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LARGE DEVIATIONS THEORY FOR MARKOV JUMP MODELS

OF CHEMICAL REACTION NETWORKS

BY ANDREA AGAZZI∗,†,1,2, AMIR DEMBO∗,3 AND

JEAN-PIERRE ECKMANN†,1

Stanford University∗ and University of Geneva†

We prove a sample path Large Deviation Principle (LDP) for a class
of jump processes whose rates are not uniformly Lipschitz continuous in
phase space. Building on it, we further establish the corresponding Wentzell–
Freidlin (W-F) (infinite time horizon) asymptotic theory. These results apply
to jump Markov processes that model the dynamics of chemical reaction net-
works under mass action kinetics, on a microscopic scale. We provide natural
sufficient topological conditions for the applicability of our LDP and W-F
results. This then justifies the computation of nonequilibrium potential and
exponential transition time estimates between different attractors in the large
volume limit, for systems that are beyond the reach of standard chemical re-
action network theory.

1. Introduction. The dynamics of chemical reactions are usually modeled by
mass-action equations: A system of a polynomial ordinary differential equations
which relate the evolution of concentrations of chemical compounds. These sys-
tems of equations inherit their structure from the topology of the Chemical Re-
action Network (CRN) they model, and the interplay between topology and dy-
namics of mass action systems is the object of study of chemical reaction network
theory [1, 12, 20]. These sets of ODEs approximate the interactions of the individ-
ual molecules involved. The discrete nature of chemical reaction systems can be
captured by discrete models where the state of the system is given by the number
of molecules of each type that are present in the reactor. In this framework, when
a reaction occurs, the input molecules combine to form the output ones, and the
system jumps to a new state. The dynamics of such systems are in general mod-
eled stochastically as a pure jump Markov process [11], Example C, Section 11,
whose jump rates are approximations of the reaction rates found in deterministic
mass action models. Finally, assuming that the system has volume v, one can study
how the stochastic dynamics of the process Xv

t describing the concentration of the
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different chemical species at time t scale with the parameter v. This is the object
of study of this paper.

Similar discrete stochastic mass action kinetics models have been applied to dis-
ease propagation dynamics [27], genetic algorithms [24], and for the simulation
of noisy biochemical reaction networks through the application of the so-called
Gillespie algorithm [17]. Asymptotics such as limit theorems on the convergence
of the stochastic trajectories toward the deterministic ones have been proven in the
probability literature [11]. More recently, results on product-form steady state dis-
tributions for a certain class of CRNs have been obtained in [2, 6] and conditions
for the irreducibility and ergodicity of the stochastic chemical dynamics of reac-
tion networks have been presented in [19, 25]. Our work extends these results to
the domain of large deviations theory, identifying a large class of CRNs to which
that theory applies. We prove in particular that Wentzell–Freidlin exit time esti-
mates can be applied to such systems, rigorously justifying the widespread use of
potential theory [15, 16, 22] and ultimately allowing for the analysis of events that
play a key role in, for example, theoretical biochemistry [3, 4] and that are not
covered by deterministic mass action models, because deterministic models do not
allow for transitions between different attractors.

1.1. The model and its sample path LDP. We consider a set of chemical

species S = {s1, s2, . . . , sd}, whose interactions are described by a finite set of
reactions R = {r1, r2, . . . , rm}. Throughout, we denote by N0 the set of natural
numbers including 0. Each reaction is uniquely identified by its substrates (in-
put species) and products (output species), and we express such a reaction as
r = {cr

in ⇀ cr
out}, with cr

out, cr
in ∈ Nd

0 representing the multiplicity of the species
si ∈ S in the input or output of the reaction. The set C of complexes consists of
all cr

# (with # = “in” or “out”), and for each reaction r ∈ R we define the reaction

vector cr := cr
out − cr

in ∈ Zd . A CRN is thus defined by the triple (S,C,R).

EXAMPLE 1.1. The system

(1.1) ∅
r1
⇀ A + B

r2
⇀ 2B

r3
⇀ A

is a CRN with S = {A,B} and R = {r1, r2, r3}. The set of complexes of these re-
actions is C = {∅, {A+B}, {2B}, {A}} = {(0,0), (1,1), (0,2), (1,0)} [in the basis
spanned by (A,B)].

In this paper, we study the behavior as a function of v of the scaled process
(
Xv

t

)
i := v−1(Nt )i, i ∈ 1, . . . , d,

where Nt ∈ Nd
0 represents the number of molecules of the d species and Xv

t ∈
(v−1N0)

d denotes their number density (in mols) at time t . The interactions among
molecules are then described by each reaction r ∈ R standing for a possible jump
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of the process Xv
t → Xv

t + v−1cr , with cr the reaction (or jump) vector associated
with r ∈ R. Correspondingly, Xv

t is a continuous time pure jump Markov process
with generator

(1.2) (Lvf )(x) := v
∑

r∈R
�(v)

r (x)
(
f
(
x+v−1cr)− f (x)

)

for f : (v−1N0)
d →R and the volume-normalized mass action kinetics jump rates

(1.3) �(v)
r (x) = krv

−‖cr
in‖1

d∏

i=1

(
vxi(
cr

in

)
i

)
(
cr

in
)
i !

for some reaction (rate) constants kr > 0, where
(a
b

)
denotes the binomial coeffi-

cient which by convention is zero when b /∈ [0, a] and ‖ · ‖1 denotes the ℓ1-norm.
The mean-field character of this model reflects the underlying assumption of ho-
mogeneous stirring of the reactor. The scaling in v of the rate constants makes
them asymptotically extensive quantities in (1.2) and takes into account that it is
harder for molecules to meet as v increases.

REMARK 1.2. For a fixed volume v and initial condition Xv
0 = xv

0 ∈
(v−1N0)

d , the process Xv
t is confined to Sv

xv
0

:= {xv
0 + {∑r∈R αrc

r : α ∈
(v−1N0)

m}} ∩ Rd
+, where R+ represents the set of nonnegative real numbers. In-

deed, Xv
t cannot jump outside of (v−1N0)

d since �
(v)
r (x) = 0 for any r ∈ R such

that x + v−1cr /∈ (v−1N0)
d so the corresponding summand in (1.2) is then zero

[regardless of f (·)].

REMARK 1.3. In the limit v → ∞, the sample paths of the processes Xv
t

starting at Xv
0 = xv

0 → x0 ∈ Rd
+ almost surely converge—uniformly over [0, T ]

for any T > 0—to the solution ζ(t) of the deterministic ODE

(1.4)
dζ

dt
=
∑

r∈R
λr(ζ )cr , ζ(0) = x0,

having the asymptotic reaction rates

(1.5) λr(x) := kr

d∏

i=1

x
(cr

in)i
i

provided that a solution of (1.4) exists up to time T (see [11], Theorem 2.1, Section
11, where such a functional law of large numbers (FLLN) is derived for certain
CRNs).

We show in Section 2 that under the following mild assumption on the generator
Lv of the scaled process, the solution Xv

t to the corresponding martingale problem
satisfies a sample path LDP in the supremum norm, with an explicit rate function
(see Theorem 1.6). While proving this LDP we also verify that in this setting the
ODE (1.4) admits global solutions (and that the FLLN of Remark 1.3 holds).
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ASSUMPTION A.1. Let Xv
t be the solution of the martingale problem gener-

ated by the generator Lv of (1.2). We assume:

(a) There exist b < ∞ and a continuous, positive function U(x) of compact
level sets, such that for some nondecreasing function v′ :R+ →R+,

(1.6)
(
LvU

v)(x) ≤ ebv ∀v > v′(‖x‖1
)
, x ∈

(
v−1N0

)d
,

where Uv(·) denotes the vth power of U(·).
(b) With positive probability, starting at Xv

0 = 0 the Markov process Xv
t reaches

in finite time some state x+ in the strictly positive orthant (v−1N)d .

REMARK 1.4. The existence of a solution Xv
t to the martingale problem gen-

erated by Lv with initial condition xv
0 ∈ (v−1N0)

d is guaranteed by standard theory
(see [26], Theorem 8.3), up to the possibility of explosion. In Lemma 2.1 we show
that this possibility is ruled out by Assumption A.1.

REMARK 1.5. Assumption A.1(b) requires that all chemical species can be
created, at least indirectly, starting from zero, hence from any other possible state
of the system. In particular, there must exist at least one chemical reaction without
substrates, namely, with cr

in = 0. Such constant rate reactions are used, for exam-
ple, in mass action models of cellular dynamics [2] and continuous-flow stirred-
tank chemical reactors [12], to model inflow of chemicals from the environment
(correspondingly, these CRNs often also have certain products exit the network,
reflected by a mass loss in some reactions). It is possible to have an LDP without
Assumption A.1(b), but then even when starting at xv

0 → x0 which is strictly pos-
itive, we may have a path of finite rate that leads to ∂Rd

+ and stays there forever.
This would create problems establishing the Wentzell–Freidlin estimates.

Proceeding to state our sample path LDP, hereafter D0,T (Rd
+) denotes the space

of càdlàg functions z : [0, T ] → Rd
+ equipped with the topology of uniform con-

vergence. For z(·) in the subspace AC0,T (Rd
+) of absolutely continuous functions

from [0, T ] to Rd
+, let z′(·) denote its Radon–Nikodym derivative with respect

to Lebesgue measure. Further, for λ = (λr) ∈ Rm
+, q = (qr) ∈ Rm

+, ξ ∈ Rd and
cr ∈ Rd , let

(1.7)

L(λ, ξ) := sup
θ∈Rd

{
〈θ, ξ〉 −

∑

r∈R
λr

[
exp

(〈
θ, cr 〉)− 1

]}

= inf
{∑

r∈R

[
λr − qr + qr log

qr

λr

]
: q ∈ QR(ξ)

}
,

where QR(ξ) := {q ∈ Rm
+ : ∑r∈R qrc

r = ξ} and 〈θ, ξ〉 is the inner product of
θ, ξ ∈ Rd .
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THEOREM 1.6. For λr(·) of (1.5) and any xv
0 → x0 ∈ Rd

+, under Assump-

tion A.1 the sample paths {Xv
t : t ∈ [0, T ]} with Xv

0 = xv
0 , satisfy the LDP in

D0,T (Rd
+) with rate v and the good rate function

(1.8) Ix0,T (z) :=

⎧
⎪⎨
⎪⎩

∫ T

0
L
(
λ
(
z(t)

)
, z′(t)

)
dt if z(0) = x0 & z ∈ AC0,T

(
Rd

+
)
,

∞ otherwise.

That is, for any set Ŵ ⊂ D0,T (Rd
+), denoting by Ŵo and Ŵ̄ the interior and, respec-

tively, the closure of Ŵ, we have

lim sup
v→∞

1

v
logPxv

0

[
Xv

t ∈ Ŵ̄
]
≤ − inf

z∈Ŵ̄
Ix0,T (z),(1.9)

lim inf
v→∞

1

v
logPxv

0

[
Xv

t ∈ Ŵo]≥ − inf
z∈Ŵo

Ix0,T (z).(1.10)

REMARK 1.7. The identity (1.7) is well known (see [28], Theorem 5.26), and
since the function [b − u + u log(u/b)] is positive whenever u �= b, it yields that
the Lagrangian L(λ, ξ) vanishes iff ξ = ∑

r∈R λrc
r . Thus, the rate Ix0,T (z) of

(1.8) is zero iff z(·) solves on [0, T ], the ODE (1.4) starting at z(0) = x0 (see [28],
Exercise 5.14).

1.2. Topological stability and strongly endotactic networks. Standard large
deviations theory is not directly applicable for proving Theorem 1.6, because we
need to deal with jump rates that are neither bounded away from zero, nor globally
Lipschitz continuous. The diminishing jump rates at the boundary are handled by
adapting our system to the framework of mean-field interacting particle systems,
and thereby applying [9], Theorem 3.9, whereas Lemma 2.1 takes care of the lack
of global Lipschitz continuity by employing Lyapunov stability theory to estab-
lish exponential tightness. In doing so, a most important challenge is to phrase a
stability condition strong enough for such exponential tightness, and a sufficient
condition for escape from the boundary (in extension of [29]), that are both appli-
cable to a broad collection of CRNs.

This is precisely what we do next, with our topological conditions summarized
by Assumption A.2 below. Specifically, given a finite set Q ⊂ Rd and a vector
w ∈Rd , we call

Qw :=
{
c ∈ Q :

〈
w,c − c′〉≥ 0 for all c′ ∈ Q

}
,

the w-maximal subset of Q and consider the following collection of CRNs.

DEFINITION 1.8 ([18]). The network (S,C,R) is called strongly endotactic

if for any nonzero w ∈ Rd , the set Rw ⊆R of reactions such that cr
in ∈ (Cin)w con-

tains at least one reaction satisfying 〈w,cr〉 < 0 and no reaction with 〈w,cr〉 > 0.
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FIG. 1. The Rd
+-diagram for Example 1.1. A vector w in the space of complexes and the corre-

sponding orthogonal hyperplane has been drawn in red to identify the w-maximal subset of the input

complexes (Cin)w : the complex A + B .

This class of CRNs is well known (see [18]), and algorithms to determine if a
network is strongly endotactic are devised in [21] (using variants of the simplex
algorithm).

EXAMPLE 1.1 (continued). The network of Example 1.1 is represented as in
Figure 1, where we identify (Cin)w by sweeping Rd

+ with a hyperplane orthogonal
to w ∈ Rd (here for d = 2, drawn in red), and taking the last point of Cin that
such hyperplane intersected. It is easy to see that our specific network satisfies the
requirements of Definition 1.8 and is therefore strongly endotactic.

While in a strongly endotactic reaction network, all reactions “point inward”
with respect to the faces of the convex hull of Cin (etymologically endo-tactic:
inward-arranged), our LDP requires addressing the following additional boundary
concept.

DEFINITION 1.9. A nonempty subset P ⊆ S is called a siphon if every reac-
tion r ∈ R with at least one output from P also has some input species from P .

EXAMPLE 1.10. It is readily checked that the sets P = {A}, {A,B} are
siphons of the network

A ⇀ 2A ⇀ 3A + 2B ⇀ A,

whereas {B} is not.

We make the following assumption on the topological structure of CRNs. We
call (S,C,R) an asiphonic strongly endotactic (ASE) network if it satisfies
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ASSUMPTION A.2. The CRN (S,C,R)has the properties:

(a) It is strongly endotactic, as in Definition 1.8,
(b) It has no siphon P ⊆ S .

REMARK 1.11. Assumption A.2(b) is equivalent to finding, for any nonempty
P ⊆ S , some reaction from R that produces at least one output in P while requir-
ing no input species from P . When this holds, then, for any state x on the P-
boundary of Rd

+ (namely, having xi = 0 for all si ∈ P), there is some reaction of
a nonvanishing rate that brings the system back to a higher-dimensional subspace
of Rd

+. Following a sequence of such jumps, we conclude that any asiphonic CRN
satisfies Assumption A.1(b). This definition coincides with the one of exhaustive

CRNs introduced in [19].

Combining the following result with Remark 1.11 yields the LDP of Theo-
rem 1.6 for the ASE networks of Assumption A.2.

PROPOSITION 1.12 (Existence of a Lyapunov function). If the network is

ASE, the generator Lv of (1.2) satisfies Assumption A.1(a) for the chemical Lya-
punov (continuous) function

(1.11) U(x) := d + 1 +
d∑

i=1

xi(logxi − 1) :Rd
+ →R≥1.

The connection between Lyapunov stability analysis and large deviations rate
functions is an active area of research (see, e.g., [5]). Also, the problem of stability
of mass action kinetics systems has been addressed in [2, 12, 18, 20] and sufficient
conditions for the existence of a globally attracting steady state for the determin-
istic dynamics of such systems have been established in [1, 7, 12]. In particular,
the existence of a global attractor for a certain class of CRNs is proven in [1, 18]
using the chemical Lyapunov function of (1.11). These results have been extended
in [18] where the same function is used for showing the existence of a compact at-
tracting set for strongly endotactic CRNs. However, none of the references above
deal directly with the generator Lv , using the chemical Lyapunov function to es-
tablish exponential tail estimates for the finite-time distributions of such stochastic
processes, as we do in Section 3 [where we prove Proposition 1.12 by verifying
(1.6) for this function].

REMARK 1.13. Proposition 1.12 implies that it is sufficient to check a set of
graphical conditions to guarantee the applicability of a LDP to the dynamics of
CRNs. This is most advantageous for applications in, for example, biochemistry,
where typically d > 100 and quantitative estimates like (1.6) would be prohibitive
to check. Note furthermore that our conditions do not depend on the reaction rate
constants kr , which are often very difficult to determine.
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1.3. Quasi-potential and exit time asymptotic. Following the Wentzell–Freid-
lin approach, we utilize our sample path LDP to define the corresponding quasi-
potential (as in [14]), and provide asymptotic analysis over an infinite time horizon,
for quantities of interest such as the exit time from some domain D ⊂ Rd

+, or the
transition time between different attractors of (1.4) (as proposed by [15]). To do
so, we first assume that the domain of interest D has the following mild regularity
properties.

ASSUMPTION A.3. The compact D ⊂ Rd
+ is the closure of its interior, with

boundary ∂D that is a piecewise twice continuously differentiable submanifold of
Rd

+. Furthermore, there exists a ball B ⊂ D so that for all x ∈ B and y ∈ D the set
D contains the line segment between x and y.

DEFINITION 1.14. The quasi-potential between any x, y ∈Rd
+ is

VD(x, y) := inf
t≥0

inf
{z(·)∈D,z(t)=y}

{
Ix,t (z)

}
,

for Ix,t (z) of Theorem 1.6. We say that x, y are D-equivalent (denoted x ∼D y), if
VD(x, y) = VD(y, x) = 0. We further define

VD(A,B) := inf
x∈A,y∈B

VD(x, y) ∀A,B ⊆ D,

and use V(·, ·) for VRd
+
(·, ·).

The equivalence x ∼D y defines compact sets Ki ⊂ D where the process can
move with probability exp(−o(v)). Throughout, we make the following assump-
tion about their structure.

ASSUMPTION A.4 ([14], Condition A, Section 6.2). There exist ℓ compact
sets Ki ⊂ D such that:

(a) every ω-limit set of (1.4) lying entirely in D is fully contained within
one Ki ,

(b) for any x ∈ Ki we have x ∼D y if and only if y ∈ Ki ,
(c) for all Ki , the set Kj minimizing VD(Ki,Kj ) is unique.

We further assume that the conic hull Co{cr}r∈R of vectors {cr}r∈R is Rd .

Such Ki are called stable if V(Kδ
i , (Kδ

i )c) > 0 for δ > 0 small enough (where
Bδ denotes the δ-neighborhood of the set B in the ‖ · ‖1-norm). The most probable
transitions between {Kδ

i } for small δ > 0 and v → ∞ [i.e., those transitions that
connect any such Kδ

i to the unique Kδ
j with i �= j minimizing VD(Kδ

i ,Kδ
j )] de-

fine a deterministic dynamic on the finite collection of stable compact sets. Such
dynamic can be partitioned into disjoint cycles, with each cycle π consisting of a
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single transitive point (π = {i}) or a periodic orbit π = {i1 → i2 → ·· · → ij → i1}
(cf. [14], Section 6.6, for the precise definition). Thanks to Assumptions A.3 and
A.4, adapting the machinery of [14] to our setup, we transfer in Section 4 the sam-
ple path LDP to the following result about the time it takes the CRN to exit D or a
cycle π and the probability cost of relevant exit paths.

THEOREM 1.15 ([14], Theorems 5.1, 5.3, 6.2, Section 6). Consider a CRN

satisfying Assumption A.1 and the process t �→ Xv
t starting at xv

0 → x ∈ Do. Let

τD denote its exit time from a set D that satisfies Assumptions A.3 and A.4 and let

τπ its first hitting time of
⋃

j /∈π Kδ
j for a cycle π ⊆ {1, . . . , ℓ} and sufficiently small

δ > 0. Then, with nonrandom MD(x), WD and WD(x, y) as in [14], Section 6, we

have that for any x in a compact F ⊂ Do and y ∈ ∂D

lim
δ→0

lim
v→∞

1

v
logPxv

0

[∥∥Xv
τD

− y
∥∥

1 < δ
]
= WD − WD(x, y),(1.12)

lim
v→∞

1

v
logExv

0
[τD] = WD − MD(x).(1.13)

Furthermore, with C(π) < ∞ as in [14], Section 6.6, any γ > 0 and uniformly in

x ∈⋃i∈π (Ki)
δ/2,

(1.14) lim
v→∞Pxv

0

[∣∣v−1 log τπ − C(π)
∣∣≤ γ

]
= 1.

REMARK 1.16. Note that models in cell biology [4] usually have significantly
larger dimension d than many other applications of Wentzell–Freidlin theory.

2. Proof of Theorem 1.6. We start by showing that Assumption A.1(a) yields
exponentially negligible exit probability from the compact level sets of the function
U(·).

LEMMA 2.1. Let {Xv
t } be a Markov jump process with generator (1.2) and

initial condition xv
0 ∈ (v−1N0)

d . Under Assumption A.1(a), there is, for every α,
β , γ , a finite ̺α,β,γ , so that

(2.1) lim sup
v→∞

1

v
log
(

sup
‖xv

0 ‖1≤γ

Pxv
0

[
sup

t∈[0,eβv]

∥∥Xv
t

∥∥
1 > ̺α,β,γ

])
≤ −α.

PROOF. For each ℓ, there is a ̺ = ̺(ℓ) so that {x : U(x) ≤ ℓ} is a subset of
the ball

(2.2) K̺̃ :=
{
x ∈ Rd

+ : ‖x‖1 ≤ ̺
}
.

Considering the v-dependent stopping times

(2.3) σ̺ := inf
{
t > 0 : Xv

t /∈ K̺̃

}
,
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and the stopped processes X̂
v,̺
t := Xv

σ̺∧t , it follows by Markov’s inequality that
for any T ,

Pxv
0

[
sup

t∈[0,T ]

∥∥Xv
t

∥∥
1 > ̺

]
= Pxv

0

[∥∥X̂v,̺
T

∥∥
1 > ̺

]

≤ Pxv
0

[
U
(
X̂

v,̺
T

)
> ℓ

]
≤ ℓ−vExv

0

[
Uv(X̂v,̺

T

)]
,

from which we get (2.1) once we show that

(2.4) sup
̺≥γ

lim sup
v→∞

1

v
log sup

‖xv
0 ‖1≤γ,T ≤eβv

Exv
0

[
Uv(X̂v,̺

T

)]
< ∞.

To this end, as U(·) is continuous, sup‖x‖1≤γ {U(x)} ≤ eκ for some κ = κ(γ ) <

∞. Further, when ‖Xv
0‖1 ≤ ̺, the Markov process X̂

v,̺
t has the generator Lv of

(1.2) restricted to K̺̃ and is confined for any v ≥ 1 to a compact (K̺̃)c̄ with c̄ :=
supr ‖cr‖1 < ∞. Thus, combining Dynkin’s formula [10], Section 5.1, with As-
sumption A.1(a) we find that for some v̺ ∈ [1,∞), all v > v̺ and ‖xv

0‖1 ≤ γ ≤ ̺,

(2.5) Exv
0

[
Uv(X̂v,̺

T

)]
≤ Uv(xv

0
)
+Exv

0

[∫ σ̺∧T

0

(
LvU

v)(Xv
s

)
ds

]
≤ eκv + T ebv.

Considering for T ≤ eβv , the limit as v → ∞ of v−1 times the logarithm of (2.5)
leads to (2.4) and thereby concludes the proof. �

REMARK 2.2. Lemma 2.1 can be alternatively proved by defining a super-
martingale from the condition (1.6) on our generator, and applying [13], Theo-
rem 4.20, to it.

The Markov jump process Xv
tT corresponds to the generator of (1.2), now

with reaction constants T kr for which Assumption A.1 continues to hold. This
changes λ(·) of (1.5) to T λ(·), hence transforms Ix0,T (z(t)) into Ix0,1(z(tT ))

[since L(T λ, y) = T L(λ,T −1y)]. Thus, w.l.o.g., we take hereafter T = 1 and pro-
ceed to establish the exponential tightness of an exponentially equivalent process
X̃v

t .

LEMMA 2.3. Under Assumption A.1(a), the C0,1(Rd
+)-valued processes X̃v

t

obtained by linearly interpolating the jump points of t �→ Xv
t , form an exponen-

tially tight family in the uniform topology, which for uniformly bounded ‖xv
0‖1 is

further exponentially equivalent to {Xv
t } in the uniform topology on D0,1(Rd

+).

PROOF. For any consecutive jumps of Xv
t occurring at (random) times t1 < t2,

we set

X̃v
t := Xv

t1
+ t − t1

t2 − t1

(
Xv

t2
− Xv

t1

)
.
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Hence, ‖Xv
t − X̃v

t ‖1 ≤ v−1c̄ for finite c̄ := supr ‖cr‖1, all t ≥ 0, and v, yielding
the exponential equivalence of {X̃v

t } and {Xv
t } (in the uniform topology). As for

the exponential tightness of {X̃v
t } in C0,1(Rd

+), note that for any t > s,
∥∥X̃v

t − X̃v
s

∥∥
1 ≤ v−1c̄N[s,t]

(
Xv),

where N[s,t](Xv) counts the number of jumps by Xv
· in the time interval [s, t].

Further, as �
(v)
r (x) ≤ λr(x) for all x ∈ Rd

+, we have for σ̺ of (2.3) and any v ≥
1 the monotone coupling N[s,t](Xv) ≤ M

̺
[s,t] on [0, σ̺], where M̺ is a Poisson

process of intensity v�̺̄ and

�̺̄ := sup
x∈(K̺̃)c̄

{∑

r∈R
λr(x)

}
.

In view of the Arzelà–Ascoli theorem and Lemma 2.1, it thus suffices for the stated
exponential tightness of {X̃v

t } to show that

(2.6)
lim
δ→0

lim sup
v→∞

v−1 logP
[

sup
0≤s≤t≤(s+δ)∧1

{
M

̺
[s,t]

}
≥ vε

]
= −∞,

∀̺ < ∞, ε > 0.

To this end, by tail estimates for the Poisson(2δv�̺̄) law, for any ε > 0 and ̺ < ∞,

lim
δ→0

lim sup
v→∞

v−1 logP
[
M

̺
[0,2δ] ≥ vε

]
= −∞.

Further, if |t − s| ≤ δ and n = [1/δ], then

M
̺
[s,t] ≤ max

i=0,...,n−1

{
M

̺
[iδ,(i+2)δ]

}
=: M̺̄

δ .

Hence, applying the union bound for the maximum M̄
̺
δ of n identically distributed

Poisson(2δv�̺̄) variables yields (2.6), and thereby concludes the proof. �

Let M1(S⋆) denote the probability simplex over S⋆ = {⋆} ∪ S and cr
⋆ :=

〈1, cr〉 = ‖cr
out‖1 − ‖cr

in‖1 the number of molecules gained (or lost, if negative)
in each chemical reaction. For ̺ > 0 and {λr(·)} of (1.5) such that (1.4) admits a
solution ζ : [0,1] �→ Rd

+ (i.e., no blowup on [0,1]), we consider μ(t) satisfying
the ODE

(2.7)
dμ

dt
= ̺−1

∑

r∈R
λr(̺μ|S)

(
−cr

⋆, c
r), μ(0) ∈ M1(S⋆),

establishing a strictly positive lower bound on {μ(t)|S} that holds uniformly over
‖μ(0)|S‖1 ≤ γ /̺ < 1 with arbitrary, fixed γ and all ̺ large enough. This quan-
tity is a rescaled projection on M1(S⋆) of the ODE (1.4) with initial condi-
tion ‖ζ(0)‖1 ≤ γ provided supt ‖ζ(t)‖1 ≤ ̺. In other words, adding a “vacuum”
species {⋆}, we map ζ(t) onto μ(t), describing the dynamics a system conserving
the total number of molecules. Note that μ(t) can be seen as the empirical measure
of an IPS in the limit of infinite number of particles.
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LEMMA 2.4. Let Assumption A.1 hold and assume that (1.4) has a solution

for t ∈ [0,1]. Then, for any γ > 0 and for some ̺0(γ ), if ̺ ≥ ̺0(γ ) and ̺μ(0)|S ≤
γ , the solution μ(t) of (2.7) satisfies μ(t) ∈ M1(S⋆) for t ∈ [0,1].

Further, there exist D ∈ N and b = b(̺) > 0 such that for any such μ(t) we

have

(2.8) μsi (t) ≥ btD ∀t ∈ [0,1], i = 1, . . . , d.

PROOF. Starting at 〈1,μ(0)〉 = 1, it follows from the definition of cr
⋆ that

〈1,μ(t)〉 = 1 for all t ≥ 0, with the bijection

(2.9) ζ(t) = ̺μ(t)|S =: �
(
μ(t)

)
, μ⋆(t) := 1 − ̺−1∥∥ζ(t)

∥∥
1,

between μ(·) of (2.7) and the assumed finite solution ζ(·) of (1.4) with
‖ζ(0)‖1 ≤ γ . In particular, ζ(0) = �(μ(0)) ∈ K̺̃ of (2.2) yields ζ(·) ∈ Rd

+ and the
condition ̺μ(0)|S ≤ γ translates into ‖ζ(0)‖1 ≤ γ . Our claim that μ(t) ∈ M1(S⋆)

for t ∈ [0,1] is thus just

̺0(γ ) := sup
‖ζ(0)‖1≤γ

sup
t∈[0,1]

∥∥ζ(t)
∥∥

1 < ∞,

which holds for ̺0(γ ) ≤ 1 + ̺1,0,γ of (2.1) (indeed, simply contrast the FLLN of
Remark 1.3 with the exponential decay in v of probabilities from Lemma 2.1).

Next, for any ̺ > 0 we multiply each reaction constant kr by ̺‖cr
in‖1−1 and

w.l.o.g. set hereafter ̺ = 1. Identifying sj = j , split the RHS of (2.7) at coordinate
i to a sum over reactions in Ri

+ := {r ∈ R : cr
i > 0} and over those in Ri

− := {r ∈
R : cr

i < 0}. The contribution from Ri
+ is a polynomial Pi(·) in {μ1, . . . ,μd} of

positive coefficients (namely, krc
r
i , r ∈ Ri

+). Further, cr
i < 0 requires (cr

in)i ≥ 1
so the contribution of Ri

− is of the form μiQi(μ) for another polynomial Qi(·)
with positive coefficients. Let e(t) := μ(t)|S − y(t), for the solution y(t) of the
modified ODEs

(2.10)
dyi

dt
= Pi

(
y(t)

)
− Cyi(t), i = 1, . . . , d, y(0) = μ(0)|S,

where

C := 1+max
i≤d

sup
{
Qi(μ) : μ ∈ M1(S⋆)

}
< ∞.

Each Pi(·) is increasing w.r.t. the natural partial order on Rd
+, hence

dei

dt
+ Cei = Pi(y + e) − Pi(y) + μi

(
C − Qi(μ)

)
≥ 0,

as long as e(t) and y(t) are both in Rd
+, with a strict inequality as soon as μi(t) > 0.

Hence, starting at e(0) = 0 and y(0) ∈ Rd
+, we establish (2.8) by showing that

the same inequality holds if one substitutes the solution y(·) of (2.10) to μ(·),
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uniformly over all y(0) ∈ Rd
+. We achieve this goal by utilizing Assumption A.1(b)

in at most d steps, to get that for some Dk ∈ N and bk > 0,

(2.11) yi(t) ≥ bkt
Dk , ∀t ∈ [0,1], y(0) ∈ Rd

+, i ∈ Sk ↑ {1, . . . , d}.

Specifically, starting at S0 =∅ let Sk = Sk−1 ∪ ∂Sk for

∂Sk :=
{
j /∈ Sk−1 : ∃r ∈ R,

(
cr

out
)
j > 0 and ∀l /∈ Sk−1,

(
cr

in
)
l = 0

}
.

In particular, ∂S1 consists of all product species in reactions with cr
in = 0 and

from Assumption A.1(b) we know that ∂S1 is nonempty (see Remark 1.5). Such a
reaction with cr

in = 0 and an output i ∈ ∂S1 contributes to Pi(·) a positive constant
term kr,i := krc

r
i . For y ∈ Rd

+ any other reaction may only increase Pi(y), hence

κ1 := inf
i∈∂S1

inf
y∈Rd

+

{
Pi(y)

}
> 0.

Bounding the solution of (2.10) from below taking κ1 instead of Pi(y(t)), and
considering the worst case yi(0) = 0, we deduce that for k = 1, D1 = 1 and any
i ∈ ∂Sk ,

(2.12) yi(t) ≥ κk

∫ t

0
e−C(t−s)sDk−1 ds≥bkt

Dk ,

for some bk = κkg(C,Dk) > 0 and t ∈ [0,1]. Increasing to k = 2, observe that if
Sk−1 �= S then by Assumption A.1(b) there must be a reaction r that has at least
one product not from Sk−1 while all of its substrates are from Sk−1. In that case,
the nonempty set ∂Sk consists of the products of such reactions that are not in
Sk−1 and for any i ∈ ∂Sk a reaction r = ri ∈ R of this type contributes to Pi(y(t))

a positive term of the form

kr,i

∏

l∈Sk−1

yl(t)
(cr

in)l ≥ kr,i

(
bk−1t

Dk−1
)ℓi ,

for ℓi := ‖cri
in‖1, where we relied on already having the bound (2.11) for l ∈ Sk−1.

Setting

Dk := 1 + Dk−1 max
i∈∂Sk

{ℓi}, κk := min
i∈∂Sk

{
kr,ib

ℓi

k−1

}
,

recall that other reactions may only increase Pi(y(t)), hence for i ∈ ∂Sk and t ∈
[0,1],

Pi

(
y(t)

)
≥ κkt

Dk−1.

Exactly as we have done for k = 1 and D1 = 1, inserting such a lower bound into
(2.10) and considering the worst case solution [yi(0) = 0], results with (2.12). Fur-
ther lowering bk to have the same bound extend also to all i ∈ Sk−1 and proceeding
if necessary to k = 3 and beyond exhausts finally all of S after at most d steps. �
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PROOF OF THEOREM 1.6. Recall the Skorokhod J1-topology on D0,1(Rd
+)

which is metrizable by the coarsening of the sup-norm

(2.13) dJ1(z1, z2) := inf
τ

{
‖τ‖⋆ + sup

s∈[0,1]

∥∥z1(s) − z2
(
τ(s)

)∥∥
1

}
,

where ‖τ‖⋆ := sups �=t log{|τ(s) − τ(t)|/|s − t |} for strictly increasing s �→ τ(s)

with τ(0) = 0, τ(1) = 1. By Lemma 2.3 and the inverse contraction principle
of [8], Corollary 4.2.6, it suffices to establish the weak LDP for {X̃v

t } in the
metric space (D0,1(Rd

+), dJ1) (in this standard reduction we also rely upon [8],
Lemma 1.2.18, to upgrade from weak LDP to full LDP before employing the in-
verse contraction, and on [8], Theorem 4.2.13, to transfer the LDP in the uniform
topology from {X̃v

t } to {Xv
t }). Next, consider the Markov jump process X

v,̺
t of

generator (1.2) and volume-normalized jump rates

(2.14) �v,̺
r (x) := �(v)

r (x)I
(
‖x‖1 ≤ ̺ − v−1cr

⋆

)
,

where I(A) is the indicator function over a set A. Taking c̄• := supr ‖cr
in‖1 ∨

‖cr
out‖1 and

(2.15) sup
v≥1

{∥∥xv
0

∥∥
1

}
+ c̄• ≤ ̺,

assures that {Xv,̺
t , v ≥ 1} is confined to K̺̃ of (2.2) and in view of Lemma 2.1,

(2.16) lim
̺→∞ lim sup

v→∞
v−1 logPxv

0

[
X

v,̺
t �≡ Xv

t

]
= −∞,

where X
v,̺
t �≡ Xv

t represents the event where the paths of Xv
t and of X

v,̺
t (coupled

to Xv
t until the rates of the two processes differ) do not coincide on t ∈ [0,1]. By

taking τ as the identity map in (2.13), we further have for all v that

dJ1

(
X̃v,Xv)≤ sup

t∈[0,1]

∥∥X̃v
t − Xv

t

∥∥
1 ≤ v−1c̄•

and consequently the required J1-weak LDP for {X̃v
t } follows from the local LDP

for {Xv
t } with respect to the dJ1 -metric balls (see [8], Theorem 4.1.11). In view of

(2.16), the latter local LDP follows from having for any z ∈ D0,1(Rd
+) and all ̺

large enough [which may depend on z(·)],

inf
δ>0

lim sup
v→∞

1

v
logPxv

0

[
dJ1

(
Xv,̺, z

)
< δ

]
≤ −Ix0,1(z),(2.17)

inf
δ>0

lim inf
v→∞

1

v
logPxv

0

[
dJ1

(
Xv,̺, z

)
< δ

]
≥ −Ix0,1(z).(2.18)

In establishing these bounds, we tackle the diminishing rates λr(·) at ∂Rd
+ by

employing a LDP from [9] for the empirical measure sample-path t �→ μn
t of

n mean-field interacting particles. Specifically, fixing z ∈ D0,1(Rd
+) let γ :=

1 + supt∈[0,1] ‖z(t)‖1. Since for any v and ̺,

(2.19) dJ1

(
Xv,̺, z

)
< 1 =⇒

{
X

v,̺
t : t ∈ [0,1]

}
⊆ K̃γ ,
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the choice of jump rates �v,̺(·) outside K̃γ is irrelevant for the bounds (2.17) and
(2.18). Choosing an integer ̺ with ̺ ≥ 2̺0(γ ) ≥ 2γ which is further large enough
for (2.15) to hold, the process X

v,̺
· is confined to K̺̃ of (2.2) so has at most

n = v̺ molecules (to simplify notation, take w.l.o.g. v ∈ N). We thus consider the
evolution of n indistinguishable particles, each labeled by a type from S⋆, where
nμn

t (⋆) counts the ⋆-particles that compensate the cr
⋆ molecules gained/lost at each

reaction. Starting at v(xv
0 )i particles of type si ∈ S and n − v‖xv

0‖1 of ⋆-type, our
goal is to have for �(·) of (2.9) the continuous bijection

(2.20) X
v,̺
t = �

(
μn

t

)
, μn

t (⋆) = 1 − ̺−1∥∥Xv,̺
t

∥∥
1.

To this end, a chemical reaction r ∈ R is mapped to the simultaneous change of
ℓr := ‖cr

in‖1 ∨ ‖cr
out‖1 ≤ c̄• particle types, where given μn, any ordered ℓr -tuple

i ∈ S
ℓr
⋆ that has type-count configuration ((cr

⋆)+, cr
in) independently changes into

an ordered ℓr -tuple j ∈ S
ℓr
⋆ that has type-count configuration ((cr

⋆)−, cr
out), at the

rate

(2.21) Ŵ
(r),n
ij

(
μn)= krℓr !v1−‖cr

in‖1

Mr

(nμn(⋆)
(cr

⋆)+

)
(cr

⋆)+!
,

where Mr = ℓr !2/[(|cr
⋆|)!

∏d
i=1(c

r
in)i !(cr

out)i !] is the number of pairs (i, j) matching
the specified type-count configurations [and to accommodate all possible CRNs
we permit il = jl for some l, unlike [9], equation (2.1)]. Indeed, for �

v,̺
r of (2.14)

and {Ŵ(r),n
ij } of (2.21), the generator of μn in [9], equation (2.7), has total jump

rate v�
v,̺
r (�(·)) in each direction (−cr

⋆, c
r), r ∈ R, thereby yielding the bijection

property (2.20). From (2.21), it is also easy to check that for any μn → μ,

nℓr−1Ŵ
(r),n
ij

(
μn)→ k̃rμ

−(cr
⋆)+

⋆ =: Ŵ(r)
ij (μ),

where k̃r > 0 is independent of μ. Such {Ŵ(r)
ij (μ)} satisfy the uniformity condi-

tion of [9], Assumption 3.1. On M+(S⋆) := {μ ∈ M1(S⋆) : μ⋆ ≥ 1/2} they also
have the Lipschitz continuity of [9], Assumption 2.2, and taking into account
the factor v/n between volume normalizations, we have on M+(S⋆) the Lips-
chitz continuous asymptotic normalized reaction rates ̺−1λr(�(μ)) for μn that
satisfy [9], Property 2.3. As shown in [9], Section 6, having [9], Property 2.3,
throughout M1(S⋆) yields the LDP upper bound for {μn

t } in the J1-topology of
D0,1(M1(S⋆)), at rate n. Here, μn

0 → �−1(x0) and the asymptotic reaction rates
for μn depend only on �(μ). Consequently, the rate function controlling the LDP
upper bound for {μn(t)} is

J (μ) = ̺−1Ix0,1
(
�(μ)

)
,

and upon compensating for the factor v/n between the two rates, such an LDP
upper bound for {μn(t)} readily yields (2.17). Our problem fails to satisfy the Lip-
schitz continuity of [9], Property 2.3, when μ⋆ = 0. However, ̺ ≥ 2γ guarantees
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that μ⋆ ≥ 1/2 on �−1(K̃γ ), which in view of (2.19) is all that matters for (2.17).
As explained at the start of the proof, upon combining (2.17) with the exponential
tightness of Lemma 2.3, we get the stated LDP upper bound of (1.9) (for T = 1).
In particular, due to exponential tightness the LHS of (1.9) is zero for some com-
pact Ŵ. The same applies then for the infimum of Ix0,1(·) over this compact set, and
hence Ix0,1(ζ ) = 0 for some ζ ∈ AC0,1(Rd

+) with ζ(0) = x0. Recall Remark 1.7
that such ζ(·) must satisfy the ODE (1.4) for t ∈ [0,1]. We note in passing that
the same argument applies for any finite T (as explained just prior to Lemma 2.3),
yielding the existence of global solutions for this ODE and further, the FLLN of
Remark 1.3 then holds when vk/(log k) ↑ ∞, by combining the stated LDP upper
bound and the Borel–Cantelli lemma.

Next, note that we have (2.18) as a consequence of the LDP lower bound of
[9] holding for {μn

t }, equation (8.1). As mentioned in [9], Remark 8.6, such LDP
applies when having in addition to [9], Property 2.3 and Assumption 3.1, also the
η-ergodicity of [9], Assumption 3.3, and that the solution of the ODE (2.7) satisfies
[9], Property 4.13. The latter amounts to having the lower bound of (2.8) also
for μ⋆(t). Having ̺ ≥ 2̺0(γ ), from Lemma 2.4 this holds whenever starting at
μ(0)|S ≤ γ /̺ which is precisely �−1(K̃γ ) [and thus all that is relevant for (2.18)].
The η-ergodicity of [9], Assumption 3.3, amounts here to being able to reach a
particle population that exhibits all d + 1 elements of S⋆ upon starting at n ≫ 1
particles from a fixed, single type from S⋆ and Assumption A.1(b) guarantees this
when starting at only ⋆-particles. We thus have also [9], Assumption 3.3, except at
the face μ⋆ = 0 on the boundary of M1(S⋆). While the behavior at that face plays
a role for some events, thanks to (2.19) it is irrelevant here. �

3. The stability of ASE networks. The proof of Proposition 1.12 is long and
technically challenging, so we first sketch in Section 3.1 the proof of (1.6) for x

away from ∂Rd
+ to familiarize the reader with the techniques used in the subse-

quent sections, where we carry out this proof in full detail.

3.1. Toric rays and outline of the stability proof. Following the geometrical
analysis of [18], we first define toric rays, using throughout for w ∈ Rn, z ∈ (Rn

+)o

and θ ∈ R+ the operators

log(z) := (log z1, . . . , log zn) ∈ Rn,

zw :=
(
z
w1
1 , . . . , zwn

n

)
∈
(
Rn

+
)o

,

θw :=
(
θw1, . . . , θwn

)
∈
(
Rn

+
)o

.

DEFINITION 3.1. To each w in the unit sphere Sn−1, we associate the w-toric

ray

T w =
⋃

θ≥1

θw ⊂ Rn
+.
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We also introduce the toric ray parameters

(3.1)
θ(z) := exp

(∥∥log(z)
∥∥

2

)
, w(z) := 1

log θ(z)
log(z),

(θ,w) :
(
Rn

+
)o →R>1 × Sn−1, z = θ(z)w(z).

REMARK 3.2. To see why U(·) of (1.11) is most suitable for mass action
systems, note that along a w-toric ray

(3.2) ∇U
(
θw)= log

(
θw)= (log θ)w,

while the derivative of the ODE (1.4) at a point on such a ray is

(3.3)
dζ

dt

∣∣∣∣
ζ=θw

=
∑

r∈R
λr(x)cr

∣∣∣∣
ζ=θw

=
∑

r∈R
kr

(
θw)cr

incr =
∑

r∈R
krθ

〈w,cr
in〉cr .

Thus, at x = θw the time derivative of U(ζ(t)) for the solution ζ(t) of (1.4) is

(3.4)
d

dt
U
(
ζ(t)

)∣∣∣∣
ζ=θw

=
〈
∇U(x),

dζ

dt

〉∣∣∣∣
ζ=θw

= (log θ)
∑

r∈R
kr

〈
w,cr 〉θ 〈w,cr

in〉.

For fixed w and θ ≫ 1, the sum on the RHS of (3.4) is dominated by reactions
r ∈ Rw (maximizing 〈w,cr

in〉). Thus, in strongly endotactic CRNs, where at least
one such reaction contributes negatively to this sum by having 〈w,cr〉 < 0, and no
other reaction r in Rw contributes positively to it, the LHS of (3.4) will also be
negative for all large enough θ . As shown in [18], if this applies uniformly over
w ∈ Sd−1 then for some compact K we have d

dt
U(ζ(t)) < 0 whenever ζ(t) /∈ K ,

so (1.4) has an absorbing compact set. Indeed, suppose to the contrary, that for
some diverging sequence x(j) ∈ Rd

+

(3.5)
d

dt
U
(
ζ(t)

)∣∣∣∣
ζ=x(j)

≥ 0 ∀j ∈ N.

By compactness of Sd−1, upon passing to a suitable subsequence, the corre-
sponding toric ray parameters x(j) = θ(j)w(j) form a toric jet of frame w̄ =
{w̄(k) : k ≤ ℓ} (see Definition 3.11 and [18], Lemma 6.7), where w(j) → w̄(1)

and θ(j) → ∞. By compactness of [1,∞], there exists a further subsequence
along which x(j)w̄

(k)
converge for each k (possibly to ∞), implying the conver-

gence of the functions ϕ̂r(x) := kr〈w,cr〉θ 〈w,cr
in〉. For strongly endotactic CRNs,

one can show [18] that along such a toric jet, for any r ∈ R there exists r ′ ∈ R

whose contribution ϕ̂r ′(x(j)) to the RHS of (3.4) is such that limj ϕ̂r ′(x(j)) < 0
and −ϕ̂r ′(x(j))/(ϕ̂r(x(j)))+ → ∞ (where 0−1 := ∞), contradicting (3.5).

REMARK 3.3. Note that in the components si ∈ S where wi is negative, the
value of θwi decreases as θ → ∞. Such w are therefore used to parametrize
through (3.1) points in (v−1N0)

d that are at a distance < 1 from the boundary
{xi = 0}.
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Proposition 1.12 amounts to having for some finite b, for any x ∈ (v−1N0)
d and

for v > v′(‖x‖1),

(3.6)
∑

r∈R
�(v)

r (x)
[
Uv(x + v−1cr)− Uv(x)

]
≤ ebv.

Recall that �
(v)
r (x) ≤ λr(x) which is uniformly bounded on compacts, as is U(x).

Hence, there exists a finite b = b(̺) such that (3.6) holds for any v ≥ 1 whenever
‖x‖1 ≤ ̺. Letting

A
v
̺,̺′ :=

{
x ∈

(
v−1N0

)d : ̺ < ‖x‖1 ≤ ̺′},

L(v)
r (x) := U(x)

(
Q(v)

r (x) − 1
)
, Q(v)

r := Uv(x + v−1cr)/Uv(x),

we thus establish Proposition 1.12 upon showing that for some ̺ < ∞ any ̺′ ≥ ̺,
x ∈ Av

̺,̺′ and v > v′(̺′), we have

(3.7) a(v)(x) :=
∑

r∈R
krϕ

(v)
r (x) ≤ 0, ϕ(v)

r (x) := k−1
r �(v)

r (x)L(v)
r (x),

where, by (1.3) one considers in a(v)(x) only r such that vx ≥ cr
in (thus x+v−1cr ∈

Rd
+). Subject to having the v-independent approximation for all x ∈ (v−1N)d ,

(3.8) Q(v)
r (x) = exp

[
hr(x) +O‖x‖(1)

U(x)

]
with hr(x) :=

〈
∇U(x), cr 〉,

we can prove (3.7), at least for a strictly positive x, by contradiction. Specifically,
one can show that it suffices to rule out having a(v(j))(x(j)) > 0 along a rapidly

diverging volume-jet (v(j), x(j)). That is, along some diverging toric jet x(j) =
θ(j)w(j) ∈ (v(j)−1N)d , with θ(j) → ∞ and frame w̄, such that v(j) → ∞ ar-
bitrarily fast [i.e., allowing for an arbitrary v′(̺) in Definition 3.13]. Similar to
Remark 3.2, we arrive at a contradiction by showing that for some v′ any such v′-
divergent volume-jet (v, x) and r ∈ R, there must exist r ′ ∈ Rw̄(1) such that even-
tually ϕ

(v)
r ′ (x) < 0 and −ϕ

(v)
r ′ (x)/(ϕ

(v)
r (x))+ → ∞. To this end, we first show in

Lemma 3.14 that for v′(̺) = e̺ and some constants δr ′ > 0, along any v′-divergent
volume-jet (v, x) framed by w̄, eventually

(3.9) �
(v)
r ′ (x) ≥ δr ′λr ′(x) ∀r ′ ∈ Rw̄(1),

which as �
(v)
r (x) ≤ λr(x), implies that for C < ∞, any r ∈ R and r ′ ∈ Rw̄(1) ,

eventually

(3.10) C

∣∣∣∣
ϕ

(v)
r ′ (x)

ϕ
(v)
r (x)

∣∣∣∣≥
k−1
r ′ λr ′(x)

k−1
r λr(x)

∣∣∣∣
L

(v)
r ′ (x)

L
(v)
r (x)

∣∣∣∣=: P (v)
r,r ′ (x).

Referring to the first part in the RHS of (3.10) as a monomial term [since

k−1
r ′ λr ′(x)/k−1

r λr(x) = θ 〈w,cr′
in−cr

in〉], and to the second part (in the absolute value



LARGE DEVIATIONS THEORY FOR CHEMICAL REACTION NETWORKS 1839

sign) as Lyapunov term, we then show that for any r ∈ R, if eventually L
(v)
r (x) > 0

then by [18], Proposition 6.24, there exists r ′ ∈ Rw̄(1) with hr ′(x) → −∞ such that
along the divergent volume-jet,

(3.11) lim
j→∞

P
(v(j))

r,r ′
(
x(j)

)
= ∞.

Indeed, relying on (3.8) we establish (3.11) by proceeding according to whether
κr := limj |hr(x)| is finite or infinite. Specifically, we have the following cases:

(a) Lyapunov domination, where κr is finite and with U(x) → ∞ we have
that L

(v)
r (x) remains uniformly bounded. The existence of r ′(r) ∈ Rw̄(1) with

L
(v)
r ′ (x) → −∞ resulting from [18], Proposition 6.24 (see Lemma 3.17), combined

with [18], Lemma 6.22, to bound the monomial term away from zero, concludes
the proof.

(b) Monomial domination, where κr = ∞ so Q
(v)
r (x) = ehr (x)/U(x)(1 + o(1))

by (3.8). This implies, by [18], Propositions 6.20 and 6.24, the existence of r ′ ∈
Rw̄(1) such that |L(v)

r ′ (x)/L
(v)
r (x)| = O(θ−〈w,cr 〉/U(x)), whose exponent goes to

zero as j → ∞. On the other hand, for such r ′ by [18], Lemma 6.22, the exponent
of θ in the monomial term of (3.10) is (eventually) strictly positive and bounded
away from zero along the toric jet, thereby establishing (3.11).

In order to establish (3.7) also on ∂Rd
+, we need to extend the preceding pro-

gram to deal with boundary effects such as the divergence of ∇U(x). This is done
by separately considering each face of Rd

+. In particular, Section 3.2 establishes

(3.8) in a more general form, substituting ∇U(·) with the v-dependent ∇(v)
r U(·)

of (3.12). Section 3.3 adapts the definitions of toric jet and strongly endotactic
CRNs from [18] as needed for ∂Rd

+. This and the corresponding results from [18],

Section 6, are then used in Section 3.4 to show the divergence of P
(v)
r,r ′ (x), first

for Lyapunov domination (in Lemma 3.21), and then for monomial domination
(in Lemma 3.22). Finally, Section 3.5 follows the preceding outline in combining
everything to a proof of Proposition 1.12.

3.2. Approximation lemmas. The image of Rd under the exponential map is
(Rd

+)o, so we will establish (3.7) separately on the various faces of ∂Rd
+ by con-

sidering the relevant CRNs (S,C,R(P)) where, for any nonempty P ⊆ S ,

R(P) :=
{
r ∈ R : supp

{
cr

in
}
⊆ P

}

denotes the reactions with substrates only from P . To this end, identify such
P = (si1, . . . , sidP

) of cardinality |P| = dP≥ 1 with the corresponding indices

(i1, . . . , idP ), denoting by Sd(P) the restriction of a space Sd (be it Rd , Rd
+, Nd

0
or Nd ), to these coordinates (i.e., having zero values outside P). Aiming at the
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approximation (3.8) for x ∈ (v−1N)d(P) and r ∈ R(P), we modify ∇U(x) to

(3.12)
(
∇(v)

r U(x)
)
i :=

⎧
⎪⎪⎨
⎪⎪⎩

logxi, i ∈ P,

log
(
v−1cr

i

)
, i ∈ supp

{
cr

out
}
∩P

c,

0 otherwise.

We write εv(x) for functions that are uniformly bounded in x by some ε̄v → 0 as
v → ∞ and ε(x) for any globally bounded function of x.

LEMMA 3.4. Setting gp(x) := ‖ log(x)‖p for p = 1,2, we have that

(3.13)
2g1(x)

vU(x)
≤ d + g2(x)2

vU(x)
≤ εv(x) ∀x ∈

(
v−1N

)d
.

PROOF. The first inequality in (3.13) directly results from the fact that x2 +
1 ≥ 2|x| for all x ∈ R. Next, since g2(x) ≤

√
d supi{| logxi |} and U(x) ≥ 1, by

(1.11) it suffices to show that

| logy|2
v[y(logy − 1) + 2] ≤ εv(y) ∀y ≥ v−1.

For y ∈ [v−1, v], the LHS is at most (logv)2/v → 0 as v → ∞, whereas for y ≥
v ≥ e2 the LHS is bounded above by 2 logy/(vy) ≤ 2 logv/v2 → 0 as v → ∞.

�

REMARK 3.5. Hereafter, for any r ∈ R(P), we consider w.l.o.g. only r-
relevant x, namely those for which vx + cr ∈ Nd

0 , for otherwise the corresponding
term disappears in (3.7) (see Remark 1.2).

LEMMA 3.6. There is a finite v∗ such that for any P ⊆ S , all r ∈ R(P) and

all r-relevant x ∈ (v−1N)d(P), one has for v ≥ v∗:

Q(v)
r (x) = exp

[
h

(v)
r (x) + ε(x)

U(x)

]
,

where h
(v)
r (x) := 〈∇(v)

r U(x), cr〉.

PROOF. Since the number of possible P and r is finite, it suffices to prove the
claim for fixed P and r . We have in terms of f := v[U(x + v−1cr)−U(x)]/U(x)

that

Q(v)
r (x) =

(
1 + f

v

)v

= exp
[
f − vR(f/v)

]

where the nonnegative R(y) := y − log(1 + y) satisfies

(3.14) R(y) ≤ 2y2 ∀y ≥ −1/2.
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Now, for any r ∈ R(P) and x ∈ (v−1N)d(P) with vx + cr ∈ Nd
0 we have that

(3.15) f U(x) − h(v)
r (x) =

∑

i∈P
ψ
(
vxi; cr

i

)
−
〈
cr ,1

〉
= ε(x)

is uniformly bounded since ψ(b; c) := (b + c) log(1 + c/b) decreases in b ≥
max(1,−c). Hence, from (3.15), (3.12) and Lemma 3.4,

1

2
f 2 ≤

(
h

(v)
r (x)

U(x)

)2
+
(

ε(x)

U(x)

)2
= vεv(x)

U(x)
.

Since U(x) ≥ 1, we see that (f/v)2 ≤ 2εv(x)/v ≤ 1/4 for some v∗ finite, any
v ≥ v∗ and all x, in which case by (3.14) we have that vR(f/v) ≤ 2f 2/v ≤ 4 εv(x)

U(x)
,

as claimed. �

3.3. Strongly endotactic subnetworks and divergent volume-jets. Throughout,
for nonempty P ⊆ S and w ∈ Rd we denote by πP : Rd → RdP the projection
onto the coordinates with indices in P . Proceeding to adapt for (S,C,R(P)) key
definitions from CRN theory, such as strongly endotactic (see [18]), for all w ∈ Rd

with nonzero projection wP := πPw, let R(P)w denote the reactions having cr
in in

the w-maximal subset of Cin(P) = {cr
in : r ∈R(P)}. Clearly, R(P)w depends only

on wP which w.l.o.g. is in the (dP − 1)-dimensional unit sphere SP and w.l.o.g.
we further identify Cin(P) with πPCin(P).

DEFINITION 3.7. Fixing wP ∈ SP , a reaction r ∈ R(P) with supp{cr
out} ⊆ P

is called w-dissipative, w-null or w-explosive according to 〈w,cr〉 = 〈wP , πPcr〉
being negative, zero or positive, respectively. Any r ∈ R(P) having some product
species not within P is considered w-dissipative (regardless of w). Similarly, r ∈
R(P) is {w}-explosive, {w}-null or {w}-dissipative, if the relevant property holds
for all but finitely many elements of {w} ⊂ SP .

REMARK 3.8. For P = S our Definition 3.7 of w-dissipative and w-explosive
reactions, coincides with [18], Definition 6.15, of w-sustaining and w-draining
reactions, respectively. The nomenclature was changed to stress the behavior of
reactions for ‖x‖1 ≫ 1 which is of interest here: dissipative (explosive) reactions
contribute to the decrease (increase) of the Lyapunov function along trajectories
far away from the origin.

We next extend Definition 1.8 of strongly S-endotactic CRN to P ⊂ S . Such an
extension is needed in light of Remark 3.2, and made relevant by Lemma 3.10.

DEFINITION 3.9. For any w ∈ Rd with nonzero projection onto P (or wP ∈
SP ), the CRN (S,C,R(P)) is called w-strongly P-endotactic if the set R(P)w
contains at least one w-dissipative reaction, and no w-explosive reactions. Such a
CRN is called strongly P-endotactic if it is w-strongly P-endotactic for all w as
above.
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LEMMA 3.10. Any strongly endotactic (S,C,R) is strongly P-endotactic for

all P ⊂ S if R(P) �= ∅.

PROOF. Fixing P ⊂ S with R(P) �= ∅, suppose that for a nonzero w there is
a w-explosive r ∈R(P)w . Since the nonnegative

∑
i /∈P(cr ′

in)i is zero iff r ′ ∈ R(P),
setting w′

i = wi for i ∈ P and w′
i = −γ for i /∈ P we have that Rw′ = R(P)w for

γ large enough. Further, supp{cr} ⊆ P hence 〈cr ,w′〉 = 〈cr ,w〉 > 0, so having r ∈
Rw′ contradicts Definition 1.8. For the same reason, if every reaction in R(P)w is
w-null, then for large γ the same applies for every reaction in Rw′ , in contradiction
with Definition 1.8. �

To show that (3.7) holds whenever v > v′(‖x‖1) and vx ∈ Nd(P) with ‖x‖1 ≥
̺, requires an approximation framework for sequences x(j) = θ(j)w(j) satisfying
θ(j) → ∞ and w(j) → w̄(1) in SP . To this end, we follow [18], Section 6, in cod-
ing the latter convergence by a suitable d⋆-dimensional frame [23]: an orthonormal
system (ONS) w̄ := {w̄(1), . . . , w̄(d⋆)} ⊂ SP such that

(3.16) lim
j→∞

β(k+1)

β(k)
= 0 ∀k < d⋆, β(k) = β(k)(j) :=

〈
w(j), w̄(k)〉.

For generic {w(j)}, one needs a full dP -dimensional basis of SP , but degeneracy
allows for d⋆ < dP [e.g., w̄(1) alone suffices when all w(j) lie on a single toric
ray]. Further, the order within w̄ is adapted to the sequence, so that the angle be-
tween w(j) and w̄(k) decays faster with each increase of k. Through the following
definition, by slight abuse of notation we suppress the index j for elements of the
sequence {x(j)} and other related quantities to increase the readability of forth-
coming formulas.

DEFINITION 3.11 ([18], Definitions 6.2, 6.18). (a) A unit jet on a frame w̄ is
a sequence {w} = {w(j)} of unit vectors in the conic hull Co(w̄) satisfying (3.16).

(b) A toric jet {x} is a sequence θ(j)w(j) ∈ Rd
>0(P) for a unit jet {w} and

θ(j) → ∞.
(c) A unit jet {w} and the corresponding toric jets are adapted to (S,C,R(P))

if the classification of each r ∈ R(P) according to Definition 3.7 is conserved by
all w(j) with j ∈ N and for all k = 1, . . . , d⋆, limj θβ(k)

exists and takes values in
[1,∞].

REMARK 3.12. When the unit jet {w} is adapted to (S,C,R(P)) and clear
from the context, in view of point (c) we call a reaction r ∈ R(P) dissipative or
explosive, per Definition 3.7, without explicitly indicating the choice of w(j).

Having assigned any r ∈ R(P) with supp{cr
out} � P as dissipative reactions, it

is necessary for the strategy presented in Section 3.1 to ensure that their contri-
bution to a(v)(x) is negative along {(v, x)} in case r ∈ R(P)w̄(1) . Since for such a
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reaction limv〈∇(v)
r U(x), cr〉 = −∞, we obtain in Lemma 3.16 the desired behav-

ior of L
(v)
r (x) by choosing, for every x to have v > v′(‖x‖1) for a function v′(·)

increasing fast enough. Our next definition guarantees that this condition on v is
met along {x}.

DEFINITION 3.13. Fixing P ⊆ S and an increasing function v′(̺), we call a
sequence of {(v, x) : vx ∈ Nd(P), v > v′(‖x‖1)} a (v′,P)-divergent volume-jet if
{x} is a toric jet for a unit jet {w} framed by w̄ that is adapted to (S,C,R(P)),
such that limj→∞ ‖x‖1 = ∞.

As we show next, using this framework further yields the estimate (3.9) [which,
as outlined in Section 3.1, is the first step in proving (3.7)].

LEMMA 3.14. Setting v′(̺) = e̺, there exists δ > 0 such that for any frame

w̄, r ∈R(P)w̄(1) and (v′,P)-divergent volume-jet (v, x) framed by w̄, eventually,

(3.17) λr(x) ≥ �(v)
r (x) ≥ δλr(x).

PROOF. Letting ξ(j) := j !j−j for j ∈ N and ξ(0) = 1, we set

δr :=
d∏

i=1

ξ
((

cr
in
)
i

)
> 0.

As mentioned before, comparing (1.3) and (1.5) one gets the first inequality of
(3.17) for any x ∈ (v−1N0)

d , v ≥ 1. Further, the ratio �
(v)
r (x)/λr(x) is nonde-

creasing in each vxi and equals δr when vx = cr
in. Thus, setting δ = minr δr it

suffices to show that for r ∈ R(P)w̄(1) and a (v′,P)-divergent volume-jet {(v, x)}
framed by w̄, we eventually have vxi ≥ (cr

in)i . This trivially holds if (cr
in)i = 0, so

the proof is complete upon showing that, along {(v, x)},
(3.18) i ∈ supp

{
cr

in
}

=⇒ lim
j→∞

{logv + wi log θ} = ∞.

Since (log‖πPx‖1)/(log θ) → maxi{w̄(1)
i } =: ψ and both ‖x‖1 and θ diverge, we

have ψ ≥ 0. Further, wi → w̄
(1)
i is finite and logv ≥ logv′(‖x‖1) = ‖x‖1 so (3.18)

clearly holds whenever ψ > 0. In case ψ = 0, the vector w̄(1) ∈ SP has nonposi-
tive coordinates, so w̄

(1)
i′ ≤ −1/

√
d for some i′ ∈ P . Since limj w = w̄(1), it then

follows that eventually wi′ ≤ −1/
√

2d =: −ζ . Since i′ ∈ P and vx ∈ Nd(P), this
implies that v ≥ θ−wi′ ≥ θ ζ . Recall Remark 1.5 that some r ′ ∈ R(P) has cr ′

in = 0,
hence 〈w̄(1), πPcr

in〉 ≥ 0 for any r ∈ R(P)w̄(1) . That is, when i ∈ supp{cr
in} we have

that wi → w̄
(1)
i = 0 and as logv ≥ ζ log θ , we recover (3.18) and with it, complete

the proof. �

Finally, adapting [18], Definitions 6.8, 6.15, each possible frame within SP ,
induces two key indices (classifications) for reactions r ∈ R(P).
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DEFINITION 3.15. For P ⊆ S and ordered ONS w̄ ⊂ SP : (a) Let super1 =
R(P)w̄(1) and define for k ≥ 2 the nested subsets superk of reactions having cr

in
in the w̄(k)-maximal subset of {πPcr

in : r ∈ superk−1}. (b) The level ℓ within w̄ of
r ∈ R(P) having supp{cr

out} ⊆ P is ℓ := inf{k : 〈w̄(k), πPcr〉 �= 0} (with ℓ = ∞
when no such k exists), setting ℓ = 1 if r has some product species outside P .

3.4. The dominance of dissipative reactions. Turning to the proof of (3.11),
we first bound (in the setting of Lemma 3.14), the contribution to the Lyapunov
term when r ′ ∈ R(P)w̄(1) and supp{cr ′

out}� P , allowing us thereafter to simultane-
ously treat such reactions and those in R(P)w̄(1) with supp{cr ′

out} ⊆ P , ultimately
using their negative contribution to dominate any positive term in a(v)(x) from
(3.7).

LEMMA 3.16. For v′(̺) = e̺ and any (v′,P)-divergent volume-jet (v, x)

framed by w̄:

(a) If r ∈R(P)w̄(1) and supp{cr
out}� P , then

(3.19) lim sup
j→∞

{
h

(v)
r (x)

log θ

}
< 0.

(b) If r ∈ R(P) has supp{cr
out} ⊆ P then κr = ∞ iff r has finite level ℓ and

limj θβ(ℓ) = ∞.

PROOF. (a) Recall that h
(v)
r (x) = 〈∇(v)

r U(x), cr〉, so setting αr := 〈IPc ,

cr
out〉 > 0 and ηr := 〈IPc log cr

out, c
r
out〉 which is finite, we have from (3.12) that

(3.20)
h

(v)
r (x)

log θ
= ηr

log θ
+
〈
w,πPcr 〉− αr

logv

log θ
.

Because θ = θ(j) → ∞, the first term on the RHS decays to zero and the sec-
ond term converges to 〈w̄(1), πPcr〉. While proving (3.18), we have seen that if
ψ := maxi{w̄(1)

i } > 0, then logv ≥ ‖x‖1 (for the v′-divergent volume-jet), re-
sults with (logv)/(log θ) → ∞ and consequently (3.19) holds. In case ψ = 0,
we have shown in that same proof that (logv)/(log θ) ≥ ζ > 0 along the diver-
gent volume-jet and further that 〈w̄(1), πPcr

in〉 = 0 when r ∈R(P)w̄(1) . Recall that

cr = cr
out − cr

in with cr
out ∈ Rd

+ and ψ = 0 amounts to −w̄(1) ∈ RdP
+ . Thus, in this

setting 〈w̄(1), πPcr〉 ≤ 0, which by (3.20) recovers (3.19).
(b) If r ∈ R(P) has supp{cr

out} ⊆ P , then h
(v)
r (·) = hr(·) is independent of v and

in (3.20) we have αr = ηr = 0. Further, recall Definition 3.11 that {w} ⊂ Co(w̄),
so if r has infinite level then hr(·) = 0, while if it has finite level ℓ within w̄, then
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by (3.16), along the divergent volume-jet

(3.21) lim
j→∞

h
(v)
r (x)

β(ℓ) log θ
=
〈
w̄(ℓ), πPcr 〉 �= 0,

from which the stated criterion for divergence of |h(v)
r (x)| follows. �

Our next result shows that L
(v)
r ′ (x) → −∞ for any dissipative r ′ ∈ R(P)w̄(1)

with κr ′ = ∞ (see Section 3.1 for explanation about the Lyapunov domination).

LEMMA 3.17. For v′(̺) = e̺, if r ∈R(P)w̄(1) with κr = ∞ is dissipative for

a (v′,P)-divergent volume jet (v, x) framed by w̄, then

lim
j→∞

L(v)
r (x) = −∞.

PROOF. By Definition 3.13, the toric jet {x} is adapted to (S,C,R(P)).
Hence, if supp{cr

out} ⊆ P and r ∈ R(P) is dissipative, then by Definition 3.7 and
(3.2),

h(v)
r (x) = hr(x) = (log θ)

〈
w,πPcr 〉< 0 ∀j.

Since κr = ∞, it follows that h
(v)
r (x) → −∞ as j → ∞, which by part (a) of

Lemma 3.16 applies also when supp{cr
out} � P . Fixing γ < ∞, since ε(x) of

Lemma 3.6 is uniformly bounded, we thus have that for all j large enough,

L(v)
r (x) = U(x)

(
Q(v)

r (x) − 1
)
≤ U(x)

[
e
− γ

U(x) − 1
]
≤ −γ + γ 2

2U(x)

(as e−y ≤ 1 − y + y2

2 for y ∈ R+). Recalling from Definition 3.13 that ‖x(j)‖1 →
∞, and consequently U(x(j)) → ∞, we complete the proof by taking j → ∞
followed by γ → ∞. �

We plan to show that if r ∈ R(P) has L
(v)
r (x) > 0 along some (v′,P)-

divergent volume-jet {(v, x)} for v′(̺) > e̺, then (3.11) holds for a {w}-dissipative
r ′ ∈ R(P)w̄(1) . To this end, we first introduce the CRN Cw̄(1),P in which nec-
essarily supp{cr

out} ⊆ P [or else by Lemma 3.16(a) and Lemma 3.17 eventually

L
(v)
r (x) < 0].

DEFINITION 3.18. For P ⊆ S and u ∈ SP , let (S,Cu,P ,R(P)) denote the
CRN obtained upon restricting cr

out to Rd
+(P) for any r /∈R(P)u.

REMARK 3.19. Of course, Cu,P = C when P = S . More generally, this
modification never affects {cr

in}, hence neither the rates �
(v)
r (·) nor the sets

{R(P)w,w ∈ SP}, or superk of Definition 3.15. Further, the CRN (S,Cu,P ,R(P))
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remains u-strongly P-endotactic (see Definition 3.9), and thus also w(j)-strongly
P-endotactic, for j large enough and any unit jet {w(j)} whose frame starts at
w̄(1) = u.

Comparing our Definition 3.11 and Definition 3.15 with the corresponding def-
initions of [18], Section 6, it is easy to verify that [18], Theorem 6.11, Lemmas
6.7, 6.10, 6.19, apply in our setting as does [18], Proposition 6.20.1 (for draining
reactions), even for the modified CRN of Definition 3.18. We next adapt to the lat-
ter setting, those conclusions of [18], Lemma 6.22, Proposition 6.24, that we shall
use in the sequel.

LEMMA 3.20. Fix a strongly endotactic CRN (S,C,R). Consider the cor-

responding CRN of Definition 3.18 and ordered ONS w̄ of length ℓ′ starting at

w̄(1) = u. Then:

(a) If supp{cr
out} ⊆ P , 〈w̄(k), πPcr〉 = 0 for k < ℓ′ and 〈w̄(ℓ′), πPcr〉 > 0, then

r /∈ superℓ′ .
(b) Some r ′ ∈ superℓ′ has supp{cr ′

out} � P or k �→ 〈w̄(k), πPcr ′〉 not identically

zero, with a negative first nonzero term.

PROOF. Since k �→ superk are nested sets, it suffices to rule out that respec-
tively:

(a′) Some r ∈ superℓ′ has supp{cr
out} ⊆ P , 〈w̄(k), πPcr〉 = 0 for k < ℓ′ and

〈w̄(ℓ′), πPcr〉 > 0.
(b′) Each r ∈ superℓ′ has supp{cr

out} ⊆P and 〈w̄(k), πPcr〉 = 0 for all k ≤ ℓ′.
Further, the modification of Definition 3.18 neither affects superℓ′ nor the value

of cr for reactions in superℓ′ ⊆R(P)u (see Remark 3.19), so it suffices to rule out
(a′) and (b′) for (S,C,R(P)) and the given ONS w̄. To this end, consider a unit jet
{w} framed by w̄, adapted to (S,C,R(P)) and having β(ℓ′)(j) > 0 for all j . Recall
[18], Theorem 6.11, that R(P)w(j) = superℓ′ eventually in j . Thus, by (3.16), our
assumptions (a′) respectively (b′) imply that for all large enough j , respectively:

(a†) There exists a w(j)-explosive r ∈ R(P)w(j) of level ℓ′.
(b†) The collection R(P)w(j) consists of only w(j)-null reactions.
To conclude, note that (a†) and (b†) contradict having a strongly P-endotactic

(S,C,R(P)). �

Similar to [18], Proposition 6.26, we proceed via a pair of lemmas that establish
(3.11) for (S,Cw̄(1),P ,R(P)) by bounding from below the asymptotic behavior of
the Lyapunov and monomial terms, as in cases (a) and (b) at the end of Section 3.1,
that correspond to κr < ∞ and κr = ∞, respectively.

LEMMA 3.21 (Lyapunov domination). For v′(̺) = e̺ and the ONS w̄ for

P ⊆ S , consider the CRN (S,Cw̄(1),P ,R(P)) and a (v′,P)-divergent volume jet
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(v, x) for it, framed by w̄. Then, for any r ∈ R(P) with supp{cr
out} ⊆ P and κr <

∞, the domination (3.11) holds for some dissipative r ′ ∈ R(P)w̄(1) .

PROOF. Let ℓ denote the level of r ∈ R(P) within the frame w̄, if finite,
whereas if the level of r is infinite, set ℓ = d⋆ + 1 and β(ℓ) ≡ 0. Since supp{cr

out} ⊆
P , we have from Lemma 3.16 (b) that limj θβ(ℓ)

< ∞. For any divergent volume-

jet β(1) → 1, hence limj θβ(1) = ∞, ℓ ≥ 2 and in view of (3.16) there exists
1 ≤ ℓ′ < ℓ such that

(3.22) lim
j→∞

θβ(ℓ′) = ∞ and lim
j→∞

θβ(ℓ′+1)

< ∞.

For the subframe {w̄(1), . . . , w̄(ℓ′)}, Lemma 3.20(b) yields r ′ ∈ superℓ′ ⊆
R(P)w̄(1) of level ℓ⋆ ≤ ℓ′ such that either supp{cr ′

out} � P or 〈w̄(ℓ⋆), πPcr ′〉 < 0.
Since limj β(k)/β(k+1) = ∞ for any k ≥ 1, such r ′ must also be {w}-dissipative.
Proceeding to establish (3.11), by Lemma 3.6 combined with e|x| − 1 ≤ 2|x|
for |x| < 1 and h

(v)
r (x)/U(x) → 0, we have for j large enough |L(v)

r (x)| ≤
2(|ε(x)| + |h(v)

r (x)|) ≤ C−1, hence

P
(v)
r,r ′ (x) ≥ Cθ 〈w,πP (cr′

in−cr
in)〉
∣∣L(v)

r ′ (x)
∣∣.

As r ′ ∈ superℓ′ and cr
in ∈ Cin(P) we have from [18], Lemma 6.10.2, that for any

k⋆ ≤ ℓ′ + 1, δ > 0 and all j large enough

(3.23)

〈
w(j),πP

(
cr ′

in − cr
in
)〉

≥
d⋆∑

k=k⋆

β(k)(j)
〈
w̄(k), πP

(
cr ′

in − cr
in
)〉

≥ β(k⋆)(j)
[〈
w̄(k⋆), πP

(
cr ′

in − cr
in
)〉

− δ
]
.

Taking k⋆ = ℓ′ + 1 [where if ℓ′ = d⋆ then 〈w̄(k), πP(cr ′
in − cr

in)〉 ≥ 0 for all
k ≤ d⋆ hence the LHS of (3.23) is nonnegative], we deduce from (3.22) that

θ 〈w,πP (cr′
in−cr

in)〉 is uniformly (in j ) bounded below. The proof is thus complete
upon showing that κr ′ = ∞, as then |L(v)

r ′ (x)| → ∞ by Lemma 3.17. Indeed,

since r ′ ∈ R(P)w̄(1) from Lemma 3.16(a) we have that κr ′ = ∞ if supp{cr ′
out}� P ,

whereas if supp{cr ′
out} ⊆ P then r ′ of finite level ℓ⋆ ≤ ℓ′ has κr ′ = ∞ in view of the

LHS of (3.22) and Lemma 3.16(b). �

LEMMA 3.22 (Monomial domination). For v′(̺) = e̺ and ONS w̄ for P ⊆ S ,
consider the CRN (S,Cw̄(1),P ,R(P)) and a (v′,P)-divergent volume jet (v, x) for

it, framed by w̄. Then, for any {w}-explosive r ∈ R(P) with supp{cr
out} ⊆ P and

κr = ∞, the domination (3.11) holds for some dissipative r ′ ∈R(P)w̄(1) .

PROOF. By Lemma 3.16(b), here r has finite level ℓ′ within w̄ for which
the LHS of (3.22) holds. Further, with {w(j)} adapted to (S,Cw̄(1),P ,R(P)) we
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deduce from [18], Proposition 6.20.1, that since 〈w(j),πPcr〉 is positive for
j large, 〈w̄(ℓ′), πPcr〉 must also be positive, hence Lemma 3.20(a) yields that
r /∈ superℓ′ . Recall the proof of Lemma 3.21, that there exists {w}-dissipative
r ′ ∈ superℓ′ ⊆ R(P)w̄(1) . In particular, 〈w̄(ℓ′), πP(cr ′

in − cr
in)〉 is positive, so con-

sidering (3.23) for k⋆ = ℓ′ and small δ > 0, for j large enough we bound the
monomial term of (3.10) by

(3.24) θ 〈w,πP (cr′
in−cr

in)〉 ≥
(
θβ(ℓ′))δ

.

Further, the {w}-dissipative r ′ ∈ R(P)w̄(1) has level ℓ⋆ ≤ ℓ′ and κr ′ = ∞, hence

(3.25) Kr ′ := lim
j→∞

h
(v)
r ′ (x)

β(ℓ′) log θ

is strictly negative [see (3.19) for supp{cr ′
out} � P and (3.21) otherwise]. The {w}-

explosive r has level ℓ′ and κr = ∞ hence by (3.21) it satisfies (3.25) for some
0 < Kr < ∞. Recall (3.22) that β(ℓ′) log θ diverges along our jet {w}. Hence, by
Lemma 3.6, for any s > Kr and γ ∈ (0,1) such that γ s < −Kr ′ , the corresponding
Lyapunov term is eventually bounded below by

(3.26)
1 − Q

(v)
r ′ (x)

Q
(v)
r (x) − 1

≥ 1 − (θ−sβ(ℓ′)/U(x))γ

θ sβ(ℓ′)/U(x) − 1
≥ γ θ−sβ(ℓ′)/U(x)

[where the second inequality follows from 1 − ξγ ≥ γ (1 − ξ) which holds for any
ξ, γ ∈ (0,1)]. With U(x) → ∞, the RHS of (3.24) dominates the RHS of (3.26)
and the divergence of P

(v)
r,r ′ (x) of (3.10) follows. �

3.5. Proof of Proposition 1.12. By (3.7), Proposition 1.12 will hold if we can
find ̺ < ∞ such that for any ̺′ < ∞,

v′(̺′) := sup
{
v : sup

x∈Av
̺,̺′

{
a(v)(x)

}
> 0

}
< ∞.

Assume to the contrary, that there exist ̺′
j > ̺j ↑ ∞, v(j, k) → ∞ as k → ∞

and x(j, k) ∈ A
v(j,k)

̺j ,̺′
j

such that av(j,k)(x(j, k)) > 0 for all j, k ∈ N2. Then, for any

desired increasing v′(·), upon choosing k = kj large enough, we extract a sequence
{(v(j), x(j))} such that v(j)x(j) ∈Nd

0 , ‖x(j)‖1 → ∞ and

(3.27) av(j)(x(j)
)
> 0, v(j) > v′(∥∥x(j)

∥∥
1

)
∀j ∈ N.

Since d < ∞, there must be some P ⊆ S such that v(j)x(j) ∈Nd(P) along some
infinite subsequence. Also, as ‖x(j)‖1 → ∞, upon restriction to (S,C,R(P)) we
have that θ(x(j)) → ∞ [see (3.1)], and our Definition 3.11 of unit jet and toric
jet then coincide with those of [18]. Hence, by [18], Lemma 6.7, we extract a sub-
subsequence (v(j), x(j)) satisfying all of the above, for which in addition {x(j)}
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is a toric jet for a unit jet {w(j)} framed by some w̄. Finally, in view of [18],
Lemma 6.19, there exists a further sub-sub-subsequence {x(j)} which is adapted
to (S,C,R(P)) [note that supp{cr

out} � P has nothing to do with the choice of
{w(j)}]. In conclusion, we have a (v′,P)-divergent volume-jet {(v, x)} satisfying
(3.27), where we are free to choose v′(̺) and only r ∈ R(P) is to be considered
in (3.7). Fixing {(v, x)} and in particular its frame w̄, we may and can move to
the CRN (S,Cw̄(1),P ,R(P)) of Definition 3.18. Indeed, recall Remark 3.19 that

this does not affect the rates �
(v)
r (x), while for v ≥ supr ‖cr

out‖∞ and x ∈ Rd
+(P)

it may only increase L
(v)
r (x), by setting to zero some negative contributions

(v−1cr)i[log(v−1cr)i − 1] to U(x + v−1cr) from i ∈ supp{cr
out} \ P . As ex-

plained before, in the new CRN supp{cr
out} � P requires r ∈ R(P)w̄(1) and further

subsampling our divergent volume-jet to make it adapted to (S,Cw̄(1),P ,R(P)),
we proceed as outlined in Section 3.1 to show that on the latter CRN, having
(3.27) leads to a contradiction. Indeed, consider r ∈ R(P), whose contribution
to (3.27) is eventually positive (for the modified reactions of Cw̄(1),P ). That is, hav-

ing L
(v)
r (x) > 0 for all j large. By Lemma 3.6, this requires h

(v)
r (x) + ε(x) > 0,

which in view of Lemma 3.16(a) implies that supp{cr
out} ⊆ P . With {x} adapted,

this yields, as in the proof of Lemma 3.16(b), that |h(v)
r (x)| → κr when j → ∞

[see (3.21)], and further that κr = ∞ is possible only for a {w}-explosive reac-
tion. For both κr < ∞ and κr = ∞, we now have (3.11) for some dissipative
r ′ ∈ R(P)w̄(1) (see Lemma 3.21 and Lemma 3.22, resp.). As (3.10) is a conse-
quence of Lemma 3.14, it follows that a(v)(x) ≤ 0 along {(v, x)}, in contradiction
with (3.27).

4. Proof of Theorem 1.15. Theorem 1.15 is proved in [14], Section 6, for a
uniformly elliptic diffusion on a compact d-dimensional manifold, when the driv-
ing Brownian motion has been scaled by ε. Recall that such a diffusion satisfies
an LDP with rate v := ε−2 and its good rate function is zero iff x′(t) = b(x(t))

starting at x(0) = x0. We have here the analogous LDP of Theorem 1.6, whose
good rate function is zero iff z(t) solves the ODE (1.4) (see Remark 1.7). Further,
with our Assumptions A.4 and A.3 replacing [14], Condition A, Section 6.2, and
[14], Section 6.5, respectively, we merely adapt the proof in [14], Section 6, where
the stated results are established from [14], Lemmas 6.1.1–6.1.9. Specifically, for
(1.12) and (1.13) which concern only the dynamics of t �→ Xv

t within the compact
D, it suffices that we prove the weaker version Lemma 4.1 of [14], Lemma 6.1.1,
within D, and the modification Lemma 4.2 of [14], Lemma 6.1.4, while tackling
the degeneracy of {Xv

t } on ∂Rd
+. Indeed, Lemma 4.1 and Lemma 4.2 suffice for

establishing [14], Lemmas 6.1.2 and 6.1.4, respectively. Furthermore, the local
Lipschitz continuity of the quasi-potential is never used in the proof of (1.12) and
(1.13), while [14], Lemma 6.1.3, can be bypassed (since it is only used for proving
[14], Lemma 6.1.4). The LDP and [14], Lemmas 6.1.1–6.1.4, together imply [14],
Lemmas 6.1.5–6.1.9, containing the fundamental transition times estimates for the
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establishment of [14], Lemmas 6.2.1, 6.2.2, proving that VD is the relevant func-
tional for the estimation of transition probabilities between Ki ’s. The combination
of these results finally yields (1.12) and (1.13) as explained in the proofs of [14],
Theorems 6.5.1, 6.5.3. We thus proceed to state and prove the adaptations of [14],
Lemmas 6.1.1 and 6.1.4, to the current setting.

LEMMA 4.1. For D ⊂ Rd
+ as in Theorem 1.15, there exist κ ≥ 1, ε > 0 and

C(t) → 0 (as t → 0), such that for any x, y ∈ D with ‖x − y‖1 < ε, there exists a

path z(·) ⊂ D, of length t = κ‖x − y‖1 with Ix,t (z) ≤ C(t) and z(t) = y.

PROOF. By the continuity of λr(·) of (1.5) on D compact, λ̄ :=
maxr∈R,x∈D{λr(x)} is finite. Further, since Co{cr}r∈R = Rd the sets QR(ξ) are
nonempty and

q̄ := e ∨ max
‖ξ‖1≤1

min
{
‖q‖∞ : q ∈ QR(ξ)

}
< ∞.

Setting c̄⋆ := supr∈R{‖cr
in‖1} and γ := λ̄ − q̄ + q̄ log(q̄/minr∈R{kr ∧ 1}) for the

reaction constants kr of (1.5), we then have for any z ∈ D and ‖ξ‖1 ≤ 1 the bound

L
(
λ(z), ξ

)
≤ m

[
γ + q̄c̄⋆

(
log

d

min
i=1

{zi}
)
−

]

on the Lagrangian of (1.7). Thus, if z ∈ AC0,t (D) with z(0) = x is such that
‖z′(s)‖1 ≤ 1 and mini{zi(s)} ≥ βs, then for the rate function of (1.8),

(4.1) Ix,t (z) ≤ c(t) := m

∫ t

0

[
γ + q̄c̄⋆(logβs)−

]
ds.

Similar to [29], Lemma 2.1, Assumption A.3 implies that for some β ∈ (0,1),
ε ∈ (0,1/3) and v(j) ∈ Rd with ‖v(j)‖1 ≤ 1, there exists a finite covering of D by
balls {Bj } such that

(4.2) min
x̃ /∈D

∥∥x + sv(j) − x̃
∥∥
∞ ≥ βs ∀x ∈ D ∩B

ε
j , s ≤ ε/β.

Fixing such a covering we set κ = 1 + 2/β . Suppose now that x ∈ D ∩ Bj and
‖y − x‖1 = δ < ε for some y ∈ D. Taking t = t1 + t2 + t3 for t1 = t3 = 2δ/β and
t2 = δ, consider the continuous path from x(1) := x to x(4) := y, composed of the
line segments between x(1), x(2) = x(1) + t1v

(j), x(3) = x(4) + t3v
(j) and x(4). That

is, z(1)(s) = x(1)+sv(j) for s ∈ [0, t1], then z(2)(s) = x(2)+ s
δ
(y−x) for s ∈ [0, t2],

and finally, in reverse z(3)(s) = x(4) + sv(j) for s ∈ [0, t3]. Since y ∈ D ∩ Bδ
j and

δ ≤ ε, it follows from (4.2) that mini{z(ℓ)
i (s)} ≥ βs and z(ℓ)(s) ∈ D for ℓ = 1,3

and s ∈ [0, δ/β]. The end points x(2) and x(3) of z(2)(·), are δ apart and by the
preceding, of at least 2δ sup-distance from Dc. Consequently, infξ∈Dc ‖z(2)(s) −
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ξ‖1 ≥ δ and mini{z(2)
i (s)} ≥ δ ≥ βs for s ∈ [0, δ]. By construction, ‖z′(ℓ)(s)‖1 ≤ 1

for ℓ = 1,2,3 and all s, so in view of (4.1)

Ix,t (z) =
3∑

ℓ=1

Ix(ℓ),tℓ

(
z(ℓ))≤

3∑

ℓ=1

c(tℓ) =: C(t),

as claimed. �

LEMMA 4.2. Let D−δ := D \ (∂D)δ with D as in Assumption A.3. For

some C⋆(t) → 0, some η(γ,κ⋆,D) > 0, any κ⋆ < ∞, γ > 0 and δ ∈ (0, η),
if T + Iz0,T (z) ≤ κ⋆ for z([0, T ]) ⊂ D, then there exists T̃ ≤ T + 3κγ and

z̃([0, T̃ ]) ⊂ D−δ such that Iz̃0,T̃
(̃z) ≤ Iz0,T (z) + C⋆(γ ) and ‖z̃(0) − z(0)‖1 +

‖z̃(T̃ ) − z(T )‖1 ≤ 2δ. The same holds for D+δ := Dδ ∩ Rd
+ and D, instead of

D and D−δ , respectively.

PROOF. From [29], Lemma 2.1, and Assumption A.3 we have [29], Assump-
tion 2.1, holding. Further, with λ̄ finite, the path z(·) whose length and rate function
are both bounded by κ⋆, makes at most J = J (κ⋆) transitions between the balls
Bj in the covering of D (see [29], Lemma 3.5). Each of the monomials λr(·) of
(1.5) is cD-Lipschitz continuous on the compact D and nondecreasing along any
short path that originates in a small enough neighborhood of the set of zeroes of
λr(·) in ∂Rd

+, and is directed inward to (Rd
+)o. In particular, for some ν > 0 and

all j , w.l.o.g. the vectors v(j) in (4.2) are such that λr(x + αv(j)) ≥ λr(x) for any
α ∈ [0, ν] and x ∈ Bj for which λr(x) ≤ ν.

Adapting [29], Lemma 4.3, we construct for β ∈ (0,1) as in the proof of
Lemma 4.1 and some η(γ,κ⋆,D) > 0, a path ẑ ∈ (D)−2η with I

ẑ0,T̂
(ẑ) ≤

Iz0,T (z) + 2γ , supt ‖ẑ(t) − z(t)‖1 ≤ γ , T̂ ≤ T + γ and ‖ẑ0 − z0‖1 ≤ η′ := 4η/β .
Specifically, let ẑ0 = z0 + η′v(i) or ẑ0 = z0 depending on whether z0 ∈ Bi for
Bi touching, or not touching, ∂D, respectively. Thereafter, ẑ(·) is parallel to z(·),
except that at the kth time the path z(·) transitions to a new ball Bj of the cov-
ering (that touches ∂D), a linear segment in direction v(j) is inserted in ẑ(·) for
duration ηk = η′(3/β)k , to keep it within D−2η. With at most J (κ⋆) transitions
between different balls Bj , taking η > 0 small enough guarantees that the total
contribution of time shifts to the length T̂ of the path ẑ be at most γ , and that
sups ‖ẑ(s) − z(s)‖1 ≤ γ . Next, having Ix,t (x + sv(j)) ≤ c(t), due to (4.1), the rate
contribution of all additional linear segments is at most

∑
k c(ηk) ≤ γ (for small

enough η > 0). Taking even smaller η > 0, bounds by γ (uniformly over all such
path z), the accumulated rate difference between pieces of ẑ(·) and their parallels
within z(·), as soon as we show that for some gD(α) → 0 when α → 0,

(4.3) z(·) ⊂ Bj , α ∈ [0, ν/cD] ⇒ Iz0,t

(
z(·) + αv(j))≤ Iz0,t

(
z(·)

)
+ tgD(α).
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To this end, if |λr − λ̂r | ≤ cDα and λ̂r ≥ λr whenever λr ≤ ν, then by (1.7), for
any ξ ∈Rd ,

L(λ̂, ξ) − L(λ, ξ) ≤ ‖λ̂ − λ‖1 + max
r

{
log
(

λ̂r

λr

)}

−
≤ mcDα − log(1 − cDα/ν),

hence denoting the RHS by gD(α) yields (4.3) [see (1.8)].
Now, fixing δ ∈ (0, η), let z̃(·) be ẑ(·) augmented by the initial/final piece-

wise linear path of Lemma 4.1, leading from z̃(0) := arg minz∈D−δ ‖z − z(0)‖1

to ẑ(0) and from ẑ(T̂ ) to z̃(T̃ ) := arg minz∈D−δ ‖z − z(T )‖1, respectively. Since
both ‖z̃(0) − ẑ(0)‖1 ≤ δ + γ and ‖ẑ(T̂ ) − z̃(T̃ )‖1 ≤ 2γ + δ, taking η ≤ γ ≤ ε/3
we have by Lemma 4.1 that the length of each augmented path is at most κγ

and its contribution to the total rate does not exceed C(3γ ). Finally, note that by
construction both end-points of these initial and final pieces are in D−δ , whereby
the construction of Lemma 4.1 guarantees that their minimal distance from ∂D be
attained at one of their end points, hence do not exceed δ. �

While (1.12) and (1.13) involve only the process t �→ Xv
t within the compact

D, this is not the case for (1.14) which is established in [14], Theorem 6.6.2, under
the additional assumption of a compact state space, which we lack here. However,
the latter proof applies for the stopping time τπ,̺ := τπ ∧ σ̺ and the nonrandom

C̺(π) obtained via [14], equations (6.6.1), (6.6.2), from I
(̺)
x,t (·) of (1.8) that cor-

responds to λr(x)IK̺̃
(x), with λr(·) of (1.5) and K̺̃ of (2.2) [as the Markov jump

processes X
v,̺
t from the proof of Theorem 1.6 are K̺̃-valued and satisfy the LDP

with rate functions I
(̺)
x,t (·)]. For ̺ ≥ γ and

⋃
j Kδ

j ⊂ K̃γ it is easy to verify that

using I
(̺)
x,t (·) instead of Ix,t (·) amounts to replacing the quasi-potential V(·, ·) by

VK̺̃
(·, ·), with an additional attractor of the dynamics at (K̺̃)

c. It is irrelevant that
Assumption A.4 fails for this new attractor, since it is outside π hence the transi-
tions (K̺̃)c → Kj play no role in C̺(π). By the same reasoning, the rate Ix,t (z)

of any path z(·) exiting K̺̃ is part of the minimization yielding C̺(π), while
those paths which are confined to K̺̃ make exactly the same contribution to C̺(π)

and to C(π). Consequently, C̺(π) ↑ C∞(π) ≤ C(π) and v−1 log τπ,̺ → C∞(π)

when v → ∞ followed by ̺ → ∞. The compact sets K̺̃ satisfy Assumption A.3,
so by Lemma 4.1 the quasi-potential V(x, y) is everywhere finite. This implies
that C(π) is finite, and thereby so is C∞(π). Considering Lemma 2.1 for some
β > C∞(π) and ̺ → ∞, we thus conclude that v−1 log τπ → C∞(π), which
translates to (1.14) provided C∞(π) ≥ C(π). The latter is a direct consequence
of our next lemma, showing that V(K̃γ , (K̺̃)

c) → ∞ as ̺ → ∞. Indeed, the sec-
ond term on the RHS of [14], equation (6.6.2), is independent of the addition of
(K̺̃)

c to the set of attractors [hence identical for C(π) and C̺(π)], while every el-
ement over which the minimum is taken in [14], equation (6.6.1), is either the same
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for C(π) and C̺(π), or involves some transition Kj → (K̺̃)
c. Since V(·, ·) ≥ 0,

terms involving any such transition are irrelevant when V(K̃γ , (K̺̃)
c) > C(π).

LEMMA 4.3. Under Assumption A.1, for any γ finite,

(4.4)

lim
̺→∞ inf

t≥0

{
Jγ (t, ̺)

}
= ∞,

Jγ (t, ̺) := inf
‖x‖1≤γ

inf
{z(·):sups≤t ‖z(s)‖1>̺}

{
Ix,t (z)

}
.

PROOF. The lower bound of the LDP of Theorem 1.6 for the open set Ŵ :=
{z : z(t) ∈ (K̺̃)c for some t ≤ T }, implies that

(4.5) −Jγ (T ,̺) ≤ lim inf
v→∞

1

v
log
(

sup
‖xv

0 ‖1≤γ

Pxv
0

[
sup

t∈[0,T ]

∥∥Xv
t

∥∥
1 > ̺

])
.

While proving Lemma 2.1, we saw that the RHS of (4.5) is, for some finite κ =
κ(γ ), with the constant b of Assumption A.1(a), any T and ̺ ≥ ̺(ℓ), at most

(4.6) lim sup
v→∞

v−1 log
{
ℓ−v[eκv + T ebv]}= − logℓ +κ ∨ b.

Combining (4.5) and (4.6), we establish (4.4) upon taking ̺ → ∞ followed by
ℓ → ∞. �
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