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Abstract A large-eddy simulation (LES) model, using the one-equation subgrid-scale

(SGS) parametrization, was developed to study the flow and pollutant transport in and above

urban street canyons. Three identical two-dimensional (2D) street canyons of unity aspect

ratio, each consisting of a ground-level area source of constant pollutant concentration, are

evenly aligned in a cross-flow in the streamwise direction x . The flow falls into the skimming

flow regime. A larger computational domain is adopted to accurately resolve the turbulence

above roof level and its influence on the flow characteristics in the street canyons. The LES

calculated statistics of wind and pollutant transports agree well with other field, laboratory

and modelling results available in the literature. The maximum wind velocity standard devi-

ations σi in the streamwise (σu), spanwise (σv) and vertical (σw) directions are located near

the roof-level windward corners. Moreover, a second σw peak is found at z ≈ 1.5h (h is the

building height) over the street canyons. Normalizing σi by the local friction velocity u∗, it is

found that σu/u∗ ≈ 1.8, σv/u∗ ≈ 1.3 and σw/u∗ ≈ 1.25 exhibiting rather uniform values in

the urban roughness sublayer. Quadrant analysis of the vertical momentum flux u′′w′′ shows

that, while the inward and outward interactions are small, the sweeps and ejections dominate

the momentum transport over the street canyons. In the x direction, the two-point correlations

of velocity Rv,x and Rw,x drop to zero at a separation larger than h but Ru,x (= 0.2) persists

even at a separation of half the domain size. Partitioning the convective transfer coefficient

�T of pollutant into its removal and re-entry components, an increasing pollutant re-entrain-

ment from 26.3 to 43.3% in the x direction is revealed, suggesting the impact of background

pollutant on the air quality in street canyons.
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1 Introduction

Street canyons are the basic building units comprising the urban canopy layer (Oke 1976).

An idealized two-dimensional (2D) street canyon usually serves as the platform that eluci-

dates the fundamental mechanisms of ventilation and pollutant removal in urban areas. Oke

(1988) classified the flow patterns in a 2D street canyon into three characteristic regimes,

namely, isolated roughness, wake interference and skimming flow, according to the build-

ing-height-to-street-width (aspect) ratio h/b. The skimming flow regime, representing the

characteristic airflow in a street surrounded by high-rise buildings (h/b ≥ 0.7) is our major

concern nowadays. Inside the street canyons, the recirculating flow is driven by the shear

of the prevailing wind aloft. Owing to the isolated nature of the recirculations, the pollutant

removal from the street canyons is governed by turbulence, leading to a prolonged pollutant

residence and elevated pedestrian-level pollutant concentrations.

Field measurements, physical modelling and numerical simulation are techniques com-

monly used for air pollution studies in urban street canyons. Field data are obtained directly,

although the coverage of monitoring stations is limited due to the costly installation and oper-

ation. Moreover, it is sometimes difficult to differentiate the contributions from individual

factors (e.g. wind speed and thermal stability). By measuring the nitrogen oxides (NOx) con-

centrations in three streets in Copenhagen, Berkowicz et al. (1996) found that the pollutant

concentrations on the leeward side are higher than those on the windward side. This charac-

teristic pollutant distribution is consistent with the airflow in the skimming flow regime in

which the ground-level emissions are carried by the primary recirculation toward the leeward

side. Afterward, Louka et al. (1998, 2000) measured the wind speed and direction, and the

turbulence in between two pitched-roof buildings. The airflow inside the street canyons was

found to be intermittent, suggesting occurrences of flapping (Belcher 2005) and the Kelvin-

Helmholtz instability (Chandrasekhar 1981) of the roof-level shear layer. On the other hand,

measurements in Oklahoma City showed that an array of heterogeneous buildings promotes

turbulence levels (Nelson et al. 2007). The building geometry is thus a major factor affecting

the ventilation and pollutant removal in street canyons.

Physical modelling is the problem diagnosis using reduced-scale models in wind tunnels

or water channels. Under laboratory conditions, most of the testing parameters and sampling

points are fully controllable but the large-scale atmospheric turbulence is hardly replicated.

The discrepancy in that regard was demonstrated by Meroney et al. (1996) in which the

flow dynamics and pollutant dispersion in an isolated street canyon are different from their

periodic counterparts. Roughness elements are therefore usually included in wind-tunnel

experiments simulating an urban environment. Pavageau and Schatzmann (1999) performed

another wind-tunnel experiment to study the pollutant removal mechanism in periodic 2D

street canyons. Using 49 and 21 sampling points, respectively, inside and above the sample

street canyon, the spatial distributions of the mean and fluctuating pollutant concentrations

on the vertical centreplane were measured. On the other hand, using naphthalene sublimation

in a wind tunnel, Barlow and Belcher (2002) determined the convective transfer coefficient

�T of a pollutant to compare the pollutant removal rates of street canyons of different aspect

ratios. In the wake interference regime (0.4 < h/b < 0.7), �T increases with increasing

aspect ratio that extends into the skimming flow regime (h/b > 0.7), and eventually peaks

in the street canyon of aspect ratio between 0.6 and 0.8. Besides, Li et al. (2008a) recently

reported the mean and fluctuating velocities in street canyons of aspect ratio 0.5, 1 and 2

using water-channel experiments but pollutant dispersion was not included.

With rapidly improving computer power, computational fluid dynamics (CFD) has

become a popular tool to study the air pollution in street canyons in the last decade. The
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Large-Eddy Simulation of Flow and Pollutant Transports 413

Reynolds-averaged Navier–Stokes (RANS) equations with the k − ε turbulence model and

the large-eddy simulation (LES) are mostly used in the community. The CFD studies for street

canyons, including their merits and key findings, are summarized elsewhere (Vardoulakis et

al 2003; Li et al. 2006). Unlike field or laboratory measurements, the variables in CFD are

calculated in the form of spatio-temporal functions, and CFD is often used to examine the

fundamental transport mechanisms since idealized conditions can be fully implemented in

sensitivity tests. To ensure modelling accuracy, validating the CFD results with experimental

data are necessary. Liu and Barth (2002) detailed the turbulence and pollutant statistics in an

idealized street canyon of unity aspect ratio using LES. Afterwards, Liu et al. (2005) proposed

the air exchange rate (ACH) and the pollutant exchange rate (PCH) to compare the perfor-

mance of ventilation and pollutant removal, respectively, in street canyons of aspect ratio

0.5, 1 and 2. On the other hand, Cui et al. (2004) applied the quadrant analysis to determine

the scales of the momentum transport at the roof level of street canyons. Although frequent

ejections are weak, a few strong sweeps dominate the momentum transport. Next, Letzel et al.

(2008) used the parallelized LES code PALM to study urban turbulence structures in which

the Kelvin-Helmholtz instability was identified atop a street canyon. Cai et al. (2008) exam-

ined the characteristic pollutant removal from street canyons of aspect ratio 1/3, 2/3, 1, 3/2

and 2 with line or area pollutant sources. Recently, Li et al. (2008a) studied momentum and

pollutant transport in deep street canyons of aspect ratio 3 and 5, which are commonly found

in dense compact cities across the world. Apart from isothermal conditions, the number of

large-eddy simulations investigating the effects of unstable stratification on the microscale

climate in street canyons is increasing (Cai 2009; Li et al. 2009, 2010; Park and Baik 2009).

Most of the aforementioned studies, either experimental or computational, have focused

only on the flow dynamics and pollutant transport inside or along the roof level of one single

street canyon. As such, we extended our LES covering the shear layer over the street can-

yons using an approach analogous to that in Kanda et al. (2004) and Coceal et al. (2007).

The major advancement in our study is that the flows inside the street canyons are well

resolved at a higher spatial resolution. The specific objectives are use of LES to elucidate

the turbulent transport processes of wind and pollutant, and their interactions both inside and

above the street canyons in detail. The results should enrich the fundamental understanding

of ventilation and pollutant removal in cities in the current era of rapid urbanization.

2 Methodology

The open-source CFD code OpenFOAM 1.5 (OpenFOAM 2009) was used in the LES in this

study. The detailed numerical methodology is reported below.

2.1 Governing Equations

In the LES, the flow variables are decomposed into the resolved-scale components (repre-

sented by overlines) and the subgrid-scale (SGS) components using a filtering operation. The

filtered continuity equation

∂ui

∂xi

= 0 (1)

and the filtered momentum equation

∂ui

∂t
+ ∂

∂x j

ui u j = −�Pδi1 − ∂ p

∂xi

− ∂τi j

∂x j

+ ν
∂2ui

∂x j∂x j

(2)
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414 W. C. Cheng, C.-H. Liu

were solved where ui are the resolved-scale velocity vectors, p is the resolved-scale kine-

matic pressure, ν is the kinematic viscosity, �P is the difference in large-scale kinematic

pressure, and δi j is the Kronecker delta. The SGS stresses τi j were modelled in the form

τi j = −2νSGS Si j (3)

where νSGS(= Ck k
1/2
SGS �) is the kinematic eddy viscosity, Si j (= 0.5[∂ui/∂x j + ∂u j/∂xi ])

is the strain-rate tensor, �(= [�1�2�3]1/3) is the filter width, and Ck(= 0.07) is the mod-

elling constant. The one-equation SGS model (Schumann 1975) was employed in which

the SGS turbulence kinetic energy (TKE) kSGS conservation was calculated by solving its

transport equation

∂kSGS

∂t
+ ∂

∂xi

kSGS ui = 2νSGS Si j Si j + (ν + νSGS)
∂2kSGS

∂xi∂xi

− Cε

k
3/2
SGS

�
(4)

where Cε(=1.05) is the modelling constant. The filtered scalar transport equation

∂c

∂t
+ ∂

∂xi

c ui = −∂γi

∂xi

+ ν

Sc

∂2c

∂xi∂xi

(5)

was solved where c is the resolved-scale pollutant concentration and Sc(=0.72) is the Schmidt

number. The SGS pollutant flux γi was modelled in the form

γi = −νSGS

Sc

∂c

∂xi

. (6)

2.2 Wall Model

The law of the wall due to Spalding (1962), which is applicable in entire laminar and turbulent

flow regimes, was used to model the near-wall flows in the LES because the transport process

in the domain core is our key concern. It is implemented mathematically solving

z+ = u+ + 1

E

{

eκu+ −
[

1 + κu+ + 1

2
(κu+)2 + 1

6
(κu+)3

]}

(7)

where uτ (= √
τw/ρ, τw is the wall shear stress and ρ is the fluid density) is the wall fric-

tion velocity, z+ = uτ z⊥/ν, u+ = u||/uτ , where z⊥ is the wall-normal distance, u|| is

the resolved-scale velocity component parallel to the wall, κ(= 0.42) is the von Kármán

constant, and E(= 9.0) is the empirical modelling constant. Equation (7) in turn implies that

u+ =
{

z+ if z+ is small (laminar sublayer) (8a)
1
κ ln

(

Ez+)

if z+ is large (logarithmic region), (8b)

which is consistent with the standard wall treatment (Launder and Spalding 1974). Equa-

tions (7) and (8) are solved iteratively for uτ , which is then used to calculate νSGS using

νSGS = u2
τ

∣

∣∇u|| · n̂
∣

∣

− ν, (9)

where n̂ is the wall-normal unit vector.
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2.2.1 Pollutant

The pollutant flux from the ground source is calculated from

c′′w′′
ground =

(

ν + νSGS

Sc

)

�c

�z⊥
(10)

where �c is the pollutant concentration difference and �z⊥ is the spacing between the ground

and the first grid point above the ground.

2.3 Computational Domain and Boundary Conditions

The computational domain consisted of three identical idealized 2D street canyons of unity

aspect ratio (h = b) that are placed beneath the shear layer of height h f (=5h; Fig. 1). For the

flow variables, free-slip and no-slip boundaries are applied, respectively, at the top and on all

the stationary walls. Periodic boundaries are used in the streamwise x and spanwise y direc-

tions. The prevailing flow in the shear layer is driven by the constant background pressure

difference �P in the streamwise momentum equation. The turbulence activation time is

50h/U f achieving pseudo steady-state, where U f is the prevailing wind speed. Another

period of time 50h/U f is used for data archive for the statistical analysis post-processing.

To model the pollutant sources, a constant pollutant concentration C0(=1) is prescribed

on all the streets. No background pollutant is considered so the pollutant concentration is

zero at the domain inlet. At the domain outlet, the open boundary condition for pollutant

concentration

∂c

∂t
+ u

∂c

∂x
= 0 (11)
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is used to prevent pollutant being reflected back into the domain. At the top and other solid

boundaries, zero-gradient boundaries of pollutant are used so deposition is not considered.

The entire spatial domain is discretized into 13.5 million brick elements, in which 0.5 mil-

lion and 12 million elements are used respectively, in each street canyon and the shear layer.

The homogeneous spanwise extent is discretized uniformly at grid spacing �y = 0.025h.

Structured mesh with grid stretching in x and z directions is employed. A higher resolution,

0.014h, is used near the buildings and streets resolving the high gradients, and in light of

the recirculation centre, the mesh resolution is relieved to 0.028h in the central core of the

street canyon. The mesh in the shear layer is further stretched in the z direction in which the

resolution equals 0.04h at the domain top. The timestep increment is 0.005h/U f where U f

is the prevailing wind speed. The Reynolds number Re(= U f h/ν) is 8,000. The resolved-

scale variables φ are decomposed into their mean 〈φ〉 and fluctuating φ′′ components (i.e.

φ = 〈φ〉 + φ′′), and the mean quantities, representing the ensemble average properties, are

averaged in the homogeneous spanwise direction and the temporal domain. The turbulence

statistics are further averaged based on the three identical street canyons. The computation

was carried out on a Xeon 8-core machine and the wall clock computation time was about

1,000 hours.

2.4 Numerical Method

The finite volume method (FVM) was used to solve the transport equations. The second-

order-accurate backward differencing scheme was used in the time derivatives while the

Gaussian integration with linear interpolation scheme (second-order-accurate central differ-

encing) was used in the spatial derivatives. The pressure-implicit with splitting of operators

(PISO) pressure-velocity coupling scheme was used in the pressure correction. The precon-

ditioned conjugate gradient (PCG) method was used to solve the linear equation systems for

p and the preconditioned bi-conjugate gradient (PBiCG) method for ui , kSGS and c.

3 Flow Field

3.1 Model Validation

The vertical profiles of the resolved-scale mean velocities, TKE, and velocity skewness and

kurtosis calculated by the current LES are compared with those of the wind-tunnel results of

Brown et al. (2000) and the large-eddy simulation of Cui et al. (2004) in Figs. 2–5. Brown

et al. (2000) carried out the experiment in the meteorological wind tunnel at the US Environ-

mental Protection Agency. It consisted of six identical idealized 2D street canyons of unity

aspect ratio assembled by seven identical building blocks of square cross-section (0.15 m ×
3.8 m × 0.15 m). The turbulence statistics in the sixth street canyon, representing the fully

developed wind profiles, were sampled. On the other hand, Cui et al. (2004) modified the

Regional Atmospheric Modelling System (RAMS 2009), which was originally designed for

mesoscale meteorological applications, to develop their LES model. The Smagorinsky eddy-

viscosity SGS model was used with a range of modelling constant values (0.08 ≤ Cε ≤ 0.12)

depending on the locations in the street canyon. A smaller Cε is adopted inside the street

canyon in order to reduce the unnecessary turbulence dissipation. The case CSV81 of Cui

et al. (2004) is employed in the current model validation exercise. In the comparison of the

mean velocities, both 〈u〉 and 〈w〉 are normalized by the average streamwise velocity Us at

height 1 ≤ z/h ≤ 1.5. As shown in Fig. 2, the current LES agrees well with the previous
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Large-Eddy Simulation of Flow and Pollutant Transports 417

Fig. 2 Vertical profiles of a 〈u〉 and b 〈w〉 at x/b = −0.4,−0.25, 0, 0.25 and 0.4. Current LES: black solid

line; Cui et al. (2004): red dashed line; and Brown et al. (2000): empty circle

LES (Cui et al. 2004) as well as the wind-tunnel experiment (Brown et al. 2000). A lower

mean vertical velocity 〈w〉 in the street canyon is observed in the LES compared with the

wind-tunnel experiment (Fig. 2b). Cui et al. (2004) suggested that the difference is attributed

to the shallow vertical extent of the computational domain and the coarse roof-level mesh

resolution. The computational domain of the current LES (6h × 5h × 6h) is larger than that

of (Cui et al., 2004, 2h × 3.25h × 2.25h), and three identical street canyons are considered

in the current LES but only one in Cui et al. (2004). Besides, in the current LES, the mesh

resolution is coarser (by 30%) in the streamwise direction but is more refined (by 20%) in the

vertical direction near the roof level. Apparently, increasing the domain size and the spatial

resolution cannot fully rectify the underpredicted mean vertical velocity in the street canyons.
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TKE TKE TKE TKE TKE TKE TKE TKE TKE TKE

Fig. 3 Vertical profiles of 〈T K E〉 at x/b = −0.4,−0.25, 0, 0.25 and 0.4. Current LES: black solid line; Cui

et al. (2004): red dashed line; and Brown et al. (2000): empty circle

A more detailed analysis is therefore required to examine the correlation among domain size,

mesh resolution, and recirculating flow speed.

Similar to the mean velocities, 〈TKE〉 is normalized by TKEs , which is its average at

height 1.0 ≤ z/h ≤ 1.5 over the street canyons (Fig. 3). A mild peak of 〈TKE〉 is observed

right over the roof level in the current LES. Neither the LES CSV81 of Cui et al. (2004) nor

the wind-tunnel experiment of Brown et al. (2000) showed a roof-level maximum. Indeed,

the peak is found in other large-eddy simulations (Liu and Barth 2002; Li et al. 2008b) and

in other cases of Cui et al. (2004) as well. Comparing with the wind-tunnel data, the TKE in

the street canyon is underpredicted in both the current LES and Cui et al. (2004), in which

large discrepancies are shown in the TKE profiles at x/b = 0.4.

In addition to the mean velocities and the TKE, the skewness sφ(=〈φ′′3〉/σ 3
φ ) and the

kurtosis kφ(=〈φ′′4〉/σ 4
φ ) of the streamwise (su and ku) and vertical (sw and kw) velocities

are calculated (Figs. 4, 5). Skewness and kurtosis measure the degree of the asymmetry and

peakedness, respectively, of a probability distribution. For the normal distribution, the skew-

ness is equal to zero and the kurtosis three. Similar patterns of su are depicted in the LES of

Cui et al. (2004) and the current LES (Fig. 4a). A mild peak (su > 0) is observed at the roof

level of the street canyons demonstrating the asymmetric nature of the turbulence in strong

shear. Besides, while moving toward the windward side from x/b = −0.4 to x/b = 0.4, su

spreads out from a sharp peak to a broad one below the roof level. Though the peak is not

clearly identified in the wind-tunnel experiment (likely due to the coarse sampling resolution),

su of the two large-eddy simulations fall within the data of Brown et al. (2000).

Similar to su, ku calculated by the two simulations are peaked near the roof level of the

street canyon except at x/b = 0.4 (Fig. 5a); the peak of ku is again not clearly resolved in

the wind-tunnel experiment. While moving from x/b = −0.4 to 0.25, the ku peak descends

from over to below the roof level, and finally it is almost flat out at x/b = 0.4. The more

uniform ku on the windward side is probably caused by the downward wall jet of fresh air

entrainment. The elevated roof-level su and ku suggest that the probability distribution of the

streamwise velocity deviates markedly from the normal distribution. In particular, the peaks
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s s s s s

ssss s

(a)

(b)

Fig. 4 Vertical profiles of a su and b sw at x/b = −0.4,−0.25, 0, 0.25 and 0.4. Current LES: black solid

line; Cui et al. (2004): red dashed line; and Brown et al. (2000): empty circle

are narrower with longer tails on the side u′′ > 0. In the rest of the street canyon, ku scatters

around three and su around zero, implying that the mean streamwise velocity is normally

distributed at large. The characteristic pattern of kw is not as obvious as its ku counterpart,

though both the LES and wind-tunnel results fluctuate around three (Fig. 5b).

The current LES results are also compared with those of other LES (Liu et al. 2004;

Li et al. 2008b) and a water-channel experiment (Li et al. 2008a). The vertical profiles of the

mean wind (〈u〉 and 〈w〉) and wind standard deviations (σu and σw) are shown in Figs. 6 and

7, respectively. The results are normalized by the free-stream speed U f . Owing to different

domain heights in the studies (Table 1), U f is taken at different heights. The channel height

in the water-channel experiment (Li et al. 2008a) is 5h (= 0.5 m) and U f is taken at 3h.
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(a)

(b)

Fig. 5 Vertical profiles of a ku and b kw at x/b = −0.4,−0.25, 0, 0.25 and 0.4. Current LES: black solid

line; Cui et al. (2004): red dashed line; and Brown et al. (2000): empty circle

Table 1 Height of

computational domain
Studies Height

LES, one-equation—current LES 6h

LES, dynamic (Liu and Barth 2002) 0.5h

LES, one equation (Li et al. 2008a) 1h

Water channel experiment (Li et al. 2008b) 3h

In the LES, U f is taken at the domain top. The results of 〈u〉 and 〈w〉 consistently depict the

skimming flow patterns in a street canyon. The vertical profiles of 〈w〉/U f at x/b = 0 mea-

sured in the water channel of Li et al. (2008a) show larger magnitudes that are not observed
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(a)

(b)

Fig. 6 Vertical profiles of a 〈u〉 and b 〈w〉 at x/b = −0.25, 0 and 0.25. Current LES: black solid line; Liu

et al. (2004): red dashed line; Li et al. (2008b): blue dotted line; and Li et al. (2008a): empty circle

in the wind-tunnel measurements of Brown et al. (2000), the LES of Cui et al. (2004) and the

current LES. The difference may be due to the finite width of the water channel compared

with the wider wind tunnel and the cyclic spanwise extent in the LES. Comparing the three

sets of LES results, a higher roof-level wind speed is observed in the LES with a lower domain

height. The shallower shear layer likely suppresses the wind-profile development over the

buildings leading to a higher roof-level speed. Nonetheless, the LES calculated flow patterns

agree with each other in principle.

The LES and water-channel results of σu and σw agree reasonably well in the street can-

yons (Fig. 7). Peaks of σw are observed in the LES of Li et al. (2008a) and Liu et al. (2004)

at the street canyon roof level, which, however, are not observed in the current LES. The

peaks are more obvious in Liu et al. (2004), which is believed to be the result of the shallow

shear layer employed in their LES. A shorter domain height increases the roof-level velocity

gradient that in turn promotes the local turbulence production leading to the elevated σw.

The enhanced roof-level turbulence is then carried by the primary recirculation into the street
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(b)

(a)

Fig. 7 Vertical profiles of a σu and b σw at x/b = −0.25, 0 and 0.25. Current LES: black solid line; Liu et al.

(2004): red dashed line; Li et al. (2008b): blue dotted line; and Li et al. (2008a): open circle

canyon. Hence, peaks of σw are observed at the street level in the LES of Liu et al. (2004)

and Li et al. (2008a).

3.2 Standard Deviations of Wind Velocity σu, σv and σw

The spatial distributions of the velocity standard deviations, σu, σv and σw , are depicted

in Fig. 8; the maximum σu and σv are initiated, respectively, right over the street canyons

and building roofs (≤1.2h). In 2D idealized street canyons, the roof-level vertical velocity

fluctuation w′′ contributes directly to the air exchange between the street canyon and the

shear layer. A maximum σw is observed near the roof-level windward corner where a vast

air exchange takes place. Another σw peak is developed at about z = 1.5h in the shear layer,

suggesting enhanced turbulence and pollutant mixing for 1.4h ≤ z ≤ 1.6h over the street

canyons. At a higher elevation z > 4h, σw diminishes implying rather poor vertical mixing

over the near-roof region. Differing slightly from the LES of Liu and Barth (2002), the current

calculated σw peaks near the windward corner instead of the centre of the roof level of the
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Fig. 8 Contours of a σu/U f , b σv/U f and c σw/U f

street canyon, which is likely caused by the different shear-layer thicknesses adopted in the

two LES.

Apparently, the roof-level turbulence in the street canyons is anisotropic and cannot be

fully described by the normal distribution. Therefore, the k − ε turbulence models, which

model all turbulence scales by the eddy-viscosity approach, should be applied with caution

in air pollution problems in street canyons and urban areas.

Consolidating the data from various field campaigns, Roth (2000) found that σi are rather

uniform, σu = 2.4u∗, σv = 1.91u∗ and σw = 1.27u∗, in the urban roughness sublayer.

Similarly, Macdonald et al. (2002) found that σu = 2.1u∗, σv = 1.65u∗ and σw = 1.2u∗
in the roughness sublayer over an array of obstacles in a wind tunnel, in which the lower σi

are mainly due to the lack of background atmospheric turbulence at the laboratory scale. In

view of the consistent pattern in various field and wind-tunnel measurements, σi/u∗ of the

current LES data are determined along the vertical centreline x/b = 0, and the local friction

velocity u∗ is calculated by

u∗ =
√

−〈u′′w′′〉 +
〈

(ν + νSGS)
∂u

∂z

〉

. (12)

The SGS and molecular-scale shear stresses are both taken into account in Eq. (12). It is

noteworthy that the molecular-scale processes are essentially equal to zero except very close

to the solid boundaries. In the shear layer h < z < 4h, σu/u∗ and σv/u∗ scatter, respectively,

around 1.8 and 1.3 (Fig. 9). The discrepancy of the velocity standard deviations for z ≥ 4h is

largely caused by the underpredicted u∗ in the situation of a lack of background atmospheric

turbulence. Although the current LES tends to underpredict σu/u∗ and σv/u∗, its profile

of σw/u∗ is comparable to that measured in Macdonald et al. (2002), with values around

1.25 and increasing gradually with height for z > 2h. Obviously, one of the reasons is the

use of 2D idealized street canyons in the current LES versus 3D cubes in Macdonald et al.
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Fig. 9 Vertical profiles of σu/u∗, σv/u∗ and σw/u∗. Current LES: Black solid line (σu/u∗), red dashed line

(σv/u∗), and blue dotted line (σw/u∗); Macdonald et al. (2002): empty circle (σu/u∗), empty triangle (σv/u∗),

and empty square (σv/u∗); Duchêne-Marullaz (1975, 1979): filled circle (σu/u∗), filled triangle (σv/u∗), and

filled square (σv/u∗)

(2002). This difference in building geometry definitely changes the flow and the turbulence

in the shear layer. Besides, isothermal conditions were assumed in the current LES in which

the turbulence is only produced by mechanical shear. This mechanism differs from that in

the field measurements or the wind-tunnel experiment in which other turbulence generation

mechanisms (e.g. background atmospheric turbulence and turbulence spires) were used to

replicate the background atmospheric turbulence. Finally, it is noteworthy that σv/u∗ and

σw/u∗ have a similar magnitude in the current LES but not in Roth (2000) and Macdonald

et al. (2002), which is believed to be a characteristic of the 2D street canyon being considered

in the current study. The homogeneous spanwise direction reduces the respective turbulence

production so the crosswind fluctuating velocities are comparable in the shear layer. Anyway,

a detailed TKE budget analysis is necessary to elucidate the correlation quantitatively.

3.3 Vertical Momentum Flux 〈u′′w′′〉

The resolved-scale vertical momentum flux 〈u′′w′′〉 plays a major role in the momentum

transport. To elucidate the momentum transport mechanism (Table 2), quadrant analysis

Table 2 Quadrants of the

vertical momentum flux 〈u′′w′′〉 Quadrants Directions

Outward interactions u′′ > 0, w′′ > 0

Ejections u′′ < 0, w′′ > 0

Inward interactions u′′ < 0, w′′ < 0

Sweeps u′′ > 0, w′′ < 0
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Fig. 10 Quadrant analysis of the vertical momentum flux 〈u′′w′′〉/U2
f
. Relative magnitudes of a outward

interactions; b ejections; c inward interactions; and d sweeps

(Wallace et al 1972; Lu and Willmarth 1973; Nakagawa and Nezu 1977) is employed to

partition the current LES-calculated 〈u′′w′′〉 (Fig. 10). The resolved-scale upward momen-

tum transport is dominated by ejections (>50%) and sweeps (30%) in the shear layer while

inward and outward interactions have only minor contributions (≈10%). The flux 〈u′′w′′〉
peaks at the roof level and is dominated by sweeps and ejections, while inward and outward

interactions are negligible. The vertical momentum transport is more complex in the street

canyons, with inward interactions and ejections dominating on the windward and leeward

sides, respectively. On the windward side, the inward interaction contributes to the downward

momentum transport from the windward wall to the centre street canyon. The momentum

entrained from the shear layer is then transported to the other regions of the street canyon

driving the primary recirculation. On the leeward side, the mean flow is moving upwards,

and the quadrant patterns are similar to the boundary-layer flow where ejections and sweeps

transfer the upward momentum to the (leeward) near-wall region.

A field campaign in Zürich showed that, while the inward and outward interactions exhibit

nearly the same magnitudes, the sweeps contribute slightly over the ejections both above (up

to 1.5h) and below the roof level of street canyons (Rotach 1993). Similarly, a field campaign

in Sapporo found that the contributions from the inward and outward interactions are about

the same in the shear layer (6h < z < 7h; Oikawa and Meng 1995). In contrast to Rotach

(1993), the ejections are found to contribute slightly more than the sweeps. The vertical

momentum flux determined in Oikawa and Meng (1995), Macdonald et al. (2002) and the
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(a)

(b)

Fig. 11 Vertical profiles of a vertical momentum flux 〈u′′w′′〉/u2
∗ at x/b = 0.4h. Current LES: black solid

line; Oikawa and Meng (1995): black filled circle; and Macdonald et al. (2002): red filled circle and b quadrant

components 〈u′′w′′〉i /u2
∗ at x/b = 0.4h. Current LES: Black solid line (outward interaction), red dashed line

(ejections), green dotted line (inward interaction) and blue dash dot line (sweeps); Oikawa and Meng (1995):

Black square (outward interaction), red circle (ejections), green triangle (inward interaction) and blue inverted

triangle (sweeps)

current LES are compared in Fig. 11. In the current LES, u∗ is calculated at z = 2.5h similar

to Oikawa and Meng (1995) but the 〈u′′w′′〉 profile is traced at 0.1h downwind of the build-

ing to avoid unnecessary building-induced over fluctuations in each quadrant. Unlike the

field and wind-tunnel results, the current LES-calculated 〈u′′w′′〉 vanishes at about z = 5h.

This discrepancy, similar to σi , is partly attributed to the idealized building geometry and
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(a)

(b)

Fig. 12 Vertical profiles of a relative number and b relative contribution to 〈u′′w′′〉 of events in each quadrant.

Current LES: Black solid line (outward interactions), red dashed line (ejection), blue dotted line (inward inter-

action), green dash dot line (sweeps); Coceal et al. (2007): Black square (outward interactions), red triangles

up (ejections), blue diamonds (inward interaction), green filled triangle down (sweeps)

the horizontal periodic boundaries employed. Besides, the background large-scale atmo-

spheric turbulence is not accounted for in the current finite LES domain that would further

underpredict the turbulent transport. Nevertheless, a consistent pattern, sweeps and ejections

contributing more than inward and outward interactions, is illustrated in the shear layer over

2D street canyons.

In addition to the comparison with field measurements, the vertical profiles of relative

occurrence and contribution of each quadrant are compared with the direct numerical sim-

ulation (DNS) results of Coceal et al. (2007) (Fig. 12). The number and contribution of the

quadrants are averaged in the horizontal directions similar to Coceal et al. (2007). The current
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LES results agree well with those of Coceal et al. (2007) in the shear layer in which sweeps

and ejections dominate the momentum flux transport. Right over the roof level, the sweeps

and ejections show almost the same number of occurrences and contributions. At a higher

elevation, ejections switch to dominate the vertical momentum flux transport though sweeps

occur more frequently. At the same time, inward and outward interactions contribute about

the same with increasing elevation in the domain.

The major difference between the results of the current LES and the DNS of Coceal et al.

(2007) is found inside the street canyons. The 2D idealized street canyons adopted in the

current LES facilitate the formation of a persistent primary recirculation in skimming flow

regimes while the 3D cubes in Coceal et al. (2007) do not. In view of the geometric difference,

ejections have the largest number of occurrence and sweeps dominate the contribution below

the roof level in the DNS. On the other hand, inward interactions dominate both the number

and contribution in the street canyons in the current LES. Downward momentum transfer

near the windward wall in 2D street canyon is the major reason (Fig. 10).

3.4 Two-Point Correlations

It is shown previously that the height of the computational domain greatly affects wind statis-

tics in the street canyons. To determine the necessary domain size, the two-point correlation

Rφ,xi (r, δxi ) ≡ 〈φ′′ (r) φ′′ (r + δxi )〉
σφ (r) σφ (r + δxi )

(13)

is examined where φ (= u, v or w) is the variable under consideration, r is the position

vector of the reference point, and δxi is the separation between the points in the xi direction.

Rφ,xi
are calculated in the streamwise (Rφ,x ), spanwise (Rφ,y) and vertical (Rφ,z) directions.

The x coordinate of r is stationary at x/b = 0 while the z coordinate is at four

levels, z/h = 1.5, 2, 2.5 and 3, over the street canyons (Fig. 13). The two-point correla-

tions in the x and y directions change mildly at different levels, with Ru,x falling to 0.2 at

half the domain length (= 3h) while Ru,y attains a minimum of −0.25 then rebounds to 0.2

at half the spanwise extent (= 2.5h). A few minor differences are found due to the different

building geometry, for example, Ru,x falls to 0.2 at δx = 6h and Ru,y falls to −0.25 at

δy = 2.8h for the flows over an array of staggered 3D cubes. Nevertheless, the LES-calcu-

lated Rφ,xi
behaviours are generally in line with those of the wind-tunnel experiment (Castro

et al. 2006) and with DNS (Coceal et al. 2007).

In the horizontal directions, a similar pattern of Rv,x , Rv,y, Rw,x and Rw,y is found in

the current LES. Rv,x and Rv,y diminish at δxi = h while Rw,x and Rw,y at δxi = 0.5h,

suggesting the longer integral length scale at a higher elevation. For Rv,xi
and Rw,xi

, the

increase in integral length scale is 0.5h when the elevation is changed from 1.5h to 3h,

which qualitatively agrees with Castro et al. (2006).

The streamwise velocity in the shear layer shows a non-zero correlation with that in street

canyons. A negative two-point correlation (−0.2) is observed at the street and roof level

while a positive value (0.2) is observed at the centre of the street canyon. Ru,z decreases

only slightly in magnitude with rising reference position, implying that the flows in the street

canyons are coupled to those in the shear layer even at z = 3h. On the contrary, the two-

point correlations of v and w in the street canyons are reduced down to zero, implying rather

uncoupled flows in the crosswind.
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r
r

r

Fig. 13 Two-point correlations Rui ,xi
at height 1.5h: black solid line; 2h: red dashed line; 2.5h: blue dotted

line; and 3h: green dash-dot line

4 Pollutant Transport

4.1 Model Validation

The current LES-calculated pollutant transport is validated by wind-tunnel measurements

(Meroney et al. 1996; Pavageaus 1996; Pavageau and Schatzmann 1999) and other LES

results (Liu et al. 2005). The effective working section of the wind tunnel is 1 m high, 1.5 m

wide and 4 m long, and the dimensions of the 2D street canyon are 0.06 m ×0.06 m in which

19–20 and 7–8 identical street canyons are placed, respectively, upstream and downstream

of the sampling street canyon. The wind speed in the shear layer is 2–3 m s−1. A continuous

line source (mixture of air and ethane) placed at the bottom of the test street canyon is used

to simulate vehicular emission. The LES setting of Liu et al. (2005) is the same as that in

Liu and Barth (2002). A ground-level continuous pollutant line source with no background

pollutant is considered. An open boundary for pollutant is adopted at the outlet.

The vertical profiles of the normalized pollutant concentration 〈c〉U f hL/Q̇ along the

leeward and windward facades from different studies are compared in Fig. 14. Here, L is

the length of the pollutant line source and Q̇ the pollutant emission rate. The current LES-

calculated pollutant concentration falls within various measurement and modelling data. In

contrast to Liu et al. (2005) a minimum of pollutant concentration is observed at street level.

The isolated nature of the ground-level secondary recirculations drags the pollutant transport

into the windward and leeward corners leading to the sharp drop in street-level pollutant

concentration. Besides, a higher pollutant concentration is observed along the leeward wall
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Fig. 14 Dimensionless pollutant concentration 〈c〉 U f hL/Q̇ on the windward and leeward walls of a street

canyon of aspect ratio h/b = 1.0. On the windward wall: current LES: dashed line; Liu et al. (2005): dashed

dotted line; Pavageaus (1996): open square; Meroney et al. (1996): open diamond; Pavageau and Schatzmann

(1999): open circle. On the leeward wall: current LES: Solid line; Liu et al. (2005): dashed line; Pavageaus

(1996): filled square; Meroney et al. (1996): filled diamond; Pavageau and Schatzmann (1999): filled circle

compared with that in Liu et al. (2005), which could be a result of a higher recirculating flow

speed in the shallow domain in Liu et al. (2005). Nonetheless, the current LES-calculated

result agrees reasonably well with that of wind-tunnel measurements and previous LES,

demonstrating its accuracy for pollutant transport calculation in street canyons.

4.2 Pollutant Concentration and Standard Deviation

The spatial contours of the mean pollutant concentration 〈c〉 and the standard deviation of

pollutant concentration σc are depicted in Fig. 15. Pollutant trapping is found inside the street

canyons developing a large pollutant concentration difference between the shear layer and

the street level. The pollutant concentration in the street canyons is rather uniform (0.2C0)

except that a lower value is observed near the windward facade, suggesting that fresh air is

drawn in on the windward side to promote the pollutant mixing inside the street canyons.

Only a shallow layer (<1.1h) of pollutant is developed over the roof level so less pollutant

is carried upward into the shear layer (Fig. 15a). Pollutant entrainment also leads to higher

pollutant concentrations in the street canyons locating further downwind.

Peaks of σc are observed at the roof and ground levels of the street canyons (Fig. 15b),

with the roof-level peaks induced by the locally intense turbulence promoting pollutant mix-

ing. The ground-level turbulence is weak but the pollutant concentration is higher, thus,

even a small turbulence intensity could induce a large fluctuation in c. In the street canyons

located downwind, σc decreases slightly at roof level and at the centre of the street canyons,

which could be caused by the lower roof-level vertical pollutant concentration gradient as a

result of the upwind pollutant. Similar to building geometry, isolated and periodic pollutant

configurations result in different pollutant transport behaviours.
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Fig. 15 Contours of a pollutant concentration 〈c〉/C0 and b standard deviation of pollutant concentration

σc/C0

Table 3 Quadrants of the

vertical pollutant flux 〈c′′w′′〉 Quadrants Directions

Ejections c′′ > 0, w′′ > 0

Outward interactions c′′ < 0, w′′ > 0

Sweeps c′′ < 0, w′′ < 0

Inward interactions c′′ > 0, w′′ < 0

Table 4 Average pollutant concentration � and convective transfer coefficient �T of the pollutant

Results �/C0 �T �T + �T − �T −/�T +

Current LES, 1st canyon 0.190 0.00232 0.00314 −0.00083 26.3%

Current LES, 2nd canyon 0.205 0.00210 0.00344 −0.00134 38.9%

Current LES, 3rd canyon 0.217 0.00213 0.00375 −0.00163 43.3%

Barlow et al. (2004), wind tunnel 0.00192

Cai et al. (2008), LES 0.00179

4.2.1 Average Pollutant Concentration �

In order to investigate how the pollutant is transported downstream, the average pollutant

concentration in a street canyon

� = 1

Vcanyon

∫

canyon

〈c〉 dV (14)

is calculated and tabulated in Table 4. Here, Vcanyon is the volume of the street canyon. As

expected, � increases in the streamwise direction because of the upwind pollutants. In the

first street canyon, there is no background pollutant and φ is equal to 0.19C0, while in the
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second street canyon, the pollutant concentration is raised by the upwind pollutant, and a

higher � (= 0.205C0) is thus obtained. Analogously, the pollutant emitted from both the

first and second street canyons collectively contributes to the resultant pollutant concentra-

tion, and even higher � (= 0.217C0) is observed in the last street canyon. The pollutant

removal and re-entrainment in the downstream street canyon are detailed in Sect. 4.4.

4.3 Quadrant Analysis of the Vertical Turbulent Pollutant Flux 〈c′′w′′〉

Analogous to the quadrant analysis of 〈u′′w′′〉, the vertical component of the turbulent pol-

lutant flux 〈c′′w′′〉 is partitioned into four quadrants depending on the signs of w′′ and c′′

(Table 3; Chen 1990; Katul et al. 1997; Katsouvas et al. 2007). In contrast to the down-

ward-moving 〈u′′w′′〉, the pollutant emitted at the street level is carried upward. At the roof

level, where the vertical mean velocity is small, sweeps (ejections) indicate the amount of

fresh-air entrainment into (aged air leaving) the street canyons to the shear layer. The current

LES results show that the ejections and sweeps are the dominating components of 〈c′′w′′〉,
while the inward and outward interactions only play minor roles (Fig. 16). In particular, the

sweeps contribute slightly more over the ejections, though their contour values are similar

and their peaks overlap at the roof level of the street canyons. Apart from the roof level,

sweeps are observed near the windward facade denoting strong fresh-air entrainment, caused

by the localized turbulence production when the prevailing flow impinges on the windward

buildings, that in turn enhances the pollutant mixing. As illustrated in Figs. 8 and 16, the

turbulence produced at the windward roof level is able to penetrate down to the ground. The

collective effect of turbulence production and primary circulation leads to well-mixed pol-

lutant inside the street canyons (Fig. 15a). The three street canyons exhibit almost the same

pattern of quadrant component, suggesting that the pollutant sources upstream or downstream

do not affect too much the pollutant dispersion mechanism. The only notable change is the

weakened roof-level ejections and sweeps in the downwind street canyons, which is likely

attributed to the upwind pollutant together with the reduced vertical pollutant concentration

gradient.

4.4 Convective Transfer Coefficient �T

The convective transfer coefficient of a pollutant

�T = 1

hC0U f

∫

roof

〈c w〉 dx, (15)

which was defined in Barlow and Belcher (2002), is calculated for the street canyons indi-

vidually using the current LES data. In fact the normalized pollutant removal rate measuring

the average amount of pollutant being removed across the roof level out of the street canyon

per unit time. It is found that the first street canyon exhibits the largest �T while the second

and the third canyons have nearly the same values (Table 4). Hence, the current LES results

signify that, for a street canyon under the influence of upwind or ambient pollutants, the

difference in pollutant concentration between the shear layer and the street canyon cannot

be calculated only by the ground-level pollutant concentration. Moreover, the assumption of

rapid dilution should be applied with caution. Since the current LES consists of only two

downwind street canyons, it is not comprehensive enough for testing other proposals on the

calculation of the pollutant concentration difference. The methodology proposed by Barlow

and Belcher (2002) is therefore retained in our calculation of �T .
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Fig. 16 Quadrant analysis of the vertical turbulent pollutant flux 〈w′′c′′〉. Relative magnitudes of a ejections;

b outward interactions; c sweeps; and d inward interactions

To examine the pollutant removal and re-entrainment in detail, we further partition �T

into the removal (�T +) and re-entrainment (�T −) components. Mathematically

�T + = 1

hC0U f

∫

roof

〈c w+〉 dx, (16)

�T − = 1

hC0U f

∫

roof

〈c w−〉 dx, (17)

where
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w+ =
{

w if w ≥ 0,

0 if w < 0.
(18)

w− =
{

w if w ≤ 0,

0 if w > 0.
(19)

�T + is found to increase from 0.00314 to 0.00344 then 0.00375 in the streamwise direction

(Table 4), implying that the pollutant is removed more efficiently from the street canyons

downwind. On the other hand, �T − decreases from −0.00083 to −0.00134 then finally

−0.00163, implying that more pollutant re-enters from the shear layer into the street canyons.

These variations in �T + and �T − signify that, in analogy to the average pollutant concen-

tration, pollutant removal and re-entrainment are not only functions of building geometry but

also pollutant concentrations. Given that a constant pollutant concentration was employed

on the streets in the current LES, a different amount of pollutant is emitted because of the

different pollutant concentrations in the street canyons. As such, the ratio �T −/�T + is tab-

ulated in Table 4, and since there is no upwind pollutant in the first street canyon, 26.3%

of re-entrainment is observed. On the other hand, 38.9 and 43.3% of re-entrainments are

observed, respectively, in the second and third street canyons. In view of nearly the same

�T in the two downwind street canyons, the amount of pollutant re-entrainment increases

more slowly under the influence of background pollutant. Apart from dividing �T into the

removal and re-entrainment components, it can be separated into mean (〈u〉 〈c〉) and turbulent

(〈u′′c′′〉) components. Our LES results show that the roof-level vertical mean pollutant flux

is negative, contributing less than 1% to the total flux, and is therefore insignificant to the

roof level pollutant removal in the skimming flow regime.

The wind-tunnel results of Barlow et al. (2004) and the LES results of Cai et al. (2008),

in which the aspect ratio equals one, are also tabulated in Table 4. The experiment of Barlow

et al. (2004) consisted of eight street canyons aligned in the streamwise direction after upwind

roughness and fences. Naphthalene sublimation was measured in the last street canyon to

study the scalar removal. On the other hand, the Smagorinsky eddy-viscosity model and area

sources of constant pollutant concentration were used in the LES of Cai et al. (2008). Neither

Barlow et al. (2004) nor Cai et al. (2008) considered pollutant re-entrainment so their �T

should be compared with that of the first street canyon in the current LES. A difference of

20% in �T is observed comparing the current LES results with those of Barlow et al. (2004)

and Cai et al. (2008). This could be attributed to the use of the wall model for pollutant

emission in Cai et al. (2008), which more accurately resolves the early pollutant transport in

the near-wall region.

5 Conclusions

A large-eddy simulation (LES) model with the one-equation subgrid-scale (SGS) model was

developed to investigate the wind statistics and the pollutant removal in and above two-

dimensional (2D) idealized street canyons. A computational domain of size 6h × 5h × 6h,

consisting of three identical street canyons of building-height-to-street-width (aspect) ratio

(h/b) equal to one, was employed. Comparing with other LES and water-channel results, the

use of a short domain height would increase the velocity gradient in the shear layer promoting

the turbulence production. It would also underestimate the free-stream velocity U f because

the shallow shear layer limits the wind-profile development. A shear layer of depth h is

barely enough for reasonably accurate wind and turbulence statistics inside a street canyon.
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However, if the turbulence over the street canyon is of interest, a computational domain larger

than the current one (6h × 5h × 6h) is necessary. This is depicted by the non-zero two-point

correlations in the streamwise direction Ru,x and Rv,x even at half the domain length in the

current LES.

The vertical profiles of mean wind, TKE, and velocity skewness and kurtosis are compared

with previous LES, wind-tunnel, water-channel and field data. Peaks of skewness and kurto-

sis of the resolved-scale streamwise velocity u develop at the roof level of the street canyons,

suggesting that the probability distribution of u deviates substantially from the normal dis-

tribution. The spatial contours of velocity standard deviations, σu , σv and σw, show that the

maximum velocity fluctuations occur at the roof-level windward corner of the street canyon.

Over the street canyons in the shear layer, σw is found to peak again at z = 1.5h. Based on

the current LES results, the profiles of the normalized streamwise (σu/u∗ ≈ 1.8) and span-

wise (σv/u∗ ≈ 1.3) velocity standard deviations exhibit almost uniform values in the urban

roughness sublayer (h < z < 4h). While σi calculated by the current LES are smaller than

those found in the wind-tunnel experiment (Macdonald et al. 2002) and field measurements

(Duchêne-Marullaz 1975, 1979), the LES turbulence is only generated by mechanical shear.

Other turbulence generation mechanisms, such as the background atmospheric turbulence,

are not included.

Using the quadrant analysis of 〈u′′w′′〉, the sweeps and ejections are the dominating

events, while the inward and outward interactions are small and almost completely offset

each other. The two-point correlation coefficient Rui ,xi
in the streamwise, spanwise and ver-

tical directions are calculated to determine the integral length scales. Non-zero Ru,x (= 0.2)

at a separation of half the domain size (3h) is observed, suggesting that the domain size of the

current LES may not be large enough for capturing all of the essential large-scale turbulence.

The pollutant transport was also examined. The most favourable pollutant removal takes

place at the roof-level windward corner since the prevailing flow impinges on the windward

building enhancing turbulence production locally. A lower pollutant concentration at the

roof-level windward corner is observed compared with other regions in the street canyon. As

expected, the street canyons located further downwind have higher average pollutant con-

centrations �. An increase in �/C0 from 0.190 to 0.205 and then to 0.217 is observed at the

street canyon located further downstream. Moreover, the convective transfer coefficient �T

of pollutant is partitioned into the removal (�T +) and re-entrainment (�T −) components

by conditional sampling in order to quantify the pollutant re-entrainment behaviour. It is

found that the ratio �T −/�T + increases from 26.3%, to 38.9% and then 43.3% in the street

canyons in the streamwise direction as a result of pollutant re-entrainment.
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