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Abstract. We consider a continuous time Markov chain on a countable state space and prove a joint large deviation principle for

the empirical measure and the empirical flow, which accounts for the total number of jumps between pairs of states. We give a

direct proof using tilting and an indirect one by contraction from the empirical process.

Résumé. On considère une chaîne de Markov en temps continu à espace d’états denombrable, et on prouve un principe de grandes

déviations commun pour la mesure empirique et le courant empirique, qui représente le nombre total de sauts entre les paires

d’états. On donne une preuve directe à l’aide d’un tilting, et une preuve indirecte par contraction, à partir du processus empirique.
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1. Introduction

One of the most important contribution in the theory of large deviations is the series of papers of Donsker and Varadhan

[19] where the authors develop a general approach to the study of large deviations for Markov processes both in

continuous and discrete time. They establish large deviations principles (LDP) for the empirical measure and for the

empirical process associated to a Markov process. Given a sample path of the process on the finite time window [0, T ],

the corresponding empirical measure is a probability measure on the state space that associates to any measurable

subset the fraction of time spent on it. A LDP for the empirical measure is usually called a level 2 LDP. Given

a sample path, the corresponding empirical process is a probability measure on paths defined on the infinite time

window (−∞,+∞). More precisely, it is the unique stationary (with respect to time shift) probability measure that

gives weight 1 to T -periodic paths such that there exists a period [t, t + T ] where they coincide with the original

sample path. A LDP for the empirical process is usually called a level 3 LDP.

The large deviations asymptotic of discrete time Markov chains on a countable state space can be described as

follows, see for example [16,17]. The rate function for the level 3 LDP is the relative entropy per unit of time. The rate

function for the level 2 LDP has instead in general only a variational representation, which cannot be solved explicitly

even for reversible transition probabilities. A very natural and much studied object is the k-symbols empirical measure.

This is a probability measure on strings of symbols with length k obtained from the frequency of appearance in the

sample path. With a suitable periodization procedure the k-symbols empirical measures constitute a consistent family

of measures that are exactly the k marginals of the empirical process. For each k > 1, and in particular for k = 2 the

rate function for the LDP associated to the k symbols empirical measure has an explicit expression.
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The aim of this paper is to provide an analogous picture for continuous time Markov chains on a countable state

space. For the empirical process the rate function is always the relative entropy per unit of time. For the empirical

measure the rate function has instead only a variational representation. In the case of reversible Markov chains the

corresponding variational problem can be solved and the rate function is related to the Dirichlet form. In the continuous

time setting the natural counterpart of the 2-symbols empirical measure is the empirical flow that can be defined as

follows. Given a sample path of the Markov chain in the finite time window [0, T ], the corresponding empirical flow

is the positive measure on the pairs of states assigning to each pair a weight given by the corresponding number of

jumps per unit of time.

As in the discrete time setting, the joint rate function for the empirical measure and flow can always be written

in a closed form (formula (2.12) below). This joint rate function for the empirical measure and flow first appeared

in applied contexts. Originally in information technology [15,27] and more recently in statistical mechanics [1]. In

particular, in [27] it has been used to recover by contraction the Donsker–Varadhan rate function for the empirical

measure in the case of a state space with only two elements. Being a LDP intermediate among level 2 and level 3,

the authors called it a level 2.5 LDP. Later in [2], motivated by statistical applications, the authors have showed that

the contraction on the empirical measure of the rate function proposed by [27] leads to the Donsker–Varadhan rate

function in the case of finite state space. In [15] a weak level 2.5 LDP has been proved. Finally in [1] LDPs for flows

and currents have been discussed in relation to nonequilibrium thermodynamics.

In the present paper we give a rigorous proof of a full LDP for Markov chains on a countable state space. In the

case of infinite state space, the empirical flow exhibits novel phenomena with respect to the empirical measure. In

particular, the Markov chain could perform very long excursions towards infinity in very short time. Therefore, the

exponential tightness of the empirical flow requires additional conditions and poses nontrivial topological issues. We

have solved these problems by introducing the bounded weak* topology and adding an extra condition with respect

to the Donsker–Varadhan ones (see item (vi) in Condition 2.2). This condition is sharp as it is also necessary for the

exponential tightness of the empirical flow in the case of birth and dead processes. Another technical issue is whether

the LDP for the empirical measure and flow holds in a stronger topology. For the empirical flow a natural candidate is

the strong L1 topology. However, as shown in the case of birth and dead processes, the rate function has not in general

compact level sets in the strong L1 topology for flows.

We present two different proofs of the LDP of the empirical measure and flow. A direct derivation is obtained

using a perturbation of the original Markov measure (under the additional assumption that the graph underlying the

Markov chain is locally finite), while an indirect derivation is obtained by contraction from the level 3 LDP. In the

last case, the contraction principle (which anyway requires some work as the map is not continuous and the topology

is not metrizable) leads to a partial result. In fact, the main point is the identification of the rate function obtained

by contraction with the closed form (2.12). In order to prove this identity – which does require additional conditions

with respect to the level 3 LDP – we need a geometrical analysis of divergence-free flows on graphs (see Section 4)

which plays a fundamental role also in direct proof of the LDP by exponential tilting. Besides the Donsker–Varadhan

conditions, level 2 and 3 LDPs can be proven under hypercontractivity condition, see [18]. Also in this framework,

the exponential tightness of the empirical flow requires the additional condition that the inverse of the mean holding

time has a finite exponential moment with respect to the invariant measure.

We mention some recent results about fluctuations of currents and flows inspiring and motivating the present work.

We already mentioned the paper [1]. In [29,30] LDPs for the current of the Brownian motion on a compact Riemann

manifold are obtained. We mention also the recent preprint [35] on the joint large deviations for the empirical measure

and flow for a renewal process on a finite graph. Currents play also a crucial role in biochemical processes, and

the study of large fluctuations and related symmetries have recently received much attention (see e.g. [23,31] and

references therein). As development of the result given here, in [6] we recover the LDP for the empirical measure

by contraction from the joint LDP proved here. In [7] we shall discuss several applications and consequences of our

results like LDPs for currents and Gallavotti–Cohen symmetries [22,32]. In [7] we will also give sufficient conditions

leading to the joint LDP for empirical measure and flow when endowing the flow space of the strong L1 topology. We

also mention that in [3] the scheme proposed here has been extended to the case of continuous time jump processes

with an absorbing state, motivated by the study of energy transport in insulators.

We finally outline some possible applications of the LDP for empirical measure and flow in the context of inter-

acting particle systems. (i) The LDP for the total number of jumps per unit of time has been recently analyzed in

[11,12] for some constrained interacting particle systems including the east model. In the limit of infinitely many
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particles, the associated rate function exhibits a nontrivial zero level set thus leading to second order large deviations.

The second order rate function is conjectured and partially proven in [12]. This problem can be attacked, by a purely

variational procedure, starting from the joint rate function for empirical measure and flow. (ii) In the context of hy-

drodynamic scaling limits the LDP of the current has been analyzed in [4,5,8,9]. In this setting a natural problem is

the large deviation properties of the time averaged hydrodynamical current in the large time limit. The corresponding

rate function exhibits interesting phenomena. On the other hand, one can take the large time limit before the limit of

infinitely many particles. As the hydrodynamical current can be written in terms of the empirical flow one can take

the scaling limit in the joint LDP for the empirical measure and flows. If all goes well one then recovers the hydrody-

namical rate function. In the special case of the one-dimensional boundary driven zero range process, the LDP for the

current of particles across an edge of the lattice has been computed by combinatorial techniques in [25] based on a

suitable ansatz. In the limit of infinitely many particles it yields the hydrodynamical result. In principle, this problem,

including the validity of the ansatz in [25], could be addressed starting from the joint LDP for the empirical measure

and flow. (iii) Always in the context of hydrodynamical scaling limit, the LDP for the net flow of particles across a

segment of the two-dimensional torus has been analyzed in [10]. In particular, it is shown that the large deviations

asymptotic degenerates due to the occurrence of small vortices near the endpoints of the segment. A nontrivial LDP

should hold in a suitable logarithmic rescaling. This phenomenon can be analyzed already for a single random walk

for which it becomes a problem on the scaling limit of the rate function here derived.

2. Notation and results

We consider a continuous time Markov chain ξt , t ∈ R+ on a countable (finite or infinite) state space V . The Markov

chain is defined in terms of the jump rates r(x, y), x �= y in V , from which one derives the holding times and

the jump chain [39], Section 2.6. Since the holding time at x ∈ V is an exponential random variable of parameter

r(x) :=
∑

y∈V r(x, y), we need to assume that r(x) < +∞ for any x ∈ V .

The basic assumptions on the chain are the following:

(A1) for each x ∈ V , r(x) =
∑

y∈V r(x, y) is finite and strictly positive;

(A2) for each x ∈ V the Markov chain ξx
t starting from x has no explosion a.s.;

(A3) the Markov chain is irreducible, i.e. for each x, y ∈ V and t > 0 the event {ξx
t = y} has strictly positive proba-

bility;

(A4) there exists a unique invariant probability measure, that is denoted by π .

As in [39], by invariant probability measure π we mean a probability measure on V such that

∑

y∈V

π(x)r(x, y) =
∑

y∈V

π(y)r(y, x) ∀x ∈ V, (2.1)

where we understand r(x, x) = 0. We recall some basic facts from [39], see in particular Section 3.5 and Theo-

rem 3.8.1 there. Assuming (A1) and irreducibility (A3), assumptions (A2) and (A4) together are equivalent to the fact

that all states are positive recurrent. In (A4) one could remove the assumption of uniqueness of the invariant proba-

bility measure, since for an irreducible Markov chain there can be at most only one. Under the above assumptions,

π(x) > 0 for all x ∈ V , the Markov chain starting with distribution π is stationary (i.e. its law is left invariant by

time-translations), and the ergodic theorem holds, i.e. for any bounded function f :V → R and any initial distribution

lim
T →+∞

1

T

∫ T

0

dt f (ξt ) = 〈π,f 〉 a.s., (2.2)

where 〈π,f 〉 denotes the expectation of f with respect to π . Finally, we observe that if V is finite then (A1) and (A2)

are automatically satisfied, while (A3) implies (A4).

We consider V endowed with the discrete topology and the associated Borel σ -algebra given by the collection of

all the subsets of V . Given x ∈ V , the distribution of the Markov chain ξx
t starting from x, is a probability measure

on the Skorohod space D(R+;V ) that we denote by Px . The expectation with respect to Px is denoted by Ex . In

the sequel we consider D(R+;V ) equipped with the Skorohod topology, the associated Borel σ -algebra, and the
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canonical filtration. The canonical coordinate in D(R+;V ) is denoted by Xt . The set of probability measures on V

is denoted by P(V ) and it is considered endowed with the topology of weak convergence and the associated Borel

σ -algebra. Since V has the discrete topology, the weak convergence of μn to μ in P(V ) is equivalent to the pointwise

convergence of μn(x) to μ(x) for any x ∈ V .

2.1. Empirical measure and empirical flow

Given T > 0 the empirical measure μT :D(R+;V ) →P(V ) is defined by

μT (X) =
1

T

∫ T

0

dt δXt ,

where δy denotes the pointmass at y. Given x ∈ V , the ergodic theorem (2.2) implies that the empirical measure μT

converges Px a.s. to π as T → ∞. In particular, the sequence of probabilities {Px ◦ μ−1
T }T >0 on P(V ) converges to

δπ .

We denote by E the countable set of ordered edges in V with strictly positive jump rate:

E :=
{
(y, z) ∈ V × V : r(y, z) > 0

}
.

For each T > 0 we define the empirical flow as the map QT :D(R+;V ) → [0,+∞]E given by

QT (X) :=
1

T

∑

t∈[0,T ]:Xt− �=Xt

δ(Xt− ,Xt ). (2.3)

Namely, T QT (X)(y, z) is the number of jumps from y to z in the time interval [0, T ] of the path X.

Remark 2.1. By the graphical construction of the Markov chain, the random field {T QT (y, z)}(y,z)∈E under Px is

stochastically dominated by the random field {Zy,z}(y,z)∈E given by independent Poisson random variables, Zy,z

having mean T r(y, z).

We denote by L1(E) the collection of absolutely summable functions on E and by ‖ · ‖ the associated L1-norm.

The set of nonnegative elements of L1(E) is denoted by L1
+(E). Since the chain is not explosive, for each T > 0 we

have Px a.s. that QT ∈ L1
+(E).

Given a flow Q ∈ L1
+(E) we let its divergence divQ :V →R be the function defined by

divQ(y) =
∑

z:(y,z)∈E

Q(y, z) −
∑

z:(z,y)∈E

Q(z,y), y ∈ V. (2.4)

Namely, the divergence of the flow Q at y is given by the difference between the flow exiting from y and the flow

entering into y. Observe that the divergence maps L1
+(E) to L1(V ).

Finally, to each probability μ ∈P(V ) we associate the flow Qμ ∈ R
E
+ defined by

Qμ(y, z) := μ(y)r(y, z), (y, z) ∈ E. (2.5)

Note that Qμ ∈ L1
+(E) if and only if 〈μ, r〉 < +∞. Moreover, in this case, by (2.1) Qμ has vanishing divergence if

only if μ is invariant for the Markov chain ξ , i.e. μ = π .

We now discuss the law of large numbers for the empirical flow. As follows from simple computations (see [38],

Lemma II.2.3, and [28], App. 1, Lemma 5.1, which have to be generalized to the case of unbounded r(·) by means of

[39], Section 2.8, and Remark 2.1) for each (y, z) ∈ E the process

MT (y, z) := T QT (X)(y, z) −

∫ T

0

dt δy(Xt )r(y, z) (2.6)
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is a martingale with respect to Px , x ∈ V . Moreover, the predictable quadratic variation of MT (y, z), denoted by

〈M(y, z)〉T is given by

〈
M(y, z)

〉
T

=

∫ T

0

dt δy(Xt )r(y, z).

In view of the ergodic theorem (2.2), we conclude that for each x ∈ V and (y, z) ∈ E the family of real random

variables QT (y, z) converges, in probability with respect to Px , as T → +∞ to Qπ (y, z). We refer to Remark 3.3 for

an alternative proof.

2.2. Compactness conditions

The classical Donsker–Varadhan theorem [16,18,19,40] describes the LDP associated to the empirical measure. The

main purpose of the present paper is to extend this result by considering also the empirical flow.

Below we will state two LDPs (Theorem 2.7 and Theorem 2.10) for the joint process given by the empirical

measure and flow. In Theorem 2.7 the flow space is given by L+
1 (E) endowed of the bounded weak* topology and,

in order to have some control at infinity in the case of infinite state space V , compactness assumptions are required.

In Theorem 2.10 the flow space is given by [0,+∞]E endowed of the product topology and weaker assumptions are

required (the same of [19]). On the other hand, the rate function has not always a computable form.

Let us now state precisely the compactness conditions under which Theorem 2.7 holds (at least one of the following

Conditions 2.2, 2.4 has to be satisfied). To this aim, given f :V → R such that
∑

y∈V r(x, y)|f (y)| < +∞ for each

x ∈ V , we denote by Lf :V → R the function defined by

Lf (x) :=
∑

y∈V

r(x, y)
[
f (y) − f (x)

]
, x ∈ V. (2.7)

Condition 2.2. There exists a sequence of functions un :V → (0,+∞) satisfying the following requirements:

(i) For each x ∈ V and n ∈ N it holds
∑

y∈V r(x, y)un(y) < +∞. In the sequel Lun :V → R is the function defined

by (2.7).

(ii) The sequence un is uniformly bounded from below. Namely, there exists c > 0 such that un(x) ≥ c for any x ∈ V

and n ∈ N.

(iii) The sequence un is uniformly bounded from above on compacts. Namely, for each x ∈ V there exists a constant

Cx such that for any n ∈ N it holds un(x) ≤ Cx .

(iv) Set vn := −Lun/un. The sequence vn :V →R converges pointwise to some v :V →R.

(v) The function v has compact level sets. Namely, for each ℓ ∈ R the level set {x ∈ V : v(x) ≤ ℓ} is finite.

(vi) There exist a strictly positive constant σ and a positive constant C such that v ≥ σr − C.

Remark 2.3. Since un > 0, it holds vn(x) =
∑

y∈V r(x, y)(1 − un(y)/un(x)) < r(x). Hence the function v in Condi-

tion 2.2 must satisfy v(x) ≤ r(x) for all x ∈ V . Due to (v), this implies that also r has compact level sets. In particular,

when considering a Markov chain with infinite state space, the function r must diverge at infinity.

Replacing in Condition 2.2 the strictly positive constant σ with zero one obtains the same assumptions of Donsker

and Varadhan for the derivation in [19] of the LDP for the empirical measure of the Markov chain satisfying (A1)–(A4)

(shortly, we will say that the Donsker–Varadhan condition is satisfied). In particular, the empirical measure satisfies a

LDP with rate function Î :P(V ) → [0,+∞] given by

Î (μ) = sup
u>0

{
−〈μ,Lu/u〉

}
. (2.8)

Under the same condition, the empirical process satisfies a LDP (see Section 6). Both these results still hold under a

suitable compactness condition concerning the hypercontractivity of the underlying Markov semigroup, see [18].

With respect to the hypercontractity condition, in order to establish the exponential tightness of the empirical flow

we need extra assumptions. Recall that π is the unique invariant measure of the chain. The maps Ptf (x) := E(f (ξx
t )),
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t ∈ R+, define a strongly continuous Markov semigroup on L2(V ,π). We write Dπ for the Dirichlet form associated

to the symmetric part (L + L∗)/2 of the generator L in L2(V ,π). Since the time-reversed dynamics is described by

a Markov chain on V with transition rates r∗(x, y) := π(y)r(y, x)/π(x), it holds

Dπ (f ) =
1

4

∑

x∈V

∑

y∈V

(
π(x)r(x, y) + π(y)r(y, x)

)(
f (y) − f (x)

)2
, f ∈ L2(V ,π). (2.9)

One can take this expression as definition of Dπ , avoiding all technicalities concerning infinitesimal generators. One

says that the Markov chain ξ satisfies the logarithmic Sobolev inequality if there exists a constant cLS ∈ (0,+∞) such

that for any μ ∈ P(V ) it holds (recall that π(x) > 0 for any x ∈ V )

Ent(μ|π) ≤ cLSDπ (
√

μ/π), (2.10)

where Ent(μ|π) denotes the relative entropy of μ with respect to π .

Condition 2.4.

(i) The Markov chain satisfies a logarithmic Sobolev inequality.

(ii) The exit rate r has an exponential moment with respect to the invariant measure. Namely, there exists σ > 0 such

that 〈π, exp(σ r)〉 < +∞.

(iii) The graph (V ,E) is locally finite, that is for each vertex y ∈ V the number of incoming and outgoing edges in y

is finite.

Item (iii) is here assumed for technical convenience and it should be possible to drop it. Item (i) is the hypercon-

tractivity condition assumed in [18] to deduce the Donsker–Varadhan theorem for the empirical measure. Item (ii) is

here required to prove the exponential tightness of the empirical flow in L1
+(E).

Remark 2.5. By taking in (2.10) μ = δx , Condition 2.4(i) implies that r has compact level sets.

2.3. LDP with flow space L1
+(E) endowed of the bounded weak* topology

We consider the space L1(E) equipped with the so-called bounded weak* topology. This is defined as follows. Recall

that the (countable) set E is the collection of ordered edges in V with positive jump rate. Let C0(E) be the collection

of the functions F :E → R vanishing at infinity, that is the closure of the functions with compact support in the

uniform topology. The dual of C0(E) is then identified with L1(E). The weak* topology on L1(E) is the smallest

topology such that the maps Q ∈ L1(E) → 〈Q,f 〉 ∈ R with f ∈ C0(E) are continuous. Given ℓ > 0, let Bℓ :=

{Q ∈ L1(E) :‖Q‖ ≤ ℓ} be the closed ball of radius ℓ in L1(E) (‖ · ‖ being the standard L1-norm). In view of the

separability of C0(E) and the Banach–Alaoglu theorem, the set Bℓ endowed with the weak* topology is a compact

Polish space. The bounded weak* topology on L1(E) is then defined by declaring a set A ⊂ L1(E) open if and only

if A ∩ Bℓ is open in the weak* topology of Bℓ for any ℓ > 0. The bounded weak* topology is stronger than the

weak* topology (they coincide only when |E| < +∞) and for each ℓ > 0 the closed ball Bℓ is compact with respect

to the bounded weak* topology. The space L1(E) endowed with the bounded weak* topology is a locally convex,

complete linear topological space and a completely regular space (i.e. for every closed set C ⊂ L1(E) and every

element Q ∈ L1(E) \ C there exists a continuous function f :L1(E) → [0,1] such that f (Q) = 1 and f (Q′) = 0 for

all Q′ ∈ C). Moreover, it is metrizable if and only if the set E is finite. We refer to [36], Section 2.7, for the proof of

the above statements and for further details.

We regard L1
+(E) as a (closed) subset of L1(E) and consider it endowed with the relative topology and the associ-

ated Borel σ -algebra. Accordingly, the empirical flow QT will be considered as a measurable map from D(R+;V ) to

L1
+(E), defined Px a.s., x ∈ V . Recalling that we consider P(V ), the set of probability measures on V , with the topol-

ogy of weak convergence, we finally consider the product space P(V ) × L1
+(E) endowed with the product topology

and regard the couple (μT ,QT ) where μT is the empirical measure and QT the empirical flow, as a measurable map

from D(R+;V ) to P(V ) × L1
+(E) defined Px a.s., x ∈ V .
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Below we state the LDP for the family of probability measures on P(V ) × L1
+(E) given by {Px ◦ (μT ,QT )−1}

as T → +∞. Before stating precisely the result, we introduce the corresponding rate function. Let Φ :R+ × R+ →

[0,+∞] be the function defined by

Φ(q,p) :=

⎧
⎨
⎩

q log
q
p

− (q − p) if q,p ∈ (0,+∞),

p if q = 0, p ∈ [0,+∞),

+∞ if p = 0 and q ∈ (0,+∞).

(2.11)

Since Φ(q,p) = supλ∈R{qλ − p(eλ − 1)}, Φ is lower semicontinuos and convex. We point out that, given p > 0 and

letting Nt , t ∈ R+ be a Poisson process with parameter p, the sequence of real random variables {NT /T } satisfies a

large deviation principle on R with rate function Φ(·,p) as T → ∞. This statement can be easily derived from the

Gärtner–Ellis theorem, see e.g. [16], Thm. 2.3.6. Recalling (2.4) and (2.5), we let I :P(V ) × L1
+(E) → [0,+∞] be

the functional defined by

I (μ,Q) :=

{∑
(y,z)∈E Φ

(
Q(y, z),Qμ(y, z)

)
if divQ = 0, 〈μ, r〉 < +∞,

+∞ otherwise.
(2.12)

Remark 2.6. In view of the lower semicontinuity and convexity of Φ , I is lower semicontinuous (apply Fatou lemma)

and convex. Moreover, as proved in Appendix A, if 〈μ, r〉 = +∞ the series in (2.12) diverges. Hence the condition

〈μ, r〉 < +∞ can be removed from the first line of (2.12).

Theorem 2.7. Assume the Markov chain satisfies (A1)–(A4) and at least one between Conditions 2.2 and 2.4. Then

as T → +∞ the family of probability measures {Px ◦ (μT ,QT )−1} on P(V ) × L1
+(E) satisfies a large deviation

principle, uniformly for x in compact subsets of V , with good and convex rate function I . Namely, for each not empty

compact set K ⊂ V , each closed set C ⊂P(V ) × L1
+(E), and each open set A ⊂P(V ) × L1

+(E), it holds

lim
T →+∞

sup
x∈K

1

T
logPx

(
(μT ,QT ) ∈ C

)
≤ − inf

(μ,Q)∈C
I (μ,Q), (2.13)

lim
T →+∞

inf
x∈K

1

T
logPx

(
(μT ,QT ) ∈A

)
≥ − inf

(μ,Q)∈A
I (μ,Q). (2.14)

As discussed in Lemma 3.9, under the assumptions in Theorem 2.7 it holds 〈π, r〉 < +∞. In particular, I (μ,Q) =

0 if and only if (μ,Q) = (π,Qπ ). Hence, from the LDP one derives the law of large numbers for the empirical flow in

L1
+(E), improving the pointwise version discussed at the end of Section 2.1. In addition, the function I has an affine

structure:

Proposition 2.8. Let (μ,Q) ∈ P(V ) × L1
+(E) satisfy I (μ,Q) < +∞. Then

(i) All edges in the support E(Q) of Q connect vertices in the support of μ, i.e. if Q(y, z) > 0 then y, z ∈ supp(μ).

(ii) Let Eu(Q) := {{y, z}: (y, z) ∈ E(Q) or (z, y) ∈ E(Q)}. The oriented connected components of the oriented

graph (supp(μ),E(Q)) coincide with the connected components of the unoriented graph (supp(μ),Eu(Q)).

(iii) I (μ,Q) has the following affine decomposition. Consider the oriented graph (supp(μ),E(Q)) and let Kj , j ∈ J ,

be the family of its oriented connected components. Consider the probability measure μj (·) := μ(·|Kj ) and the

flow Qj ∈ L1
+(E) defined as

Qj (y, z) =

{
Q(y,z)
μ(Kj )

if (y, z) ∈ E,y, z ∈ Kj ,

0 otherwise.

Then we have (μ,Q) =
∑

j∈J μ(Kj )(μj ,Qj ) and

I (μ,Q) =
∑

j∈J

μ(Kj )I (μj ,Qj ). (2.15)
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For the unfamiliar reader, the definition of (oriented) connected components is recalled after Remark 4.2. Note that

the oriented components of (supp(μ),E(Q)) coincide with the irreducible classes of the Markov chain on supp(μ)

with transition rates r(y, z) := Q(y, z)/μ(y). Moreover, note that due to Item (i) the graph (supp(μ),E(Q)) is well

defined. The proof of Proposition 2.8 is given in Section 4.

2.4. LDP with flow space [0,+∞]E endowed of the product topology

When considering the product topology on [0,+∞]E we take [0,+∞] endowed of the metric making the map x →
x

1+x
∈ [0,1] an isometry. Namely, on [0,+∞] we take the metric d(·, ·) defined as d(x, y) = |x/(1 + x)− y/(1 + y)|.

It is standard to define on the space [0,+∞]E a metric D(·, ·) inducing the product topology: enumerating the edges

in E as e1, e2, . . . we set D(Q,Q′) :=
∑|E|

n=1 2−nd(Q(en),Q
′(en)).

We write MS for the space of stationary probabilities on D(R;V ) endowed of the weak topology. Given R ∈

MS we denote by μ̂(R) ∈ P(V ) the marginal of R at a given time and by Q̂(R) the flow in [0,+∞]E defined as

Q̂(R)(y, z) := ER[QT (y, z)] for all (y, z) ∈ E, where ER denotes the expectation with respect to R. It is simple to

check that this expectation does not depend on the time T > 0 (see Lemma 2.9). We point out that jumps between a

pair of states nonbelonging to E could take place with positive R-probability. In particular, the flow Q̂(R) does not

correspond to the complete flow associated to R.

Lemma 2.9. Given an edge (y, z) ∈ E and a stationary process R ∈ MS , the expectation ER[QT (y, z)] ∈ [0,+∞]

does not depend on T > 0.

Proof. Since R is stationary, fixed t ∈ R it holds R(Xt �= Xt−) = 0. In particular, given T > 0 and an integer n, R-a.e.

it holds

QT (X)(y, z) =
1

n

n−1∑

j=0

QT/n(θjT /nX)(y, z).

Above we have used the notation (θsX)t := Xs+t . From this identity and the stationarity of R, taking the expectation

w.r.t. R one gets f (T ) = f (T /n), where f (T ) := ER[QT (y, z)]. Then by standard arguments one gets that f (T ) =

f (1) as T varies among the positive rational numbers. Since for 0 < t1 ≤ T ≤ t2 it holds t1f (t1) ≤ Tf (T ) ≤ t2f (t2)

it is trivial to conclude that f (T ) is constant as T varies among the positive real numbers. �

We can now state our second main result:

Theorem 2.10. Assume the Markov chain satisfies (A1)–(A4) together with the Donsker–Varadhan condition. Con-

sider the space P(V ) × [0,+∞]E , with P(V ) endowed of the weak topology and [0,+∞]E endowed of the product

topology. Then the following holds:

(i) As T → +∞ the family of probability measures {Px ◦ (μT ,QT )−1} on P(V ) × [0,+∞]E satisfies a large

deviation principle with good rate function

Ĩ (μ,Q) := inf
{
H(R): R ∈ MS, μ̂(R) = μ,Q̂(R) = Q

}
. (2.16)

Above H(R) denotes the entropy of R with respect to the Markov chain ξ as defined in [19], (IV) (see Section 6).

Moreover we have

{
Ĩ (μ,Q) = I (μ,Q) if Q ∈ L1

+(E),

Ĩ (μ,Q) = +∞ if Q /∈ [0,+∞)E .
(2.17)

(ii) If in addition Condition 2.2 is satisfied, then the rate function Ĩ is given by

Ĩ (μ,Q) :=

{
I (μ,Q) if Q ∈ L1

+(E),

+∞ otherwise.
(2.18)
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Since Condition 2.2 implies the Donsker–Varadhan condition, Theorem 2.10 under Condition 2.2 implies the vari-

ational characterization

I (μ,Q) = inf
{
H(R): R ∈MS, μ̂(R) = μ,Q̂(R) = Q

}
, (μ,Q) ∈P(V ) × L1

+(E).

In addition, note that (2.17) does not cover the case Q ∈ [0,+∞)E \ L1
+(E).

2.5. Outline

The rest of the paper is devoted to the proofs of Theorems 2.7 and 2.10, and of Proposition 2.8. Sections 3 and 4

contain preliminary results and the proof of Proposition 2.8. Then in Section 5 we give a direct proof of Theorem 2.7.

For this proof it is necessary to add the condition that the graph (V ,E) is locally finite.

In Sections 6, 7 and 8 we remove the above condition and prove both Theorems 2.7 and 2.10 by projection from

the large deviations principle for the empirical process proven by Donsker and Varadhan in [19], (IV). We discuss the

details only for the Donsker–Varadhan type compactness conditions. For this reason, we added item (iii) as a separate

requirement in the hypercontractivity type Condition 2.4. By using similar arguments to the ones here presented, it

should be possible to remove it from Theorem 2.7 and prove the first statement in Theorem 2.10 by assuming only

items (i) and (ii) in Condition 2.4.

Finally, in Section 9 we discuss some examples from birth and death processes and compare the different compact-

ness conditions.

3. Exponential estimates

In this section we collect some preliminary results that will enter in the proof of Theorems 2.7 and 2.10. Between

other, we prove the exponential tightness in L1
+(E) of the empirical flow when at least one between Conditions 2.2

and 2.4 holds.

3.1. Exponential local martingales

We start by comparing our Markov chain with a perturbed one. Let ξ̂ be a continuous time Markov chain on V with

jump rates r̂(y, z), y �= z in V . We assume that r̂(y) :=
∑

z∈V r̂(y, z) < +∞ for all y ∈ V , thus implying that the

Markov chain ξ̂ is well defined at cost to add a coffin state ∂ to the state space in case of explosion [39], Ch. 2. We

write P̂x for the law on D(R+,V ∪ {∂}) of the above Markov chain ξ̂ starting at x ∈ V . We denote by ρT the map

ρT :D(R+,V ∪ {∂}) → D([0, T ],V ∪ {∂}) given by restriction of the path to the time interval [0, T ]. We now assume

that r̂(y, z) = 0 if (y, z) /∈ E. Then, restricting the probability measures Px ◦ρ−1
T and P̂x ◦ρ−1

T to the set D([0, T ],V )

(no explosion takes place in the interval [0, T ]), we obtain two reciprocally absolutely continuous measures with

Radon–Nykodim derivative

dP̂x ◦ ρ−1
T

dPx ◦ ρ−1
T

∣∣∣∣
D([0,T ],V )

= exp
{
−T 〈μT , r̂ − r〉

} ∏

(y,z)∈E

[
r̂(y, z)

r(y, z)

]T QT (y,z)

. (3.1)

This formula can be checked very easily. Indeed, calling τ1(X) < τ2(X) < τN(X)(X) the jump times of the path X in

[0, T ] (below N(X) < +∞ almost surely) we have

Px ◦ ρ−1
T

(
N(X) = n,X(τi) = xi, τi ∈ (ti, ti + dti) ∀i: 1 ≤ i ≤ n

)

=

[
n−1∏

i=0

e−r(xi )(ti+1−ti )r(xi, xi+1)

]
e−r(xn)(T −tn) dt1 · · · dtn,

where t0 := 0 and x0 := x, 0 ≤ t1 < t2 < · · · < tn ≤ T , n = 0,1,2, . . . . Since a similar formula holds also for the law

P̂x ◦ ρ−1
T , one gets (3.1).

As immediate consequence of the Radon–Nykodim derivative (3.1) we get the following result:
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Lemma 3.1. Let F :E → R be such that rF (y) :=
∑

z r(y, z)eF(y,z) < +∞ for any y ∈ V . For t ≥ 0 define

M
F
t :D(R+,V ) → (0,+∞) as

M
F
t := exp

{
t
[
〈Qt ,F 〉 −

〈
μt , r

F − r
〉]}

, (3.2)

where 〈Qt ,F 〉 =
∑

(y,z)∈E Qt (y, z)F (y, z). Then for each x ∈ V and t ∈R+ it holds Ex(M
F
t ) ≤ 1.

Proof. By (3.1) (̂r(y, z) := r(y, z)eF(y,z)), Ex(M
F
t ) = P̂x(D([0, t];V )) ≤ 1. �

Remark 3.2. It is simple to check that the process M
F is a positive local martingale and a supermartingale with

respect to Px , x ∈ V .

Remark 3.3. Fixed (y, z) ∈ E, taking in Lemma 3.1 F := ±λδy,z with λ > 0 and applying Chebyshev inequality, one

gets for δ > 0 that the events {Qt (y, z) > μt (y)r(y, z)(eλ − 1)/λ + δ} and {Qt (y, z) < μt (y)r(y, z)(1 − e−λ)/λ − δ}

have Px -probability bounded by e−tδλ. Using that (e±λ −1)/λ = ±1+o(1) and since μt (y) → π(y) as t → +∞ Px -

a.s. by the ergodic theorem (2.2), taking the limit t → +∞ and afterwards taking δ,λ arbitrarily small, one recovers

the LLN of Qt (y, z) towards π(y)r(y, z) discussed in Section 2.1.

The next statement is deduced from Lemma 3.1 by choosing there F(y, z) = log[u(z)/u(y)], (y, z) ∈ E for some

u :V → (0,+∞).

Lemma 3.4. Let u :V → (0,+∞) be such that
∑

z r(y, z)u(z) < +∞ for any y ∈ V . For t ≥ 0 define Mu
t :D(R+,

V ) → (0,+∞) as

Mu
t :=

u(Xt )

u(X0)
exp

{
t

〈
μt ,−

Lu

u

〉}
. (3.3)

Then for each x ∈ V and t ∈R+ it holds Ex(M
u
t ) ≤ 1.

3.2. Exponential tightness

We shall prove separately the exponential tightness of the empirical measure and of the empirical flow. We first

discuss the case in which Condition 2.2 holds. Then the proof of the exponential tightness of the empirical measure is

essentially a rewriting of the argument in [19] in the present setting. On the other hand, the proof of the exponential

tightness of the empirical flow depends on the extra assumption σ > 0 in item (vi) of Condition 2.2.

Lemma 3.5. Assume Condition 2.2 to hold and let the function v and the constants c,Cx,C,σ be as in Condition

2.2. Then for each x ∈ V it holds

Ex

(
eT 〈μT ,v〉

)
≤

Cx

c
, Ex

(
eT σ 〈μT ,r〉

)
≤ eT C Cx

c
. (3.4)

Proof. The second bound in (3.4) follows trivially from the first one and item (vi) in Condition 2.2. To prove the first

bound, let un be the sequence of functions on V provided by Condition 2.2 and recall that vn = −Lun/un. In view of

the pointwise convergence of vn to v and Fatou lemma

Ex

(
eT 〈μT ,v〉

)
≤ lim

n
Ex

(
eT 〈μT ,vn〉

)
= lim

n
Ex

(
exp

{
T

〈
μT ,−

Lun

un

〉})
≤

Cx

c
,

where the last step follows from Lemma 3.4 and items (ii)–(iii) in Condition 2.2. �

The following provides the exponential tightness of the empirical measure and the empirical flow.
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Proposition 3.6. Assume Condition 2.2. For each x ∈ V there exists a sequence {Kℓ} of compacts in P(V ) and a real

sequence Aℓ ↑ +∞ such that for any ℓ ∈ N

lim
T →+∞

1

T
logPx(μT /∈Kℓ) ≤ −ℓ, (3.5)

lim
T →+∞

1

T
logPx

(
‖QT ‖ > Aℓ

)
≤ −ℓ. (3.6)

In particular, the empirical measure and flow are exponentially tight.

Proof. We first prove (3.5). For a sequence aℓ ↑ +∞ to be chosen later, set Wℓ := {x ∈ V : v(x) ≤ aℓ}. In view of

item (v) in Condition 2.2, Wℓ is a compact subset of V . Set now

Kℓ :=
⋂

m≥ℓ

{
μ ∈P(V ): μ

(
W c

m

)
≤

1

m

}

and observe that, by Prohorov theorem, Kℓ is a compact subset of P(V ).

From item (vi) in Condition 2.2 (for this step we only need it with σ = 0) and the definition of Wℓ we deduce

v ≥ aℓ1W c
ℓ
− C. By the exponential Chebyshev inequality and Lemma 3.5 we then get

Px

(
μT

(
W c

ℓ

)
>

1

ℓ

)
≤ Px

(
〈μT , v〉 >

aℓ

ℓ
− C

)

≤ exp

{
−T

[
aℓ

ℓ
− C

]}
Ex

(
eT 〈μT ,v〉

)
≤

Cx

c
exp

{
−T

[
aℓ

ℓ
− C

]}
.

By choosing aℓ = ℓ2 + Cℓ the proof is now easily concluded.

Let us now prove (3.6). By the second bound in Lemma 3.5 and Chebyshev inequality, Px(〈μT , r〉 > λ) ≤
Cx

c
e−T (σλ−C) for any λ > 0. In particular we obtain that

Px

(
〈μT , r〉 > A′

ℓ

)
≤

Cx

c
e−T ℓ, A′

ℓ := σ−1(ℓ + C).

Hence, it is enough to show that for each x ∈ V there exists a sequence Aℓ ↑ +∞ such that for any T > 0 and any

ℓ ∈N

Px

(
‖QT ‖ > Aℓ, 〈μT , r〉 ≤ A′

ℓ

)
≤ e−T ℓ. (3.7)

We consider the exponential local martingale of Lemma 3.1 choosing there F :E → R constant, F(x, y) = λ ∈

(0,+∞) for any (x, y) ∈ E. We deduce

Px

(
‖QT ‖ > Aℓ, 〈μT , r〉 ≤ A′

ℓ

)

= Ex

(
e−T [λ‖QT ‖−(eλ−1)〈μT ,r〉]

M
F
T 1{‖QT ‖>Aℓ}1{〈μT ,r〉≤A′

ℓ}

)

≤ exp
{
−T

[
λAℓ −

(
eλ − 1

)
A′

ℓ

]}
,

where we used Lemma 3.1 in the last step. The proof of (3.7) is now completed by choosing Aℓ = λ−1ℓ + λ−1(eλ −

1)A′
ℓ.

Recalling that the closed ball in L1
+(E) is compact with respect to the bounded weak* topology, the exponential

tightness of the empirical flow is due to (3.6). �

We next discuss the exponential tightness when Condition 2.4 is assumed.
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Proposition 3.7. Fix x ∈ V . If item (i) in Condition 2.4 holds then the sequence of probabilities {Px ◦μ−1
T } on P(V ) is

exponentially tight. If furthermore it holds also item (ii) in Condition 2.4, then the sequence of probabilities {Px ◦Q−1
T }

on L1
+(E) is exponentially tight.

While the first statement is a consequence of the general results in [18], we next give a direct and alternative proof

also of this result. We premise an elementary lemma whose proof is omitted.

Lemma 3.8. Let π ∈ P(V ) be such that π(x) > 0 for any x ∈ V . There exists a decreasing function ψπ : (0,1) →

(0,+∞) such that lims↓0 ψπ (s) = +∞ and

∑

x∈V

π(x)ψπ

(
π(x)

)
< +∞.

Proof of Proposition 3.7. We prove first the exponential tightness of the empirical measure. Let π be the invariant

measure of the chain, ψπ be the function provided by Lemma 3.8 and α :=
∑

x π(x)ψπ (π(x)) < +∞. We define

v :V → (0,+∞) as

v(x) := log
ψπ (π(x))

α
, x ∈ V.

Then, in view of Lemma 3.8, v has compact level sets and 〈π, ev〉 = 1.

By the proof of Proposition 3.6, it is enough to show the following bound. For each x ∈ V there exist constants

λ,Cx > 0 such that for any T > 0

Ex

(
eλT 〈μT ,v〉

)
≤ Cx . (3.8)

Since the function v diverges at infinity, it is bounded from below and has finite level sets Vn := {x ∈ V : v(x) ≤ n}.

We define vn(x) := v(x)1x∈Vn and set for x, y ∈ V

rn(x, y) :=

{
r(x, y) if x ∈ Vn,

r(x, y)/r(x) if x /∈ Vn,
πn(x) :=

{
π(x)
Zn

if x ∈ Vn,
π(x)r(x)

Zn
if x /∈ Vn,

where Zn is the normalizing constant making πn a probability measure on V . Due to Condition 2.4 it holds 〈π, r〉 <

+∞, thus implying that Zn is well defined and that limn→∞ Zn = 1.

We notice that the function rn :V → (0,+∞), rn(x) :=
∑

y∈V rn(x, y), is bounded from above. We then consider

the continuous-time Markov chain ξ (n) in V with transition rates rn(·, ·). Since πn(x)rn(x, y) = π(x)r(x, y)/Zn, we

derive that πn is the unique invariant distribution of ξ (n). We denote by E
(n)
x the expectation w.r.t. the law of the

Markov chain ξ (n) starting at x and by An the subset of D([0, T ];V ) defined as An = {X: Xt ∈ Vn ∀t ∈ [0, T ]}. Then

we have

Ex

(
eλT 〈μT ,v〉

)
= lim

n→∞
Ex

(
eλT 〈μT ,vn〉

1An

)
= lim

n→∞
E

(n)
x

(
eλT 〈μT ,vn〉

1An

)
(3.9)

(the first identity follows from the monotone convergence theorem). Since vn and rn are bounded function, we can

apply [28], App. 1, Lemma 7.2, and get

E
(n)
x

(
eλT 〈μT ,vn〉

1An

)
≤

1

πn(x)
E

(n)
πn

(
eλT 〈μT ,vn〉

)

≤
1

πn(x)
exp

{
T sup

f :πn(f 2)=1

[
−D(n)

πn
(f ) + λ

〈
πn, f

2vn

〉]}
. (3.10)

Since vn vanishes on V c
n and vn ≤ v we have 〈πn, f

2vn〉 ≤ Z−1
n 〈π,f 2v〉, while from the identity πn(x)rn(x, y) =

π(x)r(x, y)/Zn we get D
(n)
πn (f ) = Z−1

n Dπ (f ). Hence

−D(n)
πn

(f ) + λ
〈
πn, f

2vn

〉
≤

1

Zn

[
−Dπ (f ) + λ

〈
π,f 2v

〉]
. (3.11)
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We next show that if λ ∈ (0,1/cLS) then the right hand side in (3.11) is bounded above by zero whenever π(f 2) < +∞

(note that, in view of Remark 2.5 and since πn(f
2) = 1, it holds π(f 2) < +∞). To this aim let f∗ := f/

√
π(f 2),

hence π(f 2
∗ ) = 1. The basic entropy inequality yields

〈
π,f 2

∗ v
〉
≤ log

〈
π, ev

〉
+ Ent(μ|π), μ = f 2

∗ π.

Recalling that 〈π, ev〉 = 1, the logarithmic Sobolev inequality (2.10) implies that 〈π,f 2
∗ v〉 ≤ cLSDπ (f∗), hence our

claim. The bound (3.8) follows, thus concluding the proof of the exponential tightness of the empirical measure.

To prove the exponential tightness of the empirical flow, we first observe that the only properties of v used to

derive (3.8) are that v has compact level sets and satisfies 〈π, ev〉 = 1. By Remark 2.5 and item (ii) in Condition 2.4,

the function ṽ = σr − log〈π, eσr〉 meets these two requirements. Hence the bound (3.8) holds for ṽ which implies

Ex

(
eT σ ′〈μT ,r〉

)
≤ eT CCx (3.12)

for some σ ′,C,Cx > 0. In view of (3.8) and (3.12), the proof of the exponential tightness of the empirical flow is

achieved by the argument leading to (3.6). �

We conclude with a simple observation on the stationary flow:

Lemma 3.9. Assume at least one between Conditions 2.2 and 2.4 to hold. Then 〈π, r〉 < +∞, equivalently Qπ ∈

L1
+(E).

Proof. The thesis is trivially true under Condition 2.4. Let us assume Condition 2.2. By Lemma 3.5 we have

Ex(e
T σ 〈μT ,r〉) ≤ eT CCx/c. We restrict to V infinite, the finite case being obvious. Enumerating the points in V as

{xn}n≥0, by the ergodic theorem (2.2) fixed N there exists a time T0 = T0(N) > 0 and a Borel set A ⊂ D(R+;V ) such

that (i) Px(A) ≥ 1/2 and (ii) μT (xn) ≥ π(xn)/2 for all T ≥ T0 and n ≤ N Px -a.s. on A. Hence, for all T ≥ T0 it holds

eT σ
∑N

n=0 π(xn)r(xn)/2/2 ≤ Ex

(
eT σ

∑N
n=0 μT (xn)r(xn);A

)
≤ Ex

(
eT σ 〈μT ,r〉

)
≤ eT CCx/c.

This implies that
∑N

n=0 π(xn)r(xn) ≤ 2C/σ . To conclude it is enough to take the limit N → +∞. �

4. Structure of divergence-free flows in L1
+
(E)

In this section we show that any divergence-free flow in L1
+(E), and more in general any divergence-free flow in

R
E
+ with zero flux towards infinity, can be written as superposition of flows along self avoiding finite cycles. See

[24] for other problems related to cyclic decompositions of divergence-free flows on graphs and [37] for similar

decompositions for divergence-free vector valued measures on R
d .

We first introduce some key graphical structures. A finite cycle C in the oriented graph (V ,E) is a sequence

(x1, . . . , xk) of elements of V such that (xi, xi+1) ∈ E when i = 1, . . . , k and the sum in the indices is modulo k.

A finite cycle is self avoiding if for i �= j it holds xi �= xj . Given (x, y) ∈ E, if there exists an index i = 1, . . . , k

such that (x, y) = (xi, xi+1) we write (x, y) ∈ C. Similarly, given x ∈ V , if there exists an index i = 1, . . . , k such

that x = xi we say that x ∈ C. The collection of all the self avoiding finite cycles in (V ,E) is a countable set which

we denote by C. In the sequel we shall mostly regard elements C ∈ C as finite subsets of E and denote by |C| the

corresponding cardinality. Consider an invading sequence Vn ր V of finite subsets Vn. This means a sequence such

that |Vn| < +∞, Vn ⊂ Vn+1 and moreover
⋃

n Vn = V . For any fixed n we define

En :=
{
(y, z) ∈ E: y, z ∈ Vn

}
, (4.1)

and observe that it is an invading sequence of edges. Given a flow Q ∈R
E
+, we define

E(Q) :=
{
(y, z) ∈ E: Q(y, z) > 0

}
, (4.2)

Mn(Q) := max
(y,z)∈En

Q(y, z), (4.3)



880 L. Bertini, A. Faggionato and D. Gabrielli

φ+
n (Q) :=

∑

y∈Vn,z/∈Vn

Q(y, z), (4.4)

φ−
n (Q) :=

∑

y /∈Vn,z∈Vn

Q(y, z). (4.5)

The definition (2.4) of the divergence of a flow Q is well posed also if Q /∈ L1
+(E) provided the incoming and

outgoing fluxes are finite at every vertex. In this case the series in (4.4) and (4.5) are convergent. By a divergence-free

flow Q ∈ R
E
+ we mean that Q has well defined vanishing divergence. Moreover, we say that Q has zero flux towards

infinity if there exists an invading sequence Vn ր V of finite subsets Vn such that

lim
n→+∞

φ+
n (Q) = 0. (4.6)

Finally, we say that Q admits a cyclic decomposition if there are constants Q̂(C) ≥ 0, C ∈ C such that

Q =
∑

C∈C

Q̂(C)1C . (4.7)

Namely, for each (y, z) ∈ E it holds Q(y, z) =
∑

C∈C,C∋(y,z) Q̂(C). We emphasize that the constants Q̂(C), C ∈ C,

are not uniquely determined by the flow Q.

Lemma 4.1. Let Q ∈ R
E
+ be a divergence-free flow having zero flux towards infinity. Then Q admits a cyclic decom-

position (4.7). In particular, any divergence-free flow Q ∈ L1
+(E) has a cyclic decomposition.

Proof. Since (4.6) holds for any invading sequence of vertices if Q ∈ L1
+(E), the second statement follows directly

from the former on which we concentrate.

On a finite graph any divergence-free flow admits a cyclic decomposition. The proof follows classical arguments

(see e.g. [24,33]). If Q has finite support, i.e. if |E(Q)| < +∞, the thesis follows directly by the analogous result on

finite graphs. We will then consider only the case of infinite support, using below the result in the finite case. Let Vn

be an invading sequence satisfying (4.6).

We assume |E(Q)| = +∞ and divQ = 0. Due to the zero divergence condition, a discrete version of the Gauss

theorem guarantees that φ+
n (Q) = φ−

n (Q). We define by an iterative procedure a sequence of flows Qi , i ≥ 0, with

infinite support and having zero flux towards infinity as follows. We set Q0 := Q and explain how to define Qi+1

knowing Qi . First, we define ni := inf{n ∈ N: Mn(Q
i) > φ+

n (Qi)}. Since Qi �= 0, it must be ni < +∞. Indeed,

φ+
n (Qi) is a sequence in n converging to zero, while Mn(Q

i) is a nondecreasing sequence not identically zero. Let g

be a ghost site and define the flow Qi
g on a finite graph having vertices Vni

∪ {g} as

⎧
⎪⎨
⎪⎩

Qi
g(y, z) := Qi(y, z), (y, z) ∈ Eni

,

Qi
g(y, g) :=

∑
z/∈Vni

Qi(y, z), y ∈ Vni
,

Qi
g(g, y) :=

∑
z/∈Vni

Qi(z, y), y ∈ Vni
.

Roughly speaking, the flow Qi
g is obtained from Qi by collapsing all vertices outside Vni

into a single vertex, called

g. By construction we have divQi
g = 0. Calling C

g
ni

the collection of self avoiding cycles of the finite graph and using

the validity of the cyclic decomposition in the finite case, we have

Qi
g =

∑

C∈C
g
ni

Q̂i
g(C)1C . (4.8)
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We claim that in the decomposition (4.8) there exists a self avoiding cycle Ci not visiting the ghost site g and such that

Q̂i
g(Ci) > 0. Let us suppose by contradiction that our claim is false and let (x∗, y∗) ∈ Eni

be such that Qi(x∗, y∗) =

Mni
(Qi). Then we have

Mni

(
Qi
)
= Qi

(
x∗, y∗

)
=
∑

C∈C
g
ni

Q̂i
g(C)1(x∗,y∗)∈C ≤

∑

C∈C
g
ni

Q̂i
g(C) = φ+

ni

(
Qi
)
.

The last equality follows by the fact that any cycle with positive weight in C
g
ni

has to contain necessarily the ghost site

g. This contradicts the definition of ni , thus proving our claim.

At this point, we know that there exists a self avoiding cycle Ci := (x1, . . . , xk) such that xj ∈ Vni
and

Qi(xj , xj+1) > 0 for any j (the sum in the indices is modulo k). We fix mi := minj=1,...,k Qi(xj , xj+1) and define

Qi+1 := Qi − mi1Ci
= Q −

i∑

j=0

mj1Cj
.

With this definition we have that Qi+1 is an element of RE
+, it satisfies divQi+1 = 0, it has zero flux towards infinity,

and infinite support. Moreover

∣∣Eni
∩ E

(
Qi+1

)∣∣≤
∣∣Eni

∩ E
(
Qi
)∣∣− 1. (4.9)

Condition (4.9) implies that limi→+∞ ni = +∞. Hence, fixed any (y, z) ∈ E, for i large it holds

Qi(y, z) ≤ Mni−1

(
Qi
)
≤ φ+

ni−1

(
Qi
)
≤ φ+

ni−1(Q) (4.10)

(for the first inequality note that (y, z) ∈ Eni−1 for i large, for the second one use the definition of ni , for the third one

observe that by construction Qi ≤ Q).

Since the right hand side of (4.10) converges to zero when i diverges we obtain limi→+∞ Qi(y, z) = 0 for any

(y, z) ∈ E. Finally we get

lim
i→+∞

(
Q(y, z) −

i∑

j=0

mj1Cj
(y, z)

)
= lim

i→+∞
Qi+1(y, z) = 0.

This trivially implies that Q =
∑∞

j=0 mj1Cj
. �

Remark 4.2. It is easy to see that Lemma 4.1 remains valid if the condition of zero flux towards infinity is satisfied

just by the reduced flow q ∈ R
E
+ defined as

q(y, z) :=

{
Q(y, z), (z, y) /∈ E,

Q(y, z) − min
{
Q(y, z),Q(z, y)

}
, (z, y) ∈ E.

Given an oriented graph (V,E) with countable V,E we say that it is connected if for any y, z ∈ V there exist

x1, . . . , xn such that x1 = y, xn = z and (xi, xi+1) ∈ E , i = 1, . . . , n − 1. To every oriented graph we can associate

an unoriented graph (V,Eu) for which {y, z} ∈ Eu if at least one among (y, z) and (z, y) belongs to E . We say that

the unoriented graph (V,Eu) is connected if for any y, z ∈ V there exist x1, . . . , xn such that x1 = y, xn = z and

{xi, xi+1} ∈ Eu, i = 1, . . . , n − 1.

The following lemma will be useful.

Lemma 4.3. Let (V,E) be a countable oriented graph. Then (V,E) is connected if and only if (i) (V,Eu) is connected

and (ii) there exists a flow Q ∈ L1
+(E) with Q(y, z) > 0 for any (y, z) ∈ E and divQ = 0.
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Proof. Suppose first that (V,E) is connected. Then (V,Eu) is also trivially connected. To show property (ii), since

C is countable. we can find a sequence {αC,C ∈ C} with αC > 0 and
∑

C αC < +∞. We then define Q =
∑

C αC1C

which is summable and divergence-free. It remains to check that Q(y, z) > 0 for any (y, z) ∈ E . Since (V,E) is

connected, we can add to (y, z) an oriented path from z to y obtaining a finite cycle C ∋ (y, z).

We now prove the converse implication. In view of Lemma 4.1, the flow Q in (ii) admits a cyclic decomposition

(4.7). If (y, z) ∈ E then 0 < Q(y, z) =
∑

C∋(y,z) Q̂(C). Thus there exists a finite cycle C containing (y, z), hence there

exists an oriented path from z to y. This shows that neighbors in (V,Eu) are connected in (V,E). �

We can now give the proof of Proposition 2.8.

Proof of Proposition 2.8.

Proof of (i). Fix (y, z) ∈ E with Q(y, z) > 0. From the definition of I (μ,Q) and Φ we deduce that μ(y)r(y, z) > 0

and therefore μ(y) > 0. Since divQ = 0 and the ingoing flow in z is strictly positive then there exists (z, y ′) ∈ E with

Q(z,y′) > 0 hence, by what just proven, μ(z) > 0.

Proof of (ii). It is an immediate consequence of Lemma 4.3.

Proof of (iii). To this aim we first observe that divQj = 0. Indeed, the following property (P) holds: given y ∈ V ,

if Q(y, z) > 0 or Q(z,y) > 0 then z belongs to the same oriented connected component of y (apply item (ii)). This

property and the zero divergence of Q imply that divQj = 0. By definition (2.12) and Remark 2.6,

I (μj ,Qj ) =
∑

(y,z)∈E∩(Kj ×Kj )

Φ
(
Qj (y, z),Qμj (y, z)

)
+

∑

(y,z)∈E∩(Kj ×Kc
j )

Qμj (y, z). (4.11)

Always property (P) implies that

I (μ,Q) =
∑

j

{ ∑

(y,z)∈E∩(Kj ×Kj )

Φ
(
Q(y, z),Qμ(y, z)

)
+

∑

(y,z)∈E∩(Kj ×Kc
j )

Qμ(y, z)

}
. (4.12)

To conclude compare (4.11) with (4.12) using that Q(y, z) = μ(Kj )Qj (y, z) and Qμ(y, z) = μ(Kj )Q
μj (y, z) if

(y, z) ∈ E with y ∈ Kj . �

4.1. An approximation result for the function I (μ,Q)

Let S be the subset of P(V ) × L1
+(E) given by the elements (μ,Q) with I (μ,Q) < +∞ and such that the graph

(supp(μ),E(Q)) is finite and connected.

Proposition 4.4. Fix (μ,Q) ∈P(V )×L1
+(E). There exists a sequence {(μn,Qn)} in S such that (μn,Qn) → (μ,Q)

in P(V ) × L1
+(E) and

lim
n→+∞

I (μn,Qn) ≤ I (μ,Q). (4.13)

As proven below, the convergence (μn,Qn) → (μ,Q) in P(V ) × L1
+(E) holds also with L1

+(E) endowed with

the L1-norm (strong topology).

Proof of Proposition 4.4. We consider only elements (μ,Q) such that I (μ,Q) < +∞, otherwise the thesis is triv-

ially true. In particular, divQ = 0. Denote by S∗ the set of elements (μ,Q) ∈P(V ) × L1
+(E) with finite support (i.e.

with finite supp(μ) and E(Q)) and divQ = 0. We first show that (4.13) holds for (μ,Q) ∈ S∗

Let (μ,Q) ∈ S∗. Then there exists a finite connected oriented subgraph (V ∗,E∗) of (V ,E) which contains

(supp(μ),E(Q)) (add to (supp(μ),E(Q)) suitable paths joining the connected components of (supp(μ),E(Q))).

Denote by r∗ the restriction of r to E∗ and let π∗ be the (unique) invariant probability of the chain with rates r∗ on
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the graph (V ∗,E∗). Set also Q∗(y, z) := π∗(y)r∗(y, z) and extend π∗, Q∗ to functions on V , E by setting them equal

to zero outside V ∗, E∗. Due to the invariance of π∗, divQ∗ = 0. Moreover, it holds

I
(
π∗,Q∗

)
=

∑

(y,z)∈E∗

Φ
(
Q∗(y, z),π∗(y)r(y, z)

)
+

∑

(y,z)/∈E∗

π∗(y)r(y, z).

As the first sum is a finite sum of finite terms and the second one is bounded by 〈π∗, r〉, we deduce I (π∗,Q∗) < +∞.

We define the sequence {(1 − 1
n
)(μ,Q)+ 1

n
(π∗,Q∗)} which belongs to S and converges to (μ,Q) (even with L1

+(E)

endowed of the strong topology). By the convexity of I stated in Remark 2.6

lim
n→∞

I

((
1 −

1

n

)
(μ,Q) +

1

n

(
π∗,Q∗

))
≤ I (μ,Q).

Given (μ,Q) ∈ P(V ) × L1
+(E) with divQ = 0, we now show that there exists a sequence {(μn,Qn)} ⊂ S∗ such

that (4.13) holds. The thesis then follows by a diagonal argument. We fix (μ,Q) with divQ = 0 and I (μ,Q) < +∞.

By Lemma 4.1 the cyclic decomposition (4.7) of Q holds. We fix an invading sequence Vn ր V of finite subsets and

call En the edges in E connecting vertices in Vn (recall (4.1)). Finally, we construct the sequence (μn,Qn) ∈ S∗ by

μn :=
μ|Vn

μ(Vn)
, Qn :=

∑

{C∈C:C⊂En}

Q̂(C)1C .

For n large μ(Vn) > 0 and the definition is well posed. Clearly (μn,Qn) converges to (μ,Q) (also considering the

strong topology of L1
+(E)). It remains to show (4.13). By construction divQn = 0 and 〈μn, r〉 < +∞, hence, recalling

(2.12),

I (μn,Qn) =
∑

y∈Vnz∈V :(y,z)∈E

Φ
(
Qn(y, z),Qμn(y, z)

)
. (4.14)

We claim that Φ(Qn(y, z),Qμn(y, z)) = 0 if (y, z) is as in the above sum and Qμn(y, z) = 0. Since y ∈ Vn

then Qμ(y, z) = μ(Vn)Q
μn(y, z) = 0. As I (μ,Q) < +∞ it follows Q(y, z) = 0 and therefore Qn(y, z) = 0, which

concludes the proof of the claim. As a consequence, we can restrict the sum in (4.14) to Qμn(y, z) > 0.

Recall the definition of Φ given in (2.11). Given 0 ≤ q ′ ≤ q and p′ ≥ p > 0, let α,β ≥ 0 be respectively defined

by q ′ = q(1 − α) and p′ = p(1 + β). Then we have

Φ
(
q ′,p′

)
− Φ(q,p) = q ′

(
log

q ′

p′
− log

q

p

)
+
(
q ′ − q

)
log

q

p
+
(
q − q ′

)
+
(
p′ − p

)

≤
(
q ′ − q

)
log

q

p
+
(
q − q ′

)
+
(
p′ − p

)
= −αΦ(q,p) + (α + β)p ≤ (α + β)p. (4.15)

By construction, it holds μn(y) ≥ μ(y) for y ∈ Vn and Qn(y, z) ≤ Q(y, z) for (y, z) ∈ En. We set βn := [μ(Vn)]
−1 −1

and αn :En → [0,1] be defined by Qn(y, z) = Q(y, z)[1−αn(y, z)] when (y, z) ∈ E(Q). From (4.15) we then obtain

I (μn,Qn) ≤ I (μ,Q) +
∑

y∈Vnz∈V :(y,z)∈E

[
βn + αn(y, z)

]
μ(y)r(y, z).

Since I (μ,Q) < +∞ then it holds 〈μ, r〉 < +∞. Since βn, αn(y, z) ↓ 0 and the maps αn(·) are uniformly bounded,

by dominated convergence we conclude the proof of (4.13). �

5. Direct proof of Theorem 2.7

In this section we give a direct proof of Theorem 2.7, independent from the LDP for the empirical process. As already

mentioned, the proof works only under the additional condition that the graph (V ,E) is locally finite (cf. Condition
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2.4(iii)). This assumption implies that, given φ ∈ C0(V ), the function ∇φ :E → R defined as ∇φ(y, z) = φ(y)−φ(z)

belongs to C0(E). As a consequence, the map

L1
+(E) ∋ Q → 〈φ,divQ〉 = −〈∇φ,Q〉 ∈R (5.1)

is continuous. Since a linear functional on L1
+(E) is continuous w.r.t. the bounded weak* topology if and only if it

is continuous w.r.t. the weak* topology [36], by definition of weak* topology the map defined in (5.1) is continuous

(w.r.t. the bounded weak* topology) if and only if ∇φ ∈ C0(E). Hence, our additional condition is equivalent to the

fact that (5.1) is continuous for any φ ∈ C0(V ). An explicit example of a not locally finite graph where (5.1) becomes

not continuous for φ = 1x , x ∈ V , is given in Appendix B.

5.1. Upper bound

Given φ ∈ C0(V ) and F ∈ Cc(E) (i.e. φ vanishes at infinity and F is nonzero only on a finite set) let Iφ,F :P(V ) ×

L1
+(E) → R be the map defined by

Iφ,F (μ,Q) := 〈φ,divQ〉 + 〈Q,F 〉 −
〈
μ, rF − r

〉
, (5.2)

where rF :V → (0,+∞) is defined by rF (y) =
∑

z∈V r(y, z)eF(y,z) and 〈φ,divQ〉 =
∑

y∈V φ(y)divQ(y).

Lemma 5.1. Fix x ∈ V . For each φ ∈ C0(V ), F ∈ Cc(E), and each measurable B ⊂P(V ) × L1
+(E), it holds

lim
T →+∞

1

T
logPx

(
(μT ,QT ) ∈ B

)
≤ − inf

(μ,Q)∈B
Iφ,F (μ,Q).

Proof. Fix x ∈ V and observe that the following pathways continuity equation holds Px a.s.

δy(XT ) − δy(X0) + T divQT (X)(y) = 0 ∀y ∈ V. (5.3)

Fix F ∈ Cc(E) and φ ∈ C0(V ) and recall the semimartingale M
F introduced in Lemma 3.1. In view of (5.2) and

(5.3), for each T > 0 and each measurable set B ⊂P(V ) × L1
+(E)

Px

(
(μT ,QT ) ∈ B

)

= Ex

(
exp

{
−T Iφ,F (μT ,QT ) −

[
φ(XT ) − φ(x)

]}
M

F
T 1B(μT ,QT )

)

≤ sup
(μ,Q)∈B

e−T Iφ,F (μ,Q)
Ex

(
exp

{
−
[
φ(XT ) − φ(x)

]}
M

F
T 1B(μT ,QT )

)
.

Since φ is bounded, the proof is now achieved by using Lemma 3.1. �

We can conclude the proof of the upper bound in Theorem 2.7. In view of the exponential tightness proven in Sec-

tion 3.2, it is enough to prove (2.13) for compacts. Since the graph (V ,E) is locally finite the map Iφ,F is continuous.

Fix x ∈ V . By Lemma 5.1 and the min–max lemma in [28], App. 2, Lemma 3.3, for each compact K ⊂P(V )×L1
+(E)

it holds

lim
T →+∞

1

T
logPx

(
(μT ,QT ) ∈K

)
≤ − inf

(μ,Q)∈K
sup
φ,F

Iφ,F (μ,Q),

where the supremum is carried out over all φ ∈ C0(V ) and F ∈ Cc(E). Recalling (2.12), it is now simple to check

(see Appendix A) that for each (μ,Q) ∈P(V ) × L1
+(E) it holds

I (μ,Q) = sup
φ,F

Iφ,F (μ,Q), (5.4)

which concludes the proof of the upper bound.
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5.2. Lower bound

Recall the following general result concerning the large deviation lower bound.

Lemma 5.2. Let {Pn} be a sequence of probability measures on a completely regular topological space X . Fix

J :X → [0,+∞] and assume that for each x ∈ X there exists a sequence of probability measures {P̃ x
n } weakly

convergent to δx and such that

lim
n→∞

1

n
Ent

(
P̃ x

n |Pn

)
≤ J (x). (5.5)

Then the sequence {Pn} satisfies the large deviation lower bound with rate function given by sc−J , the lower semi-

continuous envelope of J , i.e.

(sc−J )(x) := sup
U∈Nx

inf
y∈U

J (y),

where Nx denotes the collection of the open neighborhoods of x.

This lemma has been originally proven in [26], Prop. 4.1, in a Polish space setting. The proof given in [34],

Prop. 1.2.4, applies also to the present setting of a completely regular topological space.

Recall the definition of the set S given before Proposition 4.4: S is given by the elements (μ,Q) ∈P(V )×L1
+(E)

with I (μ,Q) < +∞ and such that the graph (supp(μ),E(Q)) is finite and connected.

First we prove the entropy bound (5.5) with J given by the restriction of I , as defined in (2.12), to S , that is

J (μ,Q) :=
{

I (μ,Q) if (μ,Q) ∈ S ,

+∞ otherwise.
(5.6)

Then we complete the proof of the lower bound (2.14) by showing that the lower semicontinuous envelope of J

coincides with I .

Lemma 5.3. Fix x ∈ V and set PT := Px ◦ (μT ,QT )−1. For each (μ,Q) ∈ P(V ) × L1
+(E) there exists a sequence

{P̃
(μ,Q)
T } of probability measures on P(V ) × L1

+(E) weakly convergent to δ(μ,Q) and such that

lim
T →+∞

1

T
Ent

(
P̃

(μ,Q)
T |PT

)
≤ J (μ,Q).

Proof. By definition (5.6) of J , we can restrict to (μ,Q) ∈ S . First we discuss the case when x ∈ K := supp(μ). We

denote by P̃
(μ,Q)
x the distribution of the Markov chain ξ̃x on V starting from x and having jump rates

r̃(y, z) :=

{
Q(y,z)
μ(y)

if (y, z) ∈ E(Q),

0 otherwise.
(5.7)

Observe that this perturbed chain can be thought of as an irreducible chain on the finite state space K . Moreover, the

condition divQ = 0 implies that μ is the invariant probability measure.

Set P̃
(μ,Q)
T := P̃

(μ,Q)
x ◦ (μT ,QT )−1. The ergodic theorem for finite state Markov chains and the law of large

numbers for the empirical flow discussed in Section 2.1 imply that {P̃
(μ,Q)
T } converges weakly to δ(μ,Q). We observe

that

1

T
Ent

(
P̃

(μ,Q)
T |PT

)
≤

1

T
Ent

(̃
P

(μ,Q)
x |[0,T ]|Px |[0,T ]

)

=
∑

y∈K,z:(y,z)∈E

Ẽ
(μ,Q)
x

(
QT (y, z) log

Q(y, z)

μ(y)r(y, z)
− μT (y)

[
Q(y, z)

μ(y)
− r(y, z)

])
, (5.8)
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where the subscript [0, T ] denotes the restriction to the interval [0, T ] (above we used the convention 0 log 0 := 0).

Indeed, the first inequality follows from the variational characterization of the relative entropy (see [19], Sec. 2,

(IV)) and the second from a straightforward computation of the Radon–Nikodym density (recall (3.1)). Since

T Ẽ
(μ,Q)
x (QT (y, z)) = Ẽ

(μ,Q)
x (〈μT , r̃〉) (adapt (2.6) to the present setting) and since μT (y) → μ(y) P̃

(μ,Q)
x -a.s. by

ergodicity, the r.h.s. of (5.8) converges in the limit T → +∞ to

∑

y,z∈K:(y,z)∈E

(
Q(y, z) log

Q(y, z)

μ(y)r(y, z)
+ μ(y)r(y, z) − Q(y, z)

)
+
∑

y∈K

μ(y)
∑

z/∈K

r(y, z),

that is I (μ,Q).

When x /∈ K then there exists an oriented path on (V ,E) from x to K since (V ,E) is connected. In this case the

perturbed Markov chain ξ̃x is defined with rates (5.7) with exception that r̃(y, z) := r(y, z) for any (y, z) belonging

to the oriented path from x to K (fixed once for all). Since after a finite number of jumps that Markov chain reach the

component K , it is easy conclude the proof by the same computations as before. �

Recall (2.12) and (5.6). Since I is lower semicontinuous and convex on P(V ) × L1
+(E) (see Remark 2.6), the

inequality sc−J ≥ I holds. The proof of the equality I = sc−J is therefore completed by Proposition 4.4.

6. Projection from the empirical process: Proof of Theorems 2.7, 2.10

We recall the definition of the empirical process referring to [19], (IV), [40] for more details. We consider the space

D(R;V ) endowed of the Skorohod topology and write X for a generic element of D(R;V ). Given X ∈ D(R+;V )

and t > 0, Xt ∈ D(R;V ) is the t -periodic path which coincides with X on [0, t), that is

{
Xt

s := Xs for 0 ≤ s < t ,

Xt
s+t := Xt

s for s ∈ R.

Writing MS for the space of stationary probabilities on D(R;V ) endowed of the weak topology, given X ∈ D(R+;V )

and t > 0 we denote by Rt,X the element in MS such that

Rt,X(A) =
1

t

∫ t

0

χA

(
θsX

t
)

ds, ∀A ⊂ D(R;V ) Borel,

where (θsX
t )u := Xt

s+u. Since X → Rt,X is a Borel map from D(R+;V ) to MS , for each x ∈ V it induces a

probability measure Γt,x on MS defined as Γt,x := Px ◦ R
−1
t,X . The above distribution Γt,x corresponds to the t -

periodized empirical process.

Let us denote by R̄ the stationary process in MS associated to the Markov chain ξ and having π as marginal

distribution. By the ergodic theorem (2.2), Γt,x weakly converges to δR̄ as t → +∞, for each x ∈ V . As proven in

[19], (IV), under the Donsker–Varadhan condition, for each x ∈ V as t → +∞ the family of probability measures

Γt,x satisfies a LDP with rate t and rate function given by the relative entropy per unit of time H w.r.t. the Markov

chain ξ .

We briefly recall the definition of H and some of its properties, referring to [19], (IV) for more details. Given

−∞ ≤ s ≤ t ≤ ∞, let F s
t be the σ -algebra in D(R;V ) generated by the functions (Xr)s≤r≤t . Let R ∈ MS and R0,X

be the regular conditional probability distribution of R given F
−∞
0 , evaluated on the path X. Then H(R) ∈ [0,∞] is

the only constant such that H(t,R) = tH(R) for all t > 0, where

H(t,R) := ER

[
HF0

t
(R0,X|PX0

)
]
, (6.1)

HF0
t
(R0,X|PX0

) being the relative entropy of R0,X w.r.t. PX0
thought of as probability measures on the measure space

D(R;V ) with measurable sets varying in the σ -subalgebra F0
t . The entropy H(R) can be also characterized as the

limit H(R) = limt→∞ H̄ (t,R)/t , where

H̄ (t,R) := sup
ϕ∈B(F0

t )

[
ER(ϕ) −ER

(
logEX0

(
eϕ
))]

(6.2)
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and B(F0
t ) denotes the family of bounded F0

t -measurable functions on D(R;V ). Below we will frequently use

that

tH(R) = H(t,R) ≥ H̄ (t,R) = sup
ϕ∈Y1(t)

ER(ϕ), (6.3)

where Y1(t) is the family of functions ϕ ∈ B(F0
t ) such that Ex(e

ϕ) ≤ 1 for all x ∈ V (the last identity is an immediate

restatement of (6.2)).

In the following proposition we investigate some key identities concerning the map R → (μ̂(R), Q̂(R)). Recall

the definitions of μ̂(R) and Q̂(R) given before Lemma 2.9.

Proposition 6.1. Assume the Markov chain satisfies (A1)–(A4). Then μ̂(RT ,X) = μT (X) and Q̂(RT ,X) =

QT (XT ) ∈ L1
+(E) for Px -a.e. X ∈ D(R+;V ).

Proof. The fact that μ̂(RT ,X) = μT (X) Px -a.s. has already been observed in [19], (IV). Let us prove that Q̂(RT ,X) =

QT (XT ) Px -a.s. It is convenient to introduce the following notation: given (y, z) ∈ E, X ∈ D(R+;V ) and I ⊂ R+

we write NI (X)(y, z) for the number of jumps along (y, z) performed by the path X at some time in I . In addition

we write NT (X)(y, z) for N[0,T ](X)(y, z). Equivalently, NT (X)(y, z) = T QT (X)(y, z). Given T > 0, fix a ∈ (0, T ).

We then have

Q̂(RT ,X)(y, z) =
1

a
ERT ,X

(
Na(y, z)

)
=

1

aT

∫ T

0

Na

(
θsX

T
)
(y, z)ds

=
1

aT

∫ T

0

N[s,s+a]

(
XT

)
(y, z)ds.

Let us write 0 ≤ t1 < t2 < · · · < tn ≤ T for the times in [0, T ] at which the path XT jumps from y to z. Note that

n = NT (XT )(y, z). We denote by πT :R → R/TZ the canonical projection of R on the circle of length T . It maps

bijectively [0, T ) on R/TZ. Moreover, we define the set ΘT (XT )(y, z) := {πT (t1),πT (t2), . . . , πT (tn)}. Since T > a

the number N[s,s+a](X
T )(y, z) of jumps from y to z made by XT in the time interval [s, s + a] coincides with the

cardinality of ΘT (XT )(y, z) ∩ πT ([s, s + a]). Hence

Q̂(RT ,X)(y, z) =
1

aT

∫ T

0

∣∣ΘT

(
XT

)
(y, z) ∩ πT

(
[s, s + a]

)∣∣ds

=

n∑

k=1

1

aT

∫ T

0

1
(
πT (yk) ∈ πT

(
[s, s + a]

))
ds =

n∑

k=1

1

T
= QT

(
XT

)
(y, z). (6.4)

�

Note that, since Px -a.s. time T is not a jump time, it holds

QT

(
XT

)
(y, z) =

{
QT (X)(y, z) + 1

T
if (XT −,X0) = (y, z) ∈ E,

QT (X)(y, z) otherwise,
Px-a.s. (6.5)

In what follows, in order to allow a better overview of the proof of Theorems 2.7 and 2.10, we focus on the

main steps, postponing some technical details in subsequent sections. We start with Theorem 2.10, since the product

topology on the flow space is simpler.

6.1. Proof of Theorem 2.10

The proof is based on the generalized contraction principle related to the concept of exponential approximation dis-

cussed in [16], Sec. 4.2.2. To this aim, given ε ∈ (0,1/2), we fix a continuous function ϕε :R → [0,1] such that
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ϕε(x) = 0 if x /∈ (0,1) and ϕε(x) = 1 if x ∈ [ε,1 − ε]. For each (y, z) ∈ E we consider the continuous and bounded

function F ε
y,z :D(R;V ) → R defined as

F ε
y,z(X) :=

{ ∑

s∈[0,1]

ϕε(s)1(Xs− = y,Xs = z)

}
∧ ε−1.

Then, we define Q̂ε :MS → [0,+∞]E as Q̂ε(R)(y, z) := ER(F ε
y,z). Note that Q̂ε maps MS into [0, ε−1]E .

Proposition 6.2. Assume the Markov chain satisfies (A1)–(A4). Consider the space [0,+∞]E endowed of the product

topology and the Borel σ -algebra. Then the following holds:

(i) The map (μ̂, Q̂) :MS →P(V ) × [0,+∞]E is measurable and the map μ̂ :MS →P(V ) is continuous.

(ii) The maps Q̂ε :MS → [0,+∞]E , parameterized by ε ∈ (0,1/2), are continuous and satisfy

lim
ε↓0

sup
R∈MS :H(R)≤α

∣∣Q̂(R)(y, z) − Q̂ε(R)(y, z)
∣∣= 0, (6.6)

lim
ε↓0

lim
T ↑∞

1

T
logΓT ,x

(∣∣Q̂(y, z) − Q̂ε(y, z)
∣∣> δ

)
= −∞, (6.7)

for any x ∈ V , α > 0, δ > 0 and any edge (y, z) ∈ E.

As shown below, if H(R) < +∞ then Q̂(R) ∈ R
E
+. In addition Q̂ε always assumes finite values. In particular,

the quantities appearing in (6.6) and (6.7) are finite and the subtraction is meaningful. We postpone the proof of

Proposition 6.2 to Section 7 and conclude the proof of Theorem 2.10.

To prove item (i) up to (2.16) we apply Theorem 4.2.23 in [16]. Identity (6.6) corresponds to formula (4.2.24)

there, while identity (6.7) states, following the terminology in [16], that the family of probability measures {ΓT ,x ◦

(μ̂, Q̂ε)
−1} is an exponentially good approximation of the family {ΓT ,x ◦ (μ̂, Q̂)−1}. Combining the last observations

with the LDP of the empirical process proved in [19], (IV), one gets the thesis for the family of probability measures

{Px ◦ (μT , Q̃T )−1} on P(V ) × [0,+∞]E where Q̃T (X) := QT (XT ) (use Proposition 6.1). At this point, due to

Theorem 4.2.13 in [16], we only need to prove that the families of probability measures {Px ◦ (μT ,QT )−1} and

{Px ◦ (μT , Q̃T )−1} are exponentially equivalent. It is enough to show that for each δ > 0 it holds

lim
T →+∞

1

T
logPx

(
D(Q̃T ,QT ) > δ

)
= −∞, (6.8)

where D(·, ·) denotes the metric of [0,+∞]E introduced at the beginning of Section 2.4. By (6.5) Q̃T (y, z) =

QT (y, z) with exception of at most one edge (y, z) where it holds Q̃T (y, z) = QT (y, z) + 1/T . Since |a/(1 + a) −

(a + �)/(1 + a + �)| ≤ � for a,� ≥ 0, we conclude that D(Q̃T ,QT ) ≤ 1/T , thus allowing to end the proof.

6.2. Proof of (2.17)

6.2.1. Proof of (2.17) for Q /∈ [0,+∞)E

Let Q ∈ [0,+∞]E be such that Q(y, z) = +∞ for some (y, z) ∈ E. We need to show Ĩ (μ,Q) = +∞. By Re-

mark 2.1 (stochastic domination), it holds C := supx∈V Ex(e
QT (y,z)) < +∞. Hence for λ > 0 the function ϕ(X) :=

QT (X)(y, z)1(QT (X)(y, z) ≤ λ) − logC belongs to Y1(T ). By (6.3) we get

T H(R) ≥ H̄ (T ,R) ≥ ER(ϕ)

and we conclude by taking the limit λ → ∞.
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6.2.2. Proof that I (μ,Q) ≤ Ĩ (μ,Q) for (μ,Q) ∈P(V ) × L1
+(E)

Given y �= z in V define QT (X)(y, z) as the T times the number of jumps up to time T along (y, z) in the trajectory X.

Lemma 6.3. If R ∈ MS and H(R) < +∞ then R(QT (y, z) > 0) = 0 for all T ≥ 0 and (y, z) ∈ (V × V ) \ E with

y �= z.

Proof. Take the function ϕ(X) := λ1(QT (y, z) > 0) for fixed λ > 0. Note that ϕ ∈ Y1(T ) since ϕ ≡ 0 Px -a.s. Hence

by (6.3) we get

T H(R) ≥ H̄ (T ,R) ≥ ER(ϕ) = λR
(
QT (y, z) > 0

)
.

Since H(R) < +∞ the thesis follows by taking λ arbitrarily large. �

Lemma 6.4. Given R ∈ MS with H(R) < +∞, it holds

∑

z:(y,z)∈E

Q̂(y, z) =
∑

z:(z,y)∈E

Q̂(z, y), Q̂ = Q̂(R).

Proof. The thesis follows by using Lemma 6.3 and considering the R-expectation of the following identity on

D([0, T ];V ):

1(XT = y) +
∑

z:z �=y

T QT (X)(y, z) = 1(X0 = y) +
∑

z:z �=y

T QT (X)(z, y).
�

Fix (μ,Q) ∈ P(V ) × L1
+(E). By Lemma 6.4, if divQ �= 0 then Ĩ (μ,Q) = +∞ = I (μ,Q). Hence, from now on

we can restrict to divQ = 0. Fix R ∈MS such that Q = Q̂(R) and μ = μ̂(R) (the absence of such an R would imply

Ĩ (μ,Q) = +∞ and there would be nothing to prove).

We first consider the case that there is some edge (y, z) ∈ E with Q(y, z) > 0 and μ(y) = 0. Trivially in this case

I (μ,Q) = +∞. Let us prove that Ĩ (μ,Q) = +∞. To this aim, given ε > 0, we define the function Fε :E → R as

Fε(u, v) = log
Q(y,z)
εr(y,z)

1((u, v) = (y, z)). Let eϕε := M
Fε

T be the supermartingale introduced in Lemma 3.1:

ϕε = T QT (y, z) log
Q(y, z)

εr(y, z)
− T μT (y)

[
Q(y, z)

ε
− r(y, z)

]
. (6.9)

We take ε small enough so that log
Q(y,z)
εr(y,z)

> 0 and define for ℓ > 0 the new function ϕε,ℓ as in the r.h.s. of (6.9) with

QT (y, z) replaced by QT (y, z)∧ ℓ. Then ϕε,ℓ ≤ ϕε and by Lemma 3.1 we conclude that ϕε,ℓ ∈ Y1(T ). Applying (6.3)

we conclude that

H(R) ≥ ER(ϕε,ℓ)/T = ER

(
QT (y, z) ∧ ℓ

)
log

Q(y, z)

εr(y, z)
.

Taking first the limit ℓ → +∞ and afterwards ε → 0, we get that H(R) = +∞, thus implying Ĩ (μ,Q) = +∞.

Due to the previous result, we restrict to the case that μ(y) > 0 if Q(y, z) > 0, with (y, z) ∈ E. Then we fix an

invading sequence En ր E of finite subsets of E and consider the function Fn :E →R defined as

rFn(y, z) = r(y, z)eFn(y,z) :=

{
Q(y,z)
μ(y)

, if (y, z) ∈ En,

r(y, z) otherwise

with the convention that 0/0 = 0. Note that the above ratio is well defined since μ(y) > 0 if Q(y, z) > 0. Let eϕn :=

M
Fn

T be the supermartingale introduced in Lemma 3.1:

ϕn = T
∑

(y,z)∈En

{
QT (y, z) log

Q(y, z)

μ(y)r(y, z)
− μT (y)r(y, z)

[
Q(y, z)

μ(y)r(y, z)
− 1

]}
.
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Since ϕn is unbounded, for ℓ > 0 we consider the cut-off

ϕn,ℓ :=

{
ϕn if |ϕn| ≤ ℓ,
ϕn

|ϕn|
ℓ if |ϕn| > ℓ.

We stress that the sum in the definition of ϕn is finite. Since |ϕn,ℓ| ≤ |ϕn| ∈ L1(R) (recall that Q = Q̂(R) ∈ L1
+(E)), by

the Dominated Convergence Theorem it holds limℓ→+∞ ER(ϕn,ℓ) = ER(ϕn). Moreover, there exist positive constants

An,Bn depending only on n such that

|ϕn,ℓ| ≤ |ϕn| ≤ An

∑

(y,z)∈En

T QT (y, z) + Bn.

By Remark 2.1, this implies that logEx(e
ϕn,ℓ) is bounded uniformly in x ∈ V . Therefore, by dominated convergence

and Lemma 3.1, we conclude that

lim
ℓ→+∞

ER logEX0

(
eϕn,ℓ

)
= lim

ℓ→+∞

∑

x∈V

μ(x) logEx

(
eϕn,ℓ

)

=
∑

x∈V

μ(x) logEx

(
eϕn
)
≤ 0.

As a consequence

lim
ℓ→∞

{
ER(ϕn,ℓ) −ER logEX0

(
eϕn,ℓ

)}
≥ ER(ϕn).

Combining the above estimate, (6.2) and (6.3), we conclude that

H(R) ≥ H̄ (T ,R)/T ≥ ER(ϕn)/T =
∑

(y,z)∈En

Φ
(
Q(y, z),Qμ(y, z)

)
. (6.10)

To conclude we take the limit n → +∞, obtaining H(R) ≥ I (μ,Q) for each R ∈ MS such that μ̂(R) = μ, Q̂(R) =

Q. This implies that Ĩ (μ,Q) ≥ I (μ,Q).

6.2.3. Proof that I (μ,Q) ≥ Ĩ (μ,Q) for (μ,Q) ∈P(V ) × L1
+(E)

As a consequence of the first part of Theorem 2.10 (already proved), the function Ĩ is lower semicontinuous. Consider

the sequence {(μn,Qn)}n≥0 in S converging to (μ,Q) as stated in Proposition 4.4. The set S has been defined in

Section 4.1 as the subset of P(V ) × L1
+(E) given by the elements (μ,Q) with I (μ,Q) < +∞ and such that the

graph (supp(μ),E(Q)) is finite and connected. For each n we consider the continuous time Markov chain ξ (n) on

V with jump rates rn(y, z) = Qn(y, z)/μn(y) with the convention 0/0 = 0. Since I (μn,Qn) < +∞ it cannot be

Qn(y, z) > 0 and μn(y) = 0, hence the above ratio is well defined. Since μn and Qn have finite support, the Markov

chain ξ (n) has finite effective state space. In particular, explosion does not take place. The bound I (μn,Qn) < +∞

implies also that divQn = 0, hence we get that μn is an invariant measure for ξ (n). We define Rn as the stationary

Markov chain ξ (n) with marginal μn, then Q̂(Rn) = Qn. By the Radon–Nykodim derivative (3.1) and the definition

of the entropy H(·), we get that Ĩ (μn,Qn) ≤ H(Rn) = I (μn,Qn). Invoking the lower semicontinuity of Ĩ and

Proposition 4.4, we get the thesis.

6.3. Proof of (2.18)

Let us take (μ,Q) with μ ∈ P(V ) and Q ∈ R
E
+ \ L1

+(E). We need to prove that Ĩ (μ,Q) = +∞. Let R ∈ MS be

such that μ̂(R) = μ and Q̂(R) = Q (we assume R exists, otherwise the thesis is trivially true). We fix an invading

sequence Vn ր V of finite sets, define En := {(y, z) ∈ E: y, z ∈ Vn} and Fn(y, z) := 1((y, z) ∈ En) for (y, z) ∈ E.

Then we know that Ex(exp{M
Fn

T }) ≤ 1 for all x ∈ V , using the same notation of Lemma 3.1. Again we need to

work with functions in B(F0
T ). To this aim, given ℓ > 0 we define M

Fn

T ,ℓ as the supermartingale M
Fn

T except that the
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empirical flow QT (y, z) is replaced by QT (y, z) ∧ ℓ for all edges (y, z). Then (note that rFn ≥ r) M
Fn

T ,ℓ ∈ B(F0
T ) and

M
Fn

T ,ℓ ≤ M
Fn

T , thus implying that M
Fn

T ,ℓ ∈ Y1(T ). By (6.3) this implies that

H(R) ≥ H̄ (T ,R)/T ≥ lim
ℓ→∞

ER

(
M

Fn

T ,ℓ

)
/T =

∑

(y,z)∈En

Q(y, z) −ER

(
μT

(
rFn − r

))
. (6.11)

The conclusion then follows from the next result:

Lemma 6.5. Assume Condition 2.2 (where the constants σ,C are defined). Then for each R ∈MS it holds

∥∥Q̂(R)
∥∥≤ H(R)(1 + e/σ) + Ce/σ. (6.12)

Proof. Let us first prove (6.12) knowing that H(R) ≥ ER(v(X0)) (this will be proved later). We come back to (6.11)

and take first the limit T → +∞ and afterwards the limit n → +∞. Since Fn(y, z) = 1((y, z) ∈ En), then 0 ≤

rFn − r ≤ er . By Fubini–Tonelli and stationarity, ER(μT (r)) = ER(r(X0)). We then conclude that

‖Q̂‖ = ‖Q‖ = lim
n→+∞

∑

(y,z)∈En

Q(y, z) ≤ H(R) + eER

(
r(X0)

)
.

By Condition 2.2, ER(r(X0)) ≤ ER(v(X0))/σ + C/σ . Combining with H(R) ≥ ER(v(X0)) we get the thesis.

Let us now prove that H(R) ≥ ER(v(X0)). Since both H(R) and ER(v(X0)) are affine in R (see [19], (IV)) and

since all stationary processes are convex combinations of ergodic stationary processes, it is enough to prove the claim

for an ergodic R ∈ MS . Given k,T > 0 and W ⊂ V we define v(k) := v ∧ k and ϕ(X) := 1(X0 ∈ W)
∫ T

0 v(k)(Xs)ds.

Trivially, ϕ ∈ B(F0
T ). Then, by the definition of H̄ (T ,R), it holds

T H(R) ≥ H̄ (T ,R) ≥ ER(ϕ) −ER

(
logEX0

(
eϕ
))

≥ ER

(∫ T

0

v(k)(Xs)ds;X0 ∈ W

)
− max

x∈W
log(Cx/c). (6.13)

In the last inequality we have used Lemma 3.5 and the inequality v(k) ≤ v. At this point, we divide (6.13) by T . Since

R is ergodic, by Birkhoff ergodic theorem (note that v(k)(X0) ∈ L1(R) since v(k) is bounded) we know that

lim
T →∞

1

T

∫ T

0

v(k)(Xs)ds = ER

(
v(k)(X0)

)
, R-a.s.

Taking the limit T → ∞ and applying the Dominated Convergence Theorem we conclude that

H(R) ≥ ER

(
v(k)(X0)

)
R(X0 ∈ W).

At this point it is enough to take the limit k → ∞ and afterwards to take W arbitrarily large and invading all V . �

6.4. Proof of Theorem 2.7

The proof uses the results of [21], where the notion of exponentially good approximation and the contraction principle

are extended to the case of completely regular space as image space of the projection. To this aim we recall some

further properties of the bounded weak* topology on L1
+(E).

We define A as the set of sequences a = (an)n≥1 of functions in C0(E) such that ‖an‖∞ → 0. Given a ∈ A we

introduce the pseudometric da on L1
+(E) as

da
(
Q,Q′

)
:= sup

n≥1

〈
Q − Q′, an

〉
.

Writing Ba(Q, r) := {Q′ ∈ L1
+(E): da(Q,Q′) < r}, the family of sets {Ba(Q, r)}, with a ∈ A, Q ∈ L1

+(E) and

r > 0, forms a basis for L1
+(E). This follows from Def. 2.7.1 and Cor. 2.7.4 in [36]. In addition, the family D of
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pseudometrics {da: a ∈ C0(E)} is separating, i.e. given Q �= Q′ in L1
+(E) there exists a ∈ A such that da(Q,Q′) > 0.

The above two properties (basis and separating family of pseudometrics) make L1
+(E) a so called gauge space. Indeed,

one can prove that the concepts of completely regular space and gauge space are equivalent [20], Ch. IX.

Due to the above observations on the gauge structure of L1
+(E) we are in the same settings of [21]. In what follows

we restrict to the case |V | = +∞, thus implying |E| = +∞ due to the irreducibility of the Markov chain ξ (the finite

case is much simpler). Fix an enumeration (en)n≥1 of E. Consider the maps Q̂, Q̂ε entering in Proposition 6.2 and

define the maps Q̄, Q̄ε :MS → L1
+(E) by

Q̄(R) =

{
Q̂(R) if Q̂(R) ∈ L1

+(E),

0 otherwise,

Q̄ε(R)(en) =

{
Q̂ε(R)(en) if n ≤ ε−1,

0 otherwise.

Proposition 6.6. Assume the Markov chain satisfies (A1)–(A4) and Condition 2.2. Consider the space L1
+(E) en-

dowed of the bounded weak* topology and the Borel σ -algebra. Then the following holds:

(i) The map Q̄ :MS → L1
+(E) is measurable while the maps Q̄ε :MS → L1

+(E) are continuous.

(ii) For each a ∈A

lim
ε↓0

sup
R∈MS :H(R)≤α

da
(
Q̄(R), Q̄ε(R)

)
= 0, (6.14)

lim
ε↓0

lim
T ↑∞

1

T
logΓT ,x

(
da(Q̄, Q̄ε) > δ

)
= −∞, (6.15)

for any x ∈ V , α > 0, δ > 0.

The proof is given in Section 8.

As byproduct of Proposition 6.6, the extended contraction principle in [21], the LDP of the empirical process and

Theorem 2.10(ii) we can conclude the proof of Theorem 2.7. Let us be more precise. We apply Theorem 1.13 in

[21]. Formula (6.14) corresponds to formula (1.14) in [21], while formula (6.15) means that the family of probability

measures {ΓT ,x ◦ (μ̂, Q̄ε)
−1} is a (da)a∈A-exponentially good approximation of the family {ΓT ,x ◦ (μ̂, Q̄)−1}. On

the other hand, we have that Q̄ = Q̂ ∈ L1
+(E) ΓT ,x -a.s., while by Proposition 6.1 the random variable Q̂ sampled

according to ΓT ,x has the same law of Q̃T (X) := QT (XT ) with X ∈ D(R+;V ) sampled according to Px . Hence,

by Corollary 1.10 in [21] we only need to prove that the families of probability measures {Px ◦ (μT ,QT )−1} and

{Px ◦ (μT , Q̃T )−1} are (da)a∈A-exponentially equivalent on P(V ) × L1
+(E). It is enough to show for each δ > 0 and

a ∈ A that

lim
T →+∞

1

T
logPx

(
da(Q̃T ,QT ) > δ

)
= −∞. (6.16)

Since by (6.5) da(Q̃T ,QT ) ≤ ‖a‖∞/T , we get the thesis.

7. Exponential approximations: Proof of Proposition 6.2

Item (i) is straightforward. We concentrate on item (ii). Since MS is endowed of the weak topology and since F ε
y,z is

a continuous bounded function on D(R;V ) we conclude that Q̂ε is continuous.

7.1. Proof of (6.6)

As already proved in the previous section (independently from the content of Proposition 6.2), Ĩ (μ,Q) = +∞ if

Q /∈ [0,+∞)E . Hence, given R ∈ MS with H(R) < +∞, it must be Q̂(R)(y, z) < ∞ for all (y, z) ∈ E. Below

R ∈MS is such that H(R) ≤ α.
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Recall the definition of NI (y, z) and NT (y, z) given in the proof of Proposition 6.1. We can estimate

∣∣Q̂(R)(y, z) − Q̂ε(R)(y, z)
∣∣

≤ ER

(
N1(y, z);N1(y, z) ≥ ε−1

)
+ER

(
N[0,ε]∪[1−ε,1](y, z)

)
. (7.1)

By stationarity (see the proof of Lemma 2.9)

ER

(
N[0,ε](y, z)

)
= ER

(
N[1−ε,1](y, z)

)
= εER

(
N1(y, z)

)
= εQ̂(R)(y, z).

Consider ℓ ∈R+ and apply (6.3) with t = 1 and ϕ = N1(y, z)∧ℓ− r(y, z)(e−1) (note that ϕ ∈ Y1(t) by Remark 2.1).

We get for R ∈MS such that H(R) ≤ α

α + r(y, z)(e − 1) ≥ H(R) + r(y, z)(e − 1) ≥ ER

(
N1(y, z) ∧ ℓ

)
. (7.2)

Since by the monotone convergence limℓ→+∞ ER(N1(y, z) ∧ ℓ) = Q̂(R)(y, z), taking the limit ℓ → +∞ on both

extreme sides of (7.2) we deduce

α + r(y, z)(e − 1) ≥ Q̂(R)(y, z).

From this inequality we get that the last term in (7.1) converges uniformly to zero on {R ∈ MS : H(R) ≤ α} as ε ↓ 0.

To conclude, it remains to prove that limε↓0 ER(N1(y, z);N1(y, z) ≥ ε−1) = 0. To this aim, given γ, ℓ > 0 we define

on D(R;V ) the function

ϕγ,ℓ,ε := γN1(y, z)1
(
ℓ ≥ N1(y, z) ≥ ε−1

)
− C(γ, ε),

where C(γ, ε) := supx∈V logEx(e
γN1(y,z)1(N1(y,z)≥ε−1)). Due to Remark 2.1 we get C(γ, ε) < +∞ and limε↓0 C(γ,

ε) = 0. By construction ϕγ,ℓ,ε ∈ Y1(t) for t ≥ 1. Applying (6.3) we get for t ≥ 1 that

ER(ϕγ,ℓ,ε) ≤ H̄ (t,R) ≤ tH(R) ≤ tα.

Taking ℓ → ∞, we conclude that ER(N1(y, z);N1(y, z) ≥ ε−1) ≤ tα/γ + C(γ, ε)/γ . Taking first the limit ε ↓ 0 and

afterwards the limit γ ↑ ∞, we conclude that the expectation ER(N1(y, z);N1(y, z) ≥ ε−1) is negligible as ε ↓ 0. �

7.2. Proof of (6.7)

We restrict to T > 1 (the generic case could be treated by the same arguments of the proof of Proposition 6.1). Recall

the definition of the projection πT and set ΘT (XT )(y, z) given there. Px -a.s. it holds

Q̂ε(RT ,X)(y, z) =
1

T

∫ T

0

{ ∑

u∈[s,s+1]:

πT (u)∈ΘT (XT )(y,z)

ϕε(u − s)

}
∧ ε−1 ds. (7.3)

For each (y, z) ∈ E and ε > 0 we define the functions Gε(y, z) and Hε(y, z) on D(R;V ) as

Gε(X)(y, z) :=
1

T

∫ T

0

∣∣ΘT

(
XT

)
(y, z) ∩ πT

(
[s + ε, s + 1 − ε]

)∣∣∧ ε−1 ds,

Hε(X)(y, z) :=
1

T

∫ T

0

∣∣ΘT

(
XT

)
(y, z) ∩ πT

(
[s + ε, s + 1 − ε]

)∣∣ds.

By the same argument used in identity (6.4), it holds

Hε(X)(y, z) = (1 − 2ε)QT

(
XT

)
(y, z) = (1 − 2ε)Q̂(RT ,X)(y, z). (7.4)
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Trivially, it holds Q̂(RT ,X)(y, z) ≥ Q̂ε(RT ,X)(y, z) ≥ Gε(X)(y, z). Using (7.4) and the last bounds, we can estimate

Px

(
Q̂(RT ,·)(y, z) − Q̂ε(RT ,·)(y, z) ≥ δ

)

≤ Px

(
Q̂(RT ,·)(y, z) − Gε(y, z) ≥ δ

)

≤ Px

(
Q̂(RT ,·)(y, z) − Hε(y, z) ≥ δ/2

)
+ Px

(
Hε(y, z) − Gε(y, z) ≥ δ/2

)

= Px

(
2εQT

(
XT

)
(y, z) ≥ δ/2

)
+ Px

(
Hε(y, z) − Gε(y, z) ≥ δ/2

)
. (7.5)

In order to prove the super-exponential estimate (6.7) it is enough to prove a super-exponential estimate for both terms

in the last line of (7.5).

Since, by the graphical construction, under Px the process {|T QT (X)(y, z)|}T ∈R+
is dominated by a Poisson

process {ZT }T ∈R+
with parameter r(y, z) we have

lim
ε↓0

lim
T →+∞

1

T
log
[
Px

(
2εQT

(
XT

)
(y, z) ≥ δ/2

)]

≤ lim
ε↓0

lim
T →+∞

1

T
log
[
P
(
2ε(ZT + 1)/T ≥ δ/2

)]

≤ lim
ε↓0

−Φ

(
δ

4ε
, r(y, z)

)
= −∞.

We used a LDP for the Poisson process (the extra 1/T term is irrelevant) and the explicit form of the rate functional.

It remains to bound the last term in (7.5). For simplicity of notation we restrict to T integer (the general case can

be treated similarly). We define ψε(r) = r1(r > ε−1). Given j = 0,1, . . . , T − 1 and s ∈ [j, j + 1) we have

∣∣ΘT

(
XT

)
(y, z) ∩ πT

(
[s + ε, s + 1 − ε]

)∣∣

−
∣∣ΘT

(
XT

)
(y, z) ∩ πT

(
[s + ε, s + 1 − ε]

)∣∣∧ ε−1

≤ ψε

(∣∣ΘT

(
XT

)
(y, z) ∩ πT

(
[j, j + 2)

)∣∣).

Hence, we can estimate

Hε(X)(y, z) − Gε(X)(y, z) ≤
1

T

T −1∑

j=0

ψε

(∣∣ΘT

(
XT

)
(y, z) ∩ πT

(
[j, j + 2)

)∣∣). (7.6)

By the graphical construction of Markov chains, under Px the set of jump times for a jump from y to z can be

identified with a suitable subset of an homogeneous Poisson point process on R+ with intensity r(y, z). In particular,

it is possible to define a probability measure P on the product space D(R+;V ) × D(R+;N) such that

(i) the marginal of P on D(R+;V ) equals Px ;

(ii) the marginal of P on D(R+;N) is the law of a Poisson process with parameter r(x, y),

(iii) calling (Xt )t∈R+
and (Zt )t∈R+

the generic elements of respectively D(R+;V ) and D(R+;N), it holds P-a.s.

N[a,b](X)(y, z) ≤ Zb − Za, ∀a < b in R+.

Due to the above coupling and since on the interval [0, T ] the paths X and XT can differ at most in T , we can estimate

P-a.s.

ψε

(∣∣ΘT

(
XT

)
(y, z) ∩ πT

(
[j, j + 2)

)∣∣)

≤

{
ψε(Zj+2 − Zj ) if 0 ≤ j ≤ T − 2,

ψε

(
[ZT − ZT −1] + Z1 + 1

)
if j = T − 1.

(7.7)
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Now we introduce the nondecreasing function ψ̂ε(r) := 2r1(r > ε−1/2) satisfying the inequality ψε(a+b) ≤ ψ̂ε(a)+

ψ̂ε(b). Then (7.6) and (7.7) imply P-a.s. that

Hε(X)(y, z) − Gε(X)(y, z) ≤
2

T

T −1∑

j=0

ψ̂ε(Zj+1 − Zj + 1).

At this point we recall that under P the random variables (Zj+1 − Zj )0≤j≤T −1 are independent Poisson random

variables with parameter r(y, z). Hence we can estimate

lim
ε↓0

lim
T →+∞

1

T
log
[
Px

(
Hε(y, z) − Gε(y, z) ≥ δ/2

)]

= lim
ε↓0

lim
T →+∞

1

T
log
[
P
(
Hε(y, z) − Gε(y, z) ≥ δ/2

)]

≤ lim
ε↓0

lim
T →+∞

1

T
log

[
P

(
2

T

T −1∑

j=0

ψ̂ε(Zj+1 − Zj + 1) ≥ δ/2

)]

≤ lim
ε↓0

−Iε(δ/2) = −∞. (7.8)

In the above chain of inequalities we used Cramer Theorem for the sum of the independent random variables

2ψ̂ε(Zj+1 − Zj + 1) calling Iε the associated rate function. The divergence in the last line follows by the follow-

ing argument. Let Λε(λ) := logE(eλ2ψ̂ε(Z1−Z0)). By the Monotone Convergence Theorem Λε(λ) converges to zero

for each λ ∈ R as ε goes to zero. Since the rate function Iε is the Legendre transform of Λε , we get for each fixed

λ ∈ R that

Iε(δ/2) ≥
δλ

2
− Λε(λ).

Hence, lim infε↓0 Iε(δ/2) ≥ δλ/2. By the arbitrariness of λ we get the thesis.

8. Exponential approximations: Proof of Proposition 6.6

The measurability of Q̄ can be checked by straightforward arguments. Let us prove that Q̄ε is continuous w.r.t. the

bounded weak* topology of L1
+(E). As stated in Proposition 6.2 each map Q̂ε(y, z) :MS → [0, ε−1] is continuous

and bounded. In addition it holds ‖Q̄ε(R)‖ ≤ ε−2 for all R ∈ MS . The thesis then follows from Corollary 2.7.3 in

[36].

8.1. Proof of (6.15)

Due to Proposition 6.1 the law of Q̂ under ΓT ,x is the same of the law of QT (XT ) under Px . Moreover, it holds

QT (XT ) ∈ L1
+(E) Px -a.s. In particular, we get that Q̂ = Q̄ ΓT ,x -a.s. In addition, by Proposition 3.6, we have

lim
ℓ↑+∞

lim
T ↑+∞

1

T
logΓT ,x

(
‖Q̂‖ ≥ ℓ

)
= −∞. (8.1)

Due to (8.1) in order to prove (6.15) we only need to show for any ℓ > 0 that

lim
ε↓0

lim
T ↑∞

1

T
logΓT ,x

(
da(Q̄, Q̄ε) > δ,‖Q̂‖ ≤ ℓ

)
= −∞. (8.2)
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Since a ∈ A, there exits n̄ ≥ 1 such that ‖an‖∞ ≤ δ/(2ℓ) for all n ≥ n̄. Note that, since Q̂(y, z)(R) ≥ Q̄ε(y, z)(R), it

holds ‖Q̂(R)‖ ≥ ‖Q̄ε(R)‖ and ‖Q̂(R)‖ ≥ ‖Q̂(R)− Q̄ε(R)‖ for any R ∈MS . Then for any n ≥ n̄ we have |〈Q̂(R)−

Q̄ε(R), an〉| ≤ δ/2 if ‖Q̂(R)‖ ≤ ℓ. Therefore, in order to prove (8.2) we only need to show for any ℓ > 0 that

lim
ε↓0

lim
T ↑∞

1

T
logΓT ,x

(
∃n: 1 ≤ n ≤ n̄ s.t.

∣∣〈Q̂ − Q̄ε, an〉
∣∣> δ/2,‖Q̂‖ ≤ ℓ

)
= −∞. (8.3)

Since an ∈ C0(E) we can find a finite subset E′ ⊂ E such that |an(e)| ≤ δ/4ℓ for all n: 1 ≤ n ≤ n̄ and e ∈ E \ E′.

Estimating

∣∣〈Q̂ − Q̄ε, an〉
∣∣≤

∑

(y,z)∈E′

∣∣(Q̂(y, z) − Q̄ε(y, z)
)
an(y, z)

∣∣+ ‖Q̂ − Q̄ε‖ sup
e∈E\E′

∣∣an(e)
∣∣,

we reduce the proof of (8.3) to the proof of

lim
ε↓0

lim
T ↑∞

1

T
logΓT ,x

(∣∣Q̂(y, z) − Q̄ε(y, z)
∣∣> β

)
= −∞, ∀(y, z) ∈ E,∀β > 0. (8.4)

This follows from (6.7).

8.2. Proof of (6.14)

By arguments similar to the ones used in the previous proof the thesis follows thanks to the bound (6.12) in Lemma 6.5

and (6.6).

9. Birth and death processes

Birth and death processes are nearest-neighbor continuous time Markov chains on Z+ with jump rates r(k, k+1) = bk

and r(k +1, k) = dk+1, k ≥ 0. We assume the birth rate bk and the death rate dk to be strictly positive. We also assume

Z :=

+∞∑

k=0

b0b1 · · ·bk−1

d1d2 · · ·dk

< +∞ (9.1)

and

+∞∑

k=0

d1d2 · · ·dk

b1b2 · · ·bk

= +∞. (9.2)

Then assumptions (A1)–(A4) holds. Indeed, (A1) and (A3) are trivially satisfied. Due to the presence of a leftmost

point (the origin), equation (2.1) reduces to the detailed balance equation and admits normalizable solutions if and

only if (9.1) is fulfilled. In particular, one obtains a unique invariant probability given by

π(0) =
1

Z
, π(k) =

1

Z

b0b1 · · ·bk−1

d1d2 · · ·dk

, k ≥ 1. (9.3)

Having (9.1), condition (9.2) is equivalent to nonexplosion (A2) (combine Corollary 3.18 in [13] with (9.2)) and

can be rewritten as
∑∞

k=1 1/(π(k)bk) = +∞. Note that condition (9.2) is equivalent to recurrence (combine [39],

Ex. 1.3.4, with [39], Th. 3.4.1. Under the above assumptions, the logarithmic Sobolev inequality holds if and only if

(see Table 1.4 in [14], Ch. 1)

sup
k≥1

π
(
[k,+∞)

)
log

(
1

π([k,+∞))

) k−1∑

j=0

1

π(j)bj

< +∞. (9.4)
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Possible absence of exponential tightness of the empirical measure

We first discuss a case in which the empirical measure fails to be exponentially tight. Consider constant birth and

death rates, i.e. bk = β and dk = δ. Then (9.1) and (9.2) together are equivalent to the condition γ := β/δ ∈ (0,1). In

particular, π is geometric with parameter γ , i.e. π(k) = (1 − γ )γ k . Consider an event in which in the time interval

[0, T ] there are O(T ) jumps (typical behavior) but all the jumps are to the right (atypical behavior). The probability

of such an event is “only” exponentially small in T and therefore the empirical measure cannot be exponentially

tight. To be more precise, we write NT for the number of jumps performed in the time interval [0, T ]. Since the

holding time at site k is exponential of parameter β if k = 0 and β + δ if k ≥ 1, NT stochastically dominates [is

stochastically dominated by] a Poisson random variable with mean βT [(β + δ)T ]. Hence, with probability 1 − o(1),

NT has value in I := [βT/2,2(β + δ)T ]. By conditioning on NT , it is then simple to check that with probability

at least (1 − o(1))[β/(β + δ)]2(β+δ)T −1 the following event AT takes place: the random variable NT has value in I

and all the jumps are to the right. The event AT implies μT =
∑NT

i=0 δi/T . Take now a compact set K ⊂ P(V ). By

Prohorov’s theorem, K is a tight family of probability measures and therefore, given ε > 0, there exists a compact

(finite) set K ⊂ V such that μ(Kc) ≤ ε for all μ ∈ K. Taking T large enough, under the event AT the empirical

measure μT cannot fulfills the above requirement. Hence

P0(μT /∈K) ≥ P0

(
μT

(
Kc
)
> ε

)
≥ P0(AT ) ≥

(
1 − o(1)

)[
β/(β + δ)

]2(β+δ)T −1
.

This estimate proves that the empirical measure cannot be exponentially tight. In particular neither Condition 2.2 nor

2.4 holds (even with σ = 0).

Condition 2.2

Assume now

lim
k→∞

dk = +∞, lim
k→∞

bk

dk

< 1. (9.5)

Trivially, (9.1) and (9.2) are satisfied. We show that Condition 2.2 holds. As un we pick the constant sequence u(k) =

Ak , k ∈ Z+ for some A > 1 to be chosen later. Since un does not depend on n, it is enough to check Condition 2.2.

Items (i)–(iv) then hold trivially; moreover setting d0 := 0 we get

v(k) = −
Lu

u
(k) = dk

(
1 −

1

A

)
+ bk(1 − A), k ∈ Z+.

Since r(k) = bk + dk , for each σ ∈ (0,1) we can write v(k) = σr(k) + dk(1 − σ − 1/A) − bk(A − 1 + σ). By (9.5),

choosing A large items (v) and (vi) hold. Observe that (9.5) is satisfied when dk = k and bk = λ ∈ (0,+∞). In this

case π is Poisson with parameter λ. This implies that e−λλk/k! ≤ π([k,+∞)) ≤ λk/k! (for the last bound estimate

π(i) ≤ e−λλi/(k − i)! for i ≥ k). Using these bounds, by simple computations one can check from (9.4) that the

logarithmic Sobolev inequality (2.10) does not hold. This shows there are cases in which Condition 2.2 holds but

Condition 2.4 does not.

Condition 2.4

Let now focus our attention on Condition 2.4. As already mentioned, the validity of the logarithmic Sobolev inequality

is equivalent to (9.4) (assuming (9.1) and (9.2)).

We next exhibit a choice in which Condition 2.4 holds. We take bk = (k + 1) and dk+1 = 2bk for k ≥ 0. Observe

that such rates satisfy (9.5), and therefore (9.1) and (9.2). The invariant probability π is π(k) = 2−k−1. In remains to

estimate
∑k−1

j=0(π(j)bj )
−1 =

∑k
j=1 2j/j . Supposing for simplicity k even, we observe that

∑k/2
j=1 2j/j ≤ (k/2)2k/2

while
∑k

j=k/2 2j/j ≤ (2/k)
∑k

j=k/2 2j = (2/k)2k/2
∑k/2−1

j=0 2j = (2/k)2k/2(2k/2 − 1). Hence
∑k−1

j=0(π(j)bj )
−1 ≤

Ck2k/2 + C2k/k. From these bounds it is immediate to get (9.4). In addition, since r(k) ∼ k we deduce immediately

that also item (ii) in Condition 2.4 holds, thus completing the check of Condition 2.4.
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Violation of the LDP in the strong topology of L1
+(E)

By exhibiting a concrete example, we show that – under Condition 2.2 – Theorem 2.7 does not hold in the strong

topology of L1
+(E). We choose the birth and death rates as bk = (k + 1)/2 and dk = k; in particular π is geometric

with parameter 1/2. Since (9.5) holds, Condition 2.2 is satisfied. We shall show that the level sets of I in (2.12) are

not compact in the strong topology of L1
+(E). Set

μn :=

(
1 −

1

n

)
π +

1

2n
[δn + δn+1],

Qn :=

(
1 −

1

n

)
Qπ +

1

2
[δ(n,n+1) + δ(n+1,n)].

While {μn} converges to π in P(Z+), observe that {Qn} converges to Qπ in the bounded weak* topology of L1
+(E)

but it is not compact in the strong topology of L1
+(E). Since divQn = 0, it is simple to check that limn I (μn,Qn) <

+∞. This implies that the level sets of I are not compact in the strong topology of L1
+(E).

Appendix A: Proof of (5.4)

We call Ī (μ,Q) the r.h.s. of (5.4). Trivially it holds Ī (μ,Q) = +∞ = I (μ,Q) if divQ �= 0. In the sequel we assume

divQ = 0. Then, equation (5.4) reads I (μ,Q) = supF∈Cc(E) IF (μ,Q) where IF (μ,Q) := 〈Q,F 〉 − 〈μ, rF − r〉. If

for some y ∈ V and (y, z) ∈ E it holds μ(y) = 0 and Q(y, z) > 0, then taking F = λδ(y,z) with λ → +∞ we obtain

that Ī (μ,Q) = ∞. On the other hand

I (μ,Q) ≥ Φ
(
Q(y, z),Qμ(y, z)

)
= Φ

(
Q(y, z),0

)
= +∞.

As a consequence, from now on we can restrict to (μ,Q) such that divQ = 0 and Q(y, z) = 0 for all (y, z) ∈ E with

μ(y) = 0. Calling E+ := {(y, z) ∈ E: μ(y) > 0} we get that

IF (μ,Q) =
∑

(y,z)∈E+

{
Q(y, z)F (y, z) − μ(y)r(y, z)

(
eF(y,z) − 1

)}
.

At this point, it is simple to check that, varying F(y, z), the supremum of the above addendum is given by

Φ(Q(y, z),Qμ(y, z)) and the value of the above addendum for F(y, z) = 0 is zero. Hence,

Ī (μ,Q) =
∑

(y,z)∈E+

Φ
(
Q(y, z),Qμ(y, z)

)
=

∑

(y,z)∈E

Φ
(
Q(y, z),Qμ(y, z)

)
.

We now claim that the above expression is +∞ if 〈μ, r〉 = +∞, thus concluding the proof. To this aim we observe

that for 0 ≤ q < p/2 it holds Φ(q,p) ≥ p(1 − log 2)/2. Indeed, the thesis is trivially true if q = 0, while for q > 0

we can write Φ(q,p) = pf (q/p) where f (x) = x logx + 1 − x. Since f (x) is decreasing for 0 < x < 1, one has

Φ(q,p) ≥ pf (1/2) for 0 ≤ q < p/2. Hence, setting c := 2/(1 − log 2), our claim follows from the bound

〈μ, r〉 =
∑

(y,z)∈E

Qμ(y, z)

≤
∑

(y,z)∈E:

Q(y,z)<Qμ(y,z)/2

cΦ
(
Q(y, z),Qμ(y, z)

)
+

∑

(y,z)∈E:

Q(y,z)≥Qμ(y,z)/2

2Q(y, z)

≤
∑

(y,z)∈E

cΦ
(
Q(y, z),Qμ(y, z)

)
+ 2‖Q‖1.
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Appendix B: An example with discontinuous divergence

Consider the oriented graph (V ,E) where V = N ∪ {v,w} and E is given by the oriented bonds of the form (v, n),

(n,w),(w,v) for some n ∈ N. For each n ∈ N we define Q(n) as the flow of unitary flux associated to the cycle

(v,n,w,v), i.e. Q(n) = 1(v,n) + 1(n,w) + 1(w,v). We claim that Q(n) converges to Q := 1(w,v) in L1
+(E) (endowed

of the bounded weak* topology). Since ‖Q(n)‖ = 3, the sequence (Q(n))n∈N is bounded in the strong topology of

L1
+(E). In particular, Q(n) → Q in the bounded weak* topology if and only if Q(n) → Q in the weak* topology, and

therefore if and only if 〈φ,Q(n)〉 → 〈φ,Q〉 for each φ ∈ C0(E). By construction we have

〈
φ,Q(n)

〉
= φ(v,n) + φ(n,w) + φ(w,v) → φ(w,v) = 〈φ,Q〉,

thus concluding the proof of our claim.

We observe that, despite divQ(n) = 0 for all n ∈N, it holds divQ �= 0. This example shows that the map L1
+(E) ∋

Q → divQ(x) ∈ R, with x ∈ V , is not in general a continuous map.
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