∫
Rd

1

h(xn)
pμ+λ0ν(t, xn, y)h(y)(‖f ‖∞ ± f (y))dy

≥
∫

Rd

1

h(x)
pμ+λ0ν(t, x, y)h(y)(‖f ‖∞ ± f (y))dy .

Thus, the mapping

x �→
∫

Rd

1

h(x)
pμ+λ0ν(t, x, y)h(y)(‖f ‖∞ ± f (y))dy

is lower semi-continuous. Note that Pμ+λ0ν,h is recurrent, in particular, conservative. Then∫
Rd

1

h(x)
pμ+λ0ν(t, x, y)h(y)f (y)dy

=
∫

Rd

1

h(x)
pμ+λ0ν(t, x, y)h(y)(‖f ‖∞ + f (y))dy − ‖f ‖∞

= −
∫

Rd

1

h(x)
pμ+λ0ν(t, x, y)h(y)(‖f ‖∞ − f (y))dy + ‖f ‖∞ ,

and thus the mapping

x �→
∫

Rd

1

h(x)
pμ+λ0ν(t, x, y)h(y)f (y)dy

is lower and upper semi-continuous. �

PROPOSITION 5.2. The h-transformed process Mμ+λ0ν,h = (P
μ+λ0ν,h
x ,Xt ) is Harris

recurrent, that is, for a non-negative function f ,∫ ∞

0
f (Xt)dt = ∞ , Pμ+λ0ν,h

x -a.s. ,(5.1)

whenever m({x ; f (x) > 0}) > 0.
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PROOF. Set A = {x ; f (x) > 0}. Since Pμ+λ0ν,h
t generates an h2m-symmetric recur-

rent Markov process,

Px(σA ◦ θn < ∞,∀n ≥ 0) = 1 , for q.e. x ∈ Rd .(5.2)

by [10, Theorem 4.6.6]. Moreover, since the Markov process Mμ+λ0ν,h has the transition
density function

pλ0ν(t, x, y)

h(x)h(y)

with respect to h2m, (5.2) holds for all x ∈ Rd by [10, Problem 4.6.3]. Using Lemma 5.1,
(5.2) and the proof of [16, Chapter X, Proposition 3.11], we see that Mμ+λ0ν,h is Harris
recurrent. �

THEOREM 5.3. There exists a positive function g ∈ L1(h2m) and a function ψ ∈
C0(R

d) with
∫
Rd ψh

2dx = 1 such that, for u ∈ D(Eμ+λ0ν)∫
Rd

∣∣∣∣u(x)− h(x)L

(
u

h

)∣∣∣∣g(x)h(x)dx ≤ CEμ+λ0ν(u, u)1/2 .(5.3)

Here

L(u) =
∫

Rd

uψh2dx .

PROOF. By Proposition 5.2, we can apply Oshima’s inequality in [14] to the Dirichlet
form (Eμ+λ0ν,h,D(Eμ+λ0ν,h)); there exists a positive function g ∈ L1(h2m) and a function
ψ ∈ C0(R

d ) with
∫
Rd ψh

2dx = 1 such that, for u ∈ D(Eμ+λ0ν,h)∫
Rd

∣∣u(x)− L(u)
∣∣g(x)h2(x)dx ≤ CEμ+λ0ν,h(u, u)1/2 .(5.4)

Substituting u/h for u in (5.4), we obtain (5.3). �

6. Differentiability of spectral function. Before proving the differentiability of the
spectral function, we recall the following result in [23, Lemma 6.1].

LEMMA 6.1 ([23, Lemma 6.1]). Let X be a locally compact separable metric space,
m a positive Radon measure on X, and (E,D(E)) a regular Dirichlet form on L2(X;m). Let
{un} ⊂ D(E) be a sequence with limn→∞ E(un, un) = 0 and limn→∞ un = 0 m-a.e. Then
there is a subsequence {unk } such that limk→∞ unk = 0 q.e.

PROOF OF THEOREM 1.2. First note that for λ > λ0, −C(λ) is the principal eigenvalue
of the operator Hμ+λν [20, Lemma 4.3] and thus C(λ) is differentiable by the analytic per-
turbation theory [11, Chapter VII]. Hence it is enough to prove the differentiability of C(λ) at
λ = λ0. Furthermore, since C(λ) is convex by the definition and so monotonously increasing,
we have only to prove the existence of a sequence {λn} with λn < 0 such that dC(λn)/dλ ↓ 0
as λn ↓ λ0.

By [11, p. 405, Chapter VII (4.44)], we have

dC

dλ
(λ) =

∫
Rd

u2
λdν, λ > λ0 ,(6.1)



LARGE DEVIATIONS FOR SYMMETRIC STABLE PROCESSES 491

where uλ is the L2-normalized eigenfunction corresponding to the eigenvalue −C(λ), that is,

−C(λ) = E (α)(uλ, uλ)−
∫

Rd

u2
λdμ− λ

∫
Rd
u2
λdν .(6.2)

Set un = uλn and νR(dx) = IB(0,R)(x)ν(dx) for R > 0. By the Poincaré type inequality,

lim sup
n→∞

∫
Rd

u2
ndν = lim sup

n→∞

(∫
Rd

u2
ndνR +

∫
Rd

u2
ndνRc

)
≤ lim sup

n→∞

(∫
Rd

u2
ndνR + E (α)(un, un)‖GνRc‖∞

)
.(6.3)

It is enough to show an existence of some sequence such that the right-hand side converges to
zero as R → ∞. Firstly, we consider the second term in (6.3). By (2.7), for any λn ∈ (λ0, 0)
and ε > 0

−C(λn)= E (α)(un, un)−
∫

Rd

u2
ndμ− λn

∫
Rd

u2
ndν

≥ E (α)(un, un)−
∫

Rd

u2
ndμ

≥ E (α)(un, un)− (εE (α)(un, un)+M(ε)) .

Therefore, we have

E (α)(un, un) ≤ −C(λn)+M(ε)

1 − ε
, for all 0 < ε < 1 .(6.4)

Since the function C(λ) is continuous and C(λ0) = 0,

lim sup
n→∞

E (α)(un, un) ≤ M(ε)

1 − ε
< ∞ .(6.5)

We see that the second term in (6.3) converges to zero by letting R → ∞.
On account of (2.5) and (6.5),

|Eμ+λ0ν(un, un)+ C(λn)| = |Eμ+λ0ν(un, un)− Eμ+λnν(un, un)|
≤ (λn − λ0)

∫
Rd
u2
ndν

≤ (λn − λ0)‖Gν‖∞E (α)(un, un)
→ 0, as n → ∞ .

Thus we see that

Eμ+λ0ν(un, un) → 0 as n → ∞ .(6.6)

Let h be the Hμ+λ0ν-harmonic function constructed in Section 4. We denote the Dirich-
let form of the h-transformed process by (Eμ+λ0ν,h,D(Eμ+λ0ν,h)). Then the equation (6.6)
proves

lim
n→∞ Eμ+λ0ν,h

(
un

h
,
un

h

)
= 0 .(6.7)
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Let ψ and L(u) be the same as in Theorem 5.3. Then since∣∣∣∣L(
un

h

)∣∣∣∣ =
∫

Rd
un(x)ψ(x)h(x)dx

≤
√∫

Rd

u2
n(x)dx

√∫
Rd

ψ2(x)h2(x)dx < ∞ ,

we may assume that L(un/h) converges to a certain constant C by taking a subsequence of
{λn} if necessary. In addition, since (5.3) says∫

Rd
|un − Ch|ghdx

≤
∫

Rd

∣∣∣∣un − hL

(
un

h

)∣∣∣∣ghdx +
∫

Rd

∣∣∣∣hL(
un

h

)
−Ch

∣∣∣∣ghdx
≤ CEμ+λ0ν(un, un)

1/2 +
∫

Rd

∣∣∣∣L(
un

h

)
−C

∣∣∣∣gh2dx

→ 0 ,

we assume that un → Ch m-a.e. Now recall that Hμ+λ0ν is null critical if and only if α <
d ≤ 2α. Then the constant C must be equal to 0 since h 
∈ L2(Rd ),

1 = lim inf
n→∞

∫
Rd

u2
ndx ≥

∫
Rd

lim inf
n→∞ u2

ndx = C2
∫

Rd
h2dx ,(6.8)

and consequently

lim
n→∞ un = 0, m-a.e.(6.9)

Notice that Eμ+λ0ν,h-q.e. is equivalent to E (α)-q.e. Then combing (6.8), (6.9) with Lemma
6.1, we may assume that un converges to 0 q.e.

Since uλn is the eigenfunction corresponding to C(λn),

un = e−C(λn)tPμ+λnν
t un

and

‖un‖∞ = e−C(λn)t‖Pμ+λnν
t un‖∞ ≤ ‖Pμ+λnν

t ‖2,∞ ≤ ‖Pμt ‖2,∞ < ∞
by [1, Theorem 6.1 (iii)]. From (6.3), (6.5) and the dominated convergence theorem, we see
that

lim sup
n→∞

∫
Rd

u2
ndν ≤ ‖GνRc‖∞

M(ε)

1 − ε
.

By letting R → ∞, we complete the proof. �

By the Gärtner-Ellis theorem, we have Theorem 1.1.
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