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Summary. We formulate large deviations principle (LDP) for diffusion pair (Xε, ξε) =
(Xε

t , ξ
ε
t ), where first component has a small diffusion parameter while the second is ergodic

Markovian process with fast time. More exactly, the LDP is established for (Xε, νε) with
νε(dt, dz) being an occupation type measure corresponding to ξεt . In some sense we obtain
a combination of Freidlin-Wentzell’s and Donsker-Varadhan’s results. Our approach relies
the concept of the exponential tightness and Puhalskii’s theorem.

1. Introduction

Let ε be a small positive parameter, (Xε, ξε) = (Xε
t , ξ

ε
t )t≥0 be a diffusion pair defined on

some stochastic basis (Ω,F ,F = (Ft)t≥0,P) by Itô’s equations w.r.t. independent Wiener
processes Wt and Vt:

dXε
t = A(Xε

t , ξ
ε
t )dt+

√
εB(Xε

t , ξ
ε
t )dWt

dξεt =
1
ε
b(ξεt )dt+

1√
ε
σ(ξεt )dVt (1.1)

subject to fixed initial point (x0, z0).

Assume (Xε, ξε) is an ergodic process in the following sense. Let p(z) be the unique
invariant density of ξε,

ν(p)(dt, dz) = p(z)dtdz,

and Xt is a solution of an ordinary differential equation Ẋt = A(Xt) with A(x) =∫
R
A(x, z)p(z)dz subject to the same initial point x0 . Then for any bounded continu-

ous function h(t, z) and T > 0

P− lim
ε→0

∫ T

0
h(t, ξεt )dt =

∫ T

0

∫
R

h(t, z)ν(p)(dt, dz),

P− lim
ε→0

rT (Xε, X) = 0, (1.2)

where rT is the uniform metric on [0, T ]. The above-mentioned ergodic property is a
motivation to examine LDP for pair (Xε, ξε), or more exactly for pair (Xε, νε), where
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νε = νε(dt, dz) is an occupation measure on
(
R+ × R,B(R+) ⊗ B(R)

)
(B(R+), B(R) are

the Borel σ-algebras on R+ and R respectively) corresponding to ξε:

νε(∆× Γ) =
∫ ∞

0
I(t ∈ ∆, ξεt ∈ Γ)dt, ∆ ∈ B(R+), Γ ∈ B(R). (1.3)

A choice of νε as the occupation measure is natural since the first ergodic property in (1.2)
is nothing but

P− lim
ε→0

ρT (νε, ν(p)) = 0,

where ρT is Levy-Prohorov’s distance for restrictions of measures νε and ν(p) on [0, T ]×R.
Also the first Itô’s equation in (1.1) and the predictable quadratic variation

〈
Mε
〉
t

of a
martingale Mε

t =
∫ t

0 B(Xε
s , ξ

ε
s)dWs can be represented in the term of νε:

Xε
t = x0 +

∫ t

0

∫
R

A(Xε
s , z)ν

ε(ds, dz) +
√
εMε

t ,〈
Mε
〉
t

=
∫ t

0

∫
R

B2(Xε
s , z)ν

ε(ds, dz).

The random measure νε obeys the disintegration νε(dt, dz) = dtKνε(t, dz) with the tran-
sition kernel Kνε(t, dz) being probabilistic Dirac’s measure that is νε values in space
M = M[0,∞) of σ-finite (locally in t) measures ν = ν(dt, dz) on (R+ × R,B(R+) ⊗ B(R))
obeying the disintegration ν(dt, dz) = Kν(t, dz)dt with the probabilistic transition kernel
Kν(t, dz) (

∫
R
Kν(t, dz) ≡ 1). Xε values in the space C = C[0,∞) of continuous function.

Define metrics r and ρ in C and M respectively, letting

r(X ′, X ′′) =
∑
k≥1

rk(X ′, X ′′) ∧ 1
2k

and ρ(ν′, ν′′) =
∑
k≥1

ρk(ν′, ν′′) ∧ 1
2k

.

Evidently ergodic properties (1.2) are equivalent to

P− lim
ε→0

[
r(Xε, X) + ρ(νε, ν(p))

]
= 0

and so for examination of the LDP for (Xε, νε) we choose the metric space (C×M, r× ρ).

Recall the definition of LDP from Varadhan [1] adapted to our setting. The family (Xε, νε)
obeys the LDP in the metric space (C×M, r × ρ) if

(0.) there exists a function L(X, ν), X ∈ C, ν ∈ M, values in [0,∞], such that its level sets
are compacts in (C×M, r × ρ);

(1.) for any open set G from (C×M, r × ρ)

limε→0ε log P
(
(Xε, νε) ∈ G

)
≥ − inf

(X,ν)∈G
L(X, ν);
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(2.) for any closed set F from (C×M, r × ρ)

limε→0ε log P
(
(Xε, νε) ∈ F

)
≤ − inf

(X,ν)∈F
L(X, ν).

The function L(X, ν), meeting in (0.), (1.), and (2.), is named rate function (action func-
tional in the terminology of Freidlin and Wentzell [2] or good rate function in the termi-
nology of Stroock [3]).

Below we recall well known particular results in LDP’s related to pair (Xε, ξε) and give
corresponding forms of rate functions which will be inherited by a rate function for our
setting. Note at first LDP for family µε(dz) = νε([0, 1], dz) (on the space of probability
measures supplied by Levy-Prohorov’s metric) proved by Donsker and Varadhan [4], [5],
[6], [7] for a wide class of Markov processes ξεt = ξt/ε. Corresponding rate function obeys
an invariant form: for any probabilistic measure µ on R

I(µ) = − inf
∫
R

Lu(z)
u(z)

µ(dz),

where L is backward Kolmogorov’s operator, respecting to ξ, and where ‘inf ’ is taken over
all functions u(z) from the domain of definition for the operator L. For the diffusion case,
Gärtner’s type of I(µ) is well known ([8]):

I(µ) =

{
1
8

∫
R
σ2(z)

[
m′(z)
m(z) −

p′(z)
p(z)

]2
m(z)dz, dµ = m(z)dz, dm(z) = m′(z)dz,

∞, otherwise.
(1.4)

Freidlin-Wentzell’s result, [2], is devoted to LDP for diffusion Xε with drift A(x) and
diffusion B2(x) (independent of z) in the space of continuous functions on every finite
time interval, supplied by the uniform metric. A rate function, say, for [0, T ] time interval
is given by

S(X) =

{
1
2

∫ T
0

[Ẋt−A(Xt)]2

B2(Xt)
dt, dXt = Ẋtdt, X0 = x0

∞, otherwise.
(1.5)

Other type of LDP for a degenerate diffusion Xε defined by the first equation in (1.1) with
B(x, z) ≡ 0 and ξεt = ξt/ε, where ξt is Markov process values in a finite state space, also is
well known from Freidlin [9]. In this case rate function has a form similar to (1.5) (H(y, x)
is some non negative function):

S(X) =

{ ∫ T
0 H(Ẋt, Xt)dt, dXt = Ẋtdt, X0 = x0

∞, otherwise.
(1.6)

All above-mentioned LDP’s are inspired the examination of the LDP for (Xε, νε). In some
sense, the LDP for (Xε, νε) is a combination of Donsker-Varadhan’s and Freidlin-Wenzell’s
results. Namely LDP for νε is a generalization one for µε while LDP for Xε is implied
by LDP for νε and for a diffusion martingale scaled by

√
ε. Hence, a rate function for
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(Xε, νε), is defined as a sum: L(X, ν) = L1(X, ν) + L2(ν), where L1(X, ν) and L2(ν)
respect to Xε and νε and what is more L1(X, ν) has the same form as S(x) in (1.5)
with A(Xt) and B2(Xt) replaced on Aν(t,Xt) =

∫
R
A(Xt, z)Kν(t, dz) and B2

ν(t,Xt) =∫
R
B2(Xt, z)Kν(t, dz), where Kν(t, dz) is the transition kernel of measure ν.

Note that ξεt ∈ R and so the LDP for its occupation measure responds to a non compact
diffusion case. Also note that diffusion parameter B2(x, z) is not assumed to be non
singular and consequently B2(x, z) ≡ 0 is admissible. The last allows to derive LDP for
a singular diffusion parameter case from LDP for νε using the contraction principle of
Varadhan [1] (continuous mapping method of Freidlin [10]). This result extends above-
mentioned [9] for non compact case.

In contrast with Freidlin and Wentzell [2], Donsker and Varadhan [4-7], Gärtner [8], and
Veretennikov [11-12], and many others (see e.g. Acosta [13], Dupuis and Elis [14]) our
method of proof is based on Puhalskii’s theorem [15-16] and relies concepts of exponential
tightness and LD relative compactness.

The paper is organized as follows. In Section 2, we formulate the general assumptions and
the main result. Section 3 contains the method of proving LDP which also has been used
in [17]. In Section 4, we check the exponential tightness while in Section 5 and 6 the upper
and lower bounds in local LDP are verified. The main results are proved in Section 7. All
technical results are gathered in Appendix.

2. Assumptions. Main result

1. We fix the following conditions which are assumed to be fulfilled hereafter.
(A.1) A(x, z) and B(x, z) are continuous in (x, z), Lipschitz continuous in x uniformly in z,

and sup
z

(
|A(0, z)|+ |B(0, z)|

)
<∞;

(A.2) σ2(z) is bounded and and uniformly positive function; it is continuously differentiable,
having bounded and Lipschitz continuous derivative;

(A.3) b(z) is Lipschitz continuous, satisfying

lim
|z|→∞

b(z)sign z = −∞.

It would be noted that (A.2) and (A.3) imply, so called, assumption (H∗) from [6].

2. It is well known (see [18]) that under (A.2) and (A.3) ξε is ergodic process obeying the
unique invariant density

p(z) = const.
exp

(
2
∫ z

0
b(y)
σ2(y)dy

)
σ2(z)

. (2.1)

For any ν from M with the transition kernel Kν(t, dz), define Kν(t, dz)-averaged drift
Aν(t, x) =

∫
R
A(x, z)Kν(t, dz) and diffusion parameter B2

ν(t, x) =
∫
R
B2(x, z)Kν(t, dz). If
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ν is absolutely continuous w.r.t. Λ(dt, dz) = dtdz, put

n(t, z) =
dν

dΛ
(t, z). (2.2)

If the density n(t, z) is absolutely continuous w.r.t. dz: dzn(t, z) = n′z(t, z)dz, a function
n′z(t, z) is chosen to be measurable in t, z.

Throughout the paper, we use conventions 0/0 = 0 and min(inf)(∅) =∞.

For every ν ∈M and X ∈ C define two quantities (comp. (1.4) and (1.5)):

F (ν) =

{ ∫∞
0

∫
R
σ2(z)

[
n′z(t,z)
n(t,z) −

p′(z)
p(z)

]2
n(t, z)dzdt, dν = ndΛ, dzn = n′zdz

∞, otherwise;

S(X, ν) =

{ ∫∞
0

[Ẋt−Aν(t,Xt)]2

B2
ν(t,Xt)

dt, dX = Ẋdt, X0 = x0

∞, otherwise.
(2.3)

3. Now we are in the position to formulate the main result.

Theorem 2.1. Under (A.1), (A.2), and (A.3) the family (Xε, νε) obeys the LDP in
(C×M, r × ρ) with rate function

L(X, ν) =
1
2
S(X, ν) +

1
8
F (ν).

4. LDP’s for families (Xε) and (ξε) run out from Theorem 2.1.

Corollary 2.1. (νε) obeys the LDP in (M, ρ) with rate function 1
8F (ν).

Corollary 2.2. (comp. [9]) (Xε) obeys the LDP in (C, r) with rate function S(X) =
infν∈M L(X, ν). In particular, if B(x, z) ≡ 0, it is sufficiently to take ‘inf ’ over all ν from
M with the transition kernel Kν(t, dz) ≡ µ(dz) with dµ = m(z)dz such that the density
m(z) = dµ

dz (z) is absolutely continuous w.r.t. dz (m′(z) = dm(z)
dz ). In this case, rate

function

S(X) =
{ 1

8

∫∞
0 H(Ẋt, Xt)dt, dX = Ẋdt, X0 = x0

∞, otherwise,
(2.4)

where

H(y, x) = inf
∫
R

σ2(z)
[m′(z)
m(z)

− p′(z)
p(z)

]2
m(z)dz, (2.5)

and where ‘inf ’ is taken over all above-mentioned measures µ such that

y =
∫
R

A(x, z)m(z)dz.

As an example, also the LDP for the family of the Donsker and Varadhan occupation
measures µε(dz) = νε([0, 1] × dz), corresponding to diffusion case, can be derived from
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Theorem 2.1. In fact, due to the contraction principle, (µε) obeys the LDP with Gärtner’s
type rate function (see (1.4)) I(µ) = inf 1

8F (ν), where ‘inf ’ is taken over all ν ∈ M such
that

ν(dt, dz) = I(1 ≥ t)dtµ(dz) + I(1 < t)ν(p)(dt, dz).

3. Preliminaries

For proving LDP for the family (Xε, νε) in the metric space (C×M, r×ρ) we apply Dawson-
Gärtner’s type theorem (see e.g. [19]. Following it the LDP in (C ×M, r × ρ) is implied
by LDP’s in the metric spaces (C[0,n] ×M[0,n], rn × ρn), n ≥ 1, where C[0,n] is the space
of continuous functions on the time interval [0, n], M[0,n] is the space of finite measures on
[0, n]×R, having probabilistic transition kernel w.r.t. dt, rn is the uniform metric, and ρn
is Levy-Prohorov’s metric. The definition of the LDP in (C[0,n] ×M[0,n], rn × ρn) is given
in terms of (0.), (1.), and (2.) with obvious modifications. Moreover, if Ln(X, ν), n ≥ 1
are rate functions, corresponding to LDP’s in (C[0,n] ×M[0,n], rn × ρn), n ≥ 1, then rate
function in (C×M, r × ρ) is defined as

L(X, ν) = sup
n
Ln(X, ν). (3.1)

Hence only the LDP in (C[0,T ] ×M[0,T ], rT × ρT ) has to be checked for any T > 0. Our
approach in proving the LDP in (C[0,T ] ×M[0,T ], rT × ρT ), T > 0 relies the concept of the
exponential tightness and notions of LD relative compactness and local LDP. Below we
give necessary definitions.

Definition 1. The family (Xε, νε) is said to be exponentially tight in the metric space
(C[0,T ] ×M[0,T ], rT × ρT ), if there exists an increasing sequence of compacts (Kj)j≥1 such
that

lim
j

lim
ε→0

ε log P
(
(Xε, νε) ∈ {C[0,T ] ×M[0,T ]} \Kj

)
= −∞. (3.2)

(Deuschel and Stroock [20], Lynch and Sethuraman [21].)

Definition 2. The family (Xε, νε) is said to be LD relatively compact in (C[0,T ]×M[0,T ], rT×
ρT ), if any decreasing to zero sequence (εk) contains further subsequence (εk) ((εk) ⊆ (εk))
such that the family (Xεk , νεk) obeys the LDP in (C[0,T ] × M[0,T ], rT × ρT ) (with rate
function LT (X, ν)).
(Puhalskii [15-16].)

Definition 3 The family (Xε, νε) is said to be obey the local LDP in (C[0,T ]×M[0,T ], rT×ρT )
with local rate function L̂T (X, ν), if for any (X, ν) from C[0,T ] ×M[0,T ]

lim
δ→0

limε→0ε log P
(
(rT (Xε, X) + ρT (νε, ν) ≤ δ

)
= lim
δ→0

limε→0ε log P
(
(rT (Xε, X) + ρT (νε, ν) ≤ δ

)
= −L̂T (X, ν). (3.3)
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(Freidlin and Wentzell [2].)

The connecting component of these notions used in the proof of the next result is Puhalskii’s
theorem [15-16]. Below we formulate only the first part of it.

Theorem P. If (Xε, νε) is exponentially tight family in (C[0,T ] ×M[0,T ], rT × ρT ), then
it is LD relatively compact.

The following result is a reformulation of Theorem 1.3 from [17].

Proposition 3.1. The exponential tightness and the local LDP for the family
(Xε, νε) in (C[0,T ] ×M[0,T ], rT × ρT ) imply the LDP in (C[0,T ] ×M[0,T ], rT × ρT ) for this
family with (good) rate function LT (X, ν) ≡ L̂T (X, ν), where L̂T (X, ν) is the local rate
function.

4. Exponential tightness in C[0,T ] ×M[0,T ]

Theorem 4.1. Under assumptions (A.1), (A.2), and (A.3) the family (Xε, νε) is expo-
nentially tight in C[0,T ] ×M[0,T ].

Proof. Following Definition 1, (3.2) has to be checked. It is clear it takes place if

lim
j

lim
ε→0

ε log P
(
Xε ∈ C[0,T ] \K ′j

)
= −∞

lim
j

lim
ε→0

ε log P
(
νε ∈M[0,T ] \K ′′j

)
= −∞, (4.1)

where K ′j and K ′′j are appropriate increasing sequences of compacts from C[0,T ] and M[0,T ]

respectively. It is naturally to use as compacts K ′j increasing sets of uniformly bounded
and equicontinuous functions from C[0,T ] parametrized by j. Since the process (Xε

t , ξ
ε
t )t≥0

is defined on a stochastic basis with the filtration F one can use Aldous-Puhalskii’s type
sufficient conditions (see [15], and also Theorem 3.1 in [17]) for C-exponential tightness:

lim
j

lim
ε→0

ε log P
(

sup
t≤T
|Xε

t | > j
)

= −∞

lim
δ→0

lim
ε→0

ε log sup
τ≤T−δ

P
(

sup
t≤δ
|Xε

τ+t −Xε
τ | > η

)
= −∞, ∀η > 0, (4.2)

where τ is a stopping time w.r.t. the filtration F. Following Theorem 3.1 in [17], (4.2)
implies the validity of the first part in (4.1) with above-mentioned compactsK ′j of uniformly
bounded and equicontinuous functions. Now, choose relevant compacts K ′′j , j ≥ 1:

K ′′j =
⋂
m≥j

{
ν ∈M[0,T ] :

∫ T

0

∫
|z|>m

ν(dt, dz) ≤ g(m)
}
, (4.3)
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where g(y), y > 0 is positive continuous decreasing function with lim
y→∞

g(y) = 0. In fact, if

νk ∈ K ′′j , k ≥ 1 then we have for any m ≥ j sup
k

∫ T

0

∫
|z|>m

νk(dt, dz) ≤ g(m) that is the

set K ′′j is tight and by Prohorov’s theorem (see [22]) is relatively compact. On the other
hand, since the set {z : |z| > m} is open a limit of any converging sequence from K ′′j also
belongs to K ′′j that is K ′′j is compact in (M[0,T ], ρT ). Evidently K ′′j ⊆ K ′′j+1. Below we
choose a special function g(y), suited to assumption (A.3), to satisfy the second part in
(4.1).

We check the validity of (4.1) in the next two lemmas.

Lemma 4.1. Under (A.1) the first relation in (4.1) holds.

Lemma 4.2. Under (A.2) and (A.3) the second relation in (4.1) holds.

Proof of Lemma 4.1. Put
Z∗t = sup

t′≤t
|Zt′ |.

By virtue of (A.1) we have |A(x, z)| ≤ `(1 + |x|). Therefore, with t ≤ T , we derive from
(1.1)

Xε∗
t ≤ |x0|+ `

∫ t

0
(1 +Xε∗

s )ds+
√
εMε∗

T , (4.4)

where Mε
t =

∫ t
0 B(Xε

s , ξ
ε
s)dWs. Due to Bellman-Gronwall’s inequality, (4.4) implies Xε∗

T ≤
const.(1 +

√
εMε∗

T ) with const., depending only on |x0|, `, and T . Therefore, the first part
of (4.2) holds if

lim
j

lim
ε→0

ε log P
(
Mε∗
T > j

)
= −∞. (4.5)

On the other hand, by Chebyshev’s inequality P
(
Mε∗
T > j

)
≤ j−1/εE

(
Mε∗
T

)1/ε and so,

ε log P
(
Mε∗
T > j

)
≤ − log j + ε log E

(
Mε∗
T

)1/ε
. Thereby (4.5) holds if

lim
ε→0

ε log E
(
Mε∗
T

)1/ε
<∞. (4.6)

Below we check the validity (4.6). Assuming 1/ε > 2 and applying Itô’s formula to |Mε
t |1/ε,

we get

|Mε
t |1/ε =

1√
ε

∫ t

0
|Mε

s |1/ε−1 (sign Mε
s )B(Xε

s , ξ
ε
s)dWs

+
1− ε

2ε

∫ t

0
|Mε

s |1/ε−2B2(Xε
s , ξ

ε
s)ds

that is |Mε
t |1/ε is a submartingale obeying a decomposition: |Mε

t |1/ε = Nε
t +Uεt with local

martingale Nε
t and predictable increasing process

Uεt =
1− ε

2ε

∫ t

0
|Mε

s |1/ε−2B2(Xε
s , ξ

ε
s)ds. (4.7)
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Then, due to a modification of Doob’s inequality (see [23], Theorem 1.9.2)

E
(
Mε∗
t

)1/ε ≤ ( 1
1− ε

)1/ε
EUεt . (4.8)

Now evaluate from above |Mε
s |1/ε−2B2(Xε

s , ξ
ε
s). By virtue of (A.1) |B(x, z)| ≤ `(1 + |x|).

Thereby, due to above-mentioned upper bound Xε∗
T ≤ const.(1 +Mε∗

T ) which remains true
with replacing T on s for any s < T , we arrive at

|Mε
s |1/ε−2B2(Xε

s , ξ
ε
s) ≤ const.(1 + |Mε

s |1/ε−2 + |Mε
s |1/ε)

≤ const.(1 + (Mε∗
s )1/ε).

Substituting the last upper bound in (4.7) and using (4.8) we obtain (t ≤ T )
E(Mε∗

t )1/ε ≤ const.
ε

∫ t
0

[
1 + E(Mε∗

t )1/ε
]
ds. Hence, by Bellman-Gronwall’s inequality, an

upper bound E(Mε∗
T )1/ε ≤ const.T

ε exp{ const.T
ε } holds and implies (4.6). Consequently the

first part in (4.2) is valid. To check the second part in (4.2), first use obvious estimates:

P
(

sup
t≤δ
|Xε

τ+t −Xε
τ | > η

)
≤ P

(
sup
t≤δ
|Xε

τ+t −Xε
τ | > η,Xε∗

T ≤ j
)

+ P
(
Xε∗
T > j

)
≤ 2 max

[
P
(

sup
t≤δ
|Xε

τ+t −Xε
τ | > η,Xε∗

T ≤ j
)
,P
(
Xε∗
T > j

)]
.

Thence, due to proved above the first part of (4.2), the validity of the second part follows
if

lim
δ→0

lim
ε→0

ε log sup
τ≤T−δ

P
(

sup
t≤δ
|Xε

τ+t −Xε
τ | > η,Xε∗

T ≤ j
)

= −∞, j ≥ 1, η > 0. (4.9)

The simplest way for verifying of (4.9) consists in checking the validity of both

lim
δ→0

lim
ε→0

ε log sup
τ≤T−δ

P
(

sup
t≤δ

∣∣∣ ∫ τ+t

τ

A(Xε
s , ξ

ε
s)ds

∣∣∣ > η,Xε∗
T ≤ j

)
= −∞

lim
δ→0

lim
ε→0

ε log sup
τ≤T−δ

P
(

sup
t≤δ

∣∣∣√ε∫ τ+t

τ

B(Xε
s , ξ

ε
s)dWs

∣∣∣ > η,Xε∗
T ≤ j

)
= −∞. (4.10)

Obviously, the first part in (4.10) holds. To verify the second, note that the process
Y εt =

√
ε
∫ τ+t
τ

B(Xε
s , ξ

ε
s)dWs is continuous martingale w.r.t. the new filtration Fτ =

(Fτ+t)t≥0 (see Ch.4, §7 in [23]). It has the predictable quadratic variation
〈
Y ε
〉
t

=
ε
∫ τ+t
τ

B2(Xε
s , ξ

ε
s)ds. Also define a positive continuous local martingale (w.r.t. the same

filtration Fτ )

Zεt = exp
(
λY εt −

1
2
λ2〈Y ε〉

t

)
, λ ∈ R (4.11)

which is simultaneously a supermartingale (see [23], Problem 1.4.4) and so for any Markov
time σ (w.r.t. Fτ ) EZεσ ≤ 1. Take σ = inf{t ≤ δ : |Y εt | ≥ η}. Evidently the second part of
(4.10) holds if

lim
δ→0

lim
ε→0

ε log sup
τ≤T−δ

P
(
Y εσ ≥ η (or ≤ −η), σ ≤ δ,Xε∗

T ≤ j
)

= −∞, (4.12)
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By virtue of an obvious inequality EZεσI
(
Y εσ ≥ η,Xε∗

T ≤ j
)
≤ 1 we find that

ε log P
(
Y εσ ≥ η, σ ≤ δ,Xε∗

T ≤ j
)
≤ − sup

λ>0

[
λη − const.

λ2

2
δε
]

(4.13)

and since supλ>0[λη − const.λ
2

2 δε] = η2

2const.δε (4.12) with ‘≥ η’ is implied by (4.13). The
validity (4.12) with ‘≤ −η’ is proved in the same way.

Proof of Lemma 4.2. It is clear that {νε ∈M[0,T ] \K ′′j } = {`(j, νε) <∞}, where

`(j, ν) = min{m ≥ j :
∫ T

0

∫
|z|>m

ν(dt, dz) > g(m)}. (4.14)

Therefore, the second part of (4.1) is equivalent to

lim
j

lim
ε→0

ε log P(`(j, νε) <∞) = −∞. (4.15)

To verify (4.15), choose a special function g(y) satisfying above-mentioned properties. To
this end introduce non linear operator

D = b(z)
∂

∂z
+
σ2(z)

2
[ ∂2

∂z2 +
( ∂
∂z

)2] (4.16)

and choose a non negative twice continuously differentiable function u(z) such that

− sup
v∈R
Du(v) = −d > −∞,

lim
j→∞

inf
|z|>j

[
−Du(z) + sup

v∈R
Du(v)

]
=∞. (4.17)

Under assumptions (A.2) and (A.3) one can take any of function u(z) with properties:
u(0) = 0, u′(z) = sign z, |z| > 1, and 0 ≤ u′′(z) ≤ 1. With chosen u(z) put

g(y) = inf
|z|>y

[
−Du(z) + sup

v
Du(v)

]−1/2
. (4.18)

Introduce a positive continuous local martingale (the martingale property is checked by
Itô’s formula)

Zεt = exp
(
u(ξεt )− u(ξ0)−

∫ t

0
Du(ξεs)ds

)
. (4.19)

It is simultaneously a supermartingale (see Problem 1.4.4. in [23]) and so EZεT ≤ 1. The
last implies

EI(`(j, νε) <∞)ZεT ≤ 1. (4.20)
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Inequality (4.20) can be sharpen by changing of ZεT on its lower bound on the set
{`(j, νε) <∞} which can be chosen non random. Taking into account that

∫ T
0 Du(ξεs)ds =∫ T

0

∫
R
Du(z)νε(ds, dz) and `(j, νε) ≥ j we

logZεT ≥ −u(ξ0)− dT

ε
+

1
ε

∫ T

0

∫
|z|>`(j,νε)

[
−Du(z) + d

]
νε(ds, dz)

≥ −u(ξ0)− dT

ε
+

1
ε

inf
|z|>`(j,νε)

[
−Du(z) + d

] ∫ T

0

∫
|z|>`(j,νε)

νε(ds, dz)

≥ −u(ξ0)− dT

ε
+

1
ε

inf
|z|>`(j,νε)

[
−Du(z) + d

]1/2 (= logZ∗).

≥ −u(ξ0)− dT

ε
+

1
ε

inf
|z|>j

[
−Du(z) + d

]1/2 (= logZ∗).

Thereby, from (4.20), with ZεT repalced on Z∗, we derive

ε log P
(
`(j, νε) <∞) ≤ εu(ξ0) + dT − inf

|z|>j

[
−Du(z) + d

]1/2
,

i.e. (4.15) is implied by (4.17).

5. Upper bound for local LDP in C[0,T ] ×M[0,T ]

In this Section, we consider family (Xε, νε) from C[0,T ] × M[0,T ]. Parallel to F (ν) and
S(X, ν), given in (2.3), let us define FT (ν) and ST (X, ν) by changing integrals ‘

∫∞
0 ’ in

(2.3) on ‘
∫ T

0 ’. Put

LT (X, ν) =
1
2
ST (X, ν) +

1
8
FT (ν). (5.1)

Theorem 5.1. Under (A.1), (A.2), and (A.3) for every (X, ν) from C[0,T ] ×M[0,T ]

lim
δ→0

lim
ε→0

ε log P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ

)
≤ −LT (X, ν).

Proof of this theorem is based on

Lemma 5.1. Assume (A.1), (A.2), and (A.3). Then for every piece wise constant function
λ(t) =

∑
i λ(ti)I(ti ≤ t < ti+1) (with not overlapping intervals [ti, ti+1)), and for every

compactly supported in z and continuously differentiable (once in t and twice in z) function
u(t, z), and X ∈ C[0,T ], ν ∈M[0,T ]

lim
δ→0

lim
ε→0

ε log P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ

)
≤ −

{∑
i

λ(ti)[XT∧ti+1 −XT∧ti ]−
∫ T

0

∫
R

λ(t)A(Xt, z)ν(dt, dz)

− 1
2

∫ T

0

∫
R

λ2(t)B2(Xt, z)ν(dt, dz)
}

+
∫ T

0

∫
R

Du(t, z)ν(dt, dz),
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where D is the non linear operator defined in (4.16).

Proof. The following well known fact will be used hereafter. If Nt (N0 = 0) is continuous
local martingale and

〈
N
〉
t

is its predictable quadratic variation, then the exponential
process Zt = exp

(
Nt− (1/2)

〈
N
〉
t

)
is a continuous local martingale too, and what is more

if N ′t , N
′′
t are continuous local martingales (N ′0 = N ′′0 = 0) with the mutual predictable

quadratic variation
〈
N ′, N ′′

〉
t
≡ 0 and Z ′t, Z

′′
t are corresponding exponential processes,

then the process Z ′tZ
′′
t is also local martingale which, being positive, is a supermartingale

too (Problem 1.4.4 in [23]) and so EZ ′tZ
′′
t ≤ 1, t ≥ 0.

Let λ(t) and u(t, z) be functions involving in Lemma 5.1. Put

N ′t =
1√
ε

∫ t

0
λ(s)B(Xε

s , ξ
ε
s)dWs

N ′′t =
1√
ε

∫ t

0
u′z(s, ξ

ε
s)σ(ξεs)dVs.

Evidently

〈
N ′
〉
t

=
1
ε

∫ t

0
λ2(s)B2(Xε

s , ξ
ε
s)ds〈

N ′′
〉
t

=
1
ε

∫ t

0
(u′)2

z(s, ξ
ε
s)σ

2(ξεs)ds. (5.2)

Since Wiener processes Wt and Vt are independent and so
〈
N ′, N ′′

〉
t
≡ 0 a process

Zt = exp
(
N ′t +N ′′t −

1
2
[〈
N ′
〉
t

+
〈
N ′′
〉
t

])
(5.3)

is local martingale and also a supermartingale with

EZt ≤ 1, t ≥ 0. (5.4)

Note that

N ′t =
1
ε

∫ t

0
λ(s)

[
dXε

s −A(Xε
s , ξ

ε
s)ds

]
(5.5)

and also find similar representation for N ′′t . Due to Itô’s formula we obtain

1√
ε

∫ t

0
u′z(s, ξ

ε
s)σ(ξεs)dVs = u(t, ξεt )− u(0, ξ0)−

∫ t

0
u′t(s, ξ

ε
s)ds−

1
ε

∫ t

0
Lu(s, ξεs)ds,

where L = b(z)∂d∂z + σ2(z)
2

∂2

z2 and consequently

N ′′t = u(t, ξεt )− u(0, ξ0) +
∫ t

0
u′t(s, ξ

ε
s)ds−

1
ε

∫ t

0
Lu(s, ξεs)ds. (5.6)
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(5.4) implies an obvious the inequqality

EI(rT (Xε, X) + ρT (νε, ν) ≤ δ)ZT ≤ 1. (5.7)

which can be sharpen by changing of ZT by its lower bound. To this end evaluate from
below logZT on the set {rT (Xε, X) + ρT (νε, ν) ≤ δ}. For both N ′T − 1

2

〈
N ′
〉
T

and N ′′T −
1
2

〈
N ′′
〉
T

we get

N ′T −
1
2
〈
N ′
〉
T
≥ 1
ε

∑
i

λ(ti)[XT∧ti+1 −XT∧ti ]

− 1
ε

∫ T

0

∫
R

λ(t)A(Xt, z)ν(dt, dz)− 1
2

∫ T

0

∫
R

λ2(t)B2(Xt, z)ν(dt, dz)

− 1
ε

{∑
i

|λ(ti)|
[
|Xε

T∧ti+1
−XT∧ti+1 |+ |Xε

T∧ti −XT∧ti |
]

+
∫ T

0
|λ(t)||A(Xε

t , ξ
ε
t )−A(Xt, ξ

ε
t )|ds

+
1
2

∫ T

0
λ2(t)|B2(Xε

t , ξ
ε
t )−B2(Xt, ξ

ε
t )|ds

+
∣∣∣ ∫ T

0

∫
R

[λ(t)A(Xt, z)|+ λ2(t)B2(Xt, z)][νε − ν](dz, dt)
∣∣∣} (5.8)

and

N ′′T −
1
2
〈
N ′′
〉
T

= −1
ε

∫ T

0
[Lu(s, ξεs) +

1
2
u2
z(s, ξ

ε
s)]ds+ u(T, ξεT )− u(0, ξ0)−

∫ T

0
ut(s, ξεs)

= −1
ε

∫ T

0

∫
R

Du(s, z)νε(dz, ds) + u(T, ξεT )− u(0, ξ0)−
∫ T

0
ut(s, ξεs)ds

≥ −1
ε

∫ T

0

∫
R

Du(s, z)ν(dz, ds)

− 1
ε

{∣∣∣ ∫ T

0

∫
R

Du(s, z)[νε − ν](dz, ds)
∣∣∣

+ ε|u(T, ξεT )|+ ε|u(0, ξ0)|+ ε

∫ T

0
|ut(s, ξεs)|ds

}
. (5.9)

The terms in the curly brackets in the right hand sides of (5.8) and (5.9) are random vari-
ables. Nevertheless, they can be evaluated from above on the set {rT (Xε, X)+ρT (νε.ν) ≤
δ} by non random quantities. Evidently

∫ T
0

∫
R
|λ(t)||A(Xε

t , ξ
ε
t )− A(Xt, ξ

ε
t )|ds ≤ const.Tδ

and 1
2

∫ T
0 λ2(t)|B2(Xε

t , ξ
ε
t ) − B2(Xt, ξ

ε
t )|ds ≤ const.δ

∫ T
0 [1 + |Xt|]ds. Denote by H(s, z) =

λ(s)A(Xs, z) + λ2(s)B2(Xs,z)
2

]
. Since λ(s) is piece wise constant function without loss of a

generality one can assume that it is simply constant. Then function H(s, z) is bounded
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continuous function and so, by Lemma A.1 (see Appendix) for any γ > 0 and k ≥ 1 there
exist increasing continuous function hγk(y), y ≥ 0 with hγk(0) = 0 and decreasing sequence
ϕk, k ≥ 1 with lim

k
ϕk = 0 both dependent on H(s, z) and ν only such that

∣∣∣ ∫ T

0

∫
R

H(s, z)[νε − ν](ds, dz)
∣∣∣ ≤ γ + hγk(δ) + ϕk.

Further, by the remark to Lemma A.1∣∣∣ ∫ T

0

∫
R

Du(t, z)[νε − ν](dt, dz)
∣∣∣ ≤ γ + hγ(δ),

where hγ(y) is an icreasing continuos function with hγ(0) = 0 depending on Du(s, z) and
ν only.

Hence, we the lower bounds (with positive const.’s):

N ′T −
1
2
〈
N ′
〉
T
≥ 1
ε

[∑
i

λ(ti)[XT∧ti+1 −XT∧ti ]−
∫ T

0

∫
R

λ(t)A(Xt, z)ν(dt, dz)

−
∫ T

0

∫
R

λ2(t)B2(Xt, z)ν(dt, dz)
]

− const.
ε

(
γ + hγk(δ) + ϕk)

)
(5.10)

and

N ′′T −
1
2
〈
N ′′
〉
T
≥ −1

ε

∫ T

0

∫
R

Du(t, z)ν(dt, dz)− const.
ε

(
ε+ γ + hγ(δ) + ϕk)

)
. (5.11)

By virtue of (5.10) and (5.11) one can choose a non random lower bound:

logZT ≥
1
ε

[∑
i

λ(ti)[XT∧ti+1 −XT∧ti ]−
∫ T

0

∫
R

λ(t)A(Xt, z)ν(dt, dz)

−
∫ T

0

∫
R

λ2(t)B2(Xt, z)ν(dt, dz)− 1
ε

∫ T

0

∫
R

Du(t, z)ν(dt, dz)
]

− const.
ε

(
ε+ γ + hγ(δ) + hγk(δ) + ϕk

)
.

= logZ∗.

Hence and from (5.7), with replacing of ZT on Z∗, it follows

ε log P
(
rT (Xε, X) + ρ(νε, ν) ≤ δ

)
≤ −

[∑
i

λ(ti)[XT∧ti+1 −XT∧ti ]−
∫ T

0

∫
R

λ(t)A(Xt, z)ν(dt, dz)

− 1
2

∫ T

0

∫
R

λ2(t)B2(Xt, z)ν(dt, dz)
]

+
∫ T

0

∫
R

Du(t, z)ν(dt, dz)

+ const.
{(
ε+ γ + hγ(δ) + hγk(δ) + ϕk)

}
, (5.12)
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The desired result holds since the term in the curly brackets of the right hand side in (5.12)
goes to zero if limit ‘limk→∞limγ→0limδ→0 limε→0’ is taken.

Proof of Theorem 5.1. follows from Lemmas 5.1, A.2, and A.3 (see Appendix) since

− sup
λ

{∑
i

λ(ti)[XT∧ti+1 −XT∧ti ]−
∫ T

0

∫
R

λ(t)A(Xt, z)ν(dt, dz)

− 1
2

∫ T

0

∫
R

λ2(t)B2(Xt, z)ν(dt, dz)
}

+ inf
u

∫ T

0

∫
R

Du(t, z)ν(dt, dz)

= −
[1

2
ST (X, ν) +

1
8
FT (ν)

]
= −LT (X, ν).

6. Lower bound for local LDP in C[0,T ] ×M[0,T ]

Theorem 6.1. Under (A.1), (A.2), and (A.3), for every (X, ν) from C[0,T ]× ∈M[0,T ]

limδ→0limε→0ε log P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ

)
≥ −LT (X, ν).

Evidently for X, ν such that LT (X, ν) = ∞ it is nothing to prove. Therefore below we
consider only the case LT (X, ν) <∞ which distinguishes subsets from C[0,T ] ×M[0,T ]:

(i) dXt � dt and 1
2ST (X, ν) = 1

2

∫ T
0

[Ẋt−Aν(t,Xt)]2

B2
ν(t,Xt)

dt <∞;

(ii) dν = ndλ, dzn = n′zdz and 1
8FT (ν) = 1

2

∫ T
0

∫
R
v2
ν(t,z)
σ2(z) n(t, z)dzdt <∞, where

vν(t, z) =
σ2(z)

2

[n′z(t, z)
n(t, z)

− p′(z)
p(z)

]
. (6.1)

It is convenient to consider further subset (ii’) of (ii):
(ii’) the function vν(t, z) is compactly supported in z and continuously differentiable in (t, z),

having bounded partial derivatives.

The central role in proving Theorem 6.1 plays

Lemma 6.1. Assume (i), (ii’), and infx,z B2(x, z) > 0. Then for any δ > 0 and γ > 0
there exists an increasing continuous function hγ(y) with hγ(0) = 0, depending on v2

ν(s,z)
σ2(z)

and ν only, such that

limε→0ε log P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ

)
≥ −LT (X, ν)− γ − hγ(δ).

Proof. Put

bν(t, z) = b(z) + vν(t, z)

Gν(t, x, z) =
Ẋt −Aν(t,Xt)
Bν(t,Xt)

B(x, z) +A(x, z) (6.2)
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and parallel to (Xε
t , ξ

ε
t ) introduce, on the same stochastic basis, new diffusion pair (X̃ε

t , ξ̃
ε
t ):

dX̃ε
t = Gν(t, X̃ε

t , ξ̃
ε
t )dt+

√
εB(X̃ε

t , ξ̃
ε
t )dWt

dξ̃εt =
1
ε
bν(t, ξ̃εt )dt+

1√
ε
σ(ξ̃εt )dVt (6.3)

subject to the same initial point (x0, ξ0). Also denote by ν̃ε(dt, dz) the occupation measure
corresponding to ξ̃ε: ν̃ε(∆× Γ) =

∫∞
0 I(t ∈ ∆, ξ̃εt ∈ Γ)dt.

By virtue of the formula b(z) = 1
2
p′(z)
p(z) +σ′(z)σ(z) (see (2.1)) we get 2bν(t,z)

σ2(z) = n′z(t,z)
n(t,z) +2σ

′(z)
σ(z)

and so pν(t, z) = c(t)
exp
(

2
R z
0
bν (t,y)
σ2(y)

dy
)

σ2(z) , with norming constant c(t) such that
∫
R
pν(t, z) =

1, coincides with n(t, z). Then by Lemma A.5 (see Appendix)

P− lim
ε→0

ρT (ν̃ε, ν) = 0 and P− lim
ε→0

rT (X̃ε, X) = 0. (6.4)

Denote by Qε and Q̃ε distributions of (Xε
t , ξ

ε
t )t≤T , (X̃ε

t , ξ̃
ε
t )t≤T respectively. By Theorem

7.18 (Ch. 7 in [24] Qε is absolutely continuous w.r.t. Q̃ε and

dQε

dQ̃ε
(X̃ε, ξ̃ε) = exp

( 1√
ε
Mε
T −

1
2ε
〈
Mε
〉
T

+
1√
ε
MT −

1
2ε
〈
M
〉
T

)
, (6.5)

where

Mε
t = −

∫ t

0

vν(s, ξ̃εs)

σ(ξ̃εs)
dVs and Mt = −

∫ t

0

Ẋs −Aν(s,Xs)
Bν(s,Xs)

dWs

〈
Mε
〉
t

=
∫ t

0

v2
ν(s, ξ̃εs)

σ2(ξ̃εs)
ds and

〈
M
〉
t

=
∫ t

0

[Ẋs −Aν(s,Xs)]2

B2
ν(s,Xs)

ds.

By virtue of (6.5) and the rule of changing for probability measure we obtain

P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ

)
= E

[dQε
dQ̃ε

(X̃ε, ξ̃ε)I(rT (X̃ε, X) + ρT (ν̃ε, ν) ≤ δ)
]
. (6.6)

The desired lover bound can be derived from (6.6) provided that a relevant lover bound
for the right hand side of (6.6) can be found. Use an obvious inequality:

I(rT (X̃ε, X) + ρT (ν̃ε, ν) ≤ δ) ≥ I(rT (X̃ε, X) + ρT (ν̃ε, ν) ≤ δ, |Mε
T | ≤ k, |MT | ≤ k)

and estimate from below log dQε

d eQε (X̃ε, ξ̃ε) on the set {rT (X̃ε, X)+ρT (ν̃ε, ν) ≤ δ}∩{|Mε
T | ≤

k} ∩ {|MT | ≤ k}. Noticing that 1
2

〈
M
〉
T

= 1
2S(X, ν)T and 1

2

∫ T
0

∫
R
v2
ν(s,z)
σ2(z) n(t, z)dzdt =

1
8FT (ν) we obtain

log
dQε

dQ̃ε
(X̃ε, ξ̃ε) ≥ − 2k√

ε
− 1
ε
LT (X, ν)− 1

2ε

∣∣∣ ∫ T

0

∫
R

v2
ν(s, z)
σ2(z)

[ν̃ε(dt, dz)− n(t, z)dzdt
∣∣∣.
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By the remark to Lemma A.1 (see Appendix), for any γ > 0 there exists increasing
continuous function hγ(y) with hγ(0) = 0, depending on v2

ν(s,z)
σ2(z) and ν only, such that

1
2

∣∣∣ ∫ T

0

∫
R

v2
ν(s, z)
σ2(z)

[ν̃ε(dt, dz)− n(t, z)dzdt
∣∣∣ ≤ γ + hγ(δ).

Then the lower bound for the right hand side of (6.6) is the following: − 2k√
ε
− 1
ε [LT (X, ν)+

γ + hγ(δ)]. It implies

ε log P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ

)
≥ −LT (X, ν)− 2k

√
ε− γ − hγ(δ)

+ ε log P
(
rT (X̃ε, X) + ρT (ν̃ε, ν) ≤ δ, |Mε

T | ≤ k, |MT | ≤ k
)
.

Thus the statement of the lemma holds since

lim
k

lim
ε→0

P
(
rT (X̃ε, X) + ρT (ν̃ε, ν) ≤ δ, |Mε

T | ≤ k, |MT | ≤ k
)

= 1

what follows by virtue of (6.4), obvious limk P(|MT | > k) = 0 and

P(|Mε
T | > k) ≤ E|Mε

T |2

k2 =
E
〈
Mε
〉
T

k2 ≤ const.
k2 → 0, k →∞.

Proof of Theorem 6.1. Assume (i), (ii), and infx,z B2(x, z) > 0. Due to Lemma A.4 (see
Appendix), one can choose a sequence ν(k), k ≥ 1 of measures such that for every k the
function vν(k)(t, z) satisfies (ii’) and what is more ρ(ν, ν(k))→ 0, LT (X, ν(k))→ LT (X, ν).
On the other hand, by Lemma 6.1 for any δ > 0 and γ > 0 there exist increasing continuous
function hγ,k(y) with hγ,k(0) = 0, depending on ν(k), such that

limε→0ε log P
(
rT (Xε, X) + ρT (νε, ν(k)) ≤ δ

)
≥ −LT (X, ν(k))− γ − hγ,k(δ).

Choose k◦(δ) such that for any k ≥ k◦(δ) we have 0 < δ− ρT (ν, ν(k)) ≤ δ/2. Then, taking
into account the triangular inequality: ρT (νε, ν) ≤ ρT (νε, ν(k)) + ρT (ν, ν(k)), we arrive at
a lower bound:

limε→0ε log P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ

)
≥ limε→0ε log P

(
rT (Xε, X) + ρT (νε, ν(k)) ≤ δ/2

)
≥ −LT (X, ν(k))− γ − hγ,k(δ/2).

The right hand side of the last inequality converges to −LT (X, ν) if limit
‘limklimγ→0limδ→0’ is taken.

Assume only (i) and (ii). Parallel to the process Xε
t introduce new diffusion Xε,β

t , β 6= 0:

dXε,β
t = A(Xε,β

t , ξεt )dt+
√
ε
[
B(Xε,β

t , ξεt )dWt + βdW ′t
]
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subject to the same initial point x0, where W ′t is a Wiener process independent of (Wt, ξ
ε
t ).

The diffusion parameter here is B2(x, z) + β2 and so, due to proved above,

limδ→0limε→0ε log P
(
rT (Xε,β , X) + ρT (νε, ν) ≤ δ

)
≥ −LβT (X, ν),

where LβT (X, ν) = 1
2S

β
T (X, ν) + 1

8FT (ν), and where

SβT (X, ν) =
∫ ∞

0

[Ẋt −Aν(y,Xt)]2

B2
ν(t,Xt) + β2 dt.

Evidently limβ→0 S
β
T (X, ν) = ST (X, ν). On the other hand, by Lemma A.6 (see Appendix)

lim
β→0

limε→0ε log P(rT (Xε,β , Xε) > η) = −∞.

To get the desired result, we combine both these facts. Namely, using the triangular
inequality: rT (Xε, X) ≤ rT (Xε,β , Xε) + rT (Xε,β , X) and taking η = δ/2 we arrive at an
upper bound

P
(
rT (Xε,β , X) + ρT (νε, ν) ≤ δ

)
≤ P

(
rT (Xε, X) + ρT (νε, ν) ≤ δ/2

)
+ P

(
rT (Xε,β , Xε) > δ/2

)
≤ 2 max

[
P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ/2

)
,P
(
rT (Xε,β , Xε) > δ/2

)]
which implies

limδ→0limε→0ε log P
(
rT (Xε, X) + ρT (νε, ν) ≤ δ

)
≥ − lim

β→0
LβT (X, ν) = −LT (X, ν).

Other approach for establishing lower bound with singular diffusion parameter can be
found in Puhalskii [25].

7. Proof of main result

Proof of Theorem 3.1. Due to Theorems 4.1, 5.1, and Proposition 3.1 the family (Xε, νε)
obeys the LDP in (C[0,k] ×M[0,k], rk × ρk) with rate function Lk(X, ν). Then it obeys the
LDP in the metric space (C×M, r × ρ) with rate function supk Lk(X, ν) = L(X, ν).

Proof of Corollary 2.1. The result holds since infX∈C S(X, ν) is attained at X◦t , being a
solution of a differential equation: Ẋt = Aν(t,X◦t ) subject to X◦0 = x0, and so S(X◦, ν) =
0.

Proof of Corollary 2.2. The first statement is obvious.
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Assume B2(x, z) ≡ 0. In this case S(X, ν) = 0 for any Xt being a solution of a differential
equation Ẋt =

∫
R
A(Xt, z)n(t, z)dz subject to X0 = x0; otherwise S(X, ν) =∞. Therefore

L(X, ν) =
{ 1

8 infν:Ẋt=
R
R
A(Xt,z)n(t,z)dz,X0=x0

F (ν)

∞, otherwise.

On the other hand, since F (ν) <∞ implies dν = ndλ, dzn = n′zdz, assuming measurability
in t of function

H(t, Ẋt, Xt) = inf
ν:Ẋt=

R
R
A(Xt,z)n(t,z)dz,X0=x0

∫
R

σ2(z)
[n′z(t, z)
n(t, z)

− p′(z)
p(z)

]2
n(t, z)dz (7.1)

we arrive at independent of t function H(t, y, x) ≡ H(y, x), or by other words, ‘inf ’ in
(7.1) can be taken over all measures ν with densities n(t, z) ≡ m(z). The last means the
desired result holds if the function

H(y, x) = inf

m:

8<: dm = m′dz

y =
∫
R
A(x, z)m(z)dz

∫
R

σ2(z)
[m′(z)
m(z)

− p′(z)
p(z)

]2
m(z)dz (7.2)

is measurable. We check this by showing that level sets of H(y, x) are closed.

Let c ≥ 0 be fixed and (yn, xn), n ≥ 1 be a sequence from {(y, x) : H(y, x) ≤ c} converging
to a limit point (y0, x0). Show that H(y0, x0) ≤ c. By virtue of assumption (A.1) the set
A(y, x) = {m : y =

∫
R
A(x, z)m(z)dz} is closed in the Levy-Prohorov metric that is for

every fixed (y, x) there exists a density m(y,x) from A(y, x) such that

H(y, x) =

{ ∫
R
σ2(z)

[
(m(y,x)(z))′

m(y,x)(z) −
p′(z)
p(z)

]2
m(y,x)(z)dz, dm(y,x) = (m(y,x))′dz

∞, otherwise.
(7.3)

Note that the function H(y, x), defined in (7.3), obeys a following property: there exists
a measure ν(y,x) from M[0,1], having density m(y,x)(z) w.r.t. dtdz, such that H(y, x) =
F1(ν(y,x)). Since 1

8F1(ν) is good rate function level sets {y, x : H(y, x) ≤ c} are compacts.
Therefore H(y0, x0) ≤ c.

Appendix

1. Evaluation via Levy-Prohorov’s metric.

Lemma A.1. Let T > 0, ν′, ν′′ ∈ M[0,T ], ρT (ν′, ν′′) = q, and f(t, z) be bounded con-
tinuous function. Then for any γ > 0 and k ≥ 1 one can choose increasing continuous
function hγk(y), y ≥ 0 with hγk(0) = 0 and decreasing sequence ϕk, k ≥ 1 with lim

k
ϕk = 0

both depending on f(t, z) and only from one of ν′ or ν′′ such that∣∣∣ ∫ T

0

∫
R

f(t, z)[ν′ − ν′′](dt, dz)
∣∣∣ ≤ γ + hγk(q) + ϕk.
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Remark. If f(t, z) is bounded compactly supported continuos function, then the state-
ment of the lemma remains true with hγk(y) ≡ hγ(y) and ϕk ≡ 0.

Proof. Assume f(t, z) is continuously differentiable (one in z and twice in (t, z)) and
compactly supported in z. Denote by F ′(t, z) = ν′([0, t] × (−∞, z]) that is F ′(t, z) is the
distribution function correspoding to ν′. Integrating by parts we get∫ T

0

∫
R

f(t, z)ν′(dt, dz) = −
∫ T

0

∫
R

[∂f(t, z)
∂z

+
∂2f(t, z)
∂t∂z

]
F ′(t, z)dzdt

and consequently (F ′′ is the distribution functions corresponding to ν′′)∣∣∣ ∫ T

0

∫
R

f(t, z)[ν′ − ν′′](dt, dz)
∣∣∣ ≤ ∫ T

0

∫
R

|F ′(t, z)− F ′′(t, z)|m(t, z)dzdt,

where m(t, z) = | ∂∂z f(t, z)|+ | ∂
2

∂t∂z f(t, z)|.
Assume f(t, z) is compactly supported in z and continuous only. Then, approximating it
by compactly supported and continuously differentiable in z function fγ(t, z) in a sense
supt,z |f(t, z)− fγ(t, z)| ≤ γ

2T , due the foregoing proof, we get∣∣∣ ∫ T

0

∫
R

f(t, z)[ν′ − ν′′](dt, dz)
∣∣∣ ≤ γ +

∫ T

0

∫
R

|F ′(t, z)− F ′′(t, z)|mγ(t, z)dzdt

with mγ(t, z) = | ∂∂z f
γ(t, z)|+ | ∂

2

∂t∂z f
γ(t, z)|

In the general case, one can choose a decomposition f(t, z) = fk(t, z) + gk(t, z), where
fk(t, z) is continuous compactly supported in z on the interval [−k, k] function while
gk(t, z) ≡ 0 on the interval [−(k− 1/2), (k− 1/2)] and is bounded: |gk(t, z)| ≤ L. Then by
foregoing result we get∣∣∣ ∫ T

0

∫
R

f(t, z)[ν′ − ν′′](dt, dz)
∣∣∣ ≤ γ +

∫ T

0

∫
R

|F ′(t, z)− F ′′(t, z)|mγ
k(t, z)dzdt

+ L

∫ T

0

∫
|z|>k−1/2

[ν′ + ν′′](dt, dz),

where mγ
k(t, z) = | ∂∂z f

γ
k (t, z)| + | ∂

2

∂t∂z f
γ
k (t, z)|. Evaluate from above the last integral from

the right hand side. To this end, choose an increasing sequences zk ↗ ∞, k → ∞ such
that zk ≤ k − 1/2 and for every k zk and −zk are points of continuity for the distribution
function F ′(T, z). Then∫ T

0

∫
|z|>k−1/2

[ν′ + ν′′](dt, dz) ≤ 2
∫ T

0

∫
|z|>zk

ν′(dt, dz)

+
∣∣∣ ∫ T

0

∫
|z|>zk

[ν′ − ν′′](dt, dz)
∣∣∣

≤ 2
∫ T

0

∫
|z|>zk

ν′(dt, dz)

+
∣∣F ′(T, zk)− F ′′(T, zk)

∣∣
+
∣∣F ′(T,−zk)− F ′′(T,−zk)

∣∣.
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Now evaluate from above |F ′(t, z) − F ′′(t, z)| via q and F ′(t, z). From the definition of
the Levy-Prohorov metric (see e.g. [22], [26]) it follows: q + F ′(t − q, z − q) − F ′(t, z) ≤
F ′(t, z)− F ′′(t, z) ≤ q + F ′(t+ q, z + q)− F ′(t, z) and so

|F ′(t, z)− F ′′(t, z)| ≤ q + [F ′(t+ q, z + q)− F ′(t− q, z − q)].

Hence, combining all obtained upper estimates, we arrive at the desired result with

hγk(y) = y
(

2L+
∫ T

0

∫
R

mγ
k(t, z)dtdz

)
+
∫ T

0

∫
R

[F ′(t+ y, z + y)− F ′(t− y, z − y)]mγ
k(t, z)dzdt+

+ L
∣∣F ′(T + y, zk + y)− F ′(T − y, zk − y)

∣∣
+ L

∣∣F ′(T + y,−zk + y)− F ′(T − y,−zk − y)
∣∣

and

ϕk = 2L
∫ T

0

∫
|z|>zk

ν′(dt, dz).

The same proof takes place with F ′′ instead of F ′.

2. The Fenchel-Legendre transform.
Let λ(t) =

∑
i λ(ti)I(ti ≤ t < ti+1) with non overlapping intervals [ti, ti+1). For any

X ∈ C[0,T ] and ν ∈ M[0,T ] put
∫ T

0 λ(t)dXt =
∑
i λ(ti)[XT∧ti+1 − XT∧ti ], Aν(t,Xt) =∫

R
A(Xt, z)Kν(t, dz), and B2

ν(t,Xt) =
∫
R
B2(Xt, z)Kν(t, dz). Let D be non linear operator

defined in (4.16).

Lemma A.2. For any X ∈ C[0,T ] and ν ∈M[0,T ]

sup
∫ T

0

[
λ(t)dXt − (Aν(t,Xt)−

1
2
λ2(t)B2

ν(t,Xt))dt

=

{
1
2

∫ T
0

[Ẋt−Aν(t,Xt)]2

B2
ν(t,Xt)

dt dXt = Ẋtdt

∞, otherwise,

where ‘sup’ is taken over all piece wise constant functions λ(t).

Lemma A.3. For any ν ∈M[0,T ]

inf
∫ T

0

∫
R

Du(t, z)ν(dt, dz)

=

{
−1

8

∫ T
0

∫
R
σ2(z)

[
n′z(t,z)
n(t,z) −

p′(z)
p(z)

]2
n(t, z)dzdt, dν = ndλ, dzn = n′zdz

−∞, otherwise,
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where ‘inf ’ is taken over all twice continuously differentiable (once in t and twice in z)
compactly supported in z functions u(t, z).

Proof of Lemma A.2. For dXt 6� dt the result follows from Lemma 6.1 in [17] (see also
Lemma 2.1 in [27]). For dXt = Ẋtdt by lemma 6.1 [17] ‘sup

∫ T
0 ’ is equal

∫ T
0 supλ∈R

{
λ
(
Ẋt−

Aν(t,Xt)
)
− 1

2λ
2B2

ν(t,Xt)
)}
dt = 1

2

∫ T
0

[Ẋt−Aν(t,Xt)]
B2
ν(t,Xt)

dt.

Proof of Lemma A.3. Assume dν = ndλ, dzn = n′zdz. Due to (2.1), p
′(z)
p(z) = 2b(z)−2σ(z)σ′(z)

σ2(z)

and so b(z) = 1
2

[
σ2(z)p

′(z)
p(z) +2σ(z)σ′(z)

]
. Putting v(t, z) = u′z(t, z) and taking into account

the formula for b(z) we arrive at∫ T

0

∫
R

Du(t, z)n(t, z)dzdt =
1
2

∫ T

0

∫
R

{[
σ2(z)

p′(z)
p(z)

+ 2σ(z)σ′(z)
]
v(t, z)

+ σ2(z)(v′z(t, z) + v2(t, z))
}
n(t, z)dzdt. (8.1)

Then, integrating by parts:∫
R

σ2(z)(v′z(t, z)n(t, z)dz = −
∫
R

v(t, z)[2σ(z)σ′(z)n(t, z) + σ2(z)n′z(t, z)]dz,

we obtain∫ T

0

∫
R

Du(t, z)n(t, z)dzdt

=
1
2

∫ T

0

∫
R

σ2(z)
(
v2(t, z)n(t, z) + v(t, z)

[p′(z)
p(z)

n(t, z)− nz(t, z)
])
dzdt. (8.2)

(8.2) and the method of proving for lemma 6.1 in [17] imply

inf
∫ T

0

∫
R

Du(t, z)n(t, z)dzdt =
1
2

∫ T

0

∫
R

σ2(z) inf
v∈R

(
v2n(t, z)

+ v
[p′(z)
p(z)

n(t, z)− nz(t, z)
])
dzdt

= −1
8

∫ T

0

∫
R

σ2(z)
[nz(t, z)
n(t, z)

− p′(z)
p(z)

]2
n(t, z)dzdt.

Thus for ‘dν = ndλ, dzn = n′zdz’, the result holds.

Assume dν = nλ, dzn 6� dz. Show that inf
∫ T

0

∫
R
Du(t, z)n(t, z)dzdt = −∞. To this end,

take u(t, z) ≡ u(z) and put v(z) = u′(z). The function v(z) is compactly supported and
continuously differentiable and, in particular, has the finite total variation. Put n(z) =∫ T

0 n(t, z)dt and w(z) = 1
2σ

2(z)n(z). It is clear that there exists a positive constant, say,
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` such that I(v) = `
∫
R

[v2(z) + |v(z)|]n(z)dz +
∫
R
w(z)dv(z) is an upper bound for the

right hand side of (8.1). Show that I(v) can be chosen less than any negative quantity.
Use the fact that I(v) is well defined not only for compactly supported and continuously
differentiable function v(z) but also for any compactly supported function vα(z) obeying
finite total variation. Assume that there exists a family of vα(z), α ∈ (0, 1] such that

lim
α→0

I(vα) = −∞ (8.3)

and every function vα(z) obeys an approximation by vαm(z),m ≥ 1 of continuously differ-
entiable compactly supported functions in a sense

lim
m
I(vαm) = I(vα). (8.4)

We show that under (8.3) and (8.4) the desired result holds. In fact, for fixed α one can
choose a number mα such that |I(vα)− I(vαmα)| ≤ 1. Hence we obtain

inf
∫ T

0

∫
R

Du(t, z)n(t, z)dzdt ≤ I(vαmα) ≤ 1 + I(vα)→ −∞, α→ 0.

Therefore, only (8.3) and (8.4) have to be checked. Since dzn 6� dz the function n(z) is not
absolutely continuous and w(z) is inherited the same property. Therefore by the definition
of the negation for absolute continuity [28] a constant k can be chosen such that for any
α > 0 there exists a positive constant c and non overlapping intervals (z′i, z

′′
i ) ∈ [−c, c],

such that
∑
i |w(z′′i )− w(z′i)| ≥ k and

∑
i

∫ z′′i
z′i

n(z)dz ≤ α. Put

vα(z) =
{ − 1√

α
sign [w(z′′i )− w(z′i)], z′i < z ≤ z′′i

0, otherwise.

Show that (8.3) holds. Evaluate from above I(vα):

I(vα) = `

∫
R

[
(vα(z))2 + |vα(z)|

]
n(z)dz +

∫
R

w(z)dvα(z)

≤ `
( 1
α

+
1√
α

)∑
i

∫ z′′i

z′i

n(z)dz +
∑
i

w(z′i)[v
α(z′′i )− vα(z′i)].

≤ `
(
1 +
√
α
)

+
∑
i

w(z′i)[v
α(z′′i )− vα(z′i)].

Now, summizing by parts, we find
∑
i w(z′i)[v

α(z′′i )−vα(z′i)] = −
∑
i v
α(z′′i )[w(z′′i )−w(z′i)].

On the other hand, from the definition of vα(z) it follows
∑
i v
α(z′′i )[w(z′′i ) − w(z′i)] =

1√
α

∑
i |w(z′′i )− w(z′i)| ≥ k√

α
. Thereby

I(vα) ≤ `(1 +
√
α)− k√

α
→∞, α→ 0.
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Evidently to satisfy (8.4), it is sufficient to choose approximating functions vαm(z),m ≥ 1
which are compactly supported and continuously differentiable and such that lim

m
vαm(z) =

vα(z) in every point of continuity of vα(z).

Assume ν 6� λ. Put Kν(dz) =
∫ T

0 Kν(t, dz)dt and note that Kν(dz) 6� dz. Use Lebesgue’s
decomposition: Kν(dz) = q(z)dz+K⊥(dz), where q(z) is a density of absolutely continuous
part of Kν(dz) and K⊥(dz) is its singular part. Taking u(t, z) ≡ u(z) which is compactly
supported, say, on [−c, c] we find∫ T

0
Du(z)ν(dt, dz) =

∫ c

−c
Du(z)q(z)dz +

∫ c

−c
Du(z)K⊥(dz).

Since |u′(z)| ≤ |u′(0)|+
∫ c
−c |u

′′(y)|dy there exists constant, say, `, such that∫ c
−cDu(z)q(z)dz ≤ `(1 +

∫ c
−c |u

′′(y)|dy) and so we arrive at an upper estimate∫ T

0
Du(z)ν(dt, dz) ≤ `

(
1 +

∫ c

−c
|u′′(z)|dz

)
+

1
2

∫ c

−c
σ2(z)u′′(z)K⊥(dz).

Then, using the singularity of K⊥(dz) and dz, one can choose u′′(z) such that the second
integral is less any negative quantity while the first remains bounded.

3. Approximation of rate function.
For ‘dX = Ẋtdt, dν = ndλ, dzn = n′zdz’ denote by

ST (X, ν) =
∫ T

0

[Ẋt −Aν(t,Xt)]2

B2
ν(t,Xt)

dt,

FT (ν) =
∫ T

0

∫
R

σ2(z)
[n′z(t, z)
n(t, z)

− p′(z)
p(z)

]2
n(t, z)dzdt.

Also note one to one correspondence between density n(t, z) and function vν(t, z) defined
in (6.1):

n(t, z) = n(t, 0)
p(z)
p(0)

exp
(

2
∫ z

0

vν(t, y)
σ2(y)

dy
)
. (8.5)

Put
φ(t) =

∫
R

|n′z(t, y)|dy. (8.6)

Lemma A.4. Let B2(x, z) ≥ β2 > 0. If ST (X, ν) < ∞, FT (ν) < ∞, then ν can be
approximated by a sequence of measures ν(k), k ≥ 1, satisfying the property: dν(k) =
n(k)dλ, dzn

(k) = n
(k)
z dz, such that the function vν(k)(t, z), corresponding to n(k)(t, z), is

compactly supported in z and continuously differentiable in (t, z) and what is more

lim
k
ρT (ν, ν(k)) = 0

lim
k
ST (X, ν(k)) = ST (X, ν)

lim
k
FT (ν(k)) = FT (ν). (8.7)
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Proof. Introduce a chain of expanding subclasses of measures ν characterized in terms of
n(t, z) and vν(t, z):

0) vν(t, z) is compactly supported in z and continuously differentiable in (t, z);
1) vν(t, z) is compactly supported in z and bounded;
2) vν(t, z) is compactly supported, inft≤T,z∈R

n(t,z)
p(z) > 0 and supt≤T [n(t, 0)+φ(t)] <∞;

3) vν(t, z) is compactly supported, inft≤T,z∈R
n(t,z)
p(z) > 0;

4) vν(t, z) is compactly supported;
5) vν(t, z) satisfies the assumptions of the lemma.

The proof is based on the following fact. If measure ν from calss ‘i’ (i=1,...,5) can be
approximated by ν(k), k ≥ 1 from class ‘i-1’ in a sense (8.7), then the statement of the
lemma holds.

Assume ν(k), k ≥ 1 is such that

ΛT − lim
k
n(k)(t, z) = n(t, z), (ΛT (dt, dz) = I[0,T ]dtdz),

lim
k
FT (ν(k)) = FT (ν). (8.8)

Then by Scheffe’s theorem [29] [22] we have limk

∫ T
0

∫
R
|n(t, z) − n(k)(t, z)|dtdz = 0 that

is ν(k) converges to ν in the total variation norm which implies convergence in Levy-
Prohorov’s metric too: ρT (ν, ν(k)) → 0. Since Aν(k)(t,Xt) =

∫
R
A(Xt, z)n(k)(t, z)dz and

B2
ν(k)(t,Xt) =

∫
R
B2(Xt, z)n(k)(t, z)dz by Lebesque dominated theorem ST (X, ν(k)) →

ST (X, ν). Therefore, for all steps of approximations only (8.8) has to be checked.

Assume ν is from class ‘1’. Approximate vν(t, z) by v(k)
ν (t, z):

lim
k

∫ T

0

∫
R

[vν(t, z)− v(k)
ν (t, z)]2

(
1 + n(t, z)

)
dtdz = 0,

where for all k the functions v(k)
ν (t, z), k ≥ 1 are compactly supported continuously differ-

entiable in (t, z). Without loss of a generality one can assume that all function are bounded
by the same constant. Similarly to (8.5) define a density of ν(k):

n(k)(t, z) = n(k)(t, 0)
p(z)
p(0)

exp
(∫ z

0

v
(k)
ν (t, y)
σ2(z)

dy
)
, (8.9)

with n(k)(t, 0) =
( ∫

R
p(z)
p(0) exp

( ∫ z
0
v(k)
ν (t,y)
σ2(z) dy

)
dz
)−1

. Put

ν(k)(dt, dz) = n(k)(t, z)dtdz.

Evidently ν(k) belongs to class‘0’. It is easy to check that

v(k)
ν (t, z) ≡ vν(k)(t, z) (8.10)
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and the validity of the first part in (8.8). To verify the second part in (8.8), note that

FT (ν(k)) = 4
∫ T

0

∫
R

(v
ν(k) (t,z))2

σ2(z) n(k)(t, z)dzdt and consequently

∣∣FT (ν)− FT (ν(k))
∣∣ ≤ const.

∫ T

0

∫
R

|n(t, z)− n(k)(t, z)|dtdz

+ const.
∫ T

0

∫
R

∣∣v2
ν(t, z)− (vν(k)(t, z))2

∣∣dtdz
→ 0, k →∞.

Assume ν is from class ‘2’. For the definiteness assume that there exists positive constant
z◦ such that vν(t, z) ≡ 0 out of [−z◦, z◦]. Put v(k)

ν (t, z) = vν(t, z)I(|n′z(t, z)| ≤ k), define
n(k)(t, z) by (8.9) and take ν(k) with this density. It belongs to class ‘1’. Herewith, v(k)

ν (t, z)
is defined by (8.10). It is clear that the first part in (8.8) holds and below we check the
validity of the second part. We have

FT (ν(k)) = 4
∫ T

0

∫
|z|≤z◦

v2
ν(t, z)
σ2(z)

I(|nz(t, z)| ≤ k)n(k)(t, z)dzdt

FT (ν) = 4
∫ T

0

∫
|z|≤z◦

v2
ν(t, z)
σ2(z)

n(t, z)dzdt.

The required convergence FT (ν(k))→ FT (ν) holds by Lebesgue dominated theorem since
n(k)(t, z) ≤ p(z) exp

(
2φ(t)

)
≤ const.n(t, z).

Assume ν is from class ‘3’. Putting v(k)
ν (t, z) = vν(t, z)I(n(t, 0) + φ(t) ≤ k) we arrive at

n(k)(t, z) =
{
n(t, z), n(t, 0) + φ(t) ≤ k
p(z), n(t, 0) + φ(t) > k.

and since n(k)(t, 0) ≤ k + p(0) and φ(k)(t) ≤ k +
∫
R
|p′(z)|dz measure ν(k) with density

n(k)(t, z) belongs to class ‘2’. It is clear that the first part in (8.8) holds and

|FT (ν)− FT (ν(k))| = 4
∫ T

0

∫
|z|≤z◦

v2
ν(t, z)
σ2(z)

I(n(t, 0) + φ(t) > k)p(z)dzdt

≤ const.
∫ T

0

∫
|z|≤z◦

v2
ν(t, z)
σ2(z)

I(n(t, 0) + φ(t) > k)n(t, z)dzdt

→ 0, k →∞.

Assume ν is from class ‘4’. Put n(k)(t, z) = c(k)(t)
(
n(t, z) ∨ p(z)

)
, where c(k)(t) =( ∫

R

(
n(t, z) ∨ p(z)

)
dz
)−1

is norming constant. ν(k) with this density belongs to class
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‘3’. The first part in (8.8) holds and what is more limk c
(k)(t) = 1. On the other hand,

since vν(k)(t, z) = vν(t, z)I(n(t, z) ≥ p(z)/k) we obtain

FT (ν(k)) = 4
∫ T

0

∫
R

v2
ν(t, z)
σ2(z)

I(n(t, z) ≥ p(z)/k)c(k)(t)n(t, z)dzdt

→ 4
∫ T

0

∫
R

v2
ν(t, z)
σ2(z)

n(t, z)dzdt = FT (ν).

Assume ν is from class ‘5’. Put v(k)
ν (t, z) = vν(t, z)T (|z| ≤ k) and define n(k)(t, z) by (8.9).

Then

n(k)(t, z) = n(k)(t, 0)


p(z)n(t,k)

p(k) , z > k

n(t, z), |z| ≤ k
p(z)n(t,−k)

p(−k) , z < −k.

Taking ν(k) with this density and noticing that lim
k
n(k)(t, 0) = 1 we find

FT (ν(k)) = 4
∫ T

0

∫
|z|≤k

(
vν(t, z)

)2
σ2(z)

c(k)(t)n(t, z)dzdt→ FT (ν),

i.e. both parts in (8.8) hold.

4. Ergodic property.
Consider diffusion pair (X̃ε

t , ξ̃
ε
t ) defined by Itô’s differential equations w.r.t. independent

Wiener processes Wt and Vt:

dX̃ε
t = G(t, X̃ε

t , ξ̃
ε
t )dt+

√
εB(X̃ε

t , ξ̃
ε
t )dWt

dξ̃εt =
1
ε
b(t, ξ̃εt )dt+

1√
ε
σ(ξ̃εt )dVt (8.11)

subject to (x0, z0), where B(x, z) and σ(z) are functions involving in (1.1). Assume b(t, z)
is continuous it (t, z), continuously differentiable in t, Lipschitz continuous in z uniformly
in t, and zb(t, z) is negative for large |z| uniformly in t. Also assume that

G(t, x, z) =
Ẋt −Ap(t, x)
Bp(t, x)

B(x, z) +A(x, z), (8.12)

where A(x, z) involves in (1.1), Ẋt is the Radon-Nykodim derivative of absolute con-
tinuous function Xt from C with X0 = x0, Ap(t, x) =

∫
R
A(x, z)p(t, z)dz, Bp(t, x) =√∫

R
B2(x, z)p(t, z)dz, and where (comp. (2.1))

p(t, z) = c(t)
exp

(
2
∫ z

0
b(t,y)
σ2(y)dy

)
σ2(z)

with norming function c(t) such that
∫
R
p(t, z)dz = 1. Introduce an occupation measure

ν̃ε(dt, dz): ν̃ε(∆× Γ) =
∫∞

0 I(t ∈ ∆, ξ̃εt ∈ Γ)dt and put ν(dt, dz) = p(t, z)dzdt.
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Lemma A.5.

P− lim
ε→0

ρT (ν̃ε, ν) = 0 and P− lim
ε→0

rT (X̃ε, X) = 0

Proof. It is clear, the first statement of the lemma is equivalent to: for any bounded and
continuous function h(t, z)

∫ T
0

∫
R
h(t, ξ̃εt )dt→

∫ T
0

∫
R
h(t, z)p(t, z)dzdt in probability or, for

h◦(t, z) = h(t, z)−
∫ T

0

∫
R
h(t, y)p(t, y)dydt,

P− lim
ε→0

∫ T

0

∫
R

h◦(t, ξ̃εt )dt = 0.

First we check it for continuously differentiable in t, z function h(t, z), having bounded par-
tial derivatives. Straightforward calculation brings Kolmogorov’s type differential equation
(t is fixed):

1
2
∂

∂z
(σ2(x)p(t, x)) = b(t, z)p(t, z).

A conjugate differential equation

1
2
σ2(z)

∂w(t, z)
∂z

+ b(t, z)w(t, z) = h◦(t, z). (8.13)

obeys a solution

w(t, z) =
2

σ2(z)p(t, z)

∫ z

−∞
h◦(t, y)p(t, y)dy.

It is clear that properties of h(t, z) are inherited by w(t, z) and so function u(t, z) =∫ z
0 w(t, y)dy is continuously differentiable once in t and twice in z and what is more, due

to the boundness of w(t, z), there exists a positive constant, say `, such that |u(t, z)| ≤
`|z| and |ut(t, z)| ≤ `|z|. Applying Itô’s formula to u(t, ξ̃εt ) and taking into account that
w(t, z) is solution of differential equation (8.13) we find u(T, ξ̃εT ) = u(0, ξ0) +

∫ T
0 u′t(t, ξ̃

ε
t )dt

+ 1√
ε

∫ T
0 w(t, ξ̃εt )σ(ξ̃εt )dVt + 1

ε

∫ T
0 h◦(t, ξ̃εt )dt that is∫ T

0
h◦(t, ξ̃εt )dt = εu(T, ξ̃εT )− εu(0, ξ0)

− ε
∫ T

0
u′t(t, ξ̃

ε
t )dt−

√
ε

∫ T

0
w(t, ξ̃εt )σ(ξ̃εt )dVt. (8.14)

The second term in the right hand of (8.10) converges to zero; the last term converges
to zero in probability since by Problem 1.9.2 in [23] the mentioned convergence fol-
lows from ε

∫ T
0 w2(t, ξ̃εt )σ

2(ξ̃εt )dt → 0; other two terms converge to zero in probability
if limε→0 ε

2E supt≤T (ξ̃εt )
2 = 0. To check the last, apply Itô’s formula to (εξ̃εt )

2:

(εξ̃εt )
2 = (εξ0)2 + 2ε

∫ t

0
b(s, ξ̃εs)ξ̃

ε
sds+ ε

∫ t

0
σ2(ξ̃εs)ds

+ 2ε3/2
∫ t

0
ξ̃εsσ(ξ̃εs)dVs.



29

The function b(s, z) is such that zb(t, z) is negative for large |z| what implies (εξ̃εt )
2 ≤

(εξ0)2 + Tεconst. + 2ε3/2
∫ t

0 ξ̃
ε
sσ(ξ̃εs)dVs. Thereby E(εξ̃εt )

2 ≤ (εξ0)2 + Tεconst. In turn,
using Doob’s inequality (see e.g. Theorem 1.9.1 in [23]), we arrive at E supt≤T (εξ̃εt )

2 ≤
(εξ0)2 +Tεconst. + const.ε3

∫ T
0 E(εξ̃εt )

2dt and, due to the obtained above upper bound for
E(εξ̃εt )

2, the result holds.

If h(t, z) is bounded and continuous only, it can be approximated by smooth functions
hm(t, z),m ≥ 1 in the following sense: for any k ≥ 1 limm supt≤T,|z|≤k |h(t, z)−hm(t, z)| =
0. Since for every hm(t, z) the statement of the lemma is proved, it holds for h(t, z) if

lim
m

∫ T

0

∫
R

|h(t, z)− hm(t, z)|p(t, z)dzdt = 0

P− lim
m

lim
ε→0

∫ T

0
|h(t, ξ̃εt )− hm(t, ξ̃εt )|n(t, z)dt = 0.

The first takes place since limk

∫ T
0

∫
|z|>k n(t, z)dzdt = 0 while the second from P −

limm limε→0
∫ T

0 I(|ξ̃εt )| > k)dt = 0 and the fact that one can choose smooth bounded
functions gk(z), k ≥ 1 such that I(|z| > k) ≤ gk(z), limk gk(z) = 0, z ∈ R and by proved
above

∫ T
0 gk(ξ̃εt )dt→

∫ T
0

∫
R
gk(z)p(t, z)dzdt→ 0, k →∞.

To check the second statement, put ∆t = X̃ε
t −Xt. From the first equation in (8.11) we

find

∆t =
∫ t

0

[Ẋt −Ap(s,Xs)
Bp(s,Xs)

B(X̃ε
s , ξ̃

ε
s) +A(X̃ε

s , ξ̃
ε
s)− Ẋs

]
ds

+
√
ε

∫ t

0
B(X̃ε

s , ξ̃
ε
s)dWs

=
∫ t

0

[Ẋt −Ap(s,Xs)
Bp(s,Xs)

(
B(X̃ε

s , ξ̃
ε
s)−B(Xs, ξ̃

ε
s)
)]
ds

+
∫ t

0

[Ẋs −Ap(s,Xs)
Bp(s,Xs)

(
B(Xs, ξ̃

ε
s)−Bp(s,Xs)

)]
ds

+
∫ t

0

(
A(X̃ε

s , ξ̃
ε
s)−A(Xs, ξ̃

ε
s)
)
ds

+
∫ t

0

(
A(Xs, ξ̃

ε
s)−Ap(s,Xs)

)
ds

+
√
ε

∫ t

0
B(X̃ε

s , ξ̃
ε
s)dWs.

For brevity put ϕs = Ẋs−Ap(s,Xs)
Bp(s,Xs)

. Then by the Lipschitz continuity of A(x, z), B(x, z) in
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x uniformly in z, say, with constant `, we obtain

|∆t| ≤ `
∫ t

0
(1 + |ϕs|)∆sds

+ sup
t≤T

∣∣∣ ∫ t

0
ϕs
(
B(Xs, ξ̃

ε
s)−Bp(s,Xs)

)
ds
∣∣∣

+ sup
t≤T

∣∣∣ ∫ t

0

(
A(Xs, ξ̃

ε
s)−Ap(s,Xs)

)
ds
∣∣∣

+
√
ε sup
t≤T

∣∣∣ ∫ t

0
B(X̃ε

s , ξ̃
ε
s)dWs

∣∣∣.
Therefore, by Gronwall-Bellman’s inequality

sup
t≤T
|∆t| ≤ exp

(
`

∫ T

0
(1 + |ϕs|)ds

)
×
[

sup
t≤T

∣∣∣ ∫ t

0
ϕs
(
B(Xs, ξ̃

ε
s)−Bp(s,Xs)

)
ds
∣∣∣

+ sup
t≤T

∣∣∣ ∫ t

0

(
A(Xs, ξ̃

ε
s)−Ap(s,Xs)

)
ds
∣∣∣

+
√
ε sup
t≤T

∣∣∣ ∫ t

0
B(X̃ε

s , ξ̃
ε
s)dWs

∣∣∣]
Hence, the second statement holds if

P− lim
ε→0

sup
t≤T

√
ε sup
t≤T

∣∣∣ ∫ t

0
B(X̃ε

s , ξ̃
ε
s)dWs

∣∣∣ = 0 (8.15)

and for any measurable function ψs such that
∫ T

0 ψ2
sds <∞ and any continuous function

C(x, z), being Lipschitz’s continuous in x uniformly in z,

P− lim
ε→0

sup
t≤T

∣∣∣ ∫ t

0
ψs
(
C(Xs, ξ̃

ε
s)− Cp(s,Xs)

)
ds
∣∣∣ = 0, (8.16)

where Cp(s,Xs) =
∫
R
C(Xs, z)p(s, z)dz. It can be shown (see e.g. the method of proving

the statement (2) of Theorem 4.6 Ch. 4 in [24]) that supt≤T E(X̃ε
t )2 ≤ const. and so

E
∫ T

0 B2(X̃ε
s , ξ̃

ε
s)ds ≤ const. Consequently, by Doob’s inequality (see e.g. Theorem 1.9.1

[23]) we get E supt≤T
∣∣∣√ε ∫ t0 B(X̃ε

s , ξ̃
ε
s)dWs

∣∣∣2 ≤ εconst. that is (8.15) holds. To check the
validity of (8.16) with ψsC(x, z) ≥ 0, note that, due to Problem 5.3.2 in[23], it is sufficient
to prove

P− lim
ε→0

∫ t

0
ψs
(
C(Xs, ξ̃

ε
s)− Cp(s,Xs)

)
ds = 0, ∀t ≤ T (8.17)
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and what is more, due to an arbitrariness of ψs and C(x, z), (8.17) implies (8.16) in
the general case since one can use separately (8.17) for positive (ψsC(x, z))+ and nega-
tive (ψsC(x, z))− parts. Therefore, (8.17) remains to be verified. If ψs is bounded and
continuous, (8.17) takes place by virtue of the first statement of the lemma. If only∫ T

0 ψ2
sds < ∞, approximate ψs by bounded and continuous functions ψ(k)

s , k ≥ 1 such
that limk

∫ T
0 (ψs − ψ(k)

s )2ds = 0 and, due to the boundness in z of C(x, z) and Cauchy-
Schwartz’s inequality, we find that

∣∣∣ ∫ t

0
(ψs − ψ(k)

s )
(
C(Xs, ξ̃

ε
s)− Cp(s,Xs)

)
ds
∣∣∣ ≤ const.

√∫ T

0
(ψs − ψ(k)

s )2ds→ 0, k →∞

that is (8.17) takes place since it holds for every ψ(k)
s .

5. LD-regularization.
Parallel to Xε

t , defined in (1.1), determine new diffusion Xε,β
t with uniformly non singular

diffusion parameter B2(x, z) + β2, β2 > 0, letting

dXε,β
t = A(Xε,β

t , ξεt )dt+
√
ε
[
B(Xε,β

t , ξεt )dWt + βdW ′t
]

(8.18)

subject to the same initial point x0, where W ′t is a Wiener process independent of (Wt, ξ
ε
t ).

Lemma A.6. Under assumption (A.1) for every T > 0 and η > 0

lim
β→0

limε→0ε log P(rT (Xε,β , Xε) > η) = −∞.

Proof. Put ∆t = Xε,β
t −Xε

t , and

a1(x′, x′′, z) =
A(x′′, z)−A(x′, z)

x′′ − x′
, a2(x′, x′′, z) =

B(x′′, z)−B(x′, z)
x′′ − x′

,

where for x′ = x′′ ai(x′, x′, z), i = 1, 2 are Radon-Nikodym’s derivatives. Note that for
x′ 6= x′′ ai(x′, x′′, z), are bounded, say, by constant `, and so ai(x′, x′, z) can be taken
bounded by the same constant. For brevity, denote by αi(t) = ai(X

ε,β
t , Xε

t , ξ
ε
t ), i = 1, 2.

(8.18) and (1.1) imply: ∆t =
∫ t

0 α1(s)∆sds +
√
ε
∫ t

0 α2(s)∆sdWs +
√
εβW ′t . Letting Et =

exp
( ∫ t

0 [α1(s) − (ε/2)α2
2(s)]ds +

√
ε
∫ t

0 α2(s)dWs

)
and using Itô’s formula, we find that

∆t =
√
εβEt

∫ t
0 E
−1
s dW ′s and thereby

sup
t≤T

∣∣∆t

∣∣ ≤ √εβ sup
t≤T
Et sup
t≤T

∣∣∣ ∫ t

0
E−1
s dW ′s

∣∣∣.
Put ΓN = { 1

N ≤ inft≤T Et ≤ supt≤T Et ≤ N} and use an upper estimate

P(sup
t≤T

∣∣∆t

∣∣ > η) ≤ P(sup
t≤T

∣∣∆t

∣∣ > η,ΓN ) + P(Ω \ ΓN )

≤ 2 max
[
P(sup

t≤T

∣∣∆t

∣∣ > η,ΓN ),P(Ω \ ΓN )
]
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which implies, due to the boundness of αi(s), i = 1, 2, the desired statement if

lim
N

limε→0ε log P(
√
ε sup
t≤T

∣∣∣ ∫ t

0
α2(s)dWs

∣∣∣ > N) = −∞

lim
β→0

limε→0ε log P(
√
εβ sup

t≤T

∣∣∣ ∫ t

0
E−1
s dW ′s

∣∣∣ > η,ΓN ) = −∞, ∀N ≥ 1. (8.19)

Let τ = {t ≤ T :
∣∣∣ ∫ t0 α2(s)dWs

∣∣∣ > (N/
√
ε)} and σ = {t ≤ t :

∣∣∣ ∫ t0 E−1
s dW ′s

∣∣∣ > (η/
√
εβ)}. It

is clear that (8.19) is equivalent to:

lim
N

limε→0ε log P
(√
ε

∫ τ

0
α2(s)dWs ≥ N (or ≤ −N)

)
= −∞

lim
β→0

limε→0ε log P
(√
εβ

∫ σ

0
E−1
s dW ′s ≥ η (or ≤ −η),ΓN

)
= −∞,∀N ≥ 1. (8.20)

Below we check (8.20). To this end with λ ∈ R, introduce continuous local martin-
gales: Z1

t = exp
(
λ
∫ t

0 α2(s)dWs − (λ2/2)
∫ t

0 α
2
2(s)ds

)
and Z2

t = exp
(
λ
∫ t

0 E
−1
s dW ′s −

(λ2/2)
∫ t

0 E
−2
s ds

)
, where each of them is a supermartingale too (see Problem 1.4.4. in [23])

that is EZ1
τ ≤ 1 and EZ2

σ ≤ 1. Then we use obvious inequalities: EI(
√
ε
∫ τ

0 α2(s)dWs ≥
N)Z1

τ ≤ 1 and EI(
√
εβ
∫ σ

0 EsdW
′
s ≥ η,ΓN )Z2

σ ≤ 1. Since for λ > 0, logZ1
τ ≥ (λN/

√
ε) −

(λ2`2T/2) and logZ1
σ ≥ (λη/

√
εβ) − (λ2N2T/2) on sets {

√
ε
∫ τ

0 α2(s)dWs ≥ N} and
{
√
εβ
∫ σ

0 EsdW
′
s ≥ η,ΓN} respectively, we arrive at (8.20) for ‘≥ N ’ and ‘≥ η’, taking

λ1 = (N/
√
ε`2T ) and λ2 = (η/

√
εβN2T ). For ‘≤ −N ’ and ‘≤ −η’ the validity of (8.20) is

proved in the same way.
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