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LARGE DEVIATIONS IN DYNAMICAL 
SYSTEMS AND STOCHASTIC PROCESSES 

YURI KIFER 

ABSTRACT. The paper exhibits a unified approach to large deviations of dy-
namical systems and stochastic processes based on the existence of a pressure 
functional and on the uniqueness of equilibrium states for certain dense sets 
of functions. This enables us to generalize recent results from lOP, Y, and 
DJ on large deviations for dynamical systems, as well, as to recover Donsker-
Varadhan's [DV2Jlarge deviation estimates for Markov processes. 

1. INTRODUCTION 

Suppose that X is a compact metric space, 9'(X) is the space of proba-
bility measures on X endowed with the topology of weak convergence, and 
(O,l.' 9;:, PJ is a family of probability spaces indexed by A. from a directed 
set A (see, for instance [OS]). Let ,,l.: O,l. ---. 9'(X), ,,l.: OJ ---. ':' A. E A, be 
a family of measurable maps with respect to the measurable structure given by 
9;: on Q,l. and by the Borel a-field on 9'(X). The theory of large deviations 
in this set up deals with estimates of the following form: 

(1.1) limsup(1jr(A.))logP,l.g,l. E K}:::; -inf{/(v): v E K} 
,l.EA 

for any closed K c 9'(X) and 

(1.2) lim inf(1jr(A.))log P,l.g,l. E G} ~ -inf{/(v): v E G} ,l.EA 
for any open G c 9'(X) , where /(v) ~ 0 is a lower semicontinuous functional 
on 9'(X) , called the rate functional, and r(A.) > 0, lim,l.EA r(A.) = 00 is a scaling 
function on A, both quantities have to be identified. 

The main application I have in mind concerns occupational measures for 
dynamical systems and stochastic processes. The use of limits over directed 
sets assures the applicability of the results both for one-dimensional and multi-
dimensional time cases, for instance, in the framework of the thermodynamic 
formalism from [RuJ. In the one-dimensional time case one has a X-valued 
stochastic process ~ = ~(OJ), OJ E 0t == Q with t running over nonnegative 
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reals ~+ (the continuous time case with A = ~+, A. = r(A.) = t) or over non-
negative integers Z+ (the discrete time case with A = Z+, A. = r(A.) = t). Now 
the measures ,~ are defined by ,~ = t f~ ()Y,(W)ds in the continuous time case 
and by ,~ = t I:~:~ ()l[(w) in the discrete time case, where ()x denotes the unit 
mass at x. In particular, if X =' Q and ~ (x) = Ft x where Ft: X ---> X is a 
group or semigroup of transformations, one obtains occupational measures for 
a dynamical system Ft . In the n-dimensional time case one considers a group 
of homeomorphisms F q , q = (ql' ... , qn) E Zn of a compact X = Q and 
defines ,; = (1/IR(a)l) I:qER(a) ()Fqx where a = (ai' ... , an) E Zn, a j > 0, 
R(a) = {(ql ' ... , qn) E Zn, 0 ~ qj < a j for i = 1, ... , n}, and IR(a)1 is the 
number of points in R(a). In statistical mechanics X is usually interpreted as 
the configuration space, P). == P is a distribution on X, and F q , q E Zn are 
shifts. 

The main feature of this paper is that large deviations estimates are derived 
assuming that the limit (called the pressure of V) 

(1.3) Q(V) = l~~(l/r(A.))log / exp (r(A.) / V(X)d'~(X)) dP).(w) 

exists for any V from the space C(X) of continuous functions on X. This ap-
proach was employed previously in [G, T, E, and AI]. It is known (see [AI]) that 
the existence of the limit (1.1) implies already upper large deviations bounds 
(1.1) with the rate functional I(v) which is convex conjugate of Q(V). For 
lower bounds (1.2) additional assumptions are needed and usually one requires 
Gateaux differentiability of Q(V) (see [G, E, A2]) at all V E C(X) which is 
rarely true in applications to dynamical systems. 

It is clear that Q( V) is a continuous functional and its convexity follows 
from Holder's inequality. The convex conjugate 1 of Q is defined by 

(1.4) 1(/1)= sup (/Vd/1-Q(V)) 
VEC(X) 

if /1 E 9'(X) and 1(/1) = 00 for all other signed measures /1. From this 
definition it follows immediately that 1(/1) is convex and lower semicontinuous. 
Thus by the well-known duality (see, for instance, [AE, p. 201]) one has 

(1.5) Q(V) = sup (/ Vd/1- 1(/1)). 
/JE.9'(X) 

Since 9'(X) is compact and 1(/1) is lower semicontinuous one concludes that 
for any V E C(X) there exists /1v E 9'(X) , called an equilibrium state for V, 
such that 

( 1.6) 

In general, /1 v is not unique for many V E C(X) but it turns out that the 
uniqueness of /1v for all V which are finite linear combinations of functions 
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from a countable dense set in C(X) suffices already for lower large deviations 
bounds. It follows from the theorem on p. 450 of [DS] that the convex func-
tional Q( V) always has a unique subdifferential, i.e. equilibrium state, for 
each V from a dense in C(X) set of functions. Of course, one can choose a 
countable dense subset from this set but the real issue is to ensure that finite 
linear combinations of functions from this set will also have unique equilibrium 
states. In the case of a smooth dynamical system in a neighborhood of a basic 
hyperbolic set all Holder continuous functions have unique equilibrium states 
and so the above condition is satisfied. In the case of Markov processes with 
good transition densities the condition is satisfied, as well. 

This approach enables one to derive large deviations estimates both for dy-
namical systems and Markov processes as simple corollaries of the main theo-
rem which is proved in the next section. Moreover, I generalize and improve 
results of recent papers lOP, Y, and D] considering, in particular, the continuous 
time case for which methods of above papers does not seem to work. Remark 
that the assumption on uniqueness of equilibrium st~tes for large classes of 
functions is quite natural in applications to statistical mechanics. 

I would like to thank S. Varadhan for a helpful conversation we had during 
AMS Summer Seminar "Mathematics of Random Media" at Virginia Tech in 
June 1989. 

2. MAIN THEOREM 

It is clear that the limit (1.3) satisfies 

(2.1) IQ(VI) - Q(Jt2)1 :511~ - Vzll and -IWII:5 Q(V) :5IWII 
where IWII = SUPXEX W(x)1 , and by Holder's inequality for 0:5 p :5 1, 

(2.2) Q(p~ + (1 - p)Jt2) :5 pQ(VI) + (1 - p)Q(Jt2) , 

i.e. Q is convex. The main result of this section is the following. 

Theorem 2.1. Suppose that the limit (1.3) exists Jor any V E C(X). Then 
the upper bound (1.1) holds true with the rate Junctional I given by (1.4). Let, 
Jurthermore, there exists a countable set oj Junctions ~, Jt2, ... E C(X) such 
that their span is dense in C(X) with respect to II· II, II ~II = 1 Jor all i = 
1, 2, ... , and Jor each n = 1, 2, ... and all numbers PI' Pz' ... 'Pn the 
Junction V = PI VI + Pz Jt2 + ... + Pn Vn has a unique measure J1.v E .9'(X) 
satisJying (1.6). Then the lower bound (1.2) also holds true. 
ProoJ. I begin with the upper bound (1.1) where I follow [AI]. For any set 
B c .9'(X) put 

(2.3) J(B) = inf{I(v): v E B}. 

Let K c .9'(X) be a closed set which is therefore compact since .9'(X) is 
compact. 
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If J(K) ~ 0 there is nothing to prove since the left-hand side of (1.1) is 
nonpositive. Let 0 < J(K) < 00. For each e > 0 and every WE C(X) put 

r£(W) = {.u E .9'(X): I W d.u - Q(W) > J(K) - e}. 

Then by (1.4), 

Kc{.u E .9'(X):/(.u»J(K)-e}= U r£(W). 
WEC(X) 

Since K is compact then there exist JJ?;, ... , JIJf E C(X) such that K C 
Ul~i::;t re(w;)· Then 

(2.4r;.g;' E K} ~ L p;.g;' E r£(w;)} 

= L p;. {I W;d';' > Q(W;) + J(K) - e} 
l~i~l 

~ L exp(-r(A)(Q(W;)+J(K)-e)) I exp(r(A) I W;d';') dP;.. 
19~1 

Taking here log, dividing by r(A) , and passing to lim SUP;'EA one derives from 
(1.3) that 

lim sup(l/r(A))log p;.{,;, E K} ~ -J(K) + e. 
;'EA 

Since e > 0 is arbitrary (1.1) follows. It remains to consider the case J(K) = 
00. For each N> 0 and WE C(X) put r(N)(w) = {.u E .9'(X) : f Wd.u-
Q(W) > N}. Then K c UWEC(X) r(N)(W) and proceeding as before one 
obtains 

limsup(l/r(A))logP;.{';' E K} ~ -N. 
;'EA 

Since N is arbitrary (1.1) follows in this case, as well. 
Next, I shall deal with the more difficult lower bound (1.2). Introduce a 

metric on .9'(X) by 

p(.u, v) = t2-k II Vkd.u - I l-kdvl 
k=l 

(2.5) 

which is compatible with the topology of weak convergence since 
span{ ~ , V2 , ••• } is dense in .9'(X). 

First I shall reduce the problem to a finite-dimensional situation. 
Let J,,: .9'(X) ~ !Rn , n = 1, 2, ... , be a sequence of maps acting by the 

formula 

(2.6) J,,(.u) = (I ~ d.u, ... , I v"d.u) . 
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Clearly, the maps In are affine and continuous, and so if U c ~n is an 
open set and Ln = In (9'(X)) then In-I U = f;I(U n Ln) is an open subset of 
9'(X). Furthermore, 

(2.7) J(In- 1 U) = inf{I(v): Inv E U} = inf In (a) 
aEU 

where In(a) = inf{I(v): Inv = a} if a E Ln and In(a) = 00 if a ¢. Ln' 
For each P E ~n denote (P, V)n = LI<k<n Pk ~ and Qn(P) = Q((P, V)n)' 
From (1.5) and (2.7) it follows that - -

(2.8) Qn(P) = sup (L Pk! VkdJ1- I(J1)) 
JlE9'(X) I~k~n 

= sup ((P, InJ1) - I(J1)) = sup ((P , a) - In(a)) 
JlE9'(X) aELn 

= sup ((P, a) - In(a)) 
aE!R" 

where I use the brackets ( , ) also to denote the inner product in ~n • It follows 
from (2.8) that Qn(P) is a convex continuous function on ~n . From the defi-
nition of In(a) together with the continuity of In and the lower semicontinuity 
of I(v) one derives the lower semicontinuity of In(a). Since I(v) is convex I 
conclude that In(a) is convex, as well. Indeed, for ai' a 2 E Ln and 0:::; p :::; 1 
one has 

(2.9) In(pa l + (1 - p)a2) = inf{I(v) : v E 9'(X) , fnv = pal + (1 - p)a2} 
:::; inf{I(pvI + (1 - p)v2) : vI ' v2 E 9'(X) , Invi = a l ' fnv2 = a2} 
:::; pIn(a l) + (1 - p)In(a 2). 

If a l or a 2 does not belong to Ln then the right-hand side of (2.9) is infinity 
by the definition of In and there is nothing to prove. Now (2.8) together with 
the convexity and lower semicontinuity of In(a) imply (see [R, Theorem 12.2]) 
that for a E Ln ' 
(2.10) 

To complete the proof of Theorem 2.1 I shall establish first a finite-dimensional 
version of the lower bound (1.2). For any set A c ~n put In (A) = inf aEA In (a) . 

Lemma 2.1. For any closed set M c ~n and each n ~ 1, 

(2.11) limsup(ljr(l)) log p;. {In ,;. E M}:::; -In(M). 
;'EA 

For any open set U C ~n and each n ~ 1 , 

(2.12) liminf(ljr(l)) log p;.{In ,;. E U} ~ -In(U). 
;'EA 

Proof. Since In-I(M) = In-I(MnLn) is a closed subset of 9'(X) then (2.11) 
follows from the upper bound (1.1) which has already been proved. To prove 
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(1.2) I shall follow partially [G and E]. Fix an arbitrary 8 > 0 and choose 
a e E U such that 

(2.13) In(ae) < In(U) + 8. 

One can assume that ae E g(In) = {a: In(a) < oo} since for otherwise 
In(U) = 00 and there is nothing to prove. Let rig(In) be the interior of 
g(In) in its affine hull (see [RD. Then either rig(In) # 0 or g(In) consists 
of one point. Assume, first, that rig(In) # 0. By Corollary 7.5.1 in [R] for 
any a, a E g(In) it follows from the convexity and the lower semicontinuity 
of In that 

lim In(pa + (1 - p)a) = In(a) , 
PTi 

and so one can choose ae satisfying (2.13) to belong to rig(In). Then by 
Theorems 23.4 and 23.5 from [R] there exists Pe E ~n such that 

(2.14) Qn(Pe) = (Pe , ae) - In(ae). 

If g(In) consists of the single point ae then one derives from (2.8) that 
Qn(P) = (P, ae) - I(ae) for all P E ~n. So again the existence of Pe sat-
isfying (2.14) follows. Since U is open then for all a> 0 small enough 

(2.15) Uo(ae) = {a : la - ael < a} c u. 
Put Q~(P) = (l/r().))logf exp(r().) f(P, V)nd';')dP;. and introduce probability 
measures pin,) on Q;. by 

(2.16) pin')(A) = i exp{r().)((Pe , fn() - Q~(Pe))}dP;.. 

Then by (2.15), 
"- ;. (2.17) p;.{J,J E U} ~ p;.U;,' E Uo(ae)} 

= exp{-r().)((Pe , ae) - Q~(Pe))} 

x ! exp{ -r().)(Pe , !","- - ae)}dP?') 
{w : fn':EUJ(n,)} 

Thus by (1.3) and (2.14), 

(2.18) liminf(l/r()'))logP;.{!,,';' E U} 
;'EA 

~ -In(ae) - alPel + liminf(l/r().))Pin,){!",,,- E Uo(ae)}. 
"-EA 

I claim that 

(2.19) 

i.e. 

(2.20) 
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To prove (2.20) I use the upper bound (2.11) for probability measures pla.) m 
place of p;" Since (P, 1",;,) = f(P, V)nd';' then by (1.3) and (2.16), 

(2.21) Q~a.)(p) = l~~(l/r(Je))log j exp (r(Je) j(P, V)n d ';') dPla.) 

= Qn(P + Pe) - Qn(Pe)' 

Thus by (2.10) the corresponding convex conjugate functional I~a')(a) has the 
form 

(2.22) I~a')(a) = sup ((P, a) - Qn(P + Pe)) + Qn(Pe) 
PE!Rn 

= In(a) - ((Pe , a) - Qn(Pe)) ~ O. 

By the upper bound (2.11) for pla .) in place of p;" 
(2.23) limsup(1/r(Je))logPla .){I,,';' E Ln \Uo(ae)} 

;'EA 

::; - inf I~a')(a), 
aELn \U,,(a.) 

and so (2.20) will follow if the right-hand side of (2.23) is negative. By (2.14), 
I~a')(ae) = O. I claim that ae is the only zero of I~a.). Indeed, if there 
exists another a E Ln , a =I a e such that I~a')(a) = 0 then by the lower 
semicontinuity of I(v) and the definition of In(a) there exist measures in 
each of the disjoint sets 1,,-1 a e and 1,,-1 a which are equilibrium states for the 
function V = (Pe , V)n in the sense of (1.6) which contradicts the assumption 
of Theorem 2.1. Thus by (2.10), I~a')(a) > 0 for all a E ~t\{ae}. Since 
Ln \Uo(ae) is a closed set and I~a')(a) is lower semicontinuous one derives 
from here that 

(2.24) 

because, for otherwise, there would exist a sequence a k -+ a as k -+ 00, 

a, ak E Ln \Uo(ae) , limk-+oo I~a')(ak) = 0 and so I~a')(a) = 0 which is impos-
sible. Now (2.24) together with (2.23) imply (2.20) proving (2.19). This yields 
that the limit in the right-hand side of (2.18) is zero. Letting l5 -+ 0 and then 
e -+ 0 one derives the lower bound (2.12) from (2.13) and completes the proof 
of Lemma 2.1. 0 

Next, I am able to conclude the proof of Theorem 2.1. Let G c 9'(X) be 
an open set. For any e > 0 one can choose ve E G such that 

(2.25) 

where J is defined by (2.3). Since 9'(X)\G is compact then 

(2.26) l5 = inf{p(,u, ve): ,u E 9'(X)\G} > O. 
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Denote Pn(p" v) = EZ=I 2-kl f Vkdp,- f ~dvl then for any p" v E .9'(X) , 
(2.27) 0 ~ p(p" v) - Pn(p" v) ~ 2-(n-l) 

since IlVk II = 1, k = 1 , 2, .... Hence if n is big enough then 

(2.28) Gn ,6 = {p, E .9'(X) : Pn(p" ve) < ~} c G. 

For each 0: = (0: 1 , ••• , O:n) E ~n denote 1I00II n = EZ=I rklo:kl and put O:e = 
f nve • If Un,6 = {o: : 1I00e - o:lIn < ~} then clearly !"Gn,6 = Ln n Un,6. Thus 
by (2.7), (2.12), (2.25), and (2.28) one obtains 

(2.29) liminf(ljr(A» 10gP;.{';' E G} ~ liminf(ljr(A» 10gP;.{';' E Gn 6} 
;'EA ;'EA ' 

= liminf(ljr(A»logP;.{!,,';' E Un ~} ~ -In(Un 6) ;'EA ,u, 

~ -/n(O:e) ~ -/(Ve) ~ -J(G) - B. 
Since B > 0 is arbitrary (1.2) follows and the proof of Theorem 2.1 is com-
plete. 0 

Let WI' ... ' Wn be arbitrary continuous functions on X. Similarly to the 
construction in the proof of Theorem 2.1 define i,,:.9' (X) -+ ~n by i" (p,) = 
(f Wldp" ... , f Wndp,) and put in(o:) = inf{/(v): i"v = o:} if 0: E i,,(.9'(X» 
and in(o:) = 00 if 0: ~ i,,(.9'(X». In the same way as in (2.8) and (2.9) 
it follows for Qn(P) = Q(EI~k~n Pk Wk), P = (PI' ... ,Pn) that Qn(P) = 
sUPaE!Rn((p, o:)-in(P» and in(o:) = SUppE!Rn((p, o:)-Qn(P» for 0: E i,,(.9'(X». 
One obtains easily from Theorem 2.1 

Corollary 2.1. Let in(A) = infaEA in (0:) . Then for any closed set M c ~n, 
~ ;. ~ 

(2.30) limsup(ljr(A»logP;.{!,,' E M} ~ -In(M) 
;'EA 

and for any open set U C ~n , 
~ ;. ~ 

(2.31) liminf(ljr(A» 10gP;.{fn' E U} ~ -In(U). ;'EA 
Remark also that the derivation of Corollary 2.1 from Theorem 2.1 is a partial 

case of the general contraction principle. 

Remark 2.1. According to Theorems 23.5 and 25.1 from [R] my assumption 
that the functions (P, V) n have unique equilibruim state is equivalent to the 
differentiability of the functions Qn(P) in p. 
Remark 2.2. One can generalize Theorem 2.1 to a noncompact (but locally 
compact) X assuming that except for events whose P;.-probabilities decrease 
fast in A the measures ,: form a tight family (cf. [AI]). 

3. ApPLICATIONS TO DYNAMICAL SYSTEMS 

Let FI : M -+ M, t E Z+ or t E ~+ be a semigroup of continuous maps 
of a locally compact metric space M. Suppose that X C M is a compact 
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set and put XI = {x : FUx E X for all u E [0, t]}. If FIX c X for all 
t ~ 0 then, clearly, XI == X. I am going to employ the general set up of the 
previous sections when r(A.) = A. = t, .QI = XI' sr; is the Borel a-field in XI' 
PI = m l = m~t) where m is a probability measure on X such that m(XI) > 0 
for all t ~ 0, and, finally, for x E XI one defines ,~ = + f~ iJFsxds in the 
continuous time case and ,~ = + E~-:~ iJ Fk x in the discrete time case. 

The study of large deviations for the measures ,~ involves the topologi-
cal pressure whose definition is based on the notion of (iJ, t)-separated sets. 
A set S C XI will be called (iJ, t)-separated if y, Z E S, y =I- z imply 
dist(FSy, F S z) > iJ for some s E [0, t]. Define 
(3.1 ) 

Zx(lf!, iJ, t) = sup {~exp (t Ix If!(Y)d':(Y») : S C XI is (iJ, t)-separated} , 

Z x( If! , iJ, t) = 0 if XI = 0, and 

(3.2) Qx(lf!, iJ) = limsup.!.logZx(lf!, iJ, t) 
1-+00 t 

where If! is a continuous function on X. 
Then 

(3.3) Qx(lf!) = lim sup Qx(1f! ,iJ) 
.5-+0 

is called the topological pressure of a function If!. Denote by viti the space 
of FI-invariant measures Jl E 9'(X) ,i.e. Jl(F-1 U) = Jl( U) for all t ~ 0 and 
any Borel U eX. The following statement is called the variational principle. 

Proposition 3.1. If viti =I- 0 then for any continuous function If! , 

(3.4) Qx(lf!) = sup (/ If!dJl + h/l(F 1») 
/lEAf! 

where h/l(FI) is the Kolmogorov-Sinai entropy of the map FI with respect to a 

FI-invariant measure Jl. If viti = 0 then 

(3.5) 

Proof. If viti = 0 then Xoo = nl>o XI = 0 since Xoo is compact as an inter-
section of the compact sets XI = no<u<1 F- u X, Xoo is forward FI-invariant, 
and so if Xoo =I- 0 then it must supp~rt a FI-invariant probability measure. 
The intersection Xoo of the decreasing sequence of compact sets XI being 
empty implies that XI = 0 for all t ~ to and (3.5) follows. Next, I assume 
that vitI =I- 0. The standard form of the variational principle concerns the 
case where X is a forward FI -invariant set, i.e. FIXe X, and so I shall 
indicate how to modify slightly the proof of Theorem 9.10 in [W] to obtain this 
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more general version. It seems that, L.-S. Young knew a version of this result 
which she needed to establish Theorem 4 in [Y]. Let q, be the closure of the 
set U{supp,u:,u E LJ}. 

Then Ftq, c q, eX, and so by the standard version of the variational 
principle 

(3.6) 

To prove the inequality in the other direction it suffices to produce for any 
F 

8 > 0 a measure ,u. E Lx such that 

(3.7) hlle (Ft) + f I/fd,u. ~ Qx(l/f, 8). 

For each t ~ 0 let St be (8, t)-separated sets in X t with 

log L exp (t 1I/fd'~) ~ 10gZx(l/f, 8, t) - 1. 
xES, X 

Define atomic measures at E 9'(X) concentrated on St by the formula 

and put 
t-I t 

1 '" -k 11-u ,ut = - wak 0 F or,ut = - au 0 F du 
t k=O t 0 

in the discrete and continuous time cases, respectively, where 1/ 0 F- t (U) = 
II(F-tU) for II E 9'(X) and U E SB(X). The measures ,ut are probability 
measures on the compact X, and so one can choose a sequence t; ---- 00 such 
that 

and ,ut weakly converges to some ,u E 9'(X) which according to Theorem 6.9 
of [W]' satisfies ,u E LJ. Next one shows that ,u =,u. satisfies (3.7) taking 
a partition , = {AI' ... , Ak} of (X, SB(X)) such that diam(A;) < 8 and 
,u(8A;) = 0 for 1 ~ i ~ k and proceeding verbatim as on pp. 220-221 in 
[W]. Finally, (3.7) being true for all 8 > 0 implies the inequality opposite to 
(3.6). 0 

For any ~ > 0, t ~ 0, and x E X t put 

Ut5 (x, t, X) = {y EXt: dist(Fux ,Fuy) ~ ~ for all u E [0, tn. 

Proposition 3.2 (cf. Theorem 6.2 in [K2]). Suppose that mE 9'(X) , the support 
of m is the whole X, and for some continuous function ({J on X and for all 
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t , r5 > 0, X E Xt one has 

(3.8) (Ao(t))-I S; m(Uo(x, t, X))exp (-t Ix rpd'~) S; Ao(t) 

where Ao(t) > 0 satisfies 

(3.9) lim ~ log Ao(t) = o. 
t-+oo t 

Then for any V E C(X), 

(3.10) lim ~log r exp (t r Vd'~) dm(x) = Qx(rp + V) = Q<I>(rp + V) 
t-+oo t lx, lx 

where, recall, <I> = closure of U PEL: supp fi· 
Proof. For each r5, t > 0 denote by S(r5, t) a maximal (r5, t)-separated set 
in Xl" Then UXES(O, t) Uo(x, t, X) = X t ::J UXES(O, t) Uo/2(x, t, X) and for any 
y, z E S(r5, t), y f:. z the sets UO/ 2(y, t, X) and UO/ 2(z, t, X) are disjoint. 
Thus 

'L m(Uo(x, t, X)) exp (t 1 (V + Yo(V))d'~) 
XES(O,t) x 

(3.11) 

~ lx, exp (t Ix V d'~) dm(x) 

~ 'L m(UO/2(X' t, X))exp (t 1 (V - Yt5(V))d'~) 
XES(O ,t) x 

where Yo(V) = sup{!V(y) - V(z)1 : y, z EX, dist(y, z) S; r5} which tends to 
zero as r5 --> 0 since V E C(X). Taking log in (3.11), dividing by t, employing 
(3.8) and (3.9), and letting first t --> 00 and then r5 --> 0 we derive (3.10) taking 
into account the definition (3.1)-(3.3) and Proposition 3.1. 0 

Taking in (3.10), V == 0 one obtains the escape rates from X with respect 
to mE 9'(X). 

Proposition 3.3. Let mE 9'(X) satisfies the conditions of Proposition 3.2. Then 

(3.12) lim ~ 10gm(Xt ) = Q<I>(rp) 
t-+oo t 

If m E LJ then both the lefl- and the right-hand sides of(3.12) is zero. 

Now I am able to derive a general result on large deviations in dynamical 
systems. 

Theorem 3.4. Let m satisfy the conditions of Proposition 3.2. Suppose that the 
entropy hp(FI) is upper semicontinuous at all fi E LJ. Then for any closed 
K C 9'(X) , 

(3.13) lim sup ~ logm{x:'~ E K} S; -inf{I(v) : v E K} S; Qx(rp) 
t-+oo t 
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where 

(3.14) { - J rpdv - h,)FI) if v E viti, 
I(v) = F 

00 ifvivltx. 
If, in addition, there exists a countable set of functions, ~,l'2, ... E C(X) 
such that their span is dense in C(X) and for each linear combination V = 
PI ~ + ... + Pn Vn there exists a unique measure J1.v E 9'(X) such that 

(3.15) Qx(rp + V) = / VdJ1.v - I(J1.v) 

then for any open G c 9'(X) , 

(3.16) liminf ~ logm{x: '~E G} ~ -inf{I(v): v E G}. 
t-+oo t 

Proof. The entropy hJl(FI) is affine as a function of J1.. Thus ifit is also upper 
semicontinuous then by (3.4) and the duality theorem (see [AE, p. 201] and 
Theorem 9.12 in [WD the functional I(v) defined in Theorem 3.4 is convex 
conjugate to Qx(rp + V). Taking into account (3.10) and (3.12) one derives 
(3.13) from (1.1) applied to the measures Pt = mt = m/m(Xt) as explained at 
the beginning of this section. Indeed, in view of (3.10) and (3.12) the pressure 
of V given by (1.3) for P). = Pt = mt equals Qx(rp + V) - Qcl>(rp) , and so 
the corresponding I-functional defined by (1.4) equals I(v) + Qcl>(rp). Thus by 
(1.1), 

lim sup ~ logmt{x : ,~ E K} $ - inf I(v) - Qcl>(rp) 
t-+oo t vEK 

which together with (3.12) yield (3.13). The lower bound (3.16) follows from 
(1.2) by the second part of Theorem 2.1. 0 

Next, I shall describe situations in smooth dynamical systems where condi-
tions of Theorem 3.4 are satisfied. Relevant examples are expanding transfor-
mations and uniformly partially hyperbolic and hyperbolic dynamical systems. 
A C2 -endomorphism F = FI of a compact Riemannian manifold M is called 
expanding if there exists )' > 0 such that 

(3.17) IIDFnc;II~)'eynllc;11 for all C;ETxM, xEM, n~O, 

where DF is the differential of the map F, T M is the tangent bundle over 
M and TxM is the tangent space at x ,and II· II is the Riemannian norm on 
TM. Let J(x) denote the Jacobian of the linear map DF: Tx M - TFxM 
with respect to inner products induced by the Riemannian metric. Define 

(3.18) rp(x) = -logJ(x). 

Clearly, rp is a smooth function. It is well know that the entropy hv (F) is upper 
semicontinuous for expanding maps since they are expansive (see [Wand RuD. 
Let m denote the normalized Riemannian volume on M. Then it is easy to 
see (cf. p. 136 in [KID that (3.8) holds true with rp given by (3.18) and with 
Ao(t) > 0 independent of t. This is a simple case of the volume lemma. It is 
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also well known (see [Ru, Chapter 7]) that for any Holder continuous function 
'1/ on M there exists a unique measure vI{! at which the supremum in (3.4) 
with X = M is attained, i.e. QM('I/) = J 'l/dvl{! + hv (F). If V;, Vi, ... is a 

'" countable dense in C(X) set of Holder continuous functions on M then all 
functions '1/ = rp + E7=1 Pi~ are also Holder continuous and so (3.15) will be 
satisfied for a unique probability measure J.lv = vI{!. Thus both upper and lower 
bounds (3.13) and (3.16) hold true in this case. 

Next, let Ft : M ---+ M, t E Z or t E ~ be a group of diffeomorphisms of a 
locally compact Riemannian manifold M. 

A compact Ft -invariant set reM (i.e. Ftr = r for all t) is called 
uniformly partially hyperbolic (abbreviated uph) if there exist y > 0 and DFt_ 
invariant splitting TrM = E U E9 E CS into continuous subbundles E U and E CS 

of the tangent bundle over r such that the dimensions of E U and E CS are 
constant on r and given e > 0 there is N > 0 so that for any x E r and all 
t> N, 

(3.19) 

and 

(3.20) 

The set r is called hyperbolic in the discrete time case, i.e. when t E Z, if 
E CS = E S and in place of (3.20) one has 

(3.21) "DF~,," :::; e-)'tll,,11 provided" E E S • 

The set r is called hyperbolic in the continuous time case if ECS = EO E9 E S 

where E S satisfies (3.21) and EO is the direction of the flow F t , i.e. it is the 
one-dimensional subbundle generated by the vector field B satisfying 

(3.22) d~;x = B(Ftx). 

A hyperbolic set r is said to be basic hyperbolic if the periodic orbits of F\ 
are dense in r, Ftlr is topologically transitive, and there exists an open set U ~ 
r with r = n-oo<t<oo FtU. In the discrete time case let J(x) be the Jacobian 
with respect to the Riemannian inner products of the linear map DF: E; ---+ 

E;x where F = F1 and put rpu(x) = -logJ(x). In the continuous time case 
let Jt(x) be the Jacobian of the linear map DFt: E; ---+ E;,x and put rpu(x) = 
_d~(X)1 

t t=O· 
The function rpu is known to be Holder continuous even in uph cases since 

the subbundle E U is Holder continuous (see Appendix in [BK]). I shall need 
this fact only in hyperbolic cases where it is proved in [B and BR]. 

Let r be a locally maximal uph set meaning that there exists an open set 
U satisfying n-oo<t<oo Ft U = r. If m is the normalized Riemannian vol-
ume in U then the relations (3.8)-(3.9) with rp = rpu follows from the volume 
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estimates in [V]. If r is a basic hyperbolic set then (3.8) with rp = rpu fol-
lows with At5 (t) independent of t from the volume lemma in [BR]. Recently I 
proved together with S. Newhouse that a global volume lemma holds true when 
pt is an Axiom-A dynamical system on a compact manifold M with strongly 
transversal intersect ions of stable and unstable manifolds in the sense that (3.8) 
holds true with rp which is a continuous extension of rpu from basic hyperbolic 
sets to the whole M. The upper semicontinuity of the entropy in the uph case 
and in the hyperbolic continuous time case holds true since these dynamical 
systems are entropy expansive (h-expansive: see [DGS]). In the hyperbolic dis-
crete time case the upper semicontinuity of the entropy is simpler since the 
corresponding diffeomorphism is expansive (see [W]). Thus in the above cases 
one has the upper bound (3.13). The uniqueness of equilibrium states corre-
sponding to Holder continuous functions in the case of a basic hyperbolic set 

- t-r is well known (see [B and BR]), and so if X = U, n-oo<t<oo p U = r, and 
V;, V;, ... is a countable dense in C(X) set of Holder continuous functions 
then for each V = rpu + 2::;=1 Pi~ the equality (3.15) will be satisfied for a 
unique probability measure. In the last case one has the lower bound (3.16), 
as well. Thus for the above classes of dynamical systems the following result is 
the corollary of Theorem 3.4. 

Theorem 3.5. Let m denote the Riemannian volume on a C2 locally compact 
manifold M. 

(i) If pt: M ____ M is a semigroup of C2 expanding transformations and M 
is compact then (3.13) and (3.16) hold true with I(v) given by (3.14), X = M, 
and rp defined by (3.18); 

(ii) Let pt: M ____ M be a group of c2 dijJeomorphisms. Suppose that an uph 
r is locally maximal in a neighborhood U with a compact closure U. Then 
the upper bound (3.13) holds true with X = U and rp = rpu; 

(iii) If pt: M ____ M is C2 Axiom-A dynamical system with strong transver-
sality condition then (3.13) is satisfied with X = M and rp which is a continuous 
extension of the functions rpu from the basic hyperbolic sets to the whole M; 

(iv) Let pt: M ____ M be a group of c 2 dijJeomorphisms having a ba-
sic hyperbolic set r in an open set U with a compact closure U such that 

t-
n-oo<t<oo p U = r. Then both the upper bound (3.13) and the lower bound 
(3.16) hold true with X = U and rp = rpu . 

Remark 3.1. If r is a basic hyperbolic set and m = v'll is an equilibrium 
state corresponding to a HOlder continuous function 1/1 on r then (3.8) will 
be satisfied with rp ='1/1 - Qx(l/I) (see [B and BR]), and so (3.13) and (3.16) 
remain true with such m and rp, and X = r which generalizes [V]. 

Remark 3.2. If r is an uph set of pt (in particular, if r is hyperbolic) then 
- J rpu dv with v E L[ is the integral of the sum of positive Lyapunov char-
acteristic exponents corresponding to v. 
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Remark 3.3. One should not expect reasonable lower bounds of the type (3.16) 
if the uniqueness of equilibrium states for a large set of functions does not take 
place. Let, for instance, Ft be an Axiom-A dynamical system having at least 
two attractors r , and r 2 • Then for certain Holder continuous functions the 
equilibrium states will be all convex linear combinations of certain equilibrium 
states on r , and r 2 , i.e. the uniqueness will not hold true. Now take any 
VI ELi and v2 ELi. Let G be small neighborhood of v = PI v2 + P2v2 with 

I 2 

PI' P2 > 0 and PI + P2 = 1. Then by (3.14), I(v) = p/(v l ) + P2I(v2). On the 
other hand, since there is no orbit of Ft which visits both small neighborhoods 
of r , and r2 then m{x: ,~ E G} = O. Thus the left-hand side of (3.16) will 
always be -00. 
Remark 3.4. In view of Corollary 2.1 the results of [OP, Y, and D] concern-
ing large deviations for m{x: ~ EZ:~ V(Fkx) E U}, U c !R I , V E C(X) are 
partial cases of Theorem 3.5. 
Remark 3.5. The machinery of this paper works perfectly in the symbolic dy-
namic set up, in particular, for shifts of finite type and for Gibbs measures of 
general shifts, and so the corresponding results from [OP and Y] will follow 
from Theorem 3.4. Indeed, let P = (Pi}) be a k x k irreducible stochastic 
matrix and let m be the stationary measure of the corresponding Markov shift 
F:X-+X where X={x:x=(xO'xI ,.··), X i E{I, ... ,k}, Pxx >0 

, HI 

for all i ;::: O}. Set qJ(x) = logpx x then m{x: Xo = io' ... ,xn_1 = in_I} = o I 

Pio exp(E7:o' qJ(F' x)), where P = (PI' ... ,h) is the stationary vector of P, 
and so the conditions of Proposition 3.2 are satisfied. The uniqueness of equi-
librium states for Holder continuous functions on X is well known (see [Ru, 
Chapter 5]) and so Theorem 3.5 is applicable. Moreover one can treat dynam-
ical systems with the multidimensional time in the framework of the thermo-
dynamic formalism from [Ru]. In the one-dimensional time case one derives 
directly assertions of Theorem 3.5 for homeomorphisms of Smale spaces (see 
[Ru, Chapter 7]). In the multidimensional time case the uniqueness of equilib-
rium states is more difficult to obtain which is the main obstacle for application 
of the above methods. Remark that the results of this paper yield large deviation 
estimates for hyperbolic rational maps considered in [L]. 

4. ApPLICATIONS TO MARKOV PROCESSES 

In this section the large deviations estimates from [DV2] will be derived 
as the corollary of Theorem 2.1. Suppose that l'r is a Markov process on a 
locally compact metric space M with a discrete t = 0, 1, 2, ... or contin-
uous time t E [0, 00). I shall consider two cases. In the discrete time case 
Yt , t = 0, 1 , ... will be a Markov chain on M whose transition probabilities 
P(x, r) = P{l'r+1 E rjYt = x} have continuous positive densities p(x, y) with 
respect to certain probability measure m on M such that m(U) > 0 where 
U c M is an open set with a compact closure U where l'r will only be con-
sidered, in particular, U may coincide with the whole M which is supposed 
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then to be compact. In the continuous time case ~, t E [0, 00) will be a dif-
fusion process in a connected open subset U of a locally compact Riemannian 
manifold M with absorption on the boundary a u so that a U is smooth and 
U = uuau is compact. In particular, U may coincide with M which is com-
pact then. Put tu = inf{t ~ 0: Yt fI. U} and for each V E C(U) introduce 
the semigroups of operators 

(4.1) Tv(t)g(x) = ExXTu>tg(~) exp (t. V(Yk )) 

in the discrete time case, and 

(4.2) Tv(t)g(x) = ExXTu>tg(~)exp (fot V(Ys)dS) 

in the continuous time case, where Ex denotes the expectation for the process 
Yt starting at x and XA = 1 if A occurs and XA = 0 for otherwise. The 
operators Tv(t) map C(U) into itself and in the continuous time case when 
U is a proper subset of M then one considers Tv(t) acting on the subspace 
Co(U) c C(U) of functions with zero data on au. By the submultiplicative 
property of the norm the limit 

(4.3) Q(V) = lim ~logIlTv(t)1I = inf ~logIITv(t)1I 
t--+oo t t>O t 

exists and is finite. It follows from the theory of positive operators (see [Kr]) 
both in the discrete time case and in the continuous time case with U = M 
compact that the spectrum of the operator Tv(1) is pure point and eQ(V) is 
its principal eigenvalue, i.e. the eigenvalue with the maximal absolute value. If 
U is a proper subset of M and ~ is the diffusion in U with the absorption 
on au then for any V E C(U) the number eQ(V) belongs to the spectrum 
of Tv(1) (see [DV3]) but one can claim that eQ(V) is an eigenvalue only if V 
is Holder continuous (see [Kr]). Let L be the generator of the diffusion ~ 
which is a second order elliptic differential operator. Put Lv = L + V then 
Q(V) belongs to the spectrum of Lv for all V E C(U) and Q(V) is the 
principal eigenvalue of Lv, i.e. the eigenvalue with the maximal real part, if 
V is Holder continuous (see [Kr]). 

By [DVI-DV2] for any V E C(U), 

(4.4) Q(V) = su~ ( ~ V dJj - J(Jj)) 
/lEP(U) iu 

where in the discrete time case 

(4.5) J(Jj) = - inC ~IOg (PU) dJj, 
uEc+(u)iu U 

with Pu(x) = Jup(x, y)u(y)dm(y), C+(U) = {u E C(U): u> O}, and in the 
continuous time case 

(4.6) J(Jj) = - inf -dJj '., h Lu 
uED+ u u 
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with D + being the set of functions from the domain of L having positive 
upper and lower bounds. A simple proof of (4.4) goes as follows. The lower 
semicontinuity of I (J.l) is built in its definitions (4.5) and (4.6), and so for any 
V E C( U) there exists J.lv E 9'( U) such that in the discrete time case, 

s~p(f VdJ.l-I(J.l)) = f VdJ.lv-I(J.lv) 

(4.7) = '- VdJ.lv + inf_ '-lOg (PU) dJ.lv lu UEC+(U) lu U 

~ !ulog (Tv~:)rv) dJ.lv = Q(V) 

where r v is the positive eigenfunction corresponding to the eigenvalue Q( V) 
(see [Kr]). It turns out (see [K2]) that J.lv satisfies (4.7) if and only if it is an 
invariant measure of a Markov process with Markov transition operators. 

(4.8) 

Then for any U E C(U), 

(4.9) 

Take u = i then by Jensen's inequality 

logg;,(t)u ~ g;,(t) logu = g;,h, 

and so by (4.9), 

!ulOgg;,(l)UdJ.lv ~ !ug;,(t)hdJ.lv = !uhdJ.lv = !ulOgUdJ.l, 

i.e. 

( 4.10) 

Since (4.10) holds true for any u E C+(U) then by (4.5) and (4.8) it implies 
that 

!u V dJ.l- I(J.l) ~ Q(V) 

which together with (4.7) give (4.4) for I(J.l) given by (4.5). In the continuous 
time case one remarks that for small t > 0, 

(4.11) log (g;,~t)U) ~ t (~U) 

where 2'v = -Q(V)+V+(rv )-I L (rv ) is the generator of the semigroup g;,(t). 
In the continuous time case with U = M this gives (4.4) immediately. If 
U =F M, the time is continuous, and one deals with functions having zero data 
on {) U then (4.7) and (4.10) need some additional justification. First, in this 
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case the eigenfunctions r v exist only for Holder continuous V, and so the 
above arguments may go through only for such V. But since by (4.3), 

(4.12) IQ(V;) - Q(Yz)1 ~ IIV; - Yzil 
then (4.4) proved for all Holder continuous V will be true for all V E C(U). 
Secondly, one will have to deal only with functions with zero data on () U which 
behave near () U as r v which does not cause any problems since the measures 
liv (for V Holder continuous) have densities with respect to the volume which 
near () U behave as (r v)2 (for details, see Proposition 3.1 in [K2]). 

Since the transition densities of ~ are positive in U then it is easy to see 
that for any x E U , 

(4.13) Q(V) = lim !log(Tv(t)l)(x) 
1-+00 t 

where l(x) == 1. Considering the occupational measures (~= t L~:~ 6y,(w) in 
the discrete time case and (~ = t J~ 6Y,(w)ds in the continuous time case one 
can rewrite (4.13) as 

(4.14) Q(V) = lim ! log ExXr >1 exp ( f V d(~) 
1-+00 t U lu 

which has the form (1.3). I proved in Propositions 3.1 and 5.1 from [K2] that 
the measure liv giving the supremum in (4.4) is unique, at least, for all Holder 
continuous functions V (in fact, in the discrete time case and in the continuous 
time case with U = M, liv is unique for all V E C(U)). 

Thus Theorem 2.1 with X = U yields 

Theorem 4.1. For any x E U and every closed set K c .9'(U) , 

(4.15) lim sup! 10gPx gl E K} ~ -inf{l(1/) : 1/ E K}, 
1-+00 t 

and for every open set G c .9'( U) , 

(4.16) liminf! 10gPx{(1 E G} ~ -inf{/(1/): 1/ E G} 
1-+00 t 

where Px{A} = ExXA and /(1/) is defined by (4.5) or (4.6) accordingly to the 
case under the consideration. 

Remark 4.1. Employing the theory of Harris-recurrent Markov chains as in 
Lemmas 2.3 and 4.2 of [A2] in place of Doeblin's condition in Proposition 5.1 
of [K2] one can generalize the above theory in the spirit of [A2] to wider classes 
of Markov chains since the formula (4.4) itself is proved in [DV 1] under rather 
general circumstances. 

Remark 4.2. The method works perfectly also for Markov chains y(t) with 
continuous time on a finite state space {I, ... , N}. Let P(t) = (Pk/(t)) be 
the matrix of transition probabilities of y(t) for the time t and put L = 
ftP(t)ll=o. Suppose that all nondiagonal elements of L are positive. Consider 
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the semigroup of operators Tv(t)g(k) = Ekg(~)exp(J~ V(~)ds) where both 
g = (g(1), ... ,g(N)) and V = (V(1), ... , V(N)) are N-vectors. This is a 
semigroup of positive matrices, and so by the Perron-Frobenius theorem Tv(t) 
has a simple eigenvalue exp(tQ( V)) with maximal absolute value where Q( V) 
is an eigenvalue of the matrix L. Moreover, it follows that for each k, 

lim .!.IOgEk exp ( rt V(~)dS) = lim .!.logIITv(t)11 = Q(V). 
~oot h ~oot 

Again by the Perron-Frobenius theorem the eigenvector r v corresponding to 
Q(V) is positive, and so one can define a Markov operator g;.(t) by means 
of (4.8). It is easy to see that this operator has a unique invariant proba-
bility vector (measure on {1, ... , N}) and proceeding as in (4.7)-(4.11) one 
concludes that Ilv is the only measure on which the supremum in (4.4) is at-
tained with I(Il) given by (4.6) where u = (u(l), ... ,u(N)) and J ~udll = 
Lk(U(k))-IIl(k)(Lu)(k). Thus the large deviation bounds (4.15) and (4.16) 
follow. 
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