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Abstract

Denote the Palm measure of a homogeneous Poisson process Hλ with two points 0 and
x by P0,x . We prove that there exists a constant µ ≥ 1 such that P0,x(D(0, x)/µ‖x‖2 /∈
(1−ε, 1+ε) | 0, x ∈ C∞) exponentially decreases when ‖x‖2 tends to ∞, where D(0, x)

is the graph distance between 0 and x in the infinite component C∞ of the random
geometric graph G(Hλ; 1). We derive a large deviation inequality for an asymptotic
shape result. Our results have applications in many fields and especially in wireless
sensor networks.
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1. Introduction

Standard first passage percolation (FPP) was formulated by Hammersley and Welsh [9] as a
simplified model for the spread of a fluid in a porous medium. Then some new FPP models in
a random environment were studied. Based on homogeneous Poisson point processes, Vahidi-
Asl and Wierman [16] introduced a class of FPP models for the Poisson–Voronoi tessellations,
Howard and Newman [10], [11] established a Euclidean FPP, and Baccelli and Bordenave [2]
analyzed a class of spatial random spanning trees built on the Poisson point processes of
the plane. The authors proved shape theorems for these continuum FPP models. Garet and
Marchand [4]–[6] introduced a discrete FPP model based on an infinite Bernoulli percolation
cluster. They obtained a large deviation theorem for the chemical distance between two points
in that cluster and derived a large deviation inequality for the corresponding asymptotic shape
result.

In this paper we present another new FPP model based on the infinite component in the
continuum percolation. Analogous to the models above, it is natural to obtain a shape theorem
for our model. The large deviations of the graph distance and the shape theorem are important
properties of the infinite component and can be applied to communication networks, particularly
to the large-scale randomly distributed wireless sensor networks (WSNs), which can be modeled
using the infinite component of continuum percolation. For instance, Dousse [3] constructed
a two-dimensional continuum percolation to study a sort of WSN and obtained some results
about the delay of the networks. In our model, we think of the Poisson points as the locations
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Large deviations for the graph distance 155

of the sensor nodes in the WSNs: every node has the same transmitting radius and can transmit
data to the nodes in their transmitting range directly. The messages from the nodes will be
transmitted to an appointed cluster node by a multihop path in the network. Here we suppose
that the appointed cluster node belongs to the infinite component. As a result, the other finite
components will be omitted because the nodes in these components cannot transmit messages
to the cluster node. For applications to WSNs, our model is more practical than the model of
the radial spanning trees of Poisson point processes proposed by Baccelli and Bordenave [2],
since they did not consider the transmitting radius restriction.

In a future paper we will provide the moderate deviation for the graph distance and analyze
the asymptotic direction of the shortest path.

2. Definitions and main results

Now let us introduce some usual notation and the percolation models.
Throughout this paper, we assume that ‖·‖ is the l2-norm and that the dimension, d, is greater

than or equal to 2. Suppose that A is a Borel set in R
d . We use |A| to denote its cardinality if

A is a finite point set; otherwise we use |A| to denote its Lebesgue measure.
For x ∈ R

d and r > 0, we define a ball in R
d by

B(x, r) := {y ∈ R
d : ‖x − y‖ ≤ r}.

A path in the graph G(V, E) is a sequence of vertices � := (x0, x1, . . . , xn) such that
{xi−1, xi} lies in E for each i = 1, 2, . . . , n. The length of � is the number, n, of edges and is
denoted by |�|. In this paper, the terminology cluster is identical to component in graph theory.
If two vertices x and y are in the same component, we write x ↔ y.

Let us recall the Bernoulli percolation model. For each pair {x, y} of points in Z
d with

‖x − y‖1 = 1, we add an undirected edge between them. Define a d-dimensional cubic lattice
L

d := (Zd , E
d), where E

d stands for the set of all edges. If ‖x − y‖1 = 1, we say that x and
y are adjacent, and write x ∼ y. If all edges (vertices) of L

d are open with probability p and
closed with probability 1 − p independently of each other, we call the model Bernoulli bond
(site) percolation. The corresponding probability measure on {0, 1}E

d
is denoted by Pp.

Now we introduce the continuum percolation model (see [14, pp. 188–190]). Given a point
set X ⊂ R

d , we denote by G(X; 1) the undirected graph with vertex set X and undirected
edges connecting all point pairs {x, y} such that ‖x − y‖ ≤ 1. The metric diameter of G(X; 1)

is sup{‖x − y‖: x, y ∈ G}. Let Hλ denote a homogeneous Poisson process of intensity λ on
R

d . Then we can construct an infinite random geometric graph G(Hλ; 1). For s > 0, define
B(s) to be the box of side s centered at the origin, and let Hλ,s be the restriction of Hλ to the
box B(s). In other words, define

B(s) := [− 1
2 s, 1

2 s
]d

, Hλ,s := Hλ ∩ B(s).

Let Hλ,0 denote the point process Hλ ∪ {0}, where 0 is the origin in R
d . For k ∈ N, let pk(λ)

denote the probability that the component of G(Hλ,0; 1) containing the origin is of order k.
The percolation probability, p∞(λ), is the probability that 0 lies in an infinite component of
the graph G(Hλ,0; 1), and is defined by

p∞(λ) = 1 −
∞∑

k=1

pk(λ).
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The critical intensity, λc, is defined by

λc = inf{λ > 0 : p∞(λ) > 0}.
The fundamental result of continuum percolation says that 0 < λc < ∞, provided that d ≥ 2.
If λ > λc almost surely, there is a unique infinite component in continuum percolation,
which we denote by C∞. In some cases, we may add several points x1, . . . , xn ∈ R

d into
Hλ; for notational simplicity, we also use C∞ to denote the infinite component of G(Hλ ∪
{x1, . . . , xn}; 1).

The theorem of Slyvniak states that the Palm distribution Px of a Poisson process Hλ of
distribution P is given by

Px = P ∗δx for x ∈ R
d . (2.1)

Here ‘∗’ denotes the convolution of distributions, which corresponds to the superposition of
point processes. The δx term denotes the distribution of the degenerate point process that
consists solely of the (nonrandom) point x. The n-fold Palm distribution Px1,...,xn of a Poisson
process with distribution P is, analogously to (2.1), equal to

P ∗δx1 ∗ · · · ∗ δxn for x1, . . . , xn ∈ R
d;

see [15, p. 124]. For all x, y ∈ G(Hλ; 1), we introduce the graph distance between x and y as

D(x, y) := inf{|�| : x, y ∈ �, � is a path in G(Hλ; 1)}.
Note that the graph distance corresponds to the chemical distance in the Bernoulli percolation
introduced in [1] and [5]. It is natural to think of the graph distance as a special travel time in
an FPP model.

Our first result concerns the asymptotic behavior of the graph distance between two points
in the infinite component of continuum percolation. Analogously to the classic FPP, we obtain
the following large deviation result.

Theorem 2.1. Suppose that λ > λc and that µ is the constant given in Lemma 3.5 below. Then,
for all ε > 0,

lim sup
‖x‖→∞

log P0,x(0 ↔ x, D(0, x)/µ‖x‖ /∈ (1 − ε, 1 + ε))

‖x‖ < 0.

Our second result concerns the asymptotic shape of the points which can be reached by k

hops from a given point of the infinite component.

Theorem 2.2. (Shape theorem.) Suppose that λ > λc and that µ is the constant given in
Lemma 3.5 below. Let Ck := G({x ∈ C∞ : D(0, x) ≤ k}; 1). Then, given any ε > 0, there
exists a constant c > 0 such that

P0

((
C∞ ∩ B

(
0,

(1 − ε)k

µ

))
⊂ Ck ⊂ B

(
0,

(1 + ε)k

µ

) ∣∣∣∣ 0 ∈ C∞
)

≥ 1 − exp(−ck),

when k is large enough.
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The shape theorem says that, for large k, Ck looks like a big ‘ball’. Corollary 3.1 below
implies that, given a large enough constant c > 0, with high probability, there is no large hole
of radius c(log k)1/(d−1) in Ck . Specifically, given any ε > 0, every big ball contained in
B(0, (1 − ε)k/µ) with radius larger than c(log k)1/(d−1) has points in Ck .

We make some necessary preparations and obtain the preliminary lemmas in Section 3. The
proofs of our main results are given in Section 4.

Throughout this paper, c, c1, c2, . . . denote positive finite constants that may change from
line to line according to the context.

3. Preliminary results

First let us recall some basic results of percolation theory. We will use these results
frequently in this paper. With the help of Theorem 3.1 below we can convert a problem
concerning dependent percolation into a problem concerning Bernoulli bond percolation. We
use Theorems 3.1 and 3.2 and Proposition 3.1, below, to obtain large deviation results for some
variables in continuum percolation.

For 0 ≤ π ≤ 1, let Zπ = {Zπ
x : x ∈ Z

d} be a family of independent random variables
satisfying

P(Zπ
x = 1) = 1 − P(Zπ

x = 0) = π for all x ∈ Z
d .

Theorem 3.1. (Theorem 7.65 of [7].) Let d, k ≥ 1. There exists a nondecreasing function
π : [0, 1] → [0, 1] satisfying π(δ) → 1 as δ → 1 such that the following assertion holds. If
Y = {Yx : x ∈ Z

d} is a k-dependent family of random variables satisfying

P(Yx = 1) ≥ δ for all x ∈ Z
d ,

then we have the stochastic domination

Y ≥st Zπ(δ).

Let B := ∏d
i=1[ai, bi] be a box in R

d . We say that a component C contained in B is crossing
for B if, for all i ∈ {1, 2, . . . , d}, there exist vertices x(i) = (x1(i), x2(i), . . . , xd(i)) ∈ C and
y(i) = (y1(i), y2(i), . . . , yd(i)) ∈ C such that |xi(i) − ai | ≤ 1

2 and |yi(i) − bi | ≤ 1
2 . We often

call C a crossing component in B.

Proposition 3.1. (Proposition 10.13 of [14].) Suppose that λ > λc, and that (φs, s ≥ 0) is
increasing with (φs/log s) → ∞ as s → ∞ and φs ≤ s for all s. Let Es denote the event
that

(i) there is a unique component of G(Hλ,s; 1) that is crossing for B(s), and

(ii) no other component of G(Hλ,s; 1) has diameter greater than φs .

Then lim sups→∞ φ−1
s log P(Ec

s ) < 0.

For any graph G, let Lj (G) denote the order of its j th-largest component; if it has fewer
than j components then Lj (G) = 0.

Theorem 3.2. (Theorem 10.19 of [14].) Suppose that λ > λc and that 0 < ε < 1
2 . Let Es be

the event that

(i) L2(G(Hλ,s; 1)) < ελp∞(λ)sd , and

(ii) (1 − ε)λp∞(λ) ≤ s−dL1(G(Hλ,s; 1)) ≤ (1 + ε)λp∞(λ).
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Then there exist constants c1 > 0 and s0 > 0 such that

P(Ec
s ) ≤ exp(−c1s

d−1), s ≥ s0.

Moreover, there is a lower bound of the form exp(−c2s
d−1) (with c2 > 0) for the probability

that property (i) fails.

Theorem 3.3. (Theorem 10.20 of [14].) Suppose that λ > λc, ε ∈ (0, 1
2 ), and that (φs, s ≥ 0)

satisfies (φs/log s) → ∞ as s → ∞ and φs ≤ s/2 for all s. Let Gs denote the event that there
exists a unique component Cb(B(s)) of G(Hλ,s; 1) of metric diameter at least φs . Let E′

s be
the event that Gs holds, and, additionally, let the order of Cb(B(s)) satisfy

(1 − ε)λp∞ ≤ s−d |Cb(B(s))| ≤ (1 + ε)λp∞.

Then there exist constants c1 > 0, c2 > 0, and s0 > 0 such that

exp(−c1φs) ≤ P(Gc
s) ≤ P((E′

s)
c) ≤ exp(−c2φs), s ≥ s0.

Now we prove some lemmas and preliminary results which lead to our main results.

Lemma 3.1. Suppose that λ > λc and that A is a Borel set in R
d . Then there exists a constant

c > 0 such that, for all large k, we have

P(there exists a component C ⊂ G(Hλ; 1), k ≤ |C| < ∞, C ∩ A �= ∅)

≤ λ|A| exp(−ck(d−1)/d).

Proof. Let N(k) denote the number of vertices of Hλ ∩ A lying in finite components of
order at least k, and let Cx be a component of G(Hλ,x; 1) which contains x. Then

P(there exists a component C ⊂ G(Hλ; 1), k ≤ |C| < ∞, C ∩ A �= ∅)

≤ E(N(k)) (using Palm theory—see Theorem 1.6 of [14])

=
∫

A

λ Px(k ≤ |Cx | < ∞) dx

= λ|A|
∞∑
i=k

pi(λ).

Using Theorem 10.15 of [14], we can obtain the correct bound of the above term and complete
our proof.

Lemma 3.2. Suppose that λ > λc. There exists a constant c > 0 such that, for any x ∈ R
d

with large ‖x‖,
P0,x(0 ↔ x, 0 �∈ C∞) ≤ exp(−c‖x‖).

Proof. For any x ∈ R
d with large ‖x‖, we have

P0,x(0 ↔ x, 0 �∈ C∞)

≤ P(there exists a path � from a point in B(0, 1) to a point in B(x, 1), � �⊂ C∞)

≤ P(there exists a component C of metric diameter at least ‖x‖ − 2 in B(‖x‖),
C �⊂ C∞)

≤ P
(
there exists a component C of metric diameter at least ‖x‖ − 2 in B(‖x‖),
|C| ≤ 1

2λp∞(λ)‖x‖d
)

+ P
(
there exists a component C in B(‖x‖), |C| > 1

2λp∞(λ)‖x‖d , C �⊂ C∞
)
.
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Then, using Theorem 3.3 and Lemma 3.1, there exist constants c1 > 0 and c2 > 0 such that,
for large ‖x‖, we have

P0,x(0 ↔ x, 0 �∈ C∞) ≤ exp(−c1‖x‖) + exp(−c2‖x‖d−1).

Lemma 3.3. Suppose that λ > λc. Then there exists a constant c > 0 such that, for all large r ,

P(B(0, r) ∩ C∞ = ∅) ≤ exp(−crd−1).

Proof. Clearly, B(2r/
√

d) ⊆ B(0, r). Let C1 = C1(B(2r/
√

d)) be the largest component
of G(Hλ,2r/

√
d; 1). Then we have

P(B(0, r) ∩ C∞ = ∅) ≤ P

(
B

(
2r√
d

)
∩ C∞ = ∅

)
≤ P

(
|C1| <

1

2

(
2r√
d

)d

λp∞(λ)

)
+ P

(
|C1| ≥ 1

2

(
2r√
d

)d

λp∞(λ), C1 �⊂ C∞
)

.

Then, by Theorem 3.2 and Lemma 3.1, there exist constants c1 > 0 and c2 > 0 such that, for
large r ,

P(B(0, r) ∩ C∞ = ∅) ≤ exp(−c1r
d−1) + exp(−c2r

d−1).

Corollary 3.1. Suppose that λ > λc. Then there exists a constant c > 0 such that, as r → ∞,

P(there exists B(x, c(log r)1/(d−1)) ⊂ B(0, r), B(x, c(log r)1/(d−1)) ∩ C∞ = ∅) → 0.

Proof. Clearly, there exists a constant c1 > 0 such that, for all large enough constants c > 0,
there exists a collection of balls B := {B1,r , B2,r , . . . , Bm(r),r} of radius c(log r)1/(d−1)/4 such
that, for all r > 0,

B(0, r) ⊂
m(r)⋃
i=1

Bi,r ,

where m(r) = c1r
d/(log r)d/(d−1). Note that if a ball B(x, c(log r)1/(d−1)) ⊂ B(0, r), there

certainly exists a ball Bi0,r ∈ B such that Bi0,r ⊂ B(x, c(log r)1/(d−1)). So we have

P(there exists B(x, c(log r)1/(d−1)) ⊂ B(0, r), B(x, c(log r)1/(d−1)) ∩ C∞ = ∅)

≤ P

(m(r)⋃
i=1

{Bi,r ∩ C∞ = ∅}
)

≤
m(r)∑
i=1

P(Bi,r ∩ C∞ = ∅).

By Lemma 3.3, there exists a constant c2 > 0 such that, for sufficiently large r ,

m(r)∑
i=1

P(Bi,r ∩ C∞ = ∅) ≤ c1r
d

(log r)d/(d−1)
exp(−c2c

d−1 log r).

So if we choose a large enough constant c > 0, the right-hand side of the above equation tends
to 0 when r tends to ∞.
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Lemma 3.4. Suppose that λ > λc. Then there exists a constant ρ = ρ(λ, d) ≥ 1 such that

lim sup
‖x‖1→∞

log P0,x(0 ↔ x, D(0, x) ≥ ρ‖x‖1)

‖x‖1
< 0.

Furthermore, there exist constants ρ1 > 0 and c > 0 such that, for all x ∈ R
d , all t ≥ ρ1‖x‖,

and large enough t , we have

P0,x(0 ↔ x, D(0, x) ≥ t) ≤ exp(−ct). (3.1)

Proof. This lemma corresponds to Theorem 1.1 of [1], which is a similar result about
the chemical distance in Bernoulli bond percolation. Equation (3.1) is a parallel result of
Corollary 2.2 of [6]. Our proof mainly follows the strategy used in the proof of Theorem 1.1
of [1], but an additional argument is needed. Now we develop a renormalization technique for
continuum percolation. First let us introduce some additional notation. Given a finite subset
� ∈ Z

d , define the outer boundaries of � by

∂out� := {x ∈ �c : there exists a y ∈ �, {x, y} ∈ E
d}.

Given M > 0, let the random field (Xz, z ∈ Z
d) be defined as follows. Define concentric cubes

Bz and B+
z centered at the point Mz by Bz := B(M) ⊕ {Mz} and B+

z := B( 5
4M) ⊕ {Mz}. If

‖z − z′‖∞ = 1, we write z ∼∗ z′. Recall the definition of the crossing component, which was
defined immediately before Proposition 3.1. Define the event

Az := {there exists a unique crossing component Cz in B+
z ,

each subbox B(M/4) ⊕ (z + h), h ∈ {M/2, −M/2}d , contains a unique crossing

component, and all of these crossing components are connected to Cz},
and set

Xz :=
{

1 if Az occurs,

0 otherwise.

It is obvious that (Xz, z ∈ Z
d) is a two-dimensional, dependent random field. By Proposi-

tion 3.1, the probability that B+
z and each subbox B(M/4) ⊕ (z + h) ⊂ B+

z contains a unique
crossing component tends to 1 as M → ∞. The probability that all the metric diameters
of the components in B+

z are smaller than M/10 except Cz tends to 1 as M → ∞. So we
obtain P(Az) → 1 as M → ∞. Given 0 < δ < 1, we can choose Mδ so that, as long as
M ≥ Mδ, P(Xz = 1) ≥ δ for all z. Therefore, by Theorem 3.1 we can choose M0 > 0 such
that, as long as M ≥ M0, we have the stochastic domination

(Xz, z ∈ Z
d) ≥st (Z

p1
z , z ∈ Z

d), (3.2)

where (Z
p1
z , z ∈ Z

d) is a family of independent variables taking the value 1 with probability
p1 and 0 otherwise. We call the site z ∈ Z

d white if Xz = 1, and black otherwise.
Now we introduce some definitions similar to those given in [1]. Consider two points

x, y ∈ Hλ. Let a(x) and a(y) be the almost-sure unique sites of the renormalized lattice
such that x ∈ Ba(x) and y ∈ Ba(y). Set n := ‖a(x) − a(y)‖1, and choose a macroscopic path
A := a0a1 · · · an with a0 = a(x) and an = a(y). We denote by C∗

a the ∗-connected macroscopic
black cluster containing a, with C∗

a = ∅ if a is white. We will use the convention that, for a
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white site a, we define ∂outC∗
a = {a}. Define C := {C∗

a, a ∈ A}, which is the set of ∗-connected
black clusters intersecting A. Define

W :=
⋃
a∈A

⋃
b∈C̄∗

a

B+
b ,

where C̄∗
a := C∗

a ∪ ∂outC∗
a . If 0 ↔ x, let y be the origin. We can use the method in [1]

to construct a short path �0 between 0 and x in W . Since the path construction process of
continuum percolation is exactly the same as Bernoulli bond percolation, we omit the details.
Differing from the Bernoulli bond percolation, we have to do additional work with the path �0.
To ensure its length is small enough, we will make a slight modification. Suppose that two points
x1 and xt belong to a path � in B(s). Then there exists a path �′ := x1x2 · · · xt−1xt ⊆ � such that
B(xi,

1
2 ) overlaps only with B(xi−1,

1
2 ), 1 < i ≤ t , and B(xi+1,

1
2 ), 1 ≤ i < t . Since B(s +1)

contains the �t/2� disjoint balls B(x1,
1
2 ), B(x3,

1
2 ), . . . , we have 1

2 t |B(0, 1
2 )| ≤ |B(s + 1)|,

from which we know that there exists a constant c2 > 0 such that t ≤ c2|B(s)| when s is large
enough. Therefore, by refining �0 we can find a new path �′

0 ⊆ �0 ∈ W connecting 0 and x,
and a constant c3 > 0 such that |�′

0| ≤ ∑
B+

z ⊆W c2|B+
z | ≤ |W |/c3. So we have

P0,x(0 ↔ x, D(0, x) > ρ‖x‖1) ≤ P(|W | > ρc3‖x‖1).

It is easy to see that there exists a constant c4 > 0 such that

|W | < Mdc4

(
n + 1 +

∑
C∗∈C

|C∗|
)

.

So, using (3.2), we obtain

P(|W | > ρc3‖x‖1) ≤ P

(
n + 1 +

∑
C∗∈C

|C∗| > ρc3c
−1
4 M−d‖x‖1

)
≤ Pp1

(
n + 1 +

∑
C∗∈C

|C∗| > ρc3c
−1
4 M−d‖x‖1

)
. (3.3)

By the last arguments of the proof of Theorem 1.1 of [1], we know that the right-hand side
(RHS) of (3.3) satisfies the bound

RHS of (3.3) ≤ Pp1

( n∑
i=0

(|C̃∗
i | + 1) > ρc3c

−1
4 M−d‖x‖1

)
,

where the (C̃∗
i ) are independent, identically distributed random sets such that there exists an

h > 0 with E(exp{h(|C̃∗
i | + 1)}) < ∞. Note that n ≤ ‖x‖1 for large M , so if we choose ρ

appropriately large then there exists a constant c5 > 0 such that

RHS of (3.3) ≤ exp(−c5‖x‖1) for large ‖x‖1.

To see (3.1), just replace ρ‖x‖1 with t in the above inequalities.

Lemma 3.5. Suppose that λ > λc and that x, y ∈ R
d . There exists a constant µ ≥ 1 such

that, for each ε > 0,

lim‖x−y‖→∞ Px,y

(∣∣∣∣ D(x, y)

‖x − y‖ − µ

∣∣∣∣ > ε

∣∣∣∣ x, y ∈ C∞
)

= 0.
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Proof. First we introduce some definitions. Given x ∈ R
d , define

x̃ := arg inf
y∈C∞

‖x − y‖.

Assume that x = Me1 and s > 12M + 24, where M is a strict positive constant and e1 :=
(1, 0, . . . , 0). Define the three events

A1 := {
x̃ ∈ B

(
x, 1

4 s
)
, ỹ ∈ B

(
y, 1

4 s
)}

,

A2 := {
there exists a unique component Cb(B(s)) of G(Hλ,s; 1) of metric

diameter at least 1
6 s, 1

2 sdλp∞(λ) ≤ |Cb(B(s))| ≤ 3
2 sdλp∞(λ)

}
,

A3 := A2 ∩ {x̃, ỹ ∈ Cb(B(s))}.
Then we have

P(A1A3) ≥ P(A2) − P(Ac
1) − P(A1A2A

c
3).

The event A1A2A
c
3 cannot occur as, otherwise, there exists a point v in B(x, s/4) or B(y, s/4)

such that v ∈ C∞, v /∈ Cb(B(s)). Since the metric diameter of the component of G(Hλ,s; 1)

which contains v is larger than s/2 − s/4 − M − 2 > s/6, there are two components with
metric diameters larger than s/6, which cannot occur on the event A2. So A1A

c
3A2 = ∅. Then

we know that
P(A1A3) ≥ P(A2) − P(Ac

1).

By Theorem 3.3 and Lemma 3.3, there exists a constant c > 0 such that, for all large enough s,

P(A2) − P(Ac
1) ≥ 1 − exp(−c1s) − 2 exp(−c2s

d−1) ≥ 1 − exp(−cs).

It is obvious that if event A1A3 occurs then x̃, ỹ ∈ Cb(B(s)) and

D(x̃, ỹ) ≤ |Cb(B(s))| ≤ 3
2 sdλp∞(λ).

So we have, for all s > s0,

P
(
D(x̃, ỹ) > 3

2 sdλp∞(λ)
) ≤ P((A1A3)

c) ≤ exp(−cs).

Now we can give an upper bound of E(D(x̃, ỹ)):

E(D(x̃, ỹ)) =
∞∑

k=0

P(D(x̃, ỹ) > k) ≤ N +
∞∑

k=N

exp(−ck1/d) < ∞. (3.4)

Here N is a sufficiently large constant. For all x, y ∈ R, define Dx,y := D(x̃e1, ỹe1). For all
x, y, z ∈ Hλ, note that if (x, p1, . . . , y) is a path from x to y and (y, q1, . . . , z) is a path from
y to z, then (x, p1, . . . , y, q1, . . . , z) is a path from x to z. This immediately yields the triangle
inequality,

D0,n ≤ D0,m + Dm,n, (3.5)

where m, n ∈ Z
+ and 0 ≤ m < n. By the definition of Dm,n and Proposition 2.6 of [13], we

have

(i) {Dnk,(n+1)k, n ≥ 1} is a stationary and ergodic sequence for each k,

(ii) the distribution of {Dm,m+k, k ≥ 1} does not depend on m.
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By (3.4) we know that
0 < E(D0,1) < ∞. (3.6)

By (i), (ii), (3.5), and (3.6), applying the subadditive ergodic theorem [12], we conclude that
there exists a constant µ ≥ 0 such that

lim
n→∞

D0,n

n
= µ almost surely. (3.7)

By Lemma 3.3, for each ε > 0, we have

P(D0,n ≥ (1 − 2ε)n) ≥ P(B(0, εn) ∩ C∞ �= ∅, B(ne1, εn) ∩ C∞ �= ∅) → 1. (3.8)

Combining (3.7) and (3.8), we have µ ≥ 1. By (3.4) and its proof process, we know that, for
all x ∈ R, there exists a constant H > 0 such that E(D[x],x) < H . So, for each ε > 0,

P(D[x],x > εx) ≤ H

εx
→ 0 as x → ∞. (3.9)

Combing (3.7), (3.9), and the inequality D0,[x] − D[x],x ≤ D0,x ≤ D0,[x] + D[x],x , we have

D0,x

x
→ µ ≥ 1 in probability as ‖x‖ → ∞. (3.10)

By (3.10) and the isotropic property of continuum percolation, we know that, for all x, y ∈ R
d ,

D(x̃, ỹ)

‖x − y‖ → µ in probability as ‖x − y‖ → ∞. (3.11)

Now we define events

A4 := {there exists no finite component C of G(Hλ; 1) such that C ∩ B(x, 1) �= ∅

and C ∩ B(y, 1) �= ∅},
A5 := {for all q1, q2 ∈ B(x, 1) ∩ Hλ and q1 ↔ q2, we have D(q1, q2) ≤ √‖x − y‖,

for all q ′
1, q

′
2 ∈ B(y, 1) ∩ Hλ and q ′

1 ↔ q ′
2, we have D(q ′

1, q
′
2) ≤ √‖x − y‖}.

By (3.1), for large ‖x − y‖, there exists a constant c1 > 0 such that

P(there exist q1, q2 ∈ B(x, 1) ∩ Hλ, q1 ↔ q2, D(q1, q2) >
√‖x − y‖)

≤
∫

B(0,1)

∫
B(0,1)

λ2 Pq1,q2(q1 ↔ q2, D(q1, q2) >
√‖x − y‖) dq1 dq2

≤ exp(−c1
√‖x − y‖).

Using the above inequality and Lemma 3.1, we obtain

P(A4A5) → 1 as ‖x − y‖ → ∞. (3.12)

Given any ε > 0,

Px,y

(∣∣∣∣ D(x, y)

‖x − y‖ − µ

∣∣∣∣ ≤ ε

∣∣∣∣ x, y ∈ C∞
)

≥ Px,y

(∣∣∣∣ D(x, y)

‖x − y‖ − µ

∣∣∣∣ ≤ ε, A4A5

∣∣∣∣ x, y ∈ C∞
)

. (3.13)
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On event A4A5 and x, y ∈ C∞, let (x, v1, . . . , vm, y) be a path that realizes D(x, y)(G(Hλ ∪
{x, y}; 1)). Then v1, v2 ∈ C∞(G(Hλ; 1)). So we have

|D(x, y)(G(Hλ ∪ {x, y}; 1)) − D(̃x, ỹ)(G(Hλ; 1))|
≤ D(v1, x̃)(G(Hλ; 1)) + D(v2, ỹ)(G(Hλ; 1)) + 2

≤ 3
√‖x − y‖.

Hence,

RHS of (3.13) ≥ 1

Px,y(x, y ∈ C∞)
P

(∣∣∣∣ D(x̃, ỹ)

‖x − y‖ − µ

∣∣∣∣ ≤ ε − 3√‖x − y‖ , A4A5,

B(x, 1) ∩ C∞ �= ∅, B(y, 1) ∩ C∞ �= ∅

)
.

Then, by

Px,y(x, y ∈ C∞) − P(B(x, 1) ∩ C∞ �= ∅, B(y, 1) ∩ C∞ �= ∅) ≤ P(Ac
4)

→ 0 as ‖x − y‖ → ∞,

(3.11), and (3.12), we obtain

Px,y

(∣∣∣∣ D(x, y)

‖x − y‖ − µ

∣∣∣∣ ≤ ε

∣∣∣∣ x, y ∈ C∞
)

→ 1 as ‖x − y‖ → ∞.

This completes the proof.

Suppose that λ > λc. For x = (x1, . . . , xd) ∈ R
d , suppose that x ∈ C∞. For s > x1, define

the passage time from x to a hyperplane Hs as

bx,s := inf{D(x, y) : y = (y1, . . . , yd) ∈ C∞, y1 > s},
where Hs is orthogonal to the first-coordinate axis at (s, 0, . . . , 0).

Lemma 3.6. Suppose that λ > λc, 0 ∈ C∞, and that µ is the constant given in Lemma 3.5.
Then we have

lim
s→∞

b0,s

s
= µ in probability (by measure P0).

Proof. For simplicity of exposition, in the proofs of Lemma 3.6 and Lemma 3.7, we restrict
ourselves to the case in which d = 2; the proofs of the results pose no serious difficulty when
d ≥ 3. For notational simplicity, define R := [−1, 0] × [−r, r]. We first prove that there exist
constants c1 > 0 and c2 > 0 such that, for all large r ,

P(there exist x, y ∈ C∞ ∩ R such that D(x, y) > c1r) ≤ exp(−c2r). (3.14)

Suppose that ρ1 is the constant given in Lemma 3.4. Let c1 = 3ρ1. Then we have

P(there exist x, y ∈ C∞ ∩ R, D(x, y) > 3ρ1r)

≤
∫

R

∫
R

λ2 Px,y(x ↔ y, D(x, y) > 3ρ1r) dx dy.

It is easy to see that, for large r and x, y ∈ R, 3ρ1r ≥ ρ1‖x −y‖. So, by (3.1) and the above
inequality, we obtain (3.14).
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Now we prove that there exists a constant c3 > 0 such that, for all large r > 0,

P(R ∩ C∞ = ∅) ≤ exp(−c3r). (3.15)

Obviously, for large r ,

P(R ∩ C∞ = ∅)

≤ P(there exists no crossing component for B(2r)) (3.16)

+ P(there exists a crossing component C of G(Hλ,2r ; 1), Cb ∩ C∞ = ∅). (3.17)

By Proposition 3.1, there exists a constant c4 > 0 such that (3.16) ≤ exp(−c4r) when r is
large enough. Furthermore,

(3.17) ≤ P
(
there exists a crossing component C of G(Hλ,2r ), |C| < 1

2λp∞(λ)4r2)
+ P

(
there exists a component C ⊂ G(Hλ; 1), 1

2λp∞(λ)4r2 ≤ |C| < ∞,

C ∩ B(2r) = ∅
)
.

By Proposition 3.1 and Lemma 3.1, we know that there exists a constant c5 > 0 such that
(3.17) ≤ exp(−c5r) when r is large enough. So (3.15) follows.

For each ε > 0, we now estimate the probability of {(1− ε)µs ≤ b0,s ≤ (1+ ε)µs}. Define
Ri := [s, s + 1]× [iηs, (i + 1)ηs], −N ≤ i ≤ N − 1, where η = min{ε/2c1, ε/(2 + ε)}, c1 is
a constant given by (3.14), and N = min{n ∈ N : √

(nη)2 + 1 ≥ (1 + ε)µ}.
For all x ∈ [s, s + 1] × (−∞, +∞)\[s, s + 1] × [−Nηs, Nηs], by the definition of N

we have ‖x‖ > (1 + ε)µs. Since η ≤ ε/(2 + ε), we have, for all x ∈ R0, (1 + ε/2)‖x‖ ≤
(1 + ε/2)

√
(s + 1)2 + (ηs)2 < (1 + ε)s when s is sufficiently large. So, if s is large enough,

we have

P0((1 − ε)µs ≤ b0,s ≤ (1 + ε)µs | 0 ∈ C∞)

≥ P0

( N−1⋂
i=−N

{
Ri ∩ C∞ �= ∅, for all x ∈ Ri ∩ C∞,(
1 − ε

2

)
µ‖x‖ ≤ D(0, x) ≤

(
1 + ε

2

)
µ‖x‖

} ∣∣∣∣ 0 ∈ C∞
)

≥ P0

( N−1⋂
i=−N

{
there exists v ∈ Ri ∩ C∞,

(
1 − ε

4

)
µ‖v‖ ≤ D(0, v) ≤

(
1 + ε

4

)
µ‖v‖,

for all x ∈ Ri, x ↔ v, D(v, x) ≤ εs

4

} ∣∣∣∣ 0 ∈ C∞
)

≥ 1 −
N−1∑
i=−N

(
P0(Ri ∩ C∞ = ∅ | 0 ∈ C∞)

+ P0
(
Ri ∩ C∞ �= ∅,

for all v ∈ Ri ∩ C∞, |D(0, v) − µ‖v‖| > 1
4ε‖v‖ ∣∣ 0 ∈ C∞

)
+ P0

(
there exist x, v ∈ Ri ∩ C∞, D(x, v) >

εs

4

∣∣∣∣ 0 ∈ C∞
))

. (3.18)
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Since the second term in the sum on the right-hand side of (3.18) is less than or equal to

sup
v∈Ri

{
P0,v

(
v ∈ C∞, |D(0, v) − µ‖v‖| > 1

4ε‖v‖ ∣∣ 0 ∈ C∞
)}

and εs/4 > c1ηs/2, by (3.15), Lemma 3.5, and (3.14), there exist constants c6 > 0 and c7 > 0
such that

P0((1 − ε)µs ≤ b0,s ≤ (1 + ε)µs | 0 ∈ C∞)

≥ 1 − 2N(exp(−c6ηs) + o(1) + exp(−c7ηs))

→ 1 as s → ∞.

Lemma 3.7. Suppose that λ > λc and that µ is the constant given in Lemma 3.5. For s1 > 0
and s2 = O(s1), define the passage time by

ls1,s2 := inf
{
D(x, y) : x ∈ [−1, 0] × [− 1

2 s2,
1
2 s2

]d−1 ∩ Hλ,

y ∈ [s1, s1 + 1] × (−∞, +∞)d−1 ∩ Hλ

}
.

Then we have

lim
s1→∞

ls1,s2

s1
= µ in probability.

Proof. As mentioned in the proof of Lemma 3.6, we focus on the case in which d = 2.
Define R := [−1, 0] × [−s2/2, s2/2]. Since s2 = O(s1), there exists a constant c3 > 0 such
that s2/s1 ≤ c3. Recall the definition of bx,s , which was defined above Lemma 3.6. For each
ε > 0, we have

P((1 − ε)µs1 ≤ ls1,s2 ≤ (1 + ε)µs1)

≥ P(R ∩ C∞ �= ∅, for all x ∈ R ∩ C∞, |bx,s1 − µs1| ≤ εs1)

− P(there exists a component C of G(Hλ; 1), C ∩ R �= ∅, s1 ≤ |C| < ∞).

Now we bound the two terms on the right-hand side of the above inequality. Let N := �c1c3/ε�,
where c1 is a positive constant given by (3.14). Define Ri := [−1, 0] × [−s2/2 + (i −
1)s2/N, −s2/2 + is2/N ], 1 ≤ i ≤ N . For the first term,

P(R ∩ C∞ �= ∅, for all x ∈ R ∩ C∞, |bx,s1 − µs1| ≤ εs1)

≥ P

( N⋂
i=1

{Ri ∩ C∞ �= ∅, for all x ∈ Ri ∩ C∞, |bx,s1 − µs1| ≤ εs1}
)

≥ P

( N⋂
i=1

{
there exists v ∈ Ri ∩ C∞, |bv,s1 − µs1| ≤ εs1

2
, for all x ∈ Ri ∩ C∞,

D(v, x) ≤ εs1

2

})
≥ 1 −

N∑
i=1

(
P(Ri ∩ C∞ = ∅)

+ P

(
Ri ∩ C∞ �= ∅, for all v ∈ Ri ∩ C∞, |bv,s1 − µs1| >

εs1

2

)
+ P

(
there exists x, y ∈ Ri ∩ C∞, D(x, y) >

εs1

2

))
. (3.19)
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Since the second term in the sum on the right-hand side of (3.19) is less than or equal to

sup
v∈Ri

{
Pv

(
v ∈ C∞, |bv,s1 − µs1| > 1

2εs1
)}

and εs1 > c1s2/N , by (3.15), Lemma 3.6, and (3.14), we know there exist constants c4 > 0
and c5 > 0 such that

P(R ∩ C∞ �= ∅, for all x ∈ R ∩ C∞, |bx,s1 − µs1| ≤ εs1)

≥ 1 − N

(
exp

(
−c4s1

N

)
+ o(1) + exp

(
−c5s1

N

))
→ 1 as s1 → ∞.

For the second term, by Lemma 3.1 we have

P(there exists a component C of G(Hλ; 1), C ∩ R �= ∅, s1 ≤ |C| < ∞) → 0 as s1 → ∞.

4. Final proofs

Proof of Theorem 2.1. The proof is divided into two parts: the upper large deviations and
the lower large deviations. First we prove that there exists a constant c > 0 satisfying the upper
large deviation inequality

P0,x(0 ↔ x, D(0, x) > (1 + ε)µ‖x‖) ≤ exp(−c‖x‖),
when ‖x‖ is large enough. The lines of our main proof follow those in [5]. We now present
some definitions and notation analogous to those in [5]. For all x ∈ R

d , define the following
set around x:

�M
x := {y ∈ B(x,

√
M) ∩ Hλ : y ↔ ∂B(x, M)}.

Here y ↔ ∂B(x, M) means that there exists a path in G(Hλ; 1) connecting y and a point
outside ∂B(x, M). We define the related random variable IM

x by

IM
x :=

⎧⎨⎩x if �M
x = ∅,

arg inf
y∈�M

x

‖x − y‖ otherwise.

Recall the definition of x̃, which was defined in the proof of Lemma 3.5. By Lemma 3.1 and
Lemma 3.3, we have

P(IM
x �= x̃) ≤ P(there exists a component C ⊂ G(Hλ; 1), M − √

M ≤ |C| < ∞,

C ∩ B(x,
√

M) �= ∅) + P(B(x,
√

M) ∩ C∞ = ∅)

→ 0 as M → ∞.

For all x, y ∈ R
d , if x or y is not a Poisson point, let D(x, y) = ∞. So by (3.11) we obtain

D(I
‖x−y‖
x , I

‖x−y‖
y )

‖x − y‖ → D(x̃, ỹ)

‖x − y‖ → µ in probability. (4.1)
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Now we introduce a dependent bond percolation (Xe, e ∈ E
d). For each edge e = (x, y) ∈ E

d

and η(ε) > 0, we define the event Re := {D(IM
Mx, I

M
My) ≤ Mµ(1 + η)} and set

Xe :=
{

1 if Re occurs,

0 otherwise.

It is easy to see that the states of the edges are finitely dependent. By (4.1) and Theorem 3.1,
for each constant p1 < 1, we can choose M0 > 0 such that, as long as M > M0, we have the
stochastic domination

(Xe, e ∈ E
d) ≥st (Z

p1
e , e ∈ E

d), (4.2)

where (Z
p1
e , e ∈ E

d) is an independent Bernoulli bond percolation. For each z ∈ Z
d , each

x ∈ R
d , and each r > 0, we respectively define the annuluses in Z

d and R
d as

AZd (z, r) := {
y ∈ Z

d : 1
2 r ≤ ‖y − z‖1 ≤ r

}
,

ARd (x, r) := {
y ∈ R

d : 1
2 r ≤ ‖y − x‖1 ≤ r

}
.

Suppose that ρ is the constant given in Lemma 3.4. For each α = η/2ρ, define an event G in
(Xe, e ∈ E

d) by

G := {there exist a ∈ AZd (0, α‖z‖1) and b ∈ AZd (z, α‖z‖1), D(a, b) ≤ (1 + 3α)‖z‖1},
where D(·, ·) is the chemical distance defined in [5]. By (4.2) and Step 3 in the proof of
Theorem 1.3 of [5], we know that, for large M , there exists a constant c1 > 0 such that

P(Gc) ≤ exp(−c1‖z‖1), (4.3)

when ‖z‖1 is large enough. The details of the proof are given in [5], and thus we omit them.
Now suppose that x ∈ R

d is on the axis and that ‖x‖ is sufficiently large. Then we can choose an
appropriate M such that ‖x‖ is an integer multiple of M , i.e. z = x/M , and (4.3) holds. Suppose
that the event G occurs. Then, by the relationship between (Xe, e ∈ E

d) and G(Hλ; 1), it is
easy to show that there exists a path � from some point S ∈ D1 = ARd (0, α‖x‖) ⊕ B(0,

√
M)

to some point T ∈ D2 = ARd (x, α‖x‖) ⊕ B(0,
√

M) and that |�| ≤ (1 + 3α)(1 + η)µ‖x‖.
Given ε > 0, we can choose the corresponding η(ε) such that 2η+(1+3α)(1+η)µ ≤ (1+ε)µ,
which implies that

G ∩ {S ∈ C∞} ∩ {0 ↔ S, D(0, S) ≤ η‖x‖} ∩ {T ↔ x, D(T , x) ≤ η‖x‖}
⊆ {0 ↔ x, D(0, x) ≤ (1 + ε)µ‖x‖}.

Therefore,

P0,x(0 ↔ x, D(0, x) > (1 + ε)µ‖x‖)
≤ P0(there exists S ∈ D1, 0 ↔ S, D(0, S) > η‖x‖)

+ Px(there exists T ∈ D2, T ↔ x, D(T , x) > η‖x‖)
+ P(there exist S ∈ D1, T ∈ D2, S ↔ T , S /∈ C∞) + P(Gc)

≤
∫

D1

λ P0,S(0 ↔ S, D(0, S) > η‖x‖) dS +
∫

D2

λ Px,T (T ↔ x, D(T , x) > η‖x‖) dT

+
∫

D1

∫
D2

λ2 PS,T (S ↔ T , S /∈ C∞) dS dT + P(Gc).
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Now we bound the above four terms. Since S ∈ ARd (0, α‖x‖) ⊕ B(0,
√

M) and α = η/2ρ,
by Lemma 3.4, there exists a constant c2 > 0 such that

P0,S(0 ↔ S, D(0, S) > η‖x‖) ≤ P0,S(0 ↔ S, D(0, S) > ρ‖S‖) ≤ exp(−c2‖x‖), (4.4)

Px,T (T ↔ x, D(T , x) > η‖x‖) ≤ exp(−c2‖x‖), (4.5)

when ‖x‖ is sufficiently large. By Lemma 3.13 we know that there exists a constant c3 > 0
such that, for large ‖x‖,

PS,T (S ↔ T , S /∈ C∞) ≤ exp(−c3‖x‖). (4.6)

Combining (4.3), (4.4), (4.5), and (4.6), we complete the proof of the upper large deviation
inequality.

In the following, we prove that there exists a constant c > 0 such that

P0,x(0 ↔ x, D(0, x) < (1 − ε)µ‖x‖) ≤ exp(−c‖x‖),
when ‖x‖ is large enough. Garet and Marchand [5] used the method provided in the proof of
Theorem 3.1 of [8] to obtain the lower large deviations results. For our continuum model, it is
natural to expect that method would work also. It does. Similarly to the proof of the lower large
deviations in [5], we just need to prove the lemmas, given in this paper as Lemmas 3.5–3.7, that
appear in [8]. Garet and Marchand [5] considered all directions in Z

d for the Bernoulli bond
percolation model, but here we just need to consider the case along the coordinate axes because
of the isotropic property of the continuum percolation. Now we give some definitions analogous
to those in [8]. For each k = (k1, k2) ∈ Z

2 and integers M and N satisfying M > N > 1,
define

S(k) := {v ∈ R
2 : Nk ≤ v < N(k + 1)},

T (k) := {v ∈ R
2 : Nk − M ≤ v < N(k + 1) + M}.

Here T (k) is a very large box and contains S(k) at its center. Let � := (v(0), . . . , v(ν)) be a
path from v(0) = 0 to a point v(ν) ∈ Hλ,0 ∩{x ∈ R

2, x1 > n}. Then we can find the following
two sequences related to �. Let k(0) = 0 and a(0) = 0, let v(a(1)) be the first vertex along �

with the property that v(a) /∈ T (k(0)), and let k(1) be the unique k such that v(a(1)) ∈ S(k).
Continuing recursively we can obtain sequences a(0), . . . , a(τ (�)) and k(0), . . . , k(τ (�)) such
that

1. 0 = a(0) < a(1) < · · · < a(τ(�)) < ν,

2. v(a(i)) ∈ S(k(i)),

3. a(i + 1) is the smallest integer a larger than a(i) such that v(a) /∈ T (k(i)).

The final terms satisfy, for all a(τ(�)) ≤ j ≤ ν,

v(j) ∈ T (k(τ (�))).

By the process of ‘loop removal’ [8], we can remove the double points in σ = (k(0), . . . ,

k(τ (�))) and obtain a subsequence of σ :

σ̃ = (l(0), . . . , l(ρ(�))),
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where l(a) = k(ja) and 0 = j0 < j1 < · · · < jρ(�) ≤ τ(�). Note that, although we
may have jρ(�) < τ(�), it is always true that k(jρ(�)) = k(τ (�)). Now consider the portion
�(i) = (v(a(i − 1)), . . . , v(a(i))) of � which stretches between S(k(i − 1)) and S(k(i)).
Define

L(i) = max
m=1,2

|vm(a(i)) − vm(a(i − 1))|.

By construction, M ≤ L(i) ≤ M + N for 1 ≤ i ≤ τ . For 1 ≤ i ≤ ρ(�), consider the portion
�(ji) between S(k(ji−1)) and S(k(ji)), and color the vector l(i) = k(ji) white if

|�(ji)| ≤ (µ − 2ε)L(ji),

and black otherwise. Let ω be the white points in the sequence (l(1), . . . , l(ρ(�))).
Now we prove the lemmas that correspond to those used in the proof of Theorem 3.1 of [8].

The proofs of the lemmas given in this paper as Lemmas 3.5 and 3.6 are exactly the same, and
so we just need to prove the lemma given in this paper as Lemma 3.7.

Suppose that 0 < ε < µ/5. Define p = p(M, N, ε) to be the probability that some
point x ∈ C∞ ∩ S(0) is joined to some point y outside the square [−M + N, M)2, and let
D(x, y) < (M + N)(µ − 2ε). Then we should have

p(M, N, ε) → 0 as M, N → ∞,

so long as M ≥ N(2µ/ε). Note that our notation lm,n corresponds to the notation lnm in [8].
Following the lines of the proof in [8] we have

p(M, N, ε) ≤ 4 P(lM−N,3(M−N) ≤ (M − N)(µ − ε)).

Therefore, by Lemma 3.7 we have p(M, N, ε) → 0 as M − N → ∞. So the corresponding
lemmas in [8] are all proved and the proof is thus complete.

Proof of Theorem 2.2. The proof follows naturally from the uniform estimates in Theo-
rem 2.1. First, it is easy to see that

1 − P0

((
C∞ ∩ B

(
0,

(1 − ε)k

µ

))
⊂ Ck ⊂ B

(
0,

(1 + ε)k

µ

) ∣∣∣∣ 0 ∈ C∞
)

≤ P0

(
Ck �⊂ B

(
0,

(1 + ε)k

µ

) ∣∣∣∣ 0 ∈ C∞
)

+ P0

(
Ck �⊃

(
C∞ ∩ B

(
0,

(1 − ε)k

µ

)) ∣∣∣∣ 0 ∈ C∞
)

.

Let us now estimate each term separately. By Palm theory,

P0

(
Ck �⊂ B

(
0,

(1 + ε)k

µ

) ∣∣∣∣ 0 ∈ C∞
)

= P0

(
there exists x ∈ C∞, ‖x‖ >

(1 + ε)k

µ
, D(0, x) ≤ k

∣∣∣∣ 0 ∈ C∞
)

≤
∫

‖x‖>(1+ε)k/µ

λ P0,x(0 ↔ x, D(0, x) ≤ k | 0 ∈ C∞) dx.
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So, using Theorem 2.1, there exists a constant c1 > 0 such that

P0

(
Ck �⊂ B

(
0,

(1 + ε)k

µ

) ∣∣∣∣ 0 ∈ C∞
)

< exp(−c1k),

when k is large enough.
Now we estimate the second term. Suppose that ρ1 is the constant given in Lemma 3.4. Let

ρ2 > ρ1 and 1/ρ2 < (1 − ε)/µ. Then we have

P0

(
Ck �⊃

(
C∞ ∩ B

(
0,

(1 − ε)k

µ

)) ∣∣∣∣ 0 ∈ C∞
)

= P0

(
there exists x ∈ C∞, ‖x‖ ≤ (1 − ε)k

µ
, D(0, x) > k

∣∣∣∣ 0 ∈ C∞
)

≤
∫

‖x‖≤k/ρ2

λ P0,x(0 ↔ x, D(0, x) > k | 0 ∈ C∞) dx

+
∫

k/ρ2<‖x‖≤(1−ε)k/µ

λ P0,x(0 ↔ x, D(0, x) > k) dx.

By the above inequality, using (3.1) and Theorem 2.1, we can choose a constant c2 > 0 such
that, for large k,

P0

(
Ck �⊃

(
C∞ ∩ B

(
0,

(1 − ε)k

µ

)) ∣∣∣∣ 0 ∈ C∞
)

≤ exp(−c2k).

Now we have given the correct bounds to the two terms, completing the proof.
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