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Abstract

The literature currently provides two ways to establish

point correspondences between images with moving ob-

jects. On one side, there are energy minimization methods

that yield very accurate, dense flow fields, but fail as dis-

placements get too large. On the other side, there is descrip-

tor matching that allows for large displacements, but corre-

spondences are very sparse, have limited accuracy, and due

to missing regularity constraints there are many outliers. In

this paper we propose a method that can combine the ad-

vantages of both matching strategies. A region hierarchy is

established for both images. Descriptor matching on these

regions provides a sparse set of hypotheses for correspon-

dences. These are integrated into a variational approach

and guide the local optimization to large displacement so-

lutions. The variational optimization selects among the hy-

potheses and provides dense and subpixel accurate esti-

mates, making use of geometric constraints and all avail-

able image information.

1. Introduction

Optical flow estimation has been declared as a solved

problem several times. For restricted cases this is true, but

in more general cases, we are still far from a satisfactory so-

lution. For instance estimating a dense flow field of people

with fast limb motions cannot yet be achieved reliably with

state-of-the-art techniques. This is of importance for many

applications, like long range tracking, motion segmentation,

or flow based action recognition techniques [5, 7].

Most contemporary optical flow techniques are based on

two important ingredients, the energy minimization frame-

work of Horn and Schunck [6], and the concept of coarse-

to-fine image warping introduced by Lucas and Kanade [10]

to overcome large displacements. Both approaches have

been extended by robust statistics, which allow the treat-

ment of outliers in either the matching or the smoothness

assumption, particularly due to occlusions or motion dis-

continuities [3, 14]. The technique in [4] further introduced

gradient constancy as a constraint which is robust to illu-
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Figure 1. Top row: Image of a sequence where the person is step-

ping forward and moving his hands. The optical flow estimated

with the method from [4] is quite accurate for the main body and

the legs, but the hands are not accurately captured. Bottom row,

left: Overlay of two successive frames showing the motion of one

of the hands. Center: The arm motion is still good but the hand

has a smaller scale than its displacement leading to a local mini-

mum. Right: Color map used to visualize flow fields in this paper.

Smaller vectors are darker and color indicates the direction.

mination changes and proposed a numerical scheme that al-

lows for a very high accuracy, provided the displacements

are not too large.

The reason why differential techniques can deal with dis-

placements larger than a few pixels at all is that they initial-

ize the flow by estimates from coarser image scales, where

displacements are small enough to be estimated by local

optimization. Unfortunately, the downsampling not only

smoothes the way to the global optimum, but also removes

information that may be vital for establishing the correct

matches. Consequently, the method cannot refine the flow

of structures that are smaller than their displacement, sim-

ply because the structure is smoothed away just at the level

when its flow is small enough to be estimated in the varia-

tional setting. The resulting flow is then close to the motion

of the larger scale structure. This still works well if the mo-

tion varies smoothly with the scale of the structures, and

even precise 3D reconstruction of buildings becomes pos-

sible [16]. Figure 1, however, shows an example, where

the hand motion is not estimated correctly because the hand
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is smaller than its displacement relative to the motion of the

larger scale structure in the background. Such cases are very

common with articulated objects.

If one is interested only in very few correspondences,

descriptor matching is a widespread methodology to esti-

mate arbitrarily large displacement vectors. Only a few

points are selected for matching. Selected points should

have good discriminative properties and there should be a

high probability that the same point is selected in both im-

ages [17]. Quite some effort is put into the descriptors of the

keypoints such that they are invariant to likely transforma-

tions of the surrounding patches. Due to their small number

and their informative descriptors, e.g. SIFT [9], keypoints

can be matched globally using a nearest neighbor criterion.

In return, other disadvantages are present. Firstly, there is

no geometric relationship per se enforced between matched

keypoints. A counterpart to the smoothness assumption in

optical flow is missing. Thus, outliers are very likely to ap-

pear. Secondly, correspondences are very sparse. Turning

the sparse set into a dense flow field by interpolation leads

to very inaccurate results missing most of the details.

In some applications, the dense 2D matching problem

can be circumvented by making use of specific assump-

tions. If the scene is static and all motion in the image is

due to the camera, the problem can be simplified by estimat-

ing the epipolar geometry from very few correspondences

(established, e.g., by descriptor matching and some outlier

removal procedure such as RANSAC) and then converting

the 2D optical flow problem into a 1D disparity estimation

problem. While the complexity of combinatorial optimiza-

tion including geometric constraints in 2D is exponential, it

becomes polynomial for some 1D problems. Consequently,

large displacements are much less of a problem in typical

stereo or structure-from-motion tasks, where dense dispar-

ity maps can be estimated via graph cut methods or similar

techniques.

Unfortunately, this does not work any more as soon as

objects besides the observer are moving. If the focus is on

drawing information from the object motion rather than its

static shape, there is no way around optical flow estimation,

and although the image motion caused by moving objects

in the scene is usually much smaller than that caused by

a moving camera, displacements can still be too large for

contemporary methods. This holds especially true as it is

difficult to separate the egomotion of the camera from the

object motion as long as both are not known.

For this reason we elaborate in the present paper on opti-

cal flow estimation with large displacements. The main idea

is to direct a variational technique using correspondences

from sparse descriptor matching. This aims at avoiding the

local optimization to get stuck in a local minimum underes-

timating the true flow.

A recent work called SIFT Flow goes a step even further

and tries to establish dense correspondences between differ-

ent scenes [8]. The work is related to ours in the sense that

rich descriptors are used in combination with geometric reg-

ularization. An approximative discrete optimization method

from [15] is used to achieve this goal. The problem of this

method in the context of motion estimation is due to the

bad localization of the SIFT descriptor. Another strongly

related work is the one by Wills and Belongie which allows

for large displacements by using edge correspondences in a

thin-plate-spline model [18].

In principle, any sparse matching technique can be used

to find initial matches. However, it is important that the de-

scriptor matching establishes correspondences also for the

smaller scale structures missed by the coarse-to-fine opti-

cal flow. Here we propose to use regions from a hierar-

chical segmentation of the image. This has several advan-

tages. Firstly, regions are more likely to coincide with sep-

arately moving structures than commonly used corners or

blobs. Secondly, regions allow for estimates of affine patch

deformations. Additionally, the hierarchical segmentation

provides a good coverage of the whole image. This avoids

missing some moving parts because there is no region de-

tected in the area. There is another region-based detector

[13], which has the first two properties but does not pro-

vide a hierarchy of regions. Another reasonable strategy is

to enforce consistent segmentations between frames as sug-

gested in [20].

An important issue is the combination of the keypoint

matches and the raw image data within the variational ap-

proach. The straightforward way to initialize the variational

method with the interpolated keypoint matches gives large

influence to outliers. Moreover, it raises the question of

which scale to initialize the variational method. The opti-

mum scale is likely to vary from image to image. There-

fore, we integrate the keypoint correspondences directly

into the variational approach. This allows us to make use

of all the image information (not only the keypoints) al-

ready at coarse levels, and smoothly scales down the in-

fluence of the keypoints as the grid gets finer. Moreover,

we integrate multiple matching hypotheses into the varia-

tional energy. This allows us to postpone an important hard

decision, namely which particular candidate region is the

best match, to the variational optimization where geometric

constraints are available. Thanks to this formulation, out-

liers are treated in a proper way, without the need to tune

threshold parameters.

2. Region matching

2.1. Region computation

For creating regions in the image, we rely on the segmen-

tation method proposed in Arbelaez et al. [1]. The segmen-

tation is based on the boundary detector gPb from [11]. The
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Figure 2. Left: Segmentation of an image. A region hierarchy

is obtained by successively splitting regions at an edge of certain

relevance. Dark edges are inserted first. Right: Zoom into the

hand region of two successive images.

advantage of this boundary detector over simple edge detec-

tion is that it takes texture into account. Boundaries due to

repetitive structures are damped whereas strong changes in

texture create additional boundaries. Consequently, bound-

aries are more likely to correspond to objects or parts of

objects. This is beneficial for our task, as it increases the

stability of the regions to be matched.

The method returns a boundary map g(x) as shown in
Fig. 2. Strong edges correspond to more likely object

boundaries. It further returns a hierarchy of regions created

from this map. Regions with weak edges are merged first,

while separations due to strong edges persist for many lev-

els in the hierarchy. We generally take the regions from all

the levels in the hierarchy into account. From the regions

of the first image, however, we only keep the most stable

ones, i.e., those which exist in at least 5 levels of the hi-

erarchy. Unstable regions are usually arbitrary subparts of

large regions. They are likely to change their shape between

images. We also ignore extremely small regions (with less

than 50 pixels) from both images. These regions are usu-

ally too small to build a descriptor discriminative enough

for reliable matching.

2.2. Region descriptor and matching

To each region we fit an ellipse and normalize the area

around the centroid of each region to a 32 × 32 patch. The
normalized patch then serves as the basis for a descriptor.

We build two descriptors S and C in each region. S

consists of 16 orientation histograms with 8 bins, like in

SIFT [9]. C comprises the mean RGB color of the same

16 subparts as the SIFT descriptor. While the orientation

histograms consider the whole patch to take also the shape

of the region into account, the color descriptor is computed

only from parts of the patch that belong to the region.

Correspondences between regions are computed by near-

est neighbor matching. We compute the Euclidean distances

of both descriptors separately and normalize them by the

Figure 3. Displacement vectors of the matched regions drawn at

their centroids. Many matches are good, but there are also outliers

from regions that are not descriptive enough or their counterpart in

the other image is missing.

sum over all distances:

d2(Si, Sj) =
‖Si − Sj‖2

2
1
N
|∑k,l ‖Sk − Sl‖2

2

d2(Ci, Cj) =
‖Ci − Cj‖2

2
1
N
|∑k,l ‖Ck − Cl‖2

2

,

(1)

where N is the total number of combinations i, j. This nor-

malization allows to combine the distances such that both

parts in average have equal influence:

d2(i, j) =
1

2
(d2(Si, Sj) + d2(Ci, Cj)) (2)

We can exclude potential pairs by adding high costs to their

distance. We do this for correspondences with a displace-

ment larger than 15% of the image size or with a change in

scale that is larger than factor 3. Depending on the needs

of the application, these numbers can be adapted. Smaller

values obviously produce fewer false matches, but restrict

the allowed image transformations.

2.3. Hypotheses refinement by deformed patches

Fig. 3 demonstrates successful matching of many re-

gions, but also reveals outliers. This is not surprising as

some of the regions are quite small and not very descrip-

tive. Moreover, the affine transformation estimated from

the region shape is not always correct as the extracted re-

gions may not be exactly the same in both images. Finally,

the above descriptors are well suited to establish a ranking

of potential matches, but the descriptor distance often per-

forms badly when used as a confidence measure since good

matches and bad matches have very similar distances.

Rather than deciding on a fixed correspondence at each

keypoint, which could possibly be an outlier, we propose
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Figure 4. Nearest neighbors and their distances using different de-

scriptors. Top: SIFT and color. Center: Patch within region.

Bottom: Patch within region after distortion correction.

to integrate several potential correspondences into the vari-

ational approach. For this purpose, a good confidence mea-

sure is of great importance. We found that the distance

of patches globally separates good and bad matches much

better than the above descriptors. The main problem with

direct patch comparison (classical block matching) is the

sensitivity to small shifts or deformations. With the defor-

mation corrected, the Euclidean distance of patches is very

informative, particularly when considering only pixels from

within the region1.

The optimum shift and deformation needed to match two

patches can be estimated by minimizing the following cost

function:

E(u, v) =

∫

(P2(x + u, y + v) − P1(x, y))2 dxdy

+α

∫

(|∇u|2 + |∇v|2) dxdy,
(3)

where P1 and P2 are the two patches, u(x, y), v(x, y) de-
notes the deformation field to be estimated, and α =
10000 is a tuning parameter that steers the relative im-
portance of the deformation smoothness. The energy is a

non-linearized, large displacement version of the Horn and

Schunck energy and sufficient for this purpose. The regu-

larizer gets a very high weight in this case, as without reg-

ularization every patch can be made sufficiently similar to

any other.

As the patches are very small and a simple quadratic reg-

ularizer is applied, the estimation is quite efficient. Never-

theless, it would be a computational burden to estimate the

deformation for each region pair. To this end, we prese-

lect the 10 nearest neighbors for each patch using the dis-

tance from the previous section and compute the deforma-

tion only for these candidates. The five nearest neighbors

according to the patch distance are then integrated into the

variational approach described in the next section. Each po-

tential match j = 1, ..., 5 of a region i comes with a confi-

dence

cj(i) :=

{

d̄2(i)−d2(i,j)
d2(i,j) d̄2(i) > 0

0 else
(4)

1In contrast to tracking and motion estimation, this probably does not

hold for object class detection.

where d2(i, j) is the Euclidean distance between the two
patches after deformation correction and d̄2(i) is the av-
erage Euclidean distance among the 10 nearest neighbors.

This measure takes the absolute fit as well as the descrip-

tiveness into account. We restrict the distance to be com-

puted only on patch positions within the region. Hence the

changing background of a moving object part would not de-

stroy similarity of a correct match.

Fig. 4 depicts the nearest neighbors of a sample region.

Simple block matching is clearly inferior compared to SIFT

and color because the high frequency information is not cor-

rectly aligned. However, computing distances on distortion

corrected patches is advantageous for our task. Not only

the ranking improves in this particular case, the distance is

in general also more valuable as a confidence measure since

it marks bad matches more clearly.

3. Variational flow

Although most of the correspondences in Fig. 3 are cor-

rect, the flow field derived from these by interpolation, as

shown in Fig. 5, is far from being accurate. This is be-

cause we have a hard decision when selecting the nearest

neighbor. Moreover, a lot of image information is neglected

and substituted by a smoothness prior. In order to obtain

a more accurate, dense flow field, we integrate the match-

ing hypotheses into a variational approach, which combines

them with local information from the raw image data and a

smoothness prior.

3.1. Energy

The energy we optimize is similar to the one in [4] ex-

cept for an additional data constraint that integrates the cor-

respondence information:

E(w(x)) =

∫

Ψ
(

|I2(x + w(x)) − I1(x)|2
)

dx

+ γ

∫

Ψ
(

|∇I2(x + w(x)) −∇I1(x)|2
)

dx

+β

5
∑

j=1

∫

ρj(x) Ψ
(

(u(x)−uj(x))2+(v(x)−vj(x))2
)

dx

+α

∫

Ψ
(

|∇u(x)|2 + |∇v(x)|2 + g(x)2
)

dx

(5)

Here, I1 and I2 are the two input images,w := (u, v) is the
sought optical flow field, and x := (x, y) denotes a point
in the image. (uj , vj)(x) is one of the motion vectors de-
rived at position x by region matching (j indexing the 5

nearest neighbors). If there is no correspondence at this po-

sition, ρj(x) = 0. Otherwise, ρj(x) = cj , where cj is the

distance based confidence in (4). α = 100, β = 25, and
γ = 5 are tuning parameters, which steer the importance
of smoothness, region correspondences, and gradient con-

stancy, respectively.
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Like in [4], we use the robust function Ψ(s2) =√
s2 + 10−6 in order to deal with outliers in the data as

well as in the smoothness assumption. We also integrate the

boundary map g(x) from [1] (see Fig. 2) in order to avoid
smoothing across strong region boundaries.

The robust function further reduces the influence of bad

correspondences and leads to the selection of the most con-

sistent match among the five nearest neighbors. Note that

each potential match has its own robust function. Spatial

consistency is enforced by the smoothness prior, which inte-

grates correspondences from the neighborhood. Many good

matches in the neighborhood will outnumber mismatches,

which is not the case when using a squared error mea-

sure. With α = 0 the optimum result would simply be

the weighted median of the hypotheses, but with α > 0
additional matches from the surroundings are taken into ac-

count.

Rather than a straightforward three step procedure with

(i) interpolation of the region correspondences, (ii) removal

of outliers not fitting the interpolated flow field (iii) optical

flow estimation initialized by the interpolated inlier corre-

spondences, the above energy combines all three steps in a

single optimization problem.

3.2. Minimization

The energy is non-convex and can only be optimized

locally. We can compute the Euler-Lagrange equations,

which state a necessary condition for a local optimum:

Ψ′
(

I2
z

)

IzIx + γΨ′
(

I2
xz + I2

yz

)

(IxxIxz + IxyIyz)

+β
∑

j ρjΨ
′
(

(u − uj)
2 + (v − vj)

2
)

(u − uj)

−αdiv
(

Ψ′
(

|∇u|2 + |∇v|2 + g(x)2
)

∇u
)

= 0

Ψ′
(

I2
z

)

IzIy + γΨ′
(

I2
xz + I2

yz

)

(IxyIxz + IyyIyz)

+β
∑

j ρjΨ
′
(

(u − uj)
2 + (v − vj)

2
)

(v − vj)

−αdiv
(

Ψ′
(

|∇u|2 + |∇v|2 + g(x)2
)

∇v
)

= 0,

(6)

where Ψ′(s2) is the first derivative of Ψ(s2) with respect to
s2, and we define

Ix := ∂xI2(x + w) Ixy := ∂xyI2(x + w)
Iy := ∂yI2(x + w) Iyy := ∂yyI2(x + w)
Iz := I2(x + w) − I1(x) Ixz := ∂xIz

Ixx := ∂xxI2(x + w) Iyz := ∂yIz.

(7)

Although we have the region correspondences involved in

these equations, their influence would be too local to effec-

tively drive a large displacement solution. However, we can

make use of the same coarse-to-fine strategy as used in op-

tical flow warping schemes. This has two effects. Firstly,

downsampled large scale structures drive the optical flow to

a large displacement solution. Secondly, the influence of

region correspondences is much larger at coarser levels as

they cover larger parts of the discrete domain. ρ(x) �= 0
for the same number of grid points, but the total number

of grid points at coarser levels is much smaller. As a con-

sequence, they dominate the optical flow at coarse levels,

pushing the local optimization into the right direction. At

finer levels, their influence decreases (and is actually zero

in the true continuous case). While correct matches will be

in line with the optical flow, outliers will be outnumbered

by the growing number of grid points indicating a different

flow field.

We can use the same nested fixed point iterations as pro-

posed in [4] to solve (6). We initialize w
0 := (0, 0) at

the coarsest grid and iteratively compute updates w
k+1 =

w
k + dw

k, where dw
k := (duk, dvk) is the solution of

0 = Ψ′

1I
k
x (Ik

z + Ik
xduk + Ik

y dvk)

+β
∑

j ρjΨ
′

2,j(u − uj) − αdiv
(

Ψ′

3∇(uk + duk)
)

0 = Ψ′

1I
k
y (Ik

z + Ik
xduk + Ik

y dvk)

+β
∑

j ρjΨ
′

2,j(v − vj) − αdiv
(

Ψ′

3∇(vk + dvk)
)

(8)

with

Ψ′

1 := Ψ′
(

(Ik
z + Ik

xduk + Ik
y dvk)2

)

Ψ′

2,j := Ψ′
(

(uk+duk−uj)
2 + (vk+dvk−vj)

2
)

Ψ′

3 := Ψ′
(

|∇(uk + duk)|2 + |∇(vk + dvk)|2 + g2
)

.

(9)

We skipped the gradient constancy term in the notation to

have shorter equations. The reader is referred to [4] for the

gradient constancy part. In order to solve (8), an inner fixed

point iteration over l is employed, where the robust func-

tions in (9) are set constant for fixed duk,l, dvk,l and are

iteratively updated. The equations are then linear in duk,l,

dvk,l and can be solved by standard iterative methods after

proper discretization.

4. Experiments

We evaluated the new method on several real images

showing large displacements, particularly articulated mo-

tion of humans. Fig. 5 depicts results for the example

from the previous sections. The fast motion of the person’s

right hand missed by current state-of-the-art optical flow is

correctly captured when integrating point correspondences

from descriptor matching. This clearly shows the improve-

ment we aimed at. In areas without large displacements, we

cannot expect the flow to be more accurate, since descrip-

tor matching is not as precise as variational flow. How-

ever, the result is also not much spoiled by unprecise and

bad matches. We quantitatively confirmed this by running

[4] and the large displacement flow on five sequences of

the Middlebury dataset with public ground truth [2]. There

are no large displacements in any of these sequences. We

optimized the parameters of both approaches but kept the
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Figure 5. Left: Flow field obtained by interpolating the region correspondences (nearest neighbor). Accuracy is low and several outliers

can be observed. Center left: Result with the optical flow method from [4]. The motion is mostly very accurate, but the hand motion is not

captured well. Center right: Result with the proposed method. Most of the accuracy of the optical flow framework is preserved and the

fast moving hands are captured as well. We see some degradations in the background due to outliers and too little structure to correct this.

Right: Result of SIFT Flow [8] running the code provided by the authors. Since the histograms in SIFT lack good localization properties,

the accuracy of the flow field is much lower.

Figure 6. Evolving flow field from coarse (left) to fine (right). The region correspondences dominate the estimate at the beginning. Outliers

are removed over time as more and more data from the image is taken into account.

Figure 7. Left: Input images. The camera was rotated and moved into the scene. Center left: Interpolated region correspondences.

Center right: Result with the optical flow method from [4]. Clearly, only the smaller displacements in the center and those of regions

with appropriate scale can be estimated. Right: Result with the proposed method. Aside from the unstructured and occluded areas near

the image boundaries, the flow field is estimated well.

parameter β (which steers the influence of the point corre-

spondences) at the same value as in the other experiments.

The average angular error of the large displacement version

increased in average by 27%. This means it still yields a
good accuracy while being able to capture larger motion.

Fig. 5 also demonstrates the huge improvement over de-

scriptor matching succeeded by interpolation to derive a

dense flow field. Clearly, the weakly descriptive informa-

tion in the image aside of the keypoints should not be ig-

nored when more than a few correspondences are needed.

A comparison to [8] using their code indicates that we get

a better localization of the motion, which is quite natural as

[8] was designed to match between different scenes.

Fig. 6 shows the evolving flow field over multiple scales.

In can be seen that the influence of wrong region matches

decreases as the flow field includes more and more informa-

tion from the image and geometrically inconsistent matches

are ignored as outliers.

Fig. 7 depicts an experiment with a static scene and a

moving camera. This problem would actually be better

solved by estimating the fundamental matrix from few cor-

respondences and then computing the disparity map with

global combinatorial optimization. We show this experi-

ment to demonstrate that good results can be obtained even

without exploiting the knowledge of a static scene (which

may not always be true in many realistic tasks). The flow

in non-occluded areas is well estimated despite huge dis-

placements. Neither classical optical flow nor interpolated

descriptor matching can produce these results.

Another potential field of application of our technique is

human motion analysis. Fig. 8 shows two frames from the

HumanEva-II benchmark at Brown University. The origi-

nal sequence was captured with a 120fps highspeed camera.

We skipped four frames to simulate the 30fps of a consumer

camera. Again we can see that the large motion of some

body parts is missed with previous optical flow techniques,
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Figure 8. Left: Two overlaid images of a running person. The images are from the HumanEva-II benchmark on human tracking. Center

left: Interpolated region correspondences. Center: Result with optical flow from [4]. The motion of the right leg is too fast to be captured

by the coarse-to-fine scheme alone. Center right: Result with the proposed model. Region correspondences guide the optical flow towards

the fast motion of the leg. Right: Image warped according to the estimated flow. The ideal result should look like the first image apart

from occluded areas. The motion of the foot tip is underestimated, but the motion of the lower leg and the rest of the body is fine.

while it is captured much better when integrating descriptor

matching. The warped image reveals that the motion of the

foot tip is still underestimated, but the rest of the body in-

cluding the lower leg and the arms is tracked correctly. The

doubles near object boundaries are due to occlusion and in-

dicate the correct filling of the background’s zero motion.

Finally, Fig. 9-10 show results from a tennis sequence.

The entire sequence and the corresponding flow is available

in the supplementary material. The sequence was recorded

with a 25fps hand held consumer camera and is very diffi-

cult due to very fast motion of the tennis player, little struc-

ture on the ground, and highly repetitive structures at the

fence. The latter produce many outliers when matching re-

gions. The video shows that most of the outliers are ignored

in the course of variational optimization and also large parts

of the fast motion is captured correctly. Jittering of the cam-

era is indicated by the changing color in the background

(showing changing motion directions). Even the motion of

the ball is estimated in some frames. The motion of the

racket and the hands is missed from time to time due to mo-

tion blur and weakly discriminative regions. Nevertheless,

the results are very promising to serve as a cue in action

recognition.

Computation of the flow for given segmentations took

37s on an Intel Xeon 2.33GHz for images of size 530×380
pixels. Most of the time is spent for the deformation of the

patches and the variational flow, which is both potentially

available in real-time using the GPU [19]. A GPU imple-

mentation of the segmentation takes 5s per frame.

5. Conclusions

We have shown that optical flow can benefit from sparse

point correspondences from descriptor matching. The lo-

cal optimization involved in optical flow methods fails to

capture large motions even with coarse-to-fine strategies

if small subparts move considerably faster than their sur-

roundings. Point correspondences obtained from global

nearest neighbor matching using strong descriptors can

guide the local optimization to the correct large displace-

ment. Conversely, we have also shown that weakly descrip-

tive information, as is thrown away when selecting key-

points, contains valuable information and should not be ig-

nored. The flow field obtained by exploiting all image in-

formation is much more accurate than the interpolated point

correspondences. Moreover, outliers can be avoided by in-

tegrating multiple hypotheses into the variational approach

and making use of the smoothness prior to select the most

consistent one.

This work extends the applicability of optical flow to

fields with larger displacements, particularly to tasks where

large displacements are due to object rather than camera

motion. We expect good results in action recognition when

using the dense flow as a dynamic orientation feature corre-

spondingly to orientation histograms in static image recog-

nition. However, with larger displacements there also ap-

pear new challenges such as occlusions, which we mainly

ignored here. Future works should transfer the rich knowl-

edge on occlusion handling in disparity estimation to the

more general field of optical flow.
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