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Abstract Predicting flow and mass transport in vegetated regions has a broad7

range of applications in ecology and engineering practice. This paper presents8

large eddy simulation (LES) of turbulent flow and scalar transport within a9

fully developed open-channel with submerged vegetation. To properly repre-10

sent the scalar transport, an additional diffusivity was introduced within the11

canopy to account for the contribution of stem wakes, which were not resolved12

by the LES, to turbulent diffusion. The LES produced good agreement with13

the velocity and concentration fields measured in a flume experiment. The sim-14

ulation revealed a secondary flow distributed symmetrically about the channel15

centerline, which differed significantly from the circulation in a bare channel.16

The secondary circulation accelerated the vertical spread of the plume both17

within and above the canopy layer. Quadrant analysis was used to identify18

the form and shape of canopy-scale turbulent structures within and above the19

vegetation canopy. Within the canopy, sweep events contributed more to mo-20

mentum transfer than ejection events, whereas the opposite occurred above the21

canopy. The coherent structures were similar to those observed in terrestrial22

canopies, but smaller in scale due to the constraint of the water surface.23
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1 Introduction3

Vegetation is a fundamental component of aquatic ecosystems. By removing4

nutrients from and releasing oxygen to the water column, vegetation improves5

water quality [1,2]. Vegetation can locally reduce bed shear stress [3], sta-6

bilizing the sediment and promoting carbon sequestration [4]. In the coastal7

zone, seagrasses provide habitat for economically important shellfish, such as8

clams and mussels [5,6]. Recognizing its positive ecological function, efforts9

to restore aquatic vegetation have increased [7]. Many of the ecological pro-10

cesses mediated by vegetation involve the transport of scalars. For example,11

scalar transport between a submerged meadow and surrounding open water12

may influence the overall rate of nutrient uptake by a meadow, the capture of13

particulates within a meadow, or the recruitment of larvae to a meadow. The14

transport of pollen between meadows can increase genetic diversity, which has15

been shown to enhance meadow recovery after disturbance [8]. Despite the16

ecological importance of scalar transport in regions of submerged vegetation,17

only a relatively few studies have examined it [9,10]. Scalar transport within18

vegetated flows is complex, because it is dependent on processes at several19

scales, from individual blades to vegetation heterogeneity at the meadow and20

landscape scales [11]. A deeper understanding of relevant dispersion processes21

is needed to achieve a complete description of the ecological services provided22

by vegetation.23

The enhanced flow resistance provided by a canopy shapes the velocity24

profile and the turbulence structure. For a submerged canopy, there are three25

distinct regions [12]. In the lower canopy, von Karman vortex streets shed26

by individual plant elements contribute to turbulent diffusion (e.g. Lightbody27

and Nepf [11]). In the upper canopy and extending some distance above the28

canopy, there is a mixing-layer within which Kelvin-Helmholtz (KH) vortices29

dominate the mass and momentum exchange between the canopy and the30

overflow (e.g. Ghisalberti and Nepf [13,14], Raupach et al. [15]). Finally, if the31

water depth is sufficient, above the canopy, the mixing layer profile transitions32

to a turbulent boundary layer (e.g. Nepf and Vivoni [16]).33

Numerical simulations have been widely utilized to investigate vegetated34

channel flows, including direct numerical simulation (DNS), Reynolds-averaged35

Navier-Stokes (RANS), and large eddy simulation (LES). DNS solves the full36

Navier-Stokes equations for all scales of fluid motion, but is computationally37

demanding and only applicable to flow at relatively low Reynolds number.38

RANS solves only the time-averaged governing equations, with the effects of39

turbulence accounted for by a turbulence closure. In LES, the large-scale tur-40

bulent motions are fully resolved, with the effect of small-scale motions repre-41

sented by subgrid-scale models. López and Garćıa [17] performed RANS simu-42

lations of flow through submerged vegetation using a two-equation turbulence43
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closure. They added an extra production term to reflect the stem-scale tur-1

bulence produced in the plant wakes. Using the Tanino and Nepf [18] model2

to represent stem-scale turbulence, King et al. [19] introduced an improved3

two-equation k − ε model, which outperformed traditional k − ε models in4

predicting turbulent kinetic energy (TKE) within the canopy layer. They sug-5

gested that their model could be a foundation for predicting scalar dispersion6

within dense vegetation canopies, an option that we explore in the current7

study. Okamoto and Nezu [20] performed LES of a vegetated open-channel8

flow under six different ratios of water depth to the canopy height. They9

found that the sweep and ejection motions associated with the KH vortices10

dominate the momentum and mass transport in the upper canopy, consistent11

with previous experimental observations [13,14].12

The goal of the present work is to further explore the effects of vegetation13

on flow and scalar transport in a fully-developed channel flow using LES. LES14

was chosen because, unlike RANS, it can explicitly represent the KH coherent15

structures that dominate scalar exchange at the top of the canopy [13,14,20].16

In addition, flow in a rectangular channel generates secondary circulations that17

can affect scalar transport [21], and which cannot be reproduced by RANS18

models that use an isotropic eddy viscosity [22]. Importantly, the LES model19

used in the current study contains a new turbulent diffusivity term, based20

on Tanino and Nepf [18], that represents the contribution of stem-generated21

turbulence to turbulent diffusivity within the canopy. Section 2 describes the22

numerical and physical models. Section 3 compares the mean flow, turbulence23

statistics, and scalar concentration fields from the numerical simulations to24

measured data. Finally, Section 4 provides the conclusions and main findings.25

2 The Governing Equations and Numerical Implementation26

2.1 Numerical Model and Discretization Method27

LES directly solves the larger scales of turbulent motion, called the resolved28

scales, which are separated from the sub-grid scales by a spatial filter. Appli-29

cation of a spatial filter to the incompressible Navier-Stokes equations yields:30

∂ũi

∂xi
= 0 (1)

31

∂ũi

∂t
+

∂(ũiũj)

∂xj
= −1

ρ

(
dP ∗

dx1

δi1 +
∂p̃

∂xi

)
+

∂

∂xj

(
υ

∂ũi

∂xj
+ τij

)
+ FDi (2)

in which the tilde indicates the filtered variables; ρ (998.2 kg m−3) and υ (1.00432

× 10−6 m2 s−1) are the fluid density and kinematic viscosity, respectively;33

ũi(ũ1 = u, ũ2 = v, ũ3 = w) represents the filtered velocity component in the34

xi(x1 = x, x2 = y, x3 = z) direction, respectively; p̃ is the filtered pressure; and35

dP ∗/dx1 denotes the externally imposed streamwise pressure gradient that is36

adjusted at every time step to maintain a constant flow rate. The subgrid-scale37
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(SGS) stress tensor τij is defined below. The body force term FDi represents1

the drag exerted by vegetation, which is parameterized as the product of the2

drag coefficient CD, the frontal area density a, and mean streamwise current3

speed:4

FDi = −1

2
CDa|U |ũ (3)

in which U is the magnitude of the velocity. The passive scalar transport5

equation is solved as well:6

∂c̃

∂t
+

∂(ũic̃)

∂xi
=

∂

∂xi

(
τci +

υ

Sc

∂c̃

∂xi
+ Dt

∂c̃

∂xi

)
+ S (4)

in which c̃ denotes the filtered concentration, S is the scalar source term,7

τci is the SGS scalar flux, and Sc (= υ/D) is the Schmidt number. Because8

the stem-scale turbulence is not resolved by the LES, a turbulent diffusivity9

Dt is introduced in Eq. (4) to reflect the effect of stem wake turbulence on10

mass transport. Tanino and Nepf [18] measured stem-wake turbulence and its11

contribution to turbulent diffusion in a model emergent canopy consisting of12

rigid circular cylinders of diameter d. For a sparse canopy, as is considered in13

this study, stem-scale eddies exist throughout the canopy, so that Eqs. (2.12)14

and (2.15) in Tanino and Nepf [18] reduce to:15

√
kt = 1.1Up

[
CD

φ

(1 − φ)π/2

]1/3

(5)

16

Dt = α
√

ktd (6)

in which Up is the mean velocity within the canopy, and φ is the solid volume17

fraction occupied by the canopy elements. For lateral diffusivity, Tanino and18

Nepf [18] reported α equal to 4.5. Within an array of vertical circular cylinders,19

the diffusivity is anisotropic, with Dz/Dy ≈ 0.26 for φ = 0.05 (based on data20

in Nepf et al. [23]), which is comparable to our value (Table 1), so that we21

estimate α = 1.2 for vertical diffusivity.22

The subgrid-scale (SGS) stress tensor τij = ũiũj − ũiuj captures the effect23

of the subgrid scales on the resolved scales, and it is modelled in terms of24

resolved velocity field using the Lagrangian dynamic model, i.e.25

τij = 2υtS̃ij +
1

3
τkkδij (7a)

26

υt = (Cs∆)2
√

2SijSij (7b)

in which ∆ = 3
√

∆x∆y∆z is the filter width, S̃ij = (∂ũi/∂xj + ∂ũj/∂xi)/2 is27

the resolved strain-rate tensor, υt is the SGS eddy viscosity, and Cs is the sub-28

grid model coefficient. The value of Cs is determined dynamically by invoking29

the Lagrangian dynamic procedure [24], which applies well in predicting flow30

over both aquatic canopies [25] and terrestrial canopies [26].31
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The SGS scalar flux τci = ũic̃ − ũic is modelled based on the gradient-1

diffusion hypothesis, which relates the turbulent scalar flux to the mean gra-2

dient of the concentration as:3

τci =
υt

Sct

∂c̃

∂xi
(8)

Observations suggest that the turbulent Schmidt number Sct = 0.47 in canopy4

flows with shallow submergence [13]. Although experimental results and RANS5

simulations suggest that an eddy-diffusivity tensor is more appropriate to de-6

scribe the turbulent diffusion [27,28], previous studies have demonstrated that7

this standard gradient-diffusion model is valid in the framework of LES when8

dealing with cases in which the model fails to accurately predict passive scalar9

transport in RANS [29].10

The spatial terms in the Navier-Stokes equations (1) and (2) are discretized11

using a cell-centered finite volume method (FVM) in semi-discrete form. Time12

integration is performed by Runge-Kutta scheme with fourth-order temporal13

accuracy. Further details about the numerical methods and validation can be14

found in Yan et al. [30]. Henceforth, tilde symbols used to denote resolved15

variables is ignored to simplify the notation.16

2.2 Simulation set-up17

The simulation recreates the laboratory experiment described in Ghisalberti18

and Nepf [13,31], which used a model canopy consisting of circular cylinders19

of height h = 13.8 cm and diameter d = 0.64 cm, and with canopy density a20

= 8.0 m−1. Since the roughness density λ = ah = 1.1 ≫ 0.1, this represents21

a dense canopy [32], for which the shear-layer turbulence could not penetrate22

to the bed. The canopy extended across the entire flume width (wf = 38 cm),23

and the water depth was H = 46.7 cm. The measured drag coefficient was CD24

= 0.66 (Ghisalberti and Nepf [31], Table 1). In the experiment of Ghisalberti25

and Nepf [13], neutrally buoyant dye was continuously injected from twelve26

needles spaced 3.5 cm apart in the lateral direction at the top of the canopy.27

The streamwise length of the computational domain Lx was 4.0 m, chosen28

to be large enough to encompass a wide range of spatial scales. The computa-29

tional domain, shown in Fig. 1, was discretized evenly in the streamwise and30

spanwise directions. The grids were uniformly distributed laterally in order31

to create a scalar source distribution identical to the experiment. The mesh32

was locally refined near the bed and at the top of canopy layer to resolve the33

steep variation in mean flow and turbulence statistics in these regions. Table34

1 tabulates the main parameters of the LES.35

Periodic boundary conditions were imposed in the streamwise direction to36

simulate an infinite array, and a frictionless rigid lid condition was used at the37

water surface. A no-slip boundary condition was applied at the bed and side38

walls using the Obukhov wall function with a roughness length z0 = 0.001h39

[33]. For the scalar modeling, zero-gradient (no-flux) boundary conditions were40
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Fig. 1 Schematic of the computation domain and associated coordinate system. Circles
indicate the scalar point sources. In the experiment, the canopy consisted of vertical circular
cylinders, which are conceptually represented in the figure. However, within the LES, the
canopy was represented as a distributed drag and the cylinders were not resolved.

Table 1 Experimental and computational conditions

Case
Canopy height Water depth Ubulk CD φ

a Lx wf

h (cm) H (cm) (cm s−1) (m−1) (m) (cm)
R8 13.8 46.7 5.7 0.66 0.04 8.0 4.0 38.0

applied to the bottom, side walls and free surface, while convective boundary1

conditions were imposed at the outlet. To examine the effect of the channel as-2

pect ratio, additional simulations were conducted with width-to-height ratios3

wf/H = 2, 5, 10, and ∞ by varying the width of the channel wf while main-4

taining the depth of submergence H/h (= 3.38). The infinitely wide channel5

was simulated by using spanwise periodic boundary conditions, and the size6

of the computation domain was the same as the validated case. Note that7

this range of aspect ratios is consistent with typical values in field-scale open-8

channels, which can vary from an order of 1 for conveyance canals [34] to an9

order of 10 or more for fluvial systems [35]. The bulk velocity was the same10

for all the simulations. For all aspect ratios, the mass injection was created11

using twelve scalar sources evenly distributed across the channel width at the12

top of the canopy (z = h), see Fig. 1.13

The instantaneous flow quantities, such as velocity component ui, are de-14

composed into three components,15

ui(x, y, z, t) = 〈ui〉 (y, z) + u′

i(x, y, z, t) + ui
′′(x, y, z) (9)
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in which the overbar denotes a time average, the angle bracket denotes a1

streamwise average, and the temporal and spatial fluctuations are denoted by2

a single prime and a double prime, respectively. Applying this double-averaging3

method to the momentum equation yields the following [36],4

∂(〈ui〉 〈uj〉)
∂xj

= −1

ρ

(
dP ∗

dx1

δi1 +
∂〈p〉
∂xi

)
+

∂χij

∂xj
+ FDi (10)

in which the total shear stress χij consists of the spatial average of Reynolds5

and viscous stresses, together with the dispersive stress due to spatially aver-6

aged velocity field differs from local temporal means,7

χij = − 〈ui
′′uj

′′〉 −
〈
ui

′uj
′

〉
+ υ

∂〈ui〉
∂xj

(11)

The velocity moments were extracted at three lateral locations correspond-8

ing to the acoustic Doppler velocimetry (ADV) measurements of Ghisalberti9

and Nepf [13,31], and then averaged to produce vertical profiles of turbu-10

lence statistics. For comparison to the experiment, the scalar concentration11

was extracted at the same six streamwise cross-sections as reported in the12

experiment.13

3 Results and Discussion14

3.1 Mean Flow and Turbulence Statistics15

In Fig. 2, the vertical profiles of turbulence statistics are compared to exper-16

imental data [31]. The simulation using a periodic sidewall condition, which17

does not generate the secondary circulation, is included in Fig. 2 for com-18

parison. In each subplot, the simulation with no-slip sidewalls and periodic19

sidewalls are plotted with solid and dashed curves, respectively. The simu-20

lated velocity profile agreed well with the measurements, with slightly better21

agreement from the simulation with no-slip sidewalls (solid line, Fig. 2a). Im-22

portantly, the no-slip sidewall simulation correctly captured the reduction of23

velocity magnitude when approaching the free surface, which is associated with24

the secondary circulation in the channel, the dynamics of which are discussed25

in Sect. 3.3. The no-slip sidewall model also predicted the vertical distribution26

of Reynolds stress (RS) within the canopy and very close to the water surface,27

specifically capturing the region of u′w′ = 0 near the surface, which is associ-28

ated with the secondary circulation. The periodic sidewall simulation (dashed29

line) did not capture the peak RS or the region of u′w′ = 0 near the sur-30

face. Both simulations underpredicted the near-bed velocity, which was likely31

due to the choice of z0, which was not calibrated. The predicted turbulent32

kinetic energy (TKE) obtained by both simulations with the additional stem-33

scale TKE Eq.(5) was in good agreement with experimental measurements,34

especially within the canopy layer, indicating that the addition of Eq.(5) cor-35

rectly accounted for the missing stem-scale TKE in the canopy. To better36
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Fig. 2 Vertical profiles of time and lateral averaged velocity and turbulence statistics (a)
Streamwise velocity; (b) Reynolds stress; (c) Turbulence kinetic energy (TKE) with the
stem-scale TKE Eq.(5) included; (d) Skewness of streamwise velocity; (e) Skewness of ver-
tical velocity. Solid and dashed lines respectively represent simulations with no-slip sidewall
and spanwise-periodic conditions. Opened circles from Ghisalberti’s flume measurement.
In the subfigure 2c, opened diamonds and opened squares represent the computed TKE
without the stem-scale TKE Eq.(5) included under sidewall condition and periodic lateral
condition respectively.

illustrate the contribution of the stem-scale TKE, the computed TKE from1

both simulations without the addition of Eq.(5) have also been included in2

Fig. 2c. According to our calculation, the stem-wake turbulence from Eq.(5)3

contributed approximately 36% of the total TKE in the lower canopy.4

3.2 Coherent Structures5

Coherent structures play a central role in the vertical turbulent transfer of6

mass and momentum between the canopy and overflow [13,31]. Hence, a proper7

characaterization of coherent structures is important in modeling canopy flows.8

3.2.1 Quadrant analysis9

Quadrant analysis has been used to describe the structure of coherent struc-10

tures in canopy flows (see Finnigan [36]), and it is used here to explore11

whether the LES appropriately captured the impact of coherent structures on12

momentum transport. Quadrant analysis (QA) categorizes the instantaneous13

Reynolds stress (u′w′) into four quadrants [37]:14

− Quadrant 1 (Q1): outward interaction (u′ > 0 and w′ > 0)15

− Quadrant 2 (Q2): ejection (u′ < 0 and w′ > 0)16
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Fig. 3 Vertical distributions of (a) the contribution of each of the four quadrants to
Reynolds stress, and (b) the relative frequency of events in each quadrant. Dashed dou-
ble dotted line (Q1), solid line (Q2), dashed dotted line (Q3), and dashed line (Q4) from
LES with no-slip sidewalls; filled diamonds (Q1), filled squares (Q2), filled triangles (Q3),
and filled circles (Q4) from the experiment of Ghisalberti and Nepf [31].

Fig. 4 (a) Ratio of contributions to Reynolds shear stress from Q2 events to that from
Q4 events; (b) Ratio of number of Q2 events to that of Q4 events. Solid line, present LES;
squares, experiment of Ghisalberti and Nepf [31].

− Quadrant 3 (Q3): inward interaction (u′ < 0 and w′ < 0)1

− Quadrant 4 (Q4): sweep (u′ > 0 and w′ < 0)2

The absolute value of the contribution to momentum flux made by the3

Qth quadrant
∣∣u′w′

Q/u′w′

∣∣ is shown in Fig. 3a, which compares the simulated4

values (solid lines) with the experimental data (R8 in Ghisalberti and Nepf5

[31], shown with solid symbols). The simulation produced good agreement6

with measurements both within and above the canopy layer. The model also7

reproduced the relative frequency of each event type (Fig. 3b). From these two8

figures, we can see that in the upper canopy and extending to the water surface,9

Q2 ejection events and Q4 sweep events were the dominant contributors to10

turbulent momentum transfer. Figure 3 shows that the turbulent momentum11

flux did not penetrate to the bed, which is consistent with the high canopy12

density (ah = 1.1). Both figures confirm that the LES correctly captured the13

influence of the coherent structures on the turbulence field.1
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0
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Fig. 5 Instantaneous snapshot of the fluctuating component of the velocity vector of (u′,
w′) in an (x, z) plane along the centerline of the vegetated channel. A sweep event (Q4)
and ejection event (Q2) are circled and labeled.

Figure 4 depicts the ratio of contributions to Reynolds shear stress from2

Q2 events to that from Q4 events and their frequency of occurrence, which3

were found to collapse with the experimental measurements of Ghisalberti and4

Nepf [31]. Within the upper canopy layer, the less frequent sweep events con-5

tribute more to momentum transfer than ejection events, whereas the opposite6

situation occurs from the canopy interface up to the free surface.7

Figure 5 displays an instantaneous snapshot of the fluctuating velocity8

vector of (u′, w′) in an (x, z) plane along the centerline of the vegetated9

channel, from which we can observe that alternating Q2 (ejection) events and10

Q4 (sweep) events were the dominant forms of coherent structures at and11

just above the canopy interface (z/h = 1). The coherent motions reached12

almost to the water surface, but decayed rapidly with distance into the canopy,13

making little contribution below z/h = 0.6 (based on the average of several14

instantaneous snapshots). Similarly, the Reynolds stress profile (Fig. 2b and15

3a), shows that turbulent stress decayed quickly toward zero below z/h = 0.6,16

reflecting the limited sweep penetration into the canopy. The penetration of17

individual structures (Fig. 5) and their impact on Reynolds stress (Fig. 2)18

were both consistent with the penetration scale δe/h = 0.23/CDah = 0.4 (e.g.19

Nepf et al. [38]), which predicts the distance from the top of the canopy to20

which the shear-layer coherent structures can penetrate.21

3.2.2 Two-point velocity correlation analysis22

Two-point velocity correlation analysis was performed to explore the spatial23

characteristics of the canopy-scale coherent structures. The zero-time-lag, two-24

point space correlations of the velocity fluctuation components are defined as,1

Rij(x − Lx/2, y, z, zref) =
u′

i(x, y, z)u′

j(0.0, zref)

u′2

i (x, y, z)
1/2

u′2

j(0, 0, zref)
1/2

(12)
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Fig. 6 Contours of streamwise velocity autocorrelations R11 in the longitudinal centerplane,
with reference points varying in the vertical direction (a) zref/h = 1.0; (b) zref/h = 1.25;
(c) zref /h = 1.5; (d) zref /h = 2.0. The black dots represent the locus farthest away from
the maximum correlation at each contour level of R11 from 0.3 to 1.0.

Fig. 7 Contours of streamwise velocity autocorrelations R11 in the y − z cross-section. See
the caption of Fig. 6.

in which Lx denotes the streamwise length of the computational domain, and2

the reference point (0,0,zref) was located in the middle of the horizontal plane3

of the computational domain with varying vertical heights zref (zref/h = 1.0,4

1.25, 1.5, 2.0). For clarity, the origin of the coordinate system has been shifted5

horizontally to the center point of the bottom wall. The correlation tensor Rij6

is a function of the streamwise separation (x − Lx/2), lateral coordinate y,7

vertical coordinate z and zref .8

The streamwise autocorrelation R11 is a standard indicator characterizing9

the shape and size of coherent structures. Figures 6 and 7 plot the contours of10

R11 for four different reference heights in the longitudinal (x − z) and cross-11

channel (y − z) centerplanes of the computational domain, respectively. The12

streamwise velocity component had a high degree of correlation (R11 > 0.3)13

within a tilted elliptical region, indicating the presence of inclined elongated14

turbulent structures above the canopy (Fig. 6). This structure extended ap-15

proximately 2.5h in the streamwise direction and 1.0h in the vertical direction,16

with an average inclination angle decreasing from 18.9◦ at zref/h=1.0 to 5.2◦
1



12 Chao Yan et al.

at zref/h=2.0, as shown in Fig. 6. The angle of inclination was determined2

by a least-squares method using the points farthest away from the maximum3

correlation at each contour level from 0.3 to 1.0 [39]. As the reference height4

increased, the streamwise correlation length associated with R11 = 0.3 first5

increased, but then decreased after a certain height between 1.5h and 2.0h.6

In the channel cross-section (y − z), the strongly correlated region of R11 was7

concentrated in a roughly circular area around y = 0 with a lateral extent8

of h (Fig. 7), which was less than the channel width. This is consistent with9

Ghisalberti and Nepf [13], who observed multiple structures across the channel10

of lateral scale comparable to the canopy height h.11

The shape of the inclined structure is consistent with that observed in12

terrestrial canopies [36], but the size in the aquatic canopy modeled here is13

smaller in the vertical and streamwise directions, which is mostly likely due to14

the free surface constraining the scale and orientation of coherent structures.15

Specifically, for a terrestrial canopy, Finnigan [36], reported that the stream-16

wise, lateral and vertical extents of this strongly-correlated region (R11 > 0.3)17

are roughly 6h, h and 3h respectively.18

3.3 Secondary Circulation19

Flow in rectangular channels produces turbulence-induced secondary circula-20

tion [40], which has a notable influence on the transport of momentum and21

mass [41]. Figure 8 shows the contours of the streamwise velocity averaged22

both temporally and in the streamwise dimension. The magnitude of the lat-23

eral and vertical velocity (not shown) was an order of magnitude smaller than24

the streamwise velocity. The secondary circulation that developed in the veg-25

etated channel with no-slip sidewalls is visualized by the streamlines shown26

in Fig. 9a. Four large and two small secondary cells were distributed sym-27

metrically across the centerline. For comparison, the streamlines computed28

in the same channel without vegetation are shown in Fig. 9b, which shows29

that the presence of submerged vegetation modified the distribution of the30

secondary cells. Unlike the unvegetated channel (Fig. 9b), no vortices were de-31

tected close to the lower corners of the vegetated channel, indicating vegetation32

drag damped these corner cells.33

The secondary circulation transports momentum and thus distorts the con-34

tours of streamwise velocity. For example, the upward flow at the centerline35

and near the bed (Fig. 9a) brings lower velocity upward, bowing the contours36

of u = 0.01 m s−1 and 0.02 m s−1 upward at the center of the channel (Fig.37

8). Near the free surface, circulation carries fluid downward at mid-channel38

(Fig. 9a), so that the streamwise velocity attains its maximum value below39

the surface (Fig. 8). It is important to note that these secondary motions do40

not occur in the spanwise-periodic channel flow (data not shown). Because the41

LES with no-slip sidewalls correctly captures the secondary flow, it can also42

reproduce the lateral variation in velocity and turbulence measured in the real43

channel (Fig. 10). The simulation using the no-slip sidewalls is in reasonable1
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Fig. 8 Contours of mean streamwise velocity 〈u〉 in the y − z plane.
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Fig. 9 Secondary flow streamlines computed from LES with no-slip sidewalls in (a) the
vegetated open-channel (Table 1); (b) a smooth open-channel with the same dimensions.
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Fig. 10 Lateral profiles of mean flow and turbulence statistics at four different heights
z/h = 0.5, 1.0, 2.0, 3.0. (a) Mean streamwise velocity; (b) Reynolds stress. Solid line (0.5h),
dashed line (1.0h), dashed dotted line (2.0h), and dashed double dotted line (3.0h) from LES
with no-slip sidewalls; diamonds (0.5h), triangles down (1.0h), triangles up (2.0h), squares
(3.0h) from Ghisalberti’s flume measurement.

agreement with flume data provided by Ghisalberti (personal communication)2

from the experiment described in Ghisalberti and Nepf [13]. In the lower part3

of the channel, specifically z/h ≤ 2.0 [diamonds and triangles], the streamwise4

velocity (u) has its maximum value near the side walls, while at z/h = 3.05

[squares], u peaks in the center (Fig. 10a). These variations can be attributed1
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Fig. 11 Contours of (a) mean streamwise vorticity; (b) production by normal stress dif-
ferences (the second term on the RHS of Eq. 14); (c) production by secondary shear stress
(the third term on the RHS of Eq. 14).

to the presence of secondary flow in the cross-plane, as described above. Sim-2

ilarly, the LES with no-slip sidewalls correctly captures the lateral variations3

in Reynolds stress (Fig. 10b).4

The formation of the secondary flow can be understood through the mean5

streamwise vorticity [41–43]:6

〈ωx〉 = ∂ 〈w〉 /∂y − ∂ 〈v〉 /∂z (13)

The equation for 〈ωx〉 is derived from the vertical and spanwise momentum7

equation by eliminating the pressure term,8

〈v〉 ∂ 〈ωx〉
∂y

+ 〈w〉 ∂ 〈ωx〉
∂z

=υ

(
∂2

∂y2
+

∂2

∂z2

)
〈ωx〉 +

∂2

∂y∂z

(〈
v′2

〉
−
〈
w′2

〉)

+

(
∂2

∂z2
− ∂2

∂y2

)〈
v′w′

〉
+

∂2

∂y∂z

(〈
v′′2
〉

−
〈
w′′2

〉)

+

(
∂2

∂z2
− ∂2

∂y2

)
〈v′′w′′〉 +

(
∂
〈
FDy

〉

∂z
− ∂

〈
FDz

〉

∂y

)

(14)
The two terms on the left-hand-side (LHS) represent the convection of stream-9

wise vorticity, and the first term on the right-hand-side (RHS) stands for the10

viscous diffusion of streamwise vorticity. The remaining terms generate or11

dampen the secondary circulation. Given that the ratio of the flume width to12

the diameter of the cylinder is approximately 60, the stem-scale structures in13

the wake of each vegetation element were assumed to have a minor effect upon14

the flume-width-scale secondary structures.15

The secondary flow above the canopy layer was generated only by turbu-16

lent stress fluctuations, i.e. the normal stress differences
〈
v′2

〉
−
〈
w′2

〉
and17

the secondary shear stress
〈
v′w′

〉
. The contours of mean streamwise vortic-18

ity and the production terms associated with the normal stress differences19

and secondary shear stress all display an antisymmetric distribution about20

the channel centerline (Fig. 11a-c). The vorticity 〈ωx〉, was mainly produced1
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Fig. 12 LES computed secondary flow streamlines along with contours of mean streamwise
velocity for all cases. Note that only half of the channel width is shown, with y/H=0 at the
centerline.

along the sidewalls between the top of the canopy to the upper corner, with an2

intense region of production coincident with the top of the canopy (Fig. 11).3

This implies that the canopy height controlled the position of the secondary4

circulation. In addition, the distribution of 〈ωx〉 was positively correlated with5

the production term associated with normal stress differences, and negatively6

correlated with the production term associated with secondary shear stress,7

except near the water surface where the opposite correlation exists. This indi-8

cates that the secondary shear stress generated the streamwise vorticity near9

the free surface, while the normal stress differences were the main contribution10

to vorticity generation in the rest of the channel, and specifically near the top11

of the canopy, where the canopy roughness and shear-layer were the source of12

local turbulence intensity driving the gradients in normal stress. Within the13

canopy layer, dispersive normal stress differences
〈
v′′2
〉
−
〈
w′′2

〉
and dispersive14

shear stress 〈v′′w′′〉, arise from spatial variation in the time-averaged velocity.15

However, since the canopy was represented as a distributed drag in the LES16

simulation, these dispersive terms were absent in the model and thus cannot17

be the source of secondary circulation within the simulation. The last term on18

the RHS serves as a destruction term associated with the streamwise compo-19

nent of the curl of vegetation drag vector that acts to inhibits the formation20

of secondary circulations at the lower corners, as seen in Fig. 9.21

The channel aspect ratio has a significant influence on the structure of the22

secondary flow. Figure 12 depicts the secondary flow streamlines for all sim-23

ulated cases. For the narrowest channel, the corner vortices filled the channel24

half-width, with vortex width roughly equal to 0.4h. In this case, the vor-25

tex width is constrained by the channel width. In all other channels of finite26

width, the upper corner vortex was between 0.5h and 0.6h, irrespective of the27

aspect ratio (Fig. 12b, c and d). In addition, for the wider channels (wf/H1
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Fig. 13 Vertical profiles of (a) channel centerline velocity Uc and (b) channel centerline
Reynolds stress u′w′

c. The velocity was normalized by the cross-sectionally averaged veloc-
ity, Ubulk. The Reynolds stress was normalized by its value at the canopy top. The vertical
distance z is normalized by the canopy height h.

= 5 and 10), multiple secondary circulation cells appeared across the channel.2

The width of these secondary cells was roughly equal to H . This multicellu-3

lar secondary-current flow pattern was consistent with that observed in wide4

open-channel flows (e.g. Nezu et al. [44] and Culbertson [45]). Note that no5

secondary motions occurred in the spanwise-periodic channel flow (Fig. 12e).6

The impact of the secondary circulations on the streamwise velocity was7

diminished as the channel aspect ratio increased and the ratio of circulation8

length-scale to channel width decreased. Specifically, the impact on the time-9

averaged centerline velocity is shown in Fig. 13a. For the narrowest channel10

(solid black curve), the maximum centerline velocity occurred below the wa-11

ter surface, which is a classic signature of the impact of secondary circulation12

on velocity distribution. However, as the channel widened, this feature disap-13

peared, and the maximum centerline velocity occurred at the water surface14

for all channels wider than wf/H ≥ 2. In addition, the change in secondary15

circulation also impacted the velocity in the upper canopy (z/h = 0.5 to 1).16

Specifically, the streamwise velocity in the upper canopy was the highest for17

the infinitely wide canopy (wf/H = ∞) where no secondary circulations were18

present, and the streamwise velocity was the lowest for wf/H = 0.81, where19

the secondary circulations had the strongest impact. For the wf/H = 10 chan-20

nel, the secondary circulation was directed downward at the centerline, which21

could have enhanced velocity in the upper canopy, but, in fact the velocity in22

the upper canopy was identical to the wf/H = 2 and 5, where the secondary23

circulations were directed upward and neutral at the centerline, respectively.24

This comparison suggests that the secondary circulation was not directly re-25

sponsible for the upper canopy velocity. Instead, the upper canopy velocity was26

determined by the turbulent momentum flux at the top of the canopy, which27

was dominated by the coherent structures identified in Fig. 6 and Fig. 7. The28

lower velocity in the upper canopy for the channels with secondary circulation1
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suggests that the secondary circulations can interfere with the shear-layer co-2

herent structures, making them less effective in vertical momentum exchange.3

The profiles of Reynolds stress support this interpretation, because the chan-4

nel without the secondary circulations exhibited the largest penetration of5

Reynolds stress into the canopy (Fig. 13b).6

3.4 Scalar Transport7

Figure 14 compares the simulated and measured vertical profiles of mean scalar8

concentration at six streamwise positions. The concentration has been aver-9

aged over the lateral direction and is normalized by the maximum concen-10

tration at location 1. The solid and dashed lines respectively represent LES11

simulations with and without the stem-wake turbulent diffusivity (Eq. 6). The12

inclusion of the stem-wake diffusivity yielded better agreement with the ex-13

perimental data of Ghisalberti and Nepf [13], especially near the bed and in14

the near field (see Fig. 14a), which demonstrates the importance of including15

the contribution of the unresolved stem-scale turbulence for scalar transport16

modeling. In the far field, the computed concentration became less sensitive17

to the inclusion of the stem-wake diffusion model. In the near field, before18

the plume spreads over the flow depth, the near-bed turbulent diffusion was19

dominated by stem-scale turbulence, whereas the transport of scalar in the far20

field (once the plume has spread over the flow depth) was determined by the21

LES resolved coherent structures.22

3.4.1 Characteristics of scalar dispersion plume23

The vertical growth rate of the laterally-averaged concentration plume can be24

quantified by two dispersion parameters, i.e. the mean height of the plume zm,25

zm(x) =

∫H

0
z
〈
C
〉

y
(x, z)dz

∫H

0

〈
C
〉

y
(x, z)dz

(15)

and its standard deviation in the vertical direction σz ,26

σz(x) =

∫H

0
(z − zm)2

〈
C
〉

y
(x, z)dz

∫H

0

〈
C
〉

y
(x, z)dz

(16)

The angle bracket with a subscript y indicates a laterally-averaging opera-27

tion. Because we considered a continuous release, these parameters are only28

functions of distance x from the source and not of time. Figure 15 plots the29

streamwise variations of zm and σz , normalized by the canopy height h. The30

numerical simulations were consistent with the flume measurements. Between31

the source and x/h = 5, zm was approximately constant, as expected for a32

plume evolving without influence from any boundaries. Beyond this point,33

after the plume had reached the no-flux boundary at the bed, zm increased1
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Fig. 14 Comparison of normalized mean concentration profiles from LES simulation and
experimental data. (a) x = 19 cm; (b) x = 54 cm; (c) x = 92 cm; (d) x = 150 cm; (e) x
= 250 cm; (f) x = 380 cm. Solid and dashed lines, respectively, indicate simulation results
obtained with and without turbulent diffusivity model (Eq. 6). Symbols are experimental
measurements [13].
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Fig. 15 Comparisons of streamwise variations of (a) zm/h and (b) σz/h between LES
results and experimental data. For legend, see caption of Fig. 14.

with x. The LES with stem-wake diffusivity matched the data more closely2

in the near-field (x/h < 5), but in the far field, the models with and without3

stem-wake diffusivity converged (Fig. 15), because once the plume scale was4

comparable to the coherent shear-layer structures and the secondary circula-5

tion cells (e.g. Fig. 5), these large structures dominate the scalar transport.6

Both models provide good predictions of σz (Fig. 15b).1
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Fig. 16 Contours of normalized, time-mean scalar concentration on six crossplanes along
the streamwise direction from (a) to (f): (a) x = 19 cm; (b) x = 54 cm; (c) x = 92 cm;
(d) x = 150 cm; (e) x = 250 cm; (f) x = 380 cm. The vertical and lateral coordinates are
normalized by the water depth H.

3.4.2 Effects of secondary flow on scalar dispersion2

Secondary circulations can be an important mechanism of scalar transport in3

fluvial systems [21]. Similarly, the secondary circulation within the vegetated4

channel impacted the distribution and mixing of scalar. Figure 16 plots the5

contours of time-averaged concentration at six crossplanes along the stream-6

wise direction for the original channel (wf/H = 0.81). The location of the7

concentration maxima moved with the secondary circulation. Although the8

scalar was discharged from sources uniformly distributed in the lateral direc-9

tion, the secondary circulation distorted the tracer distribution. At the top of10

the canopy, the vertical velocity associated with the secondary circulation was11

upward at the channel centerline and downward near the walls. This caused the12

maximum concentration to be deflected upward at the centerline and down-13

ward at the walls. This distortion is clearly seen in the concentration contours14

near the source (Fig. 16a). Farther from the source, the advection of tracer15

associated with the secondary circulation within the canopy (Fig. 8b and c)16

produced maximum concentrations at the bottom corners (Fig. 16b and c), and17

eventually the maximum concentration was advected to the center at the bed18

(Fig. 16d). That is, the maximum concentration within the canopy traced out19

the trajectory imposed by the secondary circulation. Similarly, as the tracer20

entered the pair of cells above the canopy, the contours of scalar concentration1

were bent upward at the sidewalls by the secondary circulation in this region.2
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Fig. 17 Contours of normalized, time-mean scalar concentration on six crossplanes along
the streamwise direction of the channel of wf /H = 2.0. See the caption of 16.

3.4.3 Effects of the channel aspect ratio3

As the channel aspect ratio wf/H increased, the number of secondary cir-4

culation across the channel also increased, with neighboring cells rotating in5

opposite directions (Fig. 12). The presence of multiple secondary circulations6

enhanced the scalar mixing within the central zone of the open-channel, while7

near the sidewalls, the scalar was transported in a manner similar to the vali-8

dated case, i.e. the corner secondary cells advected the maximum concentration9

from the canopy interface to the lower corners (Fig. 17). For the spanwise peri-10

odic channel, there are no secondary cells to distort the evolving tracer cloud,11

and the scalar plume spreads vertically in a uniform fashion across theNote12

that to represent the infinitely wide channel, the side boundaries were as-13

signed convective boundary conditions for the scalar modeling, which allowed14

the scalar to leave the observed domain. As a result, the scalar distribution is15

non-uniform in the lateral direction. channel (see Fig. 18).16

Figure 19 shows the vertical profiles of laterally-averaged concentration17

from simulated cases with different channel aspect ratios, normalized by the18

average value of the cross-section at each downstream location. The vertical19

spread of the tracer plume was the slowest for the spanwise periodic channel20

(dashed-dot curve in Fig. 19) which contained no secondary circulations, indi-1

cating that the secondary circulation enhanced the vertical transport of scalar2

in the other channels. In the near field, the narrowest channel exhibited the3
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Fig. 18 Contours of normalized, time-mean scalar concentration on six crossplanes along
the streamwise direction for the spanwise periodic channel. See the caption of 16.

Fig. 19 Comparison of normalized, time-mean concentration profiles for simulated cases
with different channel aspect ratios. (a) x = 19 cm; (b) x = 54 cm; (c) x = 92 cm; (d) x =
150 cm; (e) x = 250 cm; (f) x = 380 cm.
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fastest vertical spread of tracer, because the corner vortices extended across4

the channel, efficiently enhancing the scalar transport within the canopy layer.5

In the far field, once the plume had reached the bed, the concentration profiles6

for all open-channels collapsed with each other at all downstream locations.7

Finally, also note that the secondary cells particularly enhanced the down-8

ward spread of tracer into the canopy. For example, Fig. 19b shows that the9

tracer spread downward much faster within the channels of finite width. In10

addition, the narrowest channel (solid line in Fig. 19b) developed a secondary11

concentration peak within the canopy. This feature is non-Fickian, and can12

be attributed to the fact that the secondary structures controlling the verti-13

cal migration of tracer were comparable in size to the plume, creating what14

appeared to be counter-gradient fluxes and generating a local peak below the15

injection site.16

4 Conclusion17

In this paper, LES was used to predict the turbulence structure and the trans-18

port of a passive scalar in an open channel with submerged vegetation. For19

simplicity, the vegetation was represented by a distributed drag force propor-20

tional to the canopy density and local, resolved velocity. In the scalar transport21

equation, the effect of stem-scale eddies, which were not directly resolved by22

the LES, was introduced by adding the scalar diffusivity model proposed and23

validated by Tanino and Nepf [18]. The model performance was evaluated24

by comparing the simulation to flume data from Ghisalberti and Nepf [13].25

Satisfactory agreements were found between LES and measurements of tur-26

bulence statistics and mean concentration, which demonstrated that the LES27

correctly captured the coherent structures formed at the canopy interface and28

their impact on momentum and scalar transport. Importantly, the inclusion of29

stem-wake TKE and diffusivity was required to match the TKE levels and tur-30

bulent scalar transport in the lower canopy layer. By extension, the LES model31

presented here applies equally to mass transport within and above terrestrial32

plant canopies.33

Quadrant analysis and instantaneous velocity maps showed that Q2 ejec-34

tion events and Q4 sweep events were the dominant types of coherent struc-35

tures within a vegetated channel. Sweeps (Q4) carried most of the momentum36

flux into the upper canopy layer, whereas ejections (Q2) dominated above the37

canopy. Statistical space correlation revealed an inclined elongated coherent38

structure lying above the vegetation canopy, with an extent of 2.5h, h and39

h in the streamwise, lateral and vertical directions respectively. The free sur-40

face and side walls affected the extension and orientation of this structure, as41

the size and inclination angle were smaller than that observed in terrestrial42

vegetation canopies.43

The study also revealed important shifts in the secondary circulation com-1

monly found in the open channel flow. In the channel of narrow aspect ra-2

tio (wf/H = 0.81), the vegetated channel produced a secondary flow struc-3
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ture composed of four counter-rotating vortices and two corner vortices, which4

differed from the well-known eight-vortex pattern observed in a square duct5

bounded by four solid walls. The position of the secondary cells was linked6

to the canopy height, because the elevated turbulence intensity at the top of7

the canopy provokes the generation of streamwise vorticity via gradients in8

the normal turbulent stresses. Importantly, the secondary flow was shown to9

cause lateral and vertical transport of the scalar plume, which enhanced the10

vertical mass flux within the vegetated channel.11
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