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A compressible Hybrid Lattice Boltzmann Method (LBM) solver is used to perform a wall-resolved Large Eddy Sim-
ulation (LES) of an isothermal axisymmetric jet issuing from a pipe and impinging on a heated flat plate at a Reynolds
number of 23 000, a Mach number of 0.1, and an impingement distance of two jet diameters. The jet flow field statistics,
Nusselt number profile (including the secondary peak), and shear stress profile were well reproduced. The azimuthal
coherence of the primary vortical structures was relatively low, leading to no discernible temporal periodicity of the
azimuthally-averaged Nusselt number at the location of the secondary peak. While local unsteady near-wall flow sep-
aration was observed in the wall jet, this flow-separation did not exhibit azimuthal coherence, and was not found to be
the only cause of the thermal spots bluewhich lead to the secondary peak in the Nusselt number, as stream-wise oriented
structures also played a significant role in increasing the local heat transfer.

This article may be downloaded for personal use
only. Any other use requires prior permission of the
author and AIP Publishing. This article appeared in
Phys. Fluids 34, 055115 (2022) and may be found at
(https://doi.org/10.1063/5.0088410).

I. INTRODUCTION

Impinging jet flows are widely used as a means of cool-
ing or heating surfaces thanks to their high rates of convective
heat transfer. Due to the thin boundary layers involved at the
impinged surface, as well as the strong turbulent mixing, im-
pinging jets can be several orders of magnitude more efficient
as a method of heat transfer than parallel fluid flow1. Heat
transfer from an impinging jet can highly be localized, hence
often necessitating multiple arrays of jets. Impinging jets can
be found in diverse applications such as turbine blade cool-
ing, turbine adaptive clearance control systems2, aircraft wing
anti-icing configurations, and aircraft engine thrust reversers.

The turbulent axisymmetric impinging jet remains, despite
its relative geometric simplicity, a widely studied academic
test configuration that has been subject to many literature
reviews3–6, as it exhibits complex flow physics. It is charac-
terized by three distinct regions7: a free jet zone, a stagnation
zone, and a wall jet zone. In the free jet zone, the flow is suf-
ficiently removed from the impacted surface such that the sur-
face does not affect the flow dynamics. Further downstream,
in the stagnation zone, the jet decelerates, leading to a region
of high pressure, and the flow is deflected from the axial di-
rection towards the radial direction. In the wall jet zone, the
radial flow parallel to the wall predominates. Thanks to a fa-
vorable pressure gradient, the flow initially accelerates, until
radial spreading and conservation of mass decelerate the flow.

One of the salient features of impinging jet flows with

low nozzle-to-plate distances is the presence of two peaks
of the Nusselt number with respect to the radius. A first
peak is found directly in the vicinity of the impacted loca-
tion, and a second one is found further downstream, in the
wall jet. The use of traditional Reynolds-Averaged Navier-
Stokes (RANS) approaches to properly simulate impinging jet
flows has shown mixed results in reproducing this secondary
peak, and often requires highly calibrated turbulence models
and wall treatments1. Thanks to increases in computational
power, a number of large eddy simulations (LES) have been
performed on this configuration. Hadžiabdić and Hanjalić8,
Uddin et al.9, Aillaud et al.10, Grenson and Deniau11, and
Colombié et al.12 demonstrated that with a sufficiently re-
solved mesh, LES approaches could reliably reproduce the
second peak, and could be used to extensively study the jet
flow dynamics and their effects on heat transfer.

The Lattice Boltzmann Method (LBM) has seen increas-
ing scrutiny as a means of performing simulations with LES
fidelity at a lower computational cost13. Thanks to the collide-
and-stream algorithm, LBM calculations can often be signifi-
cantly more rapid than with typical Navier-Stokes solvers for a
given mesh size. The use of Cartesian octree meshes, although
not without its disadvantages, can make pre-processing and
mesh generation significantly easier to automate, greatly re-
ducing the amount of working time needed by a highly trained
specialist. LBM-LES approaches have been sucessfully ap-
plied to industrial applications14,15.

Classical LBM models are limited to weakly compressible
isothermal flows16. Recently, new compressible thermal LBM
models17–21 have been developed that preserve the method’s
rapidity and accuracy while also being robust and practical to
implement into an industrial solver. These models make use
of the hybrid formulation, where the conservation of mass and
momentum are computed using the collide-and-stream algo-
rithm, and the conservation of energy is calculated using a
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finite volume or finite difference scheme. These two methods
are coupled through the definition of the LBM equilibrium
distribution function, which is made dependent on tempera-
ture. The hybrid method is combined with correction terms
to eliminate the well known Mach error in the stress tensor,
along with a Hybrid Recursive Regularized (HRR) collision
operator22 to improve stability.

The simulation of a 3D turbulent thermal impinging jet us-
ing an LBM-LES approach requires numerous features. The
pipe inlet must mimic fully developed pipe flow, necessitating
turbulence injection and non-reflecting boundary conditions.
Due to the widely varying scales of the flow structures, local
mesh refinement zones must be used to limit computational
cost, requiring sophisticated grid-transition algorithms which
can handle the sudden change in mesh size induced by the oc-
tree structure. The challenging nature of this test case makes
it a useful one for the assessment of a numerical solver. The
purpose of the present work is to demonstrate the improved
maturity of LBM approaches for turbulent thermal test cases.
Although this is an incompressible test case, it presents a use-
ful step for the validation of the fully compressible solver for
complex flows.

This paper is organized as follows. The hybrid LBM ap-
proach for LES, together with the treatment of boundary
nodes, resolution domain transitions, and turbulent inflow
conditions, are described in Section II. Section III describes
the numerical setup of the test case. The flow field statistics,
together with the relevant surface quantities, are then validated
in Section IV. Lastly, an examination of the flow structures
and their effects on the surface quantities is performed in Sec-
tion V.

II. MODEL OVERVIEW

A. The Lattice Boltzmann Equation

In this section, the variables ρ , u, θ = Tdim/Tre f , p, and
µ (density, velocity, temperature, pressure, and viscosity, re-
spectively) are presented in their non-dimensional form un-
less otherwise noted by the subscript dim. They are non-
dimensionalized using a reference density ρ0, the local mesh
size ∆x, the user-set reference temperature Tre f , and the lo-
cal time step ∆t = (∆xcs)/(

√
RTre f ), where R is the specific

gas constant and cs =
√

1/3 is the lattice constant such that
nondimensional pressure is p = ρc2

s θ .
The Lattice Boltzmann collide-and-stream algorithm, when

using the HRR collision model22, is as follows:

fi(xα + ciα , t +1) = f eq
i (xα , t)+

(1− 1
τ
)R( f neq

i )+
1
2

ψi(xα , t),
(1)

where fi is the particle distribution function, with the sub-
script i representing the index of the discrete lattice veloci-
ties ciα . Here, the D3Q19 lattice is used. f eq

i is the equilib-
rium distribution function. Its form plays a significant role
in the physics reproduced by the LBM equation, and will be

described in the following section. R( f neq
i ) represents the

off-equilibrium distribution reconstructed using the HRR col-
lision operator. τ represents the nondimensional relaxation
time τ = µ/(ρc2

s )+
1
2 . ψi is a forcing term meant to correct

errors that are introduced by the D3Q19 lattice (the O(Ma3)
error), as well as other errors introduced by f eq

i .

B. Improved Density-based Isotropic Equilibrium

Eq. 1 is meant to reproduce the physics of the fully com-
pressible Navier-Stokes equations obeying the ideal gas law
pdim = ρdimRTdim. It has been shown that there are many dif-
ferent choices of f eq

i and ψi that nominally produce the same
macroscopic behavior, albeit with different stability proper-
ties. Initial models17,18,20 used the standard density-based
LBM equilibrium distribution functions, with temperature
terms added to the second and third order moments, and with
correction terms used to produce the correct viscous stress ten-
sor. These models required significant amounts of additional
dissipation in the form of a low value of the HRR parame-
ter σ to stabilize the calculations. A pressure-based model23

modified the zeroth order moment into a pressure-based equi-
librium such that ∑i f eq

i = ρθ , greatly improving stability, but
requiring a correction step to properly solve the mass conser-
vation equation. Later, an improved model19 was developed,
which modified the calculation of the zeroth order moment for
increased stability while retaining a density-based framework.
Finally, Farag et al.21 performed an in-depth study showing
that the pressure-based and density-based models can be uni-
fied into one single formalism. Here, an equilibrium distri-
bution very similar to the improved-density based version of
Farag et al.21 is used, although with certain modifications. An
adjustment to the second order terms, developed by Bauer et
al.24, is used to produce a greater level of isotropy.

As is typical for LBM approaches, Gauss-Hermite polyno-
mials are used:

H
(2)

iαβ
= ciα ciβ − c2

s δαβ ,

H
(3)

iαβγ
= ciα ciβ ciγ − c2

s
(
ciα δβγ + ciβ δγα + ciγ δαβ ,

) (2)

The equilibrium distribution function is here split into four
parts, corresponding to the zeroth to third order moments:

f eq
i = ωiρ( f eq,(0)

i + f eq,(1)
i + f eq,(2)

i + f eq,(3)
i ), (3)

where ωi is the weight associated with each discrete veloc-
ity ciα . The first part, which contains the thermal information
used to couple the LBM solver with the ideal gas law, is de-
fined as:

f eq,0
i = 1+di,where di =

{
ω0−1

ω0
(θ −1), ci = (0,0,0)

θ −1, else.
(4)

The second part is unchanged from classic LBM approaches,
and is equal to:

f eq,1
i =

ciα

c2
s

uα . (5)
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The third part is based on the isotropic improvements of Bauer
et al.24. It allows for the correct retrieval of certain fourth
order moments. It is equal to:

f eq,2
i =


−uα uα , ci = (0,0,0)
−3uα uα +6(ciα uα)

2, ci ∈ {(±1,0,0),
(0,±1,0),(0,0,±1)}

− 3
2 c2

iα u2
α + 9

2 (ciα uα)
2, else.

(6)
Lastly, the fourth part is equal to:

f eq,3
i =

1
6c2

s

[
3(H (3)

ixxy +H
(3)

iyzz )(uxuxuy +uyuzuz)+

(H
(3)

ixxy−H
(3)

iyzz )(uxuxuy−uyuzuz)+

3(H (3)
ixzz +H

(3)
ixyy)(uxuzuz +uxuyuy)+

(H
(3)

ixzz −H
(3)

ixyy)(uxuzuz−uxuyuy)+

3(H (3)
iyyz +H

(3)
ixxz )(uyuyuz +uxuxuz)+

(H
(3)

iyyz −H
(3)

ixxz )(uyuyuz−uxuxuz)
]
.

(7)

The choice of the form of f eq
i , together with the lack of dis-

crete velocities in the D3Q19 lattice, leads to a number of er-
rors in the viscous stress tensor, among them the well-known
O(Ma3) error. These are corrected via the forcing term ψi in
Eq. 1, equivalent to:

ψi =−ωi
H

(2)
iαβ

2c4
s

Ψαβ , (8)

defined such that

Ψαβ
= c2

s uα

∂ (ρ(1−θ))

∂xβ

+ c2
s uβ

∂ (ρ(1−θ))

∂xα

+

2
3

δαβ ρc2
s

∂uγ

∂xγ

−δαβ c2
s

∂ρ(1−θ)

∂ t
+

∂Errαβγ

∂xγ

.

(9)

The terms in Eq. 9 are discretized using a standard second-
order centered scheme. It can be shown through a Chapman-
Enskog expansion (For further details, see Appendix A) that
Eq. 1, together with the equilibrium distribution in Eq. 3, and
the correction terms of Eq. 9 yield the compressible Navier-
Stokes Equations:

∂ρ

∂ t
+

∂ρuα

∂xα

= 0, (10)

∂ρuα

∂ t
+

∂ (ρuα uβ + pδαβ )

∂xβ

=
∂

∂xβ

ταβ . (11)

Where ταβ is the viscous stress tensor:

ταβ = µ(
∂uα

∂xβ

+
∂uβ

∂xα

− 2
3

∂uγ

∂xγ

). (12)

The dynamic viscosity µ(θ) varies with temperature accord-
ing to Sutherland’s law of viscosity.

C. Hybrid Entropy Equation

Because Eq. 10 and 11 do not calculate the evolution
of energy, they must be coupled with an additional conser-
vation equation. The approach used here is to use entropy
s = cvln( θ

ργ−1 ), where γ is the ratio of specific heats. The
equation for entropy is defined as:

∂ s
∂ t

+uα

∂ s
∂xα

=
1

ρθ

∂

∂xα

(−qα)+
1

ρθ
ταβ

∂uα

∂xβ

, (13)

Where the heat flux is defined as qα =−λ f
∂θ

∂xα
with the ther-

mal conductivity λ f =
cpµ

Pr . cp is the constant pressure specific
heat capacity and Pr is the Prandtl number. The entropy equa-
tion is discretized using finite differences. The convective flux
is computed using the MUSCL-Hancock method, identical to
the one described by Farag et al.23, when a large stencil is
available, while thermal conduction and viscous heat genera-
tion are computed using standard second order centered finite
differences. The equation is advanced in time using a first
order Euler approximation.

D. Subgrid Scale Model

The unresolved subgrid scales (SGS) are modeled us-
ing the Boussinesq approximation, thus modifying the form
of the relaxation parameter to include SGS viscosity such
that τ =

µ+µsgs
ρc2

s
+ 1

2 . The SGS viscosity is calculated us-
ing the Shear-Improved Smagorinsky Model (SISM), devel-
oped by Lévêque et al.25. This model is similar to the stan-
dard Smagorinsky Model, but seeks to improve its overly-
dissipative nature near walls by subtracting the magnitude of
the mean shear from the instantaneous strain-rate tensor when
calculating the eddy-viscosity. The mean shear is calculated
using weighted exponential smoothing. The entropy equa-
tion is closed using a subgrid heat flux qα,SGS = −λSGS

∂θ

∂xα
,

with λSGS =
cpµSGS
PrSGS

and a constant SGS Prandtl number set to
PrSGS = 0.90.

E. Boundary Treatment in LBM

In the Lattice Boltzmann method, fluid nodes whose ve-
locity distributions intersect a simulation domain boundary
(henceforth called boundary nodes) require special treatment,
as they lack at least one incoming distribution function. This
becomes particularly important when complex geometries are
involved, as the boundary nodes may be located at an arbi-
trary distance from the boundaries. Many different methods
can be found in the literature, including partial reconstruction
methods26 and interpolated bounce-back schemes27. Here,
the full-reconstruction method is used.

First, macroscopic variables ρ,u,θ are set at boundary
nodes using an interpolation procedure, which makes use of
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fictitious nodes located in the fluid domain whose macro-
scopic information is calculated using an inverse distance-
weighing (IDW) algorithm. This allows for the equilibrium
distribution function to be fully defined. Subsequently, finite
difference approximations are used to evaluate the shear-stress
tensor, which yields the off-equilibrium distribution functions,
and the forcing terms, which are used to correct the Mach er-
ror. For inlets and outlets, the Local One Dimensional Invis-
cid (LODI) relations are used to apply characteristic boundary
relations. These are calculated using finite differences. For
more details, the reader is invited to consult the paper of Feng
et al.28.

F. Transition Algorithms

Since complex turbulent flows involve a wide variety of
length-scales, mesh elements of non-uniform size are nec-
essary so that finer mesh elements can be used in zones of
interest. For most LBM approaches, octree mesh structures
are used, as is the case here. This has significant advantages:
nodes in a coarse zone are calculated half as often as nodes in
a fine zone, leading to important increases in computational
speed. However, the interfaces between different refinement
zones present certain difficulties. There are numerous meth-
ods of treating the communication between two zones of dif-
ferent refinement. Here, the Direct Coupling (DC) algorithm
of Astoul et al. is used29.

This method calculates the values at co-located coarse and
fine nodes by taking information from both the coarse and fine
part of the grid and makes use of LBM collision invariance
relations, together with a Newton-Raphson algorithm, to pro-
duce distribution functions that greatly reduce interface dis-
continuity and spurious noise. Since in the current study, f eq

i
is also a function of θ , this method must be adapted to in-
clude temperature. Entropy s is calculated prior to the appli-
cation of the DC algorithm, using a coarse stencil. For asyn-
chronous time steps, a temporal interpolation is used. This
entropy value is then used in the Newton agorithm of the DC
method used to calculate the distribution functions. For fine
nodes that are not co-located with coarse nodes, spatial inter-
polations are used.

G. Anisotropic Turbulent Inflow

Proper turbulence injection conditions are crucial to the
simulation of impinging jet flows. For large-eddy simula-
tions, both the correct mean velocity profile together with
the instantaneous injection of realistic turbulent fluctuations
are required. Turbulence injection remains a highly active
area of research, involving numerous different methods that
have been covered by numerous literature reviews30–32. Meth-
ods include precursor simulations, internal mapping, random
Fourier sums, digital filtering, synthetic eddy methods, and
volume forcing methods. In the literature of turbulence re-
solving impinging jet simulations, Hadžiabdić and Hanjalić8

used a precursor simulation, while Uddin et al.9 used a dig-

ital filter. Both Dairay et al. (whose simulation was meant
to simulate a converging nozzle)33 and Aillaud et al. (whose
simulation represented a long pipe injection)10 used a ran-
dom Fourier sum that generated homogeneous isotropic tur-
bulence. Grenson and Deniau used a combination of a ran-
dom Fourier producing homogeneous isotropic turbulence, as
well as a vortex ring generator at the walls meant to produce
boundary layer turbulence11. For the present simulation, an
approach that uses a random Fourier sum, along with a mod-
ification to produce non-homogeneous, anisotropic flow, will
be used.

The mean velocity profile, along with the Reynolds stress
tensor components, are taken from the pipe flow DNS at
Reb = 24 580 of Wu et al.34. The simulation data, which can
be found online in wall units, is re-scaled with friction veloc-
ity uτ = 2.01ms−1). The turbulent fluctuations are generated
with the following steps similar to the one described by Shur
et al.35:

• Homogeneous isotropic turbulent fluctuations based on
the Von-Karman Pao spectrum are generated. This ap-
proach is the similar to the one described by Bailly and
Juvé36. However, the amplitude of each mode ûn is nor-
malized such that the total turbulent kinetic energy is
equal to unity. This yields the homogeneous isotropic
fluctuations defined as:

vHIT (x, t)= 2

√
3
2

N

∑
n=1

ûncos[kn ·(x−tuc)+φHIT,n+ωHIT,nt]σn.

(14)
Where kn, is the wavevector whose magnitude, uc is
the bulk convective velocity (in this case (0,−36.0,0)
ms−1, φHIT,n is the phase, and ωHIT,n is a frequency
dependent on kn, and σn is a unit vector defining the
direction of the fluctuation.

• The fluctuations are then scaled using ai j(x), which is
the Cholesky decomposition of the Reynolds stress ten-
sor Ri j(x) such that:
√

Rxx 0 0

Rxy/axx

√
Ryy−a2

yx 0

Rxz/axx (Ryz−ayxazx)/ayy

√
Rzz−a2

zx−a2
zy

 .
The result is that the fluctuations, which are now non-
homogeneous and anisotropic, are equivalent to:

u′i(x, t) = ai j(x)vHIT
j (x, t). (15)

It is important to note that although Eq. 14 theoretically pro-
duces fluctuations with zero divergence ∂uα

∂xα
= 0 if kn ·σn = 0,

this is no longer the case when the anisotropic scaling is em-
ployed. This produced significant amounts of non-physical
pressure fluctuations in the pipe. These are attenuated using a
sponge zone near the pipe inlet, relaxing the values of density
to the mean using a moving average, while the velocity vector
is allowed to evolve freely. The implementation of the sponge
zone is described by Feng, et al.28.
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The integral length scale used to generate the Von Karman-
Pao turbulence spectrum is Li = 0.4D. In the current ap-
proach, although the intensity of the fluctuations are non-
homogeneous and anisotropic, the length scales remain homo-
geneous and isotropic. Because the inflow data of Wu et al. is
in cylindrical coordinates, and because the meshes used in the
pipe-flow DNS and the current jet-flow simulation are not the
same, both a transformation to Cartesian coordinates, together
with an interpolation to match the grid nodes at the inlet, are
required in order to assign each boundary node the correct
data. These are performed at the beginning of the simulation
using basic coordinate transformations, and a 1-dimensional
inverse distance weighing (IDW) scheme based on the radial
position, respectively.

III. SETUP

A. Flow Configuration

The flow configuration, as shown in Fig. 1, is composed of a
cylindrical pipe of inner diameter D = 0.01m and of height
5D embedded into a larger cylindrical domain of diameter
24D and total height 7D. It is an unconfined, axisymmetric,
isothermal, subsonic jet, with an impingement height H = 2D.
The origin of the coordinate system is placed at the very cen-
ter of the impacted plate, at the stagnation point. The axis of
the flow is in the negative y-direction. The dynamic viscosity
µ at T = 300K is set to ≈ 1.84 ·10−5kg ·m−1 · s−1.

B. Boundary Conditions

At the pipe inflow, a mean velocity profile in the negative
y-direction is imposed such that it recovers the shape of the
DNS of Wu et al34 with a bulk speed Ub = 36ms−1. Resolved
non-homogeneous anisotropic turbulent fluctuations are su-
perposed onto the mean velocity profile. The temperature of
the jet is Tj = 300 K, yielding a bulk Mach number Mab equal
to≈ 0.1 and a bulk Reynolds number Reb = 23 000. The walls
of the pipe are isothermal, with a temperature Tpipe = 300K.
As the jet is unconfined, a choice must be made regarding the
boundary condition used for the top boundary. Here, a co-
flow velocity with an intensity of 2% of the bulk velocity is
used, which is similar to the axial velocity far away from the
jet recorded by Tummers, et al.37. Both inflow velocities are
at a uniform temperature T∞ = 300K. The impingement plate
is a no-slip isothermal wall condition at Tw = 330 K. Finally,
the sides of the domain are given a pressure outlet condition
at p∞ = 101325.0 Pa.

C. LBM Model Parameters

The free HRR parameter σ is set to 0.99. Tre f , which deter-
mines the timestep through the relation ∆t = ∆xcs√

RTre f
, is set to

Mesh 1 Mesh 2 Mesh 3

∆(x,y,z)RD1/D jet 0.005 0.0025 0.002
∆(x,y,z)max/D jet 0.08 0.08 0.064

Total Eq. Fine Points (M) 52.4 107.2 200.4
Eq. Fine Points in the pipe (M) 13.86 34.0 66.5

∆y+ = ∆r+ = (r∆φ)+, plate, φ = 0 8.45 4.68 3.82
∆r+ = (r∆φ)+, plate, φ = π/4 11.95 6.62 5.40

∆y+ = ∆r+ = (r∆φ)+, pipe wall, φ = 0 6.40 3.20 2.56
∆r+ = (r∆φ)+, pipe wall, φ = π/4 9.05 4.53 3.62

∆t/τconv ·10−4 3.60 1.80 1.44
CPU time for τconv (h) 151 468 1000

TABLE I: Summary of the properties of the three meshes
used

290K. This results in a bulk Courant-Friedrichs-Lewy (CFL)
number of 0.77 based on Ub and T∞.

D. Meshing Strategy

LBM approaches typically use Cartesian mesh elements as
an inherent feature of the method, which is here coupled with
the above-mentioned octree refinement algorithms allowing
for different levels of fidelity depending on the region of in-
terest. The domain is split into separate resolution domains
(RD), with RD1 using the finest grid spacing, RD2 using a
grid spacing that is 2x greater, and so on.

Although the Cartesian octree approach allows for signifi-
cantly greater rapidity in meshing for the user, it also presents
an important constraint. The use of cubic mesh elements pro-
hibits the use of grid stretching, which is often used in zones
where the user as a priori knowledge of significant anisotropic
non-homogeneity, such as in boundary and shear layers. In
the literature for impinging jet LES, grid stretching ratios on
the order of 10 at the impacted plate are common8–11. Thus,
reaching a given wall-normal mesh spacing using a Cartesian
mesh can require far more cells to cover a given volume. The
result is that the present simulation uses meshes that are sig-
nificantly larger than the ones used in comparable impinging
jet LES using Navier-Stokes approaches.

Three meshes are treated in this study. Mesh 1 sets the
grid spacing for RD1 to ∆x/D = 0.005, leading to a pipe wall
∆r+ = 6.4, and an impact plate ∆y+ = 8.45. Mesh 2 adds an
additional zone of refinement, with the grid spacing for RD1
set to ∆x/D = 0.0025. RD1 is placed at the pipe walls, in
the initial free jet shear layer, and at the impact plate. The
remaining refinement zones are identical to those of Mesh 1.
This additional zone leads to a division of the pipe wall and
impact plate normal wall distance by two. Finally, Mesh 3 is
identical to Mesh 2, but with a wholesale refinement of the
entire domain, with the grid spacing for RD1 set to ∆x/D =
0.002. Since this is an octree mesh, the grid spacing in every
single direction of every resolution domain is reduced by 20%,
nearly doubling the amount of points.

The properties of the three meshes used are summarized
in Table I. The number of points are counted by "equivalent
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H = 2D

5D

D

24D

z

y

x
φ

r Heated P late

P ipe Pressure Outlet

Co− FlowTurbulent Inlet

FIG. 1: Schematic view of the computational domain

fine" nodes: the points in RD1 are counted as 1 equivalent
fine point, those of RD2 are counted as 1/2 of an equivalent
fine point, and those of RD3 are counted as 1/4 of an equiv-
alent fine point, etc. The mesh is Cartesian, so that locally,
∆x = ∆y = ∆z. The result is that at the impact plate, the wall-
normal distance is invariant relative to φ , but the streamwise
and spanwise spacings are not. In the pipe, the streamwise
spacing is invariant relative to φ , while the wall-normal and
spanwise spacings are not.

Figure 2 shows a view Mesh 2, together with instantaneous
vorticity magnitude, at the principal zone of interest in the
main section of the domain, as well as the pipe exit. The
zones where RD1 is employed are shown with the zoomed
in boxes. The radial locations sampled to validate against
the experimental data are shown with dashed lines. In the
pipe, three levels of mesh resolution are used in order to max-
imize the mesh resolution at the pipe walls. The pipe flow
core is meshed using RD3, whereas the pipe boundary layer is
meshed using RD2 and RD1 As the pipe boundary layer tran-
sitions to become the free-jet shear layer, RD1 is extended
0.5D downstream of the pipe exit, while RD2 is extended
from the shear layer all the way to the impact plate. RD2 and
RD1 cover the entire surface of the impact plate for R/D≤ 3.

Figure 3 shows the azimuthally averaged value of the local
wall-normal mesh size ∆y+ along the surface of the impinged
plate. The maximum value of is 8.45, 4.68, and 3.82 for
Meshes 1, 2, and 3 respectively. These values are higher than
the ones recommended by Choi and Moin38 for a typical wall-
resolved LES boundary layer, although ∆y+ for Mesh 3 is sim-
ilar to the value found in the simulation of Aillaud et al.10.
The streamwise and spanwise mesh sizes are, on the other
hand, significantly smaller than the standard boundary-layer
requirements. While the streamwise, spanwise, and wall-
normal mesh requirements for an attached, standard boundary
are well attested in the literature, these values are not well at-
tested for impinging jet LES, and high degrees of grid stretch-
ing can lead to poor results8,9.

E. Simulation Strategy

The total simulation time corresponds to roughly 40 con-
vective times τconv =

D
Ub

or 26 characteristic times τSt =
D

StUb

based on the Strouhal number of St = f D
Ub

= 0.65. f is the fre-
quency of the passage of the primary structures, which will be
discussed in Section V. Statistics were taken over a period of
25 τconv or approximately 16 τSt . This is similar to the time
used to construct statistics in other impinging jet LES8–10. For
the velocity and surface profiles, the statistics are azimuthally
averaged.

IV. SIMULATION STATISTICS

A. Pipe Velocity Profiles

Figure 4 shows the mean and RMS velocities, along with
the Reynolds shear stress, at the pipe exit located at y = 2D,
which is 5D downstream of the inlet. They are compared
against the periodic DNS of Wu et al.34 at Re = 24 580. The
mean velocity profile shows excellent agreement with the ref-
erence DNS. The axial fluctuations also show good agree-
ment, with only minor differences shown. More noticeable
discrepancies, on the order of 20%, can be seen for the ra-
dial and azimuthal fluctuations, along with the Reynolds shear
stress.

Although there is a significant increase in the total num-
ber of points between the first, second, and third meshes, the
three meshes employed show largely similar results. The level
of discretization in the jet core, where discrepancies with the
DNS are more visible, remain similar for all three meshes
(∆(x,y,z)+ = 12.8 for Meshes 1 and 2, ∆(x,y,z)+ = 10.24 for
Mesh 3). Mesh 2 adds an an additional zone of refinement
in the pipe boundary layer while conserving the same refine-
ment level in the pipe core (since octree meshes are used, an
additional refinement zone leads to a considerable increase in
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FIG. 2: Zoomed X−Y cross-section of instantaneous non-dimensional vorticity magnitude, as well as nodes of Mesh 2,
showing the additional zones of refinement that are not present in Mesh 1 in the boxes. The location of the refinement zones are
identical for Mesh 2 and Mesh 3. The dashed lines represent the radial positions r/D = 0,0.25,0.5,0.75,1.0,1.5,2.0, and 2.5,

which are used to validate the flow statistics in Section IV.
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FIG. 3: Non dimensional cell size at the plate ( Mesh 1),
( Mesh 2), ( Mesh 3)

the total number of mesh nodes), leading to a noticeable im-
provement in the Reynolds shear stress. This improvement is
confirmed by Mesh 3, which has the same refinement zones as
Mesh 2, but has a different baseline mesh size to Mesh 2 (all
of the mesh nodes of Mesh 3 have length 4/5 the length of the
equivalent nodes of Mesh 2, leading to another multiplication
by 2 of the mesh elements).

Although the amplitude of the fluctuations are non-
homogeneous and anisotropic, and are imposed by reference
data, the length scales are still generated using homogeneous
isotropic assumptions. The DNS of Wu et al.34 performed a
detailed analysis of the streamwise and azimuthal spectra and
found large degrees of variation at different flow locations.
Any single choice of length-scales will therefore produce sig-
nificant errors. Several tests were made by varying the length-
scales used to generate the Von Karman Spectrum. In this
study, larger length-scales were ultimately chosen, as it was
found that smaller length scales led to an unacceptable decay
of the turbulence intensity further downstream. Furthermore,
the relatively short entrance length of 5D used to maintain a
reasonable simulation time also contributed to the discrepan-
cies.

Overall, the agreement with the reference pipe flow can be
considered fair. However, more advanced turbulence injec-
tion methods capable of further reducing the entrance length
would be highly useful for future LBM simulations, as resolv-
ing attached, equilibrium turbulent boundary layers is partic-
ularly expensive for LBM approaches relative to body-fitted
Navier-Stoke solvers, as this type of flow topology can be re-
solved in many Navier-Stokes approaches via highly extensive
grid stretching.
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FIG. 4: Flow statistics at the outlet of the nozzle y/D = 2, showing mean flow, velocity fluctuations, and Reynolds shear stress.
( Mesh 1), ( Mesh 2), ( Mesh 3), ( DNS of Wu, et al.34)

B. Jet Velocity Profiles

The flow dynamics are validated on experimental data using
laser Doppler anemometry (LDA) provided by Tummers et
al.37. Their experiment took detailed measurements at eight
radial stations r/D = 0, 0.25, 0.5, 0.75, 1, 1.5, 2, and 2.5.

Figure 5 shows the flow dynamics at three stations r/D =
0,0.25, and 0.5, corresponding to each row. The five columns
represent mean radial velocity 〈ur〉, mean axial velocity 〈uy〉,
Reynolds radial stress 〈u′2r 〉, Reynolds axial stress 〈u′2y 〉, and
Reynolds shear stress 〈u′yu′r〉, respectively.

At r/D = 0, directly in the core of the jet, the quantities are
quite close to the experimental data. The turbulence intensi-
ties remain mostly constant from the nozzle exit until around
y/D ≈ 0.4, indicating that this region is in the potential core
of the free jet, as remarked upon by Hadžiabdić and Hanjalić8.
Both the Reynolds axial and radial stresses are underestimated
as the flow approaches the impingement wall for all meshes.
This is likely due to the choice of length scales in the synthetic
turbulence injection, combined with the relatively short pipe
length. It is likely that turbulence in the center line was not
able to adapt sufficiently quickly to fully developed pipe flow
conditions. It is possible that the finer mesh produced smaller
turbulent structures, leading to a slight underestimation of the
axial Reynolds stress at r/D= 0. The fact that sometimes grid
refinement does not lead automatically to improvement of the
results in LES has already been reported in several configura-
tions. This is mainly due to partial error cancellation between
the numerical scheme and the subgrid model.

At r/D = 0.25, halfway between the jet core and the shear
layer, the jet has deflected, transferring momentum along the
wall in the radial direction. The agreement with the exper-

iment is shown to be quite good, although there are slight
discrepancies in the Reynolds stresses, notably 〈u′yu′r〉 for
high values of y/D. Meshes 2 and 3, which both use RD3
for r/D = 0.25, y/D > 0.2, show similar degrees of dis-
crepancy despite refinement from ∆(x,y,z)/D jet = 0.01 to
∆(x,y,z)/D jet = 0.008. A further verification was performed
with a fourth mesh where RD2 (∆(x,y,z)/D jet = 0.005) was
used in this zone (not shown here), with no noticeable change
to the discrepancies for the Reynolds stress at y/D > 1. As
shown in Fig. 4, all of the meshes slightly overestimate the
Reynolds shear stress at r/D = 0.25 of the nozzle exit. This
overestimation in the pipe may contribute to the continued dis-
crepancies the free jet seen in Fig. 5.

The third row of Figure 5 shows the flow dynamics at
r/D = 0.5, the position directly in the shear layer between the
jet and the surrounding flow. The axial velocity downstream
of the lip increases, as the shear layer thickens. The mean ra-
dial velocity along the wall has accelerated significantly from
the previous station, doubling in magnitude. The strong gra-
dients between the jet and the surrounding flow produces high
intensities of turbulence in the free jet relative to the values
seen in the jet core at r/D = 0 and r/D = 0.25. Although the
overall results are good, they present some discrepancies, with
a slight overestimation in the magnitude of the mean axial ve-
locity, as well as overestimation of the all fluctuations in the
free-jet. Mesh 1, with its coarse resolution of the pipe bound-
ary layer and free jet shear layer, exhibits the largest discrep-
ancies, showing a significant overestimation in the Reynolds
stresses, while Mesh 2 and 3 display less marked discrepan-
cies. The overestimation of the fluctuations have been ob-
served in other LES,8,11. Hadžiabdić and Hanjalić attribute
this discrepancy to minor errors in the inflow condition, while
Grenson and Deniau11 describe it as being caused by a slight
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FIG. 5: Azimuthally averaged flow statistics along y in the jet for r/D = 0 (first row), r/D = 0.25 (second row), and r/D = 0.5
(third row). ( Mesh 1), ( Mesh 2), ( Mesh 3), (◦ Tummers, et al.37)
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overestimation in the width of the shear layer.
Figure 6 shows the development of the jet profiles further

downstream, in the wall jet. At r/D = 0.75, the mean radial
velocity continues to accelerate, now exceeding Ub at its peak.
All of the results for all of the meshes are shown to be in good
agreement.

At the station r/D = 1, the wall jet has become noticeably
thinner compared to r/D= 0.75, and has continued to acceler-
ate, reaching a maximum value of 1.10Ub for the experiment
and for all of the meshes. The agreement with the experiments
remains very good, with only a moderate overestimation for
all three meshes seen for the Reynolds shear stress.

As the wall jet develops, by the time it reaches r/D = 1.5
it has begun to slightly decelerate, with a maximum radial
velocity declining from about to about 1.02Ub. At the same
time, the wall jet has also become more turbulent. The mag-
nitudes of the maximum axial, radial fluctuations, along with
the Reynolds shear stress, see significant increases. Compared
to the experimental results, the discrepancies remain relatively
small, with only the Reynolds shear stress once again slightly
overestimated.

At r/D = 2, the wall jet has decelerated in earnest, reach-
ing a maximum radial velocity just below 0.8Ub. At the same
time, the turbulent intensity of the jet has continued to in-
crease, reaching a maximum (relative to the other stations
sampled) for the axial and radial fluctuations, as well as in
the Reynolds shear stress. Notably, this radial station is also
approximately the location of the secondary peak of the Nus-
selt number, which will be discussed in Section IV C.

Lastly, at r/D = 2.5, the wall jet has both thickened and de-
celerated. This time, the maximal magnitude of the turbulent
fluctuations has decreased relative to the previous station.

When taking into account the level of uncertainty in the ex-
perimental Reynold stress statistics is between 5− 8%37, the
overall agreement of the flow statistics with the experiments
is very good, particularly in the wall jet. Even the coarsest
mesh, which has rather poor radial resolution at the pipe walls
(∆r+ as high as 9.05) and jet shear layer, was able to pro-
duce largely satisfactory results for almost every quantity at
almost every station. It can be hypothesized that the excellent
azimuthal mesh resolution, as well as the excellent axial (in
the free-jet) and radial (in the wall-jet) resolution plays a role
here.

C. Heat Transfer and Shear Stress at the Impinged Plate

The temporal and azimuthally averaged Nusselt number,
which signifies the ratio of convective to conductive heat
transfer, is defined as:

〈Nu〉t,az(r) =
〈h〉t,az(r)D

λ f
, (16)

where h(r,φ , t) is the heat transfer coefficient defined as:

h(r,θ , t) =
qw(r,θ , t)
Tre f −Tw

, (17)

and where qw is the local wall heat transfer that takes into ac-
count the fluid thermal conductivity λ f , which varies accord-
ing to Sutherland’s law, as well as SGS thermal conductivity
λSGS:

qw(r,φ , t) = (λ f (r,φ , t)+λsgs(r,φ , t))
∂T
∂n

(r,φ , t) (18)

The choice of λ f for the denominator in Eq. 16 can vary when
using compressible solvers with variable viscosity. Otero-
Pérez and Sandberg41, in their study of Mach number and
temperature gradient effects on impinging jet heat transfer,
noted that the variation of λ f has rarely been evoked in the
literature (as this test case has mostly been done for incom-
pressible flows). They state that either λ f (T ) or λ f constant
can be used in the calculation of the Nusselt number. In this
particular case, the low Mach number and temperature gradi-
ent lead to only minor differences. Here, the denominator in
Eq. 16 will be taken as λ f ,∞, or the thermal conductivity of air
at T∞, as is done in the study of Aillaud et al.10.

Figure 7a shows the temporal and azimuthally averaged
Nusselt number for all three meshes along the impingement
surface up to r/D = 3, along with the experimental results
found by Baughn and Shimizu40 at Re = 23 750, as well as
those found by Fénot et al.39 at Re = 23 000. Impinging
jet Nusselt number results exhibit a wide degree of variation
across different experiments in the literature, and here the LES
results are found to be largely in between the two results, with
a slight overestimation in the stagnation zone. The Nusselt
number in the vicinity of the jet impact for all three meshes is
close to those of Baughn and Shimizu, but the decline along
the wall jet region is slightly more marked, reaching levels
slightly below those of Fénot et al. at around r/D = 1.25.
Mesh 1 exhibits a noticeably weaker second peak, but it still
attains a level of heat transfer similar to the one observed by
Fénot et al. Mesh 2 and Mesh 3 show a strong second peak
reaching the level of Baughn and Shimizu. Overall, taking
into account the large variations in the Nusselt number seen in
experiments, the agreement between the simulations and the
experiments can be considered good. It is interesting to note
that Mesh 1, despite the wall-normal mesh resolution that falls
far below the levels typically recommended (∆y+ = 8.45), is
still able to recover a rather accurate secondary peak. It is
likely that the high radial and azimuthal resolution plays a
significant role here, as it has been hypothesized that the phe-
nomena that produce the secondary peak of the Nusselt num-
ber show significant stream and spanwise non-homogeneity11.

Figure 7b shows the normalized wall shear stress compared
with the results of Tummers et al.37. The results for Meshes 2
and 3 show good agreement, although there are important dis-
crepancies between r/D = 0.5 and r/D = 1, though the small
number of experimental points make it difficult to evaluate the
degree of discrepancy in this zone. In contrast, Mesh 1 largely
underestimates the near-wall shear stress. The LES of Aillaud
et al.10 similarly found that the wall shear stress was more
sensitive to mesh resolution than the Nusselt number.

The flow-field statistics and surface quantities are overall
in good agreement with the experimental literature for for
Meshes 2 and 3. With the exception of the mean wall shear
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FIG. 6: Azimuthally averaged flow statistics along y in the wall jet for r/D = 0.75 to r/D = 2.5. ( Mesh 1), ( Mesh 2),
( Mesh 3), (◦ Tummers, et al.37)
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stress, even Mesh 1 is capable of producing very satisfactory
statistical results at a fraction of the cost. We will next per-
form an examination of the unsteady flow structures, in order
to determine whether the LBM approach used here is capable
of producing the same qualitative flow features seen in other
LES in the literature. This investigation is performed with
Mesh 2.

V. UNSTEADY FLOW CHARACTERISTICS

A. Primary Structures

The presence of azimuthally coherent vortical structures in
the free-jet shear layer is well attested for jets issuing from
converging nozzles. However, these structures are not always
seen for long pipe jets, both in experiments and in unsteady

simulations. Mi et al.42 compared the flow-field downstream
of the nozzle for both a converging nozzle injection and a long
pipe injection at Re = 16 000, and found that there were no
periodic azimuthally coherent structures in the early stages of
the free jet for the long pipe injection jet. By contrast, the
experiment of Grenson et al.43 at Re = 60 000 revealed the
formation of large scale structures immediately downstream
of the nozzle. The LES of Hadžiabdić and Hanjalić8 showed
structures with weak azimuthal coherence immediately down-
stream of the nozzle, while the simulation of Uddin et al.9 did
not show any azimuthally coherent structures in the free jet
at all. By contrast, the simulations of Aillaud et al.10 and of
Grenson and Deniau11 produced highly coherent structures in
the free jet.

Figure 8 shows an instantaneous snapshot of the pressure iso-
surfaces, colored by distance from the impingement plate.
The structures in the free-jet, together with the vortex ring
at the wall jet, display a moderate degree of azimuthal coher-
ence. In order to identify the frequency of azimuthally co-
herent structures, probes are placed in the domain, with an
azimuthal resolution of ∆φ = π/4, and an axial resolution of
∆y/D = 0.1. The outputs are taken at a frequency equivalent
to St = 867.5. To capture the azimuthally coherent structures,
the probes are azimuthally averaged.

Figure 9 shows a map of the dominant frequencies of pres-
sure along the y-axis at two radial locations r/D = 0.5 and
r/D = 1.25. It can be seen that the frequency of the primary
structures in the jet shear layer and wall jet is equal to approx-
imately St = 0.65.

Figure 10 shows a view "beneath" the impinged plate. The
primary structures, represented by the isosurfaces of static
pressure, are colored in blue and are located at approximately
r/D = 1.5. Iso-surfaces of the Q-criterion are colored in
green. The zones of flow separation at the impact plate, de-
fined as regions where the radial wall shear stress τw,r < 0, are
colored in black. The effect of the impact of the primary struc-
tures near the wall has been subject to some variation within
the literature. The DNS of Dairay, et al.33 (using a converg-
ing nozzle injection) and the LES of Aillaud, et al.10 showed a
secondary ring vortex, produced by the passage of the primary
vortex, that showed a high degree of azimuthal coherence. By
contrast, the LES of Uddin et al.9 did not show any near-wall
separation, whereas the LES of Grenson and Deniau11 showed
unsteady separation, but in the form of isolated spots rather
than as a coherent ring. The experimental study of Yadav and
Agrawal44 observed secondary vortices for Re = 3 050 and
5 700, but not for Re = 10 000. In the present LES, the near-
wall flow separation behavior is similar to the one shown in
the study of Grenson, et al.11. While a roughly coherent ring
of structures of azimuthal vorticity can be seen near the pri-
mary structures via the Q-criterion, only small patches of the
boundary layer show flow separation.
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FIG. 8: Iso-contours of instantaneous p = p∞−100Pa showing the primary structures in the free and wall jet, along with the
instantaneous Nusselt number distribution. Solid black lines represent r/D = 1.0, r/D = 2.0, and r/D = 3.0

As described by Grenson and Deniau11, the passage of the
primary structures in the wall jet can be visualized with spa-
tiotemporal maps of azimuthally averaged quantities. They
are, the azimuthally averaged Nusselt number 〈Nu〉az, the az-
imuthally averaged shear stress 〈τw,r〉az, and the separation
force Fsep defined as :

〈Nu〉az(r, t) =
1

2π

∫ 2π

0
Nu(r,φ , t)dφ (19)

〈τw,r〉az(r, t) =
1

2π

∫ 2π

0
τw,r(r,φ , t)dφ (20)

Fsep(r, t) =
1

2π

∫ 2π

0
min[τw,r(r,φ , t),0]rdφ (21)

Figure 11a shows the evolution of the azimuthally averaged
Nusselt number over time and space. At r/D = 1.25, the pas-
sage of the primary structure, separated by the characteris-
tic time τSt , is associated with a dip in the Nusselt number,
forming a front of weak thermal exchanges similar to the one
described by Dairay et al.33 and Aillaud et al.10. However,
in contrast to these simulations and the one of Grenson and
Deniau11, no distinguishable periodic mode of strong thermal
exchanges at the radial location of the secondary peak can be
seen.

Examining Figure 11b, the radial shear stress at r/D < 0.1
is nearly zero, corresponding to the stagnation zone of the jet,
before increasing precipitously. For r/D < 1, the azimuthal
average is largely steady. Beyond this point, periodic declines

in the shear stress can be seen with the the same characteristic
time τSt , linking the passage of the primary structures with
lower radial shear stress. This phenomenon can be linked
to the unsteady separation. It can be seen from Figure 11c
that the flow separation occurs regularly with roughly the fre-
quency of the passage of the primary structures. Since the
zone of flow separation does not form a coherent ring, as
shown in Figure 10, this does not cause the azimuthally av-
eraged instantaneous radial shear stress to go below zero. The
flow separation begins at roughly r/D = 1.2, in agreement
with the experimental results observed by Tummers et al.37.
Similarly, the location where the separation criteria is at most
intense, at r/D ≈ 1.5 also corresponds to the local minimum
of the Nusselt number, as was also observed by Grenson and
Deniau11.

B. Near-Wall Aerothermal Dynamics

In order to evaluate the ability of the LBM solver to repro-
duce the fine near-wall physics, an examination of the instan-
taneous near-wall flow phenomena is performed. The two-
dimensional shear-stress vector τw can be considered as pro-
jections of the near-wall velocity onto the surface of the plate.
Thus, a criterion of near-wall 2-dimensional divergence can
be defined as:

div2D(τw) =
∂τw

∂ r
+

∂τw

∂ rφ
(22)
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FIG. 9: Iso-contours of the PSD of the azimuthally averaged
pressure signal in the (St, y/D) plane at r/D = 0.5 (top) and

r/D = 1.25 (bottom)

FIG. 10: View from "below" the impinged plate, with
iso-surfaces of p = p∞−100Pa in blue, and iso-surfaces of

the Q-criterion in green. The dark regions represent zones of
near-wall flow separation. Solid black lines represent

r/D = 1,2,3

Since this flow is considered to be incompressible, positive
2D divergence in the near-wall r−φ plane indicates flow from
above "downwashing" onto the plane.

Figure 12 shows the instantaneous distribution of the Nusselt
number for one quarter of the impacted plate 0 < φ < π/2.
The top image highlights zones of flow separation through
contour lines of τw,r < 0, while the bottom image highlights
zones of downwash through contour lines of div2D(τw). It
can be seen that there are far more thermal spots than there
are spots of local flow separation, indicating that the principal
increases in local heat transfer do not directly originate from
unsteady separation.

By contrast, almost all thermal spots correspond to the con-
tour lines of 2D divergence. Since the divergence is neces-
sarily compensated by fluid coming from above, and since
this fluid is generally colder than the fluid near the impinged
plate, greater 2D divergence leads to a greater value of the
Nusselt number. This is strongly in line with the results re-
ported by Grenson and Deniau11, who denoted that all thermal
spots were associated with the divergence of the friction lines.

To examine the near-wall flow conditions leading to the di-
vergence of the 2D shear-stress vectors at the wall, and the
subsequent increase in thermal exchanges, it is instructive to
inspect the 3D near-wall flow field.

Figure 13a shows the topology of an "impingement" type
thermal spot. On the left, the colormap shows that Nusselt
number at this spot high, and the friction lines in the vicin-
ity of the spot, together with the colormap of the radial shear
stress as seen in Figure 13a(b), indicate a local flow reversal
near the wall. As previously shown in Figure 10, the flow sep-
aration is only a "patch", rather than forming a ring. In fact,
the thermal spot to the right and above the "impingement" spot
shows streamlines diverging in the azimuthal, not radial direc-
tion. Finally, the 3-D view on the right shows the r− y plane
intersecting the thermal spot. Flow separation of the bound-
ary layer ejects hot fluid upward while bringing cold fluid to-
wards the plate, thinning the temperature boundary layer and
enhancing thermal exchanges.

Figure 13b shows the formation of a near-wall streamwise
flow structure leading to a thermal spot, with iso-surfaces of
the Q-criterion colored in green. On the left, the vorticity is
first oriented in the azimuthal direction, with boundary layer
separation. The center image shows the structure breaking
down and stretching in the radial direction, forming a stream-
wise structure. The friction lines underneath the streamwise
structure diverge in the azimuthal direction. On the right, the
intersection with the φ−y plane shows the up and down-wash
induced by the streamwise structure. This phenomenon is
similar to the one seen for the "impingement" structure, but
with the mixing occurring in a plane perpendicular to the flow
direction. Not all streamwise structures are formed by the
breakdown of an impingement structure, and further analysis
is required to better characterize their formation.

The hybrid compressible LBM approach is able to produce
fine near-wall flow dynamics that are similar to the ones ob-
served by Grenson and Deniau11, despite lacking the same de-
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FIG. 11: Spatiotemporal map of key azimuthally averaged surface quantities

gree of azimuthal coherence in the primary structures and in
their near-wall footprint, as seen by the spatio-temporal maps
in Figure 11. Combined with the excellent flow statistics dis-
played in Section IV, this hybrid LBM approach is shown to
be capable of performing aerothermal simulations of moder-
ate complexity in the incompressible regime. Testing this ap-
proach on compressible jets is thus a natural extension of this
study for future work.
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(a) Three views around an "impingement" type thermal spot, showing instantaneous Nusselt number (left), zones of negative radial shear
stress (center), and local flow separation in the r− y plane (right). The black arrow points in the radial flow direction.
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(b) Breakdown of an "azimuthal" structure (left) into a "streamwise" (center) structure, showing its associated thermal spot and intersection
with the φ − y plane (right).

FIG. 13: Near-wall flow topology around thermal spots
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VI. CONCLUSIONS

An LES of an axisymmetric thermal impinging jet issu-
ing from a pipe was performed using a compressible Lat-
tice Boltzmann Method. Using an improved-density based
thermal equilibrium, an entropy equation resolved by finite
differences, cut-cell full reconstruction boundary treatment,
direct-coupling transition algorithms, and non-homogeneous
anisotropic turbulence injection, very good jet flow-field
statistics and surface quantities were obtained for the two finer
grids, while good results, with the exception of the wall shear
stress, were obtained for the coarser one.

The simulations performed in this article also made use
of anisotropic, non-homogeneous turbulence injection, pro-
ducing satisfactory results for a reasonably short entrance
length. However, the non-homogeneous anisotropic fluctua-
tions produced non-physical pressure fluctuations that had to
be damped via a sponge zone, and better results might be ob-
tained with different approaches to turbulence injection that
do not rely on homogeneous isotropic length-scales.

The simulation produced a free-jet whose vortex structures
displayed a mild degree of azimuthal coherence. The vortex
structures in the wall-jet led to local unsteady flow separation
at the wall, although generally these zones of flow separation
were relatively isolated. The thermal spots at the wall involv-
ing flow separation were significantly less common than ther-
mal spots that did not involve flow separation. The near-wall
flow structures leading to the thermal spots were similar to the
ones observed by Grenson and Deniau11.

Although it can be seen here that an LBM approach can be
a valid choice for this test case, it is by no means established
here that it is a conclusively superior choice. The use of Carte-
sian meshes means that in regions of high flow anisotropy (in
this case: the pipe boundary layer, the free jet shear layer, the
impact zone, and the wall-jet), wall-resolved LBM approaches
require significantly greater numbers of mesh elements com-
pared to traditional Navier-Stokes approaches that can make
use of grid stretching. However, this significantly larger mesh
is not without its advantages. Attaining reasonably high wall-
normal or shear-layer resolution using this approach also re-
sults in excellent mesh resolution in the streamwise and span-
wise direction, which may be a factor in the high quality of
the flow-field results seen in this paper.

The hybrid compressible LBM approach has thus shown
that it is sufficiently mature to perform nearly incompressible
test cases of moderate complexity. An interesting subject of
further investigation would be the simulation of compressible
impinging jets involving higher Mach numbers and/or temper-
ature differences.
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Appendix A: The Chapman-Enskog development

Let us start from the discrete velocity Boltzmann BGK
equation. As was the case in Section II, the variables are here
presented in non-dimensional form.

∂ fi

∂ t
+ ciα

∂ fi

∂xα

=−1
τ
( fi− f eq

i )+ψi (A1)

The moments of f eq
i for the D3Q19r Lattice (which fails

to properly recover the third order equilibrium moment), are
defined as:

∑
i

f eq
i = Π

eq
0 = ρ (A2)

∑
i

ciα f eq
i = Π

eq
α = ρuα (A3)

∑
i

ciα ciβ f eq
i = Π

eq
αβ

= ρuα uβ +ρc2
s θδαβ (A4)

∑
i

ciα ciβ ciγ f eq
i =Π

eq∗
αβγ

= ρuα uβ uγ+

ρc2
s (uα δβγ +uβ δαγ +uγ δαβ )+

Errαβγ

(A5)

Equation A1 is expanded to zeroth and first order according
to a parameter ε related to the Knudsen number, such that
the temporal operator is defined as ∂

∂ t ≈ ∂

∂ t(0)
+ ε

∂

∂ t(1)
. The

equations at order zero and one are, respectively:

∂ f (0)i

∂ t(0)
+ ciα

∂ f (0)i
∂xα

=−1
τ
( f (1)i )+ψi (A6)

∂ f (1)i

∂ t(0)
+

∂ f (0)i

∂ t(1)
+ ciα

∂ f (1)i
∂xα

=−1
τ
( f (2)i ) (A7)

The zeroth, first, and second order moments of Eq. A6 are:

∂ρ

∂ t(0)
+

∂ρuα

∂xα

= 0 (A8)

∂ρuα

∂ t(0)
+

∂ (ρuα uβ +ρc2
s θδαβ )

∂xβ

= 0 (A9)

∂ (ρuα uβ +ρc2
s θδαβ )

∂ t(0)
+

∂Π
eq∗
αβγ

∂xβ

=−1
τ
(Π

(1)
αβ

)+Ψαβ

(A10)
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The zeroth and first order moments of Eq. A7 are:

∂ρ

∂ t(1)
= 0 (A11)

∂ρuα

∂ t(1)
+

∂Π
(1)
αβ

∂xβ

= 0 (A12)

Thus, the second order moment of f (1)i is:

Π
(1)
αβ

=−τ

{∂ (ρuα uβ +ρc2
s θδαβ )

∂ t(0)
+

∂Π
eq∗
αβγ

∂xβ

−Ψαβ

}
(A13)

Performing algebraic manipulations for the first term in the
braces:

∂ (ρuα uβ +ρc2
s θδαβ )

∂ t(0)
=uα

∂uβ

∂ t(0)
+uβ

∂uα

∂ t(0)
+

(c2
s δαβ −uα uβ )

∂ρ

∂ t(0)
+

∂ρc2
s (θ −1)
∂ t(0)

δαβ

=−∂ρuα uβ uγ

∂xγ

−
[
uα

∂ρc2
s θ

∂xβ

+uβ

∂ρc2
s θ

∂xα

]
−

c2
s

∂ρuγ

∂xγ

δαβ +
∂ρc2

s (θ −1)
∂ t(0)

δαβ

Reinserting this term into Eq. A13, we obtain:

Π
(1)
αβ

=−τ

{
− ∂ρuα uβ uγ

∂xγ

−
[
uα

∂ρc2
s θ

∂xβ

+uβ

∂ρc2
s θ

∂xα

]
−

c2
s

∂ρuγ

∂xγ

δαβ +
∂ρc2

s (θ −1)
∂ t(0)

δαβ +
∂Π

eq∗
αβγ

∂xγ

−Ψαβ

}
(A14)

The spatial derivative of the third order equilibrium moment
with error is defined as:

Π
eq∗
αβγ

∂xγ

=
∂ρuα uβ uγ

∂xγ

+

c2
s (

∂ρuα

∂xβ

+
∂ρuβ

∂xα

+
∂ρuγ

∂xγ

δαβ )+
∂Errαβγ

∂xγ

(A15)

Inserting this term into Eq. A14, and performing some sim-
plifications, we obtain

Π
(1)
αβ

=−τ

{
c2

s (
∂ρuα

∂xβ

+
∂ρuβ

∂xα

)−
[
uα

∂ρc2
s θ

∂xβ

+uβ

∂ρc2
s θ

∂xα

]
+

∂ρc2
s (θ −1)
∂ t(0)

δαβ +
∂Errαβγ

∂xγ

−Ψαβ

}
(A16)

Since ∂ρc2
s θ

∂xβ
= c2

s (
∂ρ

∂xβ
+ ∂ρ(θ−1)

∂xβ
) and ∂ρuα

∂xβ
= ρ

∂uα

∂xβ
+uα

∂ρ

∂xβ
,

a further simplification leads to:

Π
(1)
αβ

=−τ

{
ρc2

s (
∂uα

∂xβ

+
∂uβ

∂xα

)−

c2
s (uα

∂ρ(θ −1)
∂xβ

+uβ

∂ρ(θ −1)
∂xα

)+

∂ρc2
s (θ −1)
∂ t(0)

δαβ +
∂Errαβγ

∂xγ

−Ψαβ

} (A17)

The second moment Ψαβ of the forcing term ψi can thus be
set to:

Ψαβ = ρc2
s

2
3

∂uγ

∂xγ

δαβ + c2
s (uα

∂ρ(θ −1)
∂xβ

+uβ

∂ρ(θ −1)
∂xα

)+

∂ρc2
s (θ −1)
∂ t(0)

δαβ +
∂Errαβγ

∂xγ

,

(A18)

where
∂Errαβγ

∂xγ
represents the term meant to eliminate the er-

rors introduced by the D3Q19 lattice and is defined as:

∂Errαβγ

∂xγ

=−


∂ρuxuxux

∂x
∂ρuxuyuz

∂ z
∂ρuxuyuz

∂y
∂ρuxuyuz

∂ z
∂ρuyuyuy

∂y
∂ρuxuyuz

∂x
∂ρuxuyuz

∂y
∂ρuxuyuz

∂ z
∂ρuzuzuz

∂ z

 (A19)

Thus, yielding the traceless viscous stress tensor found in the
Navier-Stokes equations:

Π
(1)
αβ

=−τρc2
s

[
∂uα

∂xβ

+
∂uβ

∂xα

− 2
3

∂uγ

∂xγ

δαβ

]
(A20)
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8M. Hadžiabdić and K. Hanjalić, “Vortical structures and heat transfer in a
round impinging jet,” Journal of Fluid Mechanics 596, 221–260 (2008).

9N. Uddin, S. Neumann, and B. Weigand, “LES simulations of an impinging
jet: On the origin of the second peak in the Nusselt number distribution,”
International Journal of Heat and Mass Transfer 57, 356–368 (2013).

10P. Aillaud, F. Duchaine, L. Y. M. Gicquel, and S. Didorally, “Secondary
peak in the Nusselt number distribution of impinging jet flows: A phe-
nomenological analysis,” Physics of Fluids 28, 606–219 (2016).

http://dx.doi.org/10.1016/S0065-2717(06)39006-5
http://dx.doi.org/10.1016/S0065-2717(06)39006-5
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2021.122067
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2021.122067
http://dx.doi.org/10.1016/0142-727X(92)90017-4
http://dx.doi.org/10.1016/0142-727X(92)90017-4
http://dx.doi.org/ 10.1080/01457632.2012.614154
http://dx.doi.org/ 10.1080/01457632.2012.614154
http://dx.doi.org/10.1016/j.expthermflusci.2014.06.010
http://dx.doi.org/10.1016/j.expthermflusci.2014.06.010
http://dx.doi.org/ 10.18280/ijht.350121
http://dx.doi.org/ 10.18280/ijht.350121
http://dx.doi.org/ 10.1017/S002211200700955X
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.052
http://dx.doi.org/10.1063/1.4963687


Large Eddy Simulation of a Thermal Impinging Jet using the Lattice Boltzmann Method 20

11P. Grenson and H. Deniau, “Large-eddy simualtion of an impinging heated
jet for a small nozzle-to-plate distance and high reynolds number,” Interna-
tional Journal of Heat and Fluid Flow 68, 348–363 (2017).

12A. Colombie, E. Laroche, F. Chedevergne, R. Manceau, F. Duchaine, and
L. Gicquel, “Large-eddy-simulation-based analysis of reynolds-stress bud-
gets for a round impinging jet,” Physics of Fluids 33, 511–525 (2021).

13R. Löhner, “Towards overcoming the LES crisis,” International Journal of
Computational Fluid Dynamics 33, 87–97 (2019).

14Y. Hou, D. Angland, A. Sengissen, and A. Scotto, “Lattice-Boltzmann and
Navier-Stokes simulations of the partially dressed, cavity-closed nose land-
ing gear benchmark case,” in 25th AIAA/CEAS Aeroacoustics Conference
(2019) pp. 1–20.

15M. Daroukh, T. Le Garrec, and C. Polacsek, “Low-speed turbo-
fan aerodynamic and acoustic prediction with an isothermal lat-
tice boltzmann method,” AIAA Journal 60, 1152–1170 (2022),
https://doi.org/10.2514/1.J060752.

16T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and
E. Viggen, The Lattice Bolzmann Method (Springer, 2017).

17Y. Feng, P. Bovin, J. Jacob, and P. Sagaut, “Hybrid recursive regularized
thermal lattice boltzmann model for high subsonic compressible flows,”
Journal of Computational Physics 394, 82–99 (2019).

18S. Guo and Y. Feng and J. Jacob and F. Renard and P. Sagaut, “An efficient
lattice boltzmann method for compressible aerodynamics on d3q19 lattice,”
Journal of Computational Physics 418, 109570 (2020).

19S. Guo and Y. Feng and P. Sagaut, “Improved standard thermal lattice boltz-
mann model with hybrid recursive regularization for commpressible lami-
nar and turbulent flows,” Physics of Fluids 32, 126108 (2020).

20F. Renard and Y. Feng and J. F. Boussuge and P. Sagaut, “Improved com-
pressible hybrid lattice boltzmann method on standard lattice for subsonic
and supersonic flows,” Computers and Fluids 219, 104867 (2021).

21G. Farag and T. Coratger and G. Wissocq and S. Zhao and P. Boivin and P.
Sagaut, “A unified hybrid lattice-boltzmann method for compressible flows:
Bridging between pressure-based and density-based methods,” Physics of
Fluids 33, 086101 (2021).

22J. Jacob, O. Malaspinas, and P. Sagaut, “A new hybrid recursive regularised
bhatnagar–gross–krook collision model for lattice boltzmann method-based
large eddy simulation,” Journal of Turbulence 19, 1051–1076 (2018),
https://doi.org/10.1080/14685248.2018.1540879.

23G. Farag and S. Zhao and T. Coratger and P. Boivin and G. Chiavassa and
P. Sagaut, “A pressure-based regularized lattice-boltzmann method for the
simulation of compressible flows,” Physics of Fluids 32, 066106 (2020).

24M. Bauer, G. Silva, and U. Rüde, “Letter to the editor: Truncation errors
of the d3q19 lattice model for the lattice boltzmann method,” Journal of
Computational Physics 405 (2020), 10.1016/j.jcp.2019.109111.

25E. Lévêque and F. Toschi and L. Shao, “Shear-improved smagorinsky
model for large-eddy simulation of wall-bounded turbulent flows,” Journal
of Fluid Mechanics 570, 491–502 (2007).

26B. Dorschner, S. S. Chikatamarla, F. Bösch, and I. V. Karlin, “Grad’s ap-
proximatino for moving and stationary walls in entropic lattice boltzmann
simulations,” Journal of Computational Physics 295, 340–354 (2015).

27M. Bouzidi, “Momentum transfer of a boltzmann-lattice fluid with bound-
aries,” Physics of Fluids 13, 3452 (2001).

28Y. Feng, S. Guo, J. Jacob, and P. Sagaut, “Solid wall and open bound-

ary conditions in hybrid recursive regularized lattice boltzmann method for
compressible flows,” Physics of Fluids 31, 126103 (2019).

29T. Astoul, G. Wissocq, J.-F. Boussuge, A. Sengissen, and P. Sagaut, “Lat-
tice boltzmann method for computational aeroacoustics on non-uniform
meshes: A direct grid coupling approach,” Journal of Computational
Physics 447, 110667 (2021).

30X. Wu, “Inflow turbulence generation methods,” Annual Review of Fluid
Mechanics 49, 23–49 (2017).

31G. Tabor and M. H. Baba-Ahmadi, “Inlet conditions for large eddy simula-
tion: A review,” Computers and Fluids 39, 553–567 (2010).

32A. S. L. N. S. Dhamankar, G. A. Blaisdell, “Overview of turbulent inflow
boundary conditions for large-eddy simulations,” AIAA Journal 56, 1317–
1334 (2017).

33T. Dairay, V. Fortuné, E. Lamballais, and L.-E. Brizzi, “Direct numerical
simulation of a turbulent jet impinging on a heated wall,” Journal of Fluid
Mechanics 764, 362–394 (2015).

34X. Wu, J. R. Baltzer, and R. J. Adrian, “Direct numerical simulation of a
30r long turbulent pipe flow at r+ = 685: large and very large-scale mo-
tions,” Journal of Fluid Mechanics 698, 235–281 (2012).

35M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “Synthetic
turbulence generators for rans-les interfaces in zonal simulations of aero-
dynamic and aeroacoustic problems,” Flow, Turbulence, and Combustion
93, 63–92 (2014).

36C. Bailly and D. Juvé, “A stochastic approach to compute subsonic noise
using linearized euler’s equations,” in 5th AIAA?CEAS Aeroacoustics Con-
ference Exhibition (1999) pp. 496–506.

37M. Tummers, J. Jacobse, and J. Voorbrood, “Turbulent flow in the near field
of a round impinging jet,” International Journal of Heat and Mass Transfer
54, 4939–4948 (2011).

38H. Choi and P. Moin, “Grid-point requirements for large-eddy simulation:
Chapman’s estimates revisited,” Physics of Fluids 24, 47–57 (2012).

39M. Fenot, J.-J. Vullierme, and E. Dorignac, “Local heat transfer due to
several configurations of circular air jets impinging on a flat plate with and
without semi-confinement,” International Journal of Thermal Sciences 44,
665–675 (2005).

40J. W. Baughn and S. Shimizu, “Heat transfer measurements from a surface
with uniform heat flux and an impinging jet,” Journal of Heat Transfer 111,
1096–1098 (1989).

41J. J. Otero-Pérez and R. D. Sandberg, “Compressibility and variable inertia
effects on heat transfer in turbulent impinging jets,” Journal of Fluid Me-
chanics 887, A15 (2020).

42J. Mi, D. S. Nobes, and G. J. Nathan, “Influence of jet exit conditions on the
passive scalar field of an axisymmetric free jet,” Journal of Fluid Mechanics
432, 91–125 (2001).

43P. Grenson, O. Léon, P. Reulet, and B. Aupoix, “Investigation of an imping-
ing heated jet for a small nozzle-to-plate distance and high reynolds num-
ber: An extensive experimental approach,” International Journal of Heat
and Mass Transfer 102, 801–815 (2016).

44H. Yadav and A. Agrawal, “Effect of vortical structures on velocity and
turbulent fields in the near region of an impinging turbulent jet,” Physics of
Fluids 30 (2018), 10.1063/1.5001161.

http://dx.doi.org/ 10.1016/j.ijheatfluidflow.2017.09.014
http://dx.doi.org/ 10.1016/j.ijheatfluidflow.2017.09.014
http://dx.doi.org/10.1063/5.0064009
http://dx.doi.org/ 10.1080/10618562.2019.1612052
http://dx.doi.org/ 10.1080/10618562.2019.1612052
http://dx.doi.org/10.2514/6.2019-2555
http://dx.doi.org/10.2514/1.J060752
http://arxiv.org/abs/https://doi.org/10.2514/1.J060752
http://dx.doi.org/ 10.1016/j.jcp2019.05.031
http://dx.doi.org/10.1016/j.jcp.2020.109570
http://dx.doi.org/ 10.1063/5.0033364
http://dx.doi.org/ 10.1016/j.compfluid.2021.104867
http://dx.doi.org/ 10.1063/5.0057407
http://dx.doi.org/ 10.1063/5.0057407
http://dx.doi.org/ 10.1080/14685248.2018.1540879
http://arxiv.org/abs/https://doi.org/10.1080/14685248.2018.1540879
http://dx.doi.org/10.1063/5.0011839
http://dx.doi.org/10.1016/j.jcp.2019.109111
http://dx.doi.org/10.1016/j.jcp.2019.109111
http://dx.doi.org/10.1017/S0022112006003429
http://dx.doi.org/10.1017/S0022112006003429
http://dx.doi.org/10.1016/j.jcp.2015.04.017
http://dx.doi.org/ 10.1063/1.1399290
http://dx.doi.org/10.1063/1.5129138
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110667
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110667
http://dx.doi.org/10.1146/annurev-fluid-010816-060322
http://dx.doi.org/10.1146/annurev-fluid-010816-060322
http://dx.doi.org/ 10.1016/j.compfluid.2009.10.007
http://dx.doi.org/10.2514/1.J055528
http://dx.doi.org/10.2514/1.J055528
http://dx.doi.org/ 10.1017/jfm.2014.715
http://dx.doi.org/ 10.1017/jfm.2014.715
http://dx.doi.org/10.1017/jfm.2012.81
http://dx.doi.org/10.1007/s10494-014-9534-8
http://dx.doi.org/10.1007/s10494-014-9534-8
http://dx.doi.org/10.2514/6.1999-1872
http://dx.doi.org/10.2514/6.1999-1872
http://dx.doi.org/ 10.1016/j.ijheatmasstransfer.2011.07.007
http://dx.doi.org/ 10.1016/j.ijheatmasstransfer.2011.07.007
http://dx.doi.org/ 110.1016/j.ijthermalsci.2004.12.002
http://dx.doi.org/ 110.1016/j.ijthermalsci.2004.12.002
http://dx.doi.org/10.1115/1.3250776.
http://dx.doi.org/10.1115/1.3250776.
http://dx.doi.org/10.1017/jfm.2020.5
http://dx.doi.org/10.1017/jfm.2020.5
http://dx.doi.org/10.1017/S0022112000003384
http://dx.doi.org/10.1017/S0022112000003384
http://dx.doi.org/ 10.1016/j.ijheatmasstransfer.2016.06.076
http://dx.doi.org/ 10.1016/j.ijheatmasstransfer.2016.06.076
http://dx.doi.org/10.1063/1.5001161
http://dx.doi.org/10.1063/1.5001161

	Large Eddy Simulation of a Thermal Impinging Jet using the Lattice Boltzmann Method
	Abstract
	Introduction
	Model Overview
	The Lattice Boltzmann Equation
	Improved Density-based Isotropic Equilibrium
	Hybrid Entropy Equation
	Subgrid Scale Model
	Boundary Treatment in LBM
	Transition Algorithms
	Anisotropic Turbulent Inflow

	Setup
	Flow Configuration
	Boundary Conditions
	LBM Model Parameters
	Meshing Strategy
	Simulation Strategy

	Simulation Statistics
	Pipe Velocity Profiles
	Jet Velocity Profiles
	Heat Transfer and Shear Stress at the Impinged Plate

	Unsteady Flow Characteristics
	Primary Structures
	Near-Wall Aerothermal Dynamics

	Conclusions
	Author Declarations
	Acknowledgements
	The Chapman-Enskog development


