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Abstract. Further to our previous Large-Eddy Simulation (LES) of flow over a staggered array of uniform
cubes (Xie & Castro, 2006), a simulation of flow over random urban-like obstacles is presented. To gain
a deeper insight into the effects of randomness in the obstacle topology, the current results, e.g. spatially
averaged mean velocity, Reynolds stresses, turbulence kinetic energy (TKE) and dispersive stresses, are
compared with our previous LES data and Direct Numerical Simulation (DNS) data (Coceal et al., 2006) of
flow over uniform cubes. Significantly different features in the turbulence statistics are observed within and
immediately above the canopy, although there are some similarities in the spatially-averaged statistics. It
is also found that the relatively high pressures on the tallest buildings generate contributions to the total
surface drag which are far in excess of their proportionate frontal area within the array. Details of the
turbulence characteristics (like the stress anisotropy) are compared with those in regular roughness arrays
and attempts to find some generality in the turbulence statistics within the canopy region are discussed.
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1. INTRODUCTION

Understanding the dominant physical mechanisms in flows over arrays of obstacles is
directly beneficial to understanding of both building aerodynamics and urban meteorology.
It is thus a vital ingredient in understanding pollutant dispersion processes within urban
environments. Flow over regular arrays of cubes mounted on a wall has been studied by a
number of researchers (Meinders & Hanjalić, 1999; Hanna et al., 2002; Cheng & Castro,
2002; Stoesser et al., 2003; Kanda et al., 2004; Coceal et al., 2006). These obstacles repre-
sent roughness elements - in the urban context, building blocks. However, the arrangement
and sizes of buildings in a real urban area are random. As far as we are aware, except
for the wind tunnel experiments of Cheng & Castro (2002) (hereafter, CC) the effects
of randomness in the sizes or arrangement of blocks have thus far not been among the
priorities in any previous work (either numerical simulation or wind tunnel experiment).
In field studies (see Kastner-Kline & Rotach, 2004, for an example) such randomness is of
course virtually guaranteed but its effects on the nature of the flow, as compared with flows
over uniform, regular obstacle arrays, have seem not to have been explicitly investigated,
apart from the recent study by Kanda (2006), who describes the use of LES to determine
the effect of building height variations on total surface drag.

Before applying the results of simple wind tunnel models to flows over a full scale
genuine array of buildings, numerous issues have to be addressed, e.g. possible Reynolds
number dependence (discussed in our previous work, Xie & Castro, 2006). In the present
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paper we address four questions. Firstly, to what extent do turbulence statistics within the
canopy region and pressure on the surfaces of random blocks differ from those in an array
of uniform blocks? There is already some experimental evidence, for example, that taller
buildings can experience greater drag than would be anticipated on the basis solely of
their frontal area (Hayden et al., 2007). Secondly, to what extent is the turbulence within
the roughness sublayer (RSL) and the canopy region (CR) for random arrays similar to
that for uniform arrays? (The roughness sub-layer is defined here as that region above the
roughness elements within which the flow remains spatially inhomogeneous in horizontal
planes, with the canopy region the region below, encompassing all the roughness.) Thirdly,
is it possible to identify a finite set of domains within the RSL and, particularly, the
CR which each have different essential characteristics but could collectively be used to
describe flows in any urban region by suitably combining them? For a uniform array of
cubes Coceal et al. (2007a) have shown that this is feasible; whilst it might inherently seem
more unlikely for general arrays, it would be practically very useful if it were possible. If it
is not, is there any other alternative which would allow general characterisation of the flows
within small urban regions? Fourthly, the details of flow within the RSL depend greatly on
the arrangement and size of individual blocks. But how much detail is critical and cannot
be ignored? This will also be intensively investigated in a related paper regarding coherent
structures within the RSL of the random geometry flow discussed here.

Further to our previous LES and DNS of flows over a staggered array of uniform cubes,
we have performed LES of the flow over a more urban-like array of obstacles. We took as a
suitable array the one studied experimentally by CC, in which the size of a ‘repeating unit’
of the obstacles was 80mm x 80mm. For those experiments, each unit comprised an array
of sixteen 10-mm-square elements having different heights chosen from an appropriate
normal distribution. Of course, real urban geometries contain randomness not just in the
building heights, but also in their shapes and in their placement with respect to each other.
But the experiments were conceived as constituting a relatively simple initial probe of the
effects of randomness. The impossibly large number of what one might call ‘randomness
variables’ was thus limited essentially to just three - the variance in the building height,
the number of buildings within a repeating unit and the relative positions of buildings of
different heights within that unit. Because the earlier experiments used 10 mm cubes with
25% area coverage, the random array was chosen to use exactly the same plan arrangement
and the same total volume of the blocks, with a 3 mm standard deviation in block height
(and a mean height, hm, of 10 mm). Other constraints leading to the choice of 16 blocks
for the repeating unit are discussed by CC. For the present numerical study, four of these
repeating units are included in the whole computing domain; this was thought sufficient
for obtaining adequate statistics at least in the near-surface regions (the RSL and CR).
Figure 1 shows one repeating unit of the surface used in the laboratory experiments of
CC. The numerical results are compared where possible with available data from those
experiments, which were somewhat limited compared with the present computations in
that only data above the canopy were measured. The computations naturally provide
much more complete data sets, throughout the entire domain, and allow an attack on the
questions identified above. The governing equations and numerical details are outlined in
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Figure 1. A view of one of the repeating units used in the experiments of Cheng & Castro (2002) and
modelled numerically in the present work. The oncoming flow is from top to bottom.

the following section, results and discussion are presented in Section 3 and the final section
provides some concluding remarks.

2. Governing Equations and Numerical Details

To ensure a largely self-contained paper, a brief description of the numerical methods is
given here; more extensive details can be found in Xie & Castro (2006), hereafter denoted
by XC.

The filtered continuity and Navier-Stokes equations are written as follows,
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The dynamical quantities, ui, p are resolved-scale (filtered) velocity and pressure respec-
tively and τij is the subgrid-scale (SGS) Reynolds stress. δi1 is the Kronecker-delta and ν
is the kinematic viscosity. ∂〈P 〉/∂x1 is the driving force, a constant streamwise pressure
gradient. All the data presented in this paper were obtained using either FLUENT.v6
or STAR-CD4, run in LES mode. As discussed in XC, provided proper choices of mesh,
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numerical (differencing) schemes and boundary conditions were used, essentially identical
results were obtained with either code. The particular choices are identified below. For
the sub-grid stresses the classical Smagorinsky SGS model was used in FLUENTv.6 with
Cs = 0.1 and, in STAR-CD4, the very similar model discussed by Yoshizawa (1986) was
used. In the near-wall region, the Lilly damping function was also applied; this reduces the
filter width within the viscosity-affected region so that the energy-carrying eddy sizes scale
appropriately. Also, for cases where the fine eddies in the vicinity of the wall are important,
it is usually recommended that N

+
1 is of order of unity (where N

+
1 is the distance in

wall units between the centroid of the first cell and the wall, assuming the N coordinate
is normal to the wall). Note, however, that for a complex geometry, where separation and
attachment processes occur, it is impossible to satisfy this criteria everywhere. We argue
that, unlike the situation for smooth-wall flows, it is in fact not necessary, at least for
obtaining overall surface drag and the turbulent motions at the scale of the roughness
elements (buildings), which turn out to be dominant (see XC).

The local wall shear stress is then obtained from the laminar stress-strain relationships:

u+ =
u

ûτ
, N

+ =
ρûτN

µ
, N

+ = u+ , (2)

where ρû2
τ is the local wall shear stress. However, if the near-wall mesh is not fine enough

to resolve the viscous sublayer, for simplicity it is assumed that the centroid of the cell
next to the wall falls within the logarithmic region of the boundary layer:

u

ûτ
=

1

κ
lnE

(

ρûτN

µ

)

, (3)

where κ is the von Karman constant and E is an empirical constant - 7.77 to be consistent
with Coles’ values of the constants (κ = 0.41, A = 5) in the usual smooth-wall log-law
formulation. The log-law is employed when N + > 11.2. Again, note that for very rough-
wall flows, even at very large Reynolds numbers, there are probably very few regions on
the surface of the roughness elements where log-law conditions genuinely occur in practice.
However, we have shown earlier that for this type of flow, where the individual elements
are well resolved by the mesh, the precise surface condition is unimportant for capturing
the element-scale flows and hence, for example, the surface drag (see XC). So it turns out
that these various wall features of the computations (Lilly damping, log-law formulation,
etc.) are not in fact important. Significant changes can be made to them without changing
the nature of the overall flow significantly. In this sense, we argue that computations of
very-rough-surface flows, resolving all roughness elements, is actually rather easier in some
respects than computing smooth-wall flows with LES.

Crucially, the discretisation for all terms in Eq. (1) was second order accurate in both
space and time. For time stepping, a second-order backward implicit scheme was used. For
spatial differencing, we used either a deferred correction second order central scheme (for
the hexahedral mesh, Fig.3a) or the second order monotone advection and reconstruction
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Figure 2. Plan view of computational domain. Numbers indicate the block height in mm, with each small
square having an area of 10 x 10 mm2. The large square highlighted by the dashed line indicates one of
the four repeated units in the domain. The oncoming flow is from top to bottom. R1, R2, R3 respectively
indicate what Coceal et al.(2007a) call a constricted region, a front-recirculation region and a building
wake region.

scheme MARS (for the polyhedral mesh, Fig.3b). This latter scheme possesses the least
sensitivity of solution accuracy to mesh structure (Moreau et al., 2004). These multi-
dimensional linear reconstruction schemes on face-based structures help to fulfill continuity
and momentum conservation for cells with arbitrary topology (Choudhury et al., 2004).
The computational domain is illustrated in figure 2 and contained four repeating units
(one of which is outlined by the dashed line), giving a domain size of Lx × Ly × Lz =
16hm × 16hm × 10hm, where hm is the mean height of the obstacles; the total number of
obstacles was thus 64. Individual block heights are shown on the figure.

The constant pressure gradient in equation 1 was imposed on every cell as the driving
force:

∂P

∂x1

=
ρu2

τ

Lz
, (4)
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where uτ is by definition the total wall friction velocity. The roughness Reynolds number,
Reτ = uτhm/ν, was 391, which is in the fully rough regime. The Reynolds number based
on the maximum velocity (i.e. at z = 10hm) and the mean height was approximately 4790.
This is rather lower than the value used in the laboratory experiments (about 6700) but
Reynolds number effects are relatively insignificant in these flows. This was demonstrated
experimentally by Cheng & Castro (2002) in the context of cubic arrays, and was discussed
by XC. As noted earlier, the turbulent motions at the roughness scale dominate, so that
typical energy spectra contain significant inertial subranges above scales of order h/10 and
the very thin boundary layers on the surfaces of the elements are unimportant. These facts
mean that, unlike smooth-wall flows, Reynolds number effects are weak (and relatively
course LES meshes can capture much of the inertial sub-range).

In the streamwise and lateral directions the flow was assumed periodic and at the
top of the domain, stress free conditions were imposed. The computations thus actually
represent fully-developed flow in a half-channel, which is both conceptually and practically
rather easier than computing a boundary layer flow and is common in LES computations
of atmospheric boundary layers (e.g. Moeng, 1984, Shaw & Schumann, 1992). Genuine
boundary layer computations would preclude the use of periodic inlet/outlet conditions.
Although there are techniques for inserting inlet turbulence (and we have ourselves de-
veloped a very efficient (filter-based) methodology – Xie & Castro, 2008), the emphasis
in the present work is on the roughness sub-layer and canopy regions, so channel flow
computations with a domain height not too dissimilar to the experimental boundary layer
thickness are quite adequate (see also XC).

A three-level hexahedral mesh (2.3 million cells) with 16×16×16 cells per hm×hm×hm

in the near wall region (see Figure 3a) and a three-level polyhedral mesh (1.3 million
cells) with 13 × 13 × 13 cells per hm × hm × hm in the near wall region (see Figure 3b)
were used in the FLUENTv.6 and STAR-CD4 computations, respectively. The time step
was 0.002T (T = hm/uτ ). The initial duration of most of the runs was 150T, whereas
the subsequent averaging duration for all the statistics was approximately 300T . Coceal
et al. (2006) found that for their array of uniform cubes, with a spanwise domain size of
8hm, the converging flow contained quite strong, large-scale structures having longitudinal
vorticity. These rolls, typically having a spanwise wavelength of about 4hm, gave rise to
significant dispersive stresses (i.e. stresses which arise from spatial inhomogeneities in
the time-averaged fields) and adequate time-averaging was necessary to resolve statistics
unequivocally (i.e. to reduce these dispersive stresses to zero above the near-wall region).
They found that an averaging time of about 400T was necessary. For the present surface,
there was little evidence of such rolls, partly no doubt because of the more random nature
of the surface but also perhaps because the spanwise domain was limited to two repeating
units (compared with four in Coceal et al., 2006). So the 300T averaging time in the
present case was quite sufficient for obtaining converged statistics.
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(b)

(a)

Figure 3. A vertical-transverse cut cross the tallest (17.2 mm) block. Hexahedral mesh (a) and polyhedral
mesh (b).

3. Numerical results and data analysis

3.1. Validation

Essentially identical results were obtained using the hexahedral mesh (with Fluent6) and
the polyhedral mesh (with Star-CD4). This suggests that the two meshes are both sat-
isfactory, but it is known that polyhedral meshing is more flexible than the alternatives
for complex geometries and it is also more accurate and less memory consuming than
the widely used tetrahedral mesh (see, for example, Peric, 2004). Our earlier work (Xie
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Figure 4. Spatially averaged mean velocity, velocity r.m.s. and Reynolds shear stress profiles. Open circles
in (c) and (d) refer to the experimental data but have the ordinate, shown on the right, scaled by the
boundary layer thickness.

& Castro, 2006), which addressed meshing issues in some detail, concluded that grid
sizes around the obstacles should be no greater than about 0.06H for adequate LES
computations of the canopy region (and thus the surface drag); the localised errors implied
by relatively large changes in mesh spacing (e.g. around z/h = 5 in Fig.3a) were not found
to prejudice overall solution accuracy.

Figure 4 plots the spatially averaged mean streamwise velocity, velocity r.m.s. and the
Reynolds shear stress profiles. Note that the boundary layer thickness over the wind tunnel
array was 137mm, while the depth of the computational domain is 100mm. This causes
inevitable differences in the upper region of the domain for the quantities involving the
vertical velocity fluctuations (i.e. wrms and u′w′). Normalising the height by the boundary
layer thickness (or domain height) leads to much closer collapse, as shown in the figure. We
emphasise here that although profiles over the entire domain height must clearly depend
on the domain height – the latter is essentially a half-channel height (periodic conditions
are used for inlet and outlet conditions and symmetry at the upper boundary, as discussed
earlier) – the flow in the roughness sublayer is not strongly dependent on domain height.
This was demonstrated by Coceal et al. (2006) and it allows sensible comparisons with
the near-surface region of boundary layer flows over the same roughness, provided the
boundary layer thickness is not too much smaller than the computational domain height.
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Notice also that the sub-grid contributions to the r.m.s. velocities are not insignificant; in
Fig.4b, for example, good agreement with experiment is obtained only once the sub-grid
stress component is included. It is worth mentioning the rather subtle point that whilst it is
not possible to calculate the sub-grid energy from the sub-grid stress tensor (whose trace is
zero), one can approach the matter the other way around and estimate the sub-grid energy
posthoc using the sub-grid model – which is supposed to represent the unresolved portion
of the energy spectrum. This is what was done to deduce the additional contributions
providing the (estimated) total stresses and energy in the Fig.4, but we emphasise that it
is not strictly exact.

CC did not directly measure the total drag for the random surface. For the uniform
surface they showed that the drag measured via a pressure tapped element (ignoring the
viscous contribution) was some 30% higher than would be deduced using the measured
Reynolds shear stress averaged through the RSL and the inertial sublayer. With the not
unreasonable assumption that the same ratio holds for the random surface, the experi-
mental values of the roughness length and zero plane displacement from the CC data are
zo/hm = 0.089 and d/hm = 1.1, respectively. Here, zo and d have the usual meaning, as
defined by the log law expressed as U

uτ
= 1

κ ln( z−d
zo

). The present LES data yield 0.095 and
1.2, respectively, which are satisfyingly close to the experimental values given the inherent
uncertainties in the fitting process and the different outer flow conditions.

Figure 5 presents streamwise mean and r.m.s. velocity profiles behind row three (at
x/hm = 6, on the central line between rows three and four - see the chain-dotted line in
fig.2). Each LES profile is an average of the available four profiles within the computational
domain. The LES data are again in good agreement with the measurements except near
the top of the domain (as noted earlier). Not surprisingly, the shape of the vertical profiles
below about z/hm = 2 depends on the height of the upstream obstacles in row three. So,
for example, the mean flow profile at y/hm = 5 (fig.5a) has a strong shear layer region
around z/hm = 1.8, because the block immediately upstream is the tallest block in the
array (of height 1.73hm). One might then ask how much contribution the obstacles further
upstream make to the turbulence profiles. Figure 6 shows a typical comparison between
stations A and B. Station A is located 0.5hm downstream of a 10mm block which is
in the (axial) column containing the 17.2mm block, whereas station B is located 0.5hm

downstream of a 10mm block which is in the column containing the 2.8mm block (see fig.
7). Note that there are two clear peaks in the station A urms profile (fig. 6b) - a narrow
one near z = hm marking the shear layer shed by the obstacle immediately upstream and
a wider (larger) one near z = 2hm, presumably arising from the shear layer shed at the
top of the taller block further upstream. On the other hand, in the station B profiles the
latter peak is relatively much more dominant, since the block further upstream is much
lower. The experiment has few data within the canopy and thus the lower peak in the
station B profile was not resolved. However, the difference in the measured wrms profiles
at z = 2hm between stations A and B is just evident (fig.6d). These data suggest that
elements even 5hm upstream can make crucial contributions to the turbulence statistics,
if they are sufficiently tall with respect to hm.
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Figure 5. Mean and r.m.s velocity profiles behind row three (i.e. on the chain-dotted line in fig.2). Symbols,
measurements; lines, LES.

We conclude that the present LES computation provides data in reasonable agree-
ment with laboratory experiment, particularly in the near-surface region. This is entirely
consistent with the conclusion of XC for uniform surfaces, which included comparisons
with (LDA) data obtained below z = h as well as with DNS results, and thus provides
confidence in the adequacy of the LES data within the canopy region of the present random
surface.

3.2. The overall canopy flow and surface pressure.

Figure 7 shows mean velocity vectors (U, V ) on the horizontal plane z = 0.5hm and (V,W )
on the vertical plane x = 5.6hm (immediately behind row 3). These data are averages over
the four repeating units. The details within the canopy are complicated and depend greatly
on the arrangement and the height of the blocks. For example, on the right side (facing
downstream) of the 10 mm block in row 1, near station A there is a large separation
bubble, whereas on the left side there is no bubble because on that side the 13.6 mm
block and 10mm block form a relatively narrow channel, giving a strong negative pressure
gradient in the streamwise direction - suppressing the reverse flow. This contrasts with
the flow around the next 10 mm block just downstream and on the left, where there are
similar separated zones on both sides. In the wake of this block, however, there is clearly a
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Figure 6. A comparison of streamwise mean velocity and velocity r.m.s. profiles between stations A and
B (see Figure 7).

strong asymmetry, presumably caused by the spanwise pressure gradient generated by the
dissimilar height blocks on either side. On the vertical plane, a common phenomenon is
that in the gaps between rows the flow is downward; consequently a clockwise circulation
(looking upstream) is formed on the right side of the 17.2mm block (anti-clockwise on
the left-hand side), as illustrated by the large arrows in fig.7b. This is the reverse of what
would occur for an isolated single block, where the cross-stream circulations have the same
sense as those in a trailing vortex system behind, for example, a delta-wing. Its cause is
the strong down-flow downstream of the gap, e.g. on the right of the 17.2mm block (facing
downstream), generated by the 13.6 mm block just downstream. The result emphasises
that even the qualitative behaviour of the flow around a particular building surrounded
by others may be very different from what would occur if the building were more remote,
suggesting that extreme caution is necessary in extrapolating what might be known about
the latter situation.

Figure 8 shows corresponding contours of turbulent kinetic energy (TKE) on the z =
0.5hm plane, which reveal some interesting features. It would not be intuitively obvious,
for example, that the regions with the highest levels of TKE would not only include the
regions to the sides of the tallest (17.2 mm) block but also downstream of the 13.6 mm
block in the first row; maximum levels in these two regions are within a percent of each
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are discussed in the text.

other and are clearly significantly higher (by some 30%) than in the region downstream
of the 17.2 mm block. Note too that the high TKE around the sides of the tallest block is
greatest in the region behind the tallest block just upstream (10 mm cf. 6.4 mm). It is quite
clear from both these figures that the flow and turbulence fields around the average height
(10 mm) blocks depend strongly on the height of the surrounding blocks, particularly
those just upstream. Similar conclusions result from inspections of the data on different
z-planes, but for planes above z = hm there are some noteworthy differences. These are
illustrated by figure 9, which shows TKE contours at four heights. It is clear that the
tallest building dominates in setting the largest values of TKE. Alternative arrangements
of the blocks (e.g. placing the lowest block in one of the six positions immediately adjacent
to the tallest block, rather than two rows away) would undoubtedly lead to yet another
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set of flow patterns, but probably with similar differences in the flows around individual
blocks.

The different flows around each block are linked of course with different pressure fields
on their surfaces. Figure 10 presents the normalised profiles of the drag force on each of the
16 obstacles in a repeating unit. The tallest block (17.2 mm) exerts much more drag than
the others. In fact, it is alone responsible for 22.4% of the total drag - far in excess of its
proportionate frontal area (10.8%) within the array. The five tallest blocks (the 17.2 mm
and the four 13.6 mm ones) are together responsible for two-thirds (65.3%) of the total
drag, although their frontal area is only 44.8% of the total. This is summarised by the Pie
chart included in fig. 10a, which shows the percentage contribution to the total surface
drag provided by the three groups of blocks. The shapes of the drag profiles (fig. 10a) are
in general similar for many of the tallest buildings (17.2 mm, 13.6 mm, 10.0 mm) except
when they are in the vicinity of a taller building. The profile shapes for the shortest
buildings (6.4mm and 2.8mm) are very different, as emphasised by fig.10b, where the
pressure difference normalised by the mean pressure difference across each block is plotted
with height normalised by the corresponding block height. These buildings, however, do
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not exert much drag as is clear from fig.10a. The fact that the tallest block exerts a
disproportionate amount of drag is consistent with some recent experimental findings.
Hayden et al. (2007), for example, studied the uniform (10 mm) cube array of CC, but
varied the height of one of the cubes; they found that a mere 15% increase in this height
led to a 45% increase in its drag coefficient. These results are not surprising, given the
fact that the majority of the drag force on each block arises from its upper portion, as is
clear from fig.10a, and that the velocities increase with height rapidly through the region
surrounding the top of the canopy.
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Figure 10. Normalised profiles of the drag force on each of the 16 obstacles in a repeating unit of the
random array. (a): the laterally integrated pressure difference between the front and back faces of the
cube, normalised by ρu2

τ . (b): pressure difference normalised by the mean pressure difference on each
block, with z normalised by the individual block height.
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Figure 11. Profiles of spatially-averaged axial mean velocity (U), fluctuating velocity (urms = σu), and
r.m.s. dispersive stress (< ũ >1/2= σud), normalised by uτ . The dashed lines indicate the average height
of the blocks and, in (a), the height of the tallest block.
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3.3. Comparison between spatially averaged statistics over random and

regular arrays

It is instructive to compare how the flow over the random array compares with that
over the uniform array. Figure 11 shows profiles of spatially-averaged axial mean velocity,
r.m.s. fluctuating velocity and the r.m.s of the dispersive stress (< ũ2 >1/2, where ũ
denotes the spatial variation from the time-mean flow as resolved by the LES) for the
random array (a) and the uniform array (b) of Coceal et al. (2007b). Note that the usual
partition of stresses into time-averaged and spatially-averaged (dispersive) components,
which is exact in DNS, is less clear when, as in LES, sub-grid models are used. Strictly,
there are four contributions (which include the sub-grid parts of both time and space
averaging processes), but in the present work we have ignored all sub-grid effects so
that the data shown in Figs. 11, 13 & 14 should be viewed as estimates of the relative
contributions – being calculated as if the unresolved sub-grid stresses are zero. Above the
height corresponding to that of the uniform canopy, the mean velocities are significantly
smaller over the random array since this array exerts more drag and has a larger roughness
length. Within the canopy region, however, the velocities are very similar to those in the
random array. There is a noticeable inflection in the velocity profile roughly at the canopy
top in the uniform array. This is associated with a strong shear layer at the cube tops.
In contrast, the profile over the random array has a much weaker inflection, at a height
somewhat above the mean building height of 10 mm. Likewise, similar behaviour of the
fluctuating components are apparent in the two cases. So, for example, in the canopy region
the spatial and temporal r.m.s. values are in both cases of the same order as the mean
velocity, and above the canopy the dispersive stress, unlike the usual (temporal) stress,
rapidly becomes very small. The fact that within the canopy both the spatial averages and
the spatial standard deviation of spatial variations from this average are very similar for
both arrays is somewhat surprising. It implies that, at least in an integral sense, the flow
below the mean building height in the random array is just as spatially inhomogeneous as
that within the regular array, but no more.

Figure 12 compares normalised profiles of spatially-averaged streamwise, spanwise and
vertical turbulent stresses and the TKE (i.e. one half of their sum) for the random and
uniform arrays. Again, roughly similar values between the two cases were found below
the mean building height. The peaks in streamwise turbulence intensity and TKE for the
uniform array are stronger than those for the random array, because a stronger shear layer
develops over the cubes of uniform height, as noted earlier; the locations of these peaks
are in that case near the cube tops. In the random array, the peaks are less strong, but
still quite pronounced. Interestingly, they occur at the height of the tallest building, not
at the mean building height, even though these are the spatially averaged profiles. This
suggests yet another way in which the effects of tall buildings dominate - as well as exerting
proportionately more drag, they produce a lot more TKE, as suggested too by the TKE
contours in fig. 9.
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Figure 12. Profiles of spatially averaged streamwise, spanwise and vertical turbulent stresses and TKE.

Some features of the stresses near the top and bottom boundaries are also worth
mentioning. Fig.12b shows a small rise in the spanwise stress component as the upper
(symmetry) boundary is approached. Shaw & Schumann (1992) have pointed out that
the kind of boundary condition used here can be interpreted as a strong inversion; like
turbulence near a wall, one expects the energetic larger-scale eddies to ‘splat’ as they
approach the boundary, with energy being transferred into the directions parallel to the
boundary from the component normal to it. The normal component (Fig.12c) certainly
falls to zero as it should and it is probably this process which leads to the noticeable
rise in spanwise stress; this ’splatting’ behaviour is also apparent in the DNS of Coceal
et al.(2006). A similar process occurs near the bottom boundary within the canopy, except
that there all stresses must fall to zero at the wall. But the boundary layer at the surface
is very thin and, although the DNS computations shown in XC (from Coceal et al., 2006)
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Figure 13. Profiles of dispersive stresses within and immediately above the canopy regions.

show not only the ‘splatting’ peak in spanwise stress but the subsequent fall to zero at the
wall, the present LES grid is too coarse to capture the latter.

Figure 13 plots profiles of the dispersive stresses, normalised by u2
τ , within and imme-

diately above the canopy regions for the random and uniform arrays. (Recall our notation
for these stresses – < ũiũj >, with i = j = 1 for the axial component, etc., and, for
example, σ2

ud =< ũ1ũ1 >.) Profiles of the shear component of dispersive stress are very
similar below z = hm. Differences are apparent in the case of the normal components,
perhaps resulting from differences in the irrotational contributions because of the much
larger variations in the mean flow within the random array. Above the (average) height
of the random array the dispersive stresses fall towards zero much more slowly than in
the uniform array, no doubt because there remain significant inhomogeneities in building
heights above z = hm.
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Figure 14. Profiles of the three components of kinetic energy, namely mean K.E. (MKE = 0.5< ūi >2),
dispersive K.E. (DKE=0.5< ũiũi >) and TKE (0.5< u′

iu
′

i >).

Figure 14 shows profiles of the three components of kinetic energy, namely mean
kinetic energy (MKE = 0.5< ūi >2), dispersive kinetic energy (DKE=0.5< ũiũi >) and
the usual turbulence energy (TKE=0.5< u′

iu
′

i >), all normalised by u2
τ . TOTKE denotes

the sum of the resolved mean, turbulence and dispersive kinetic energies, respectively.
MKE dominates above the canopy, but rapidly becomes a negligible fraction of the total
kinetic energy within the canopy, while the fraction of DKE and TKE both increase. DKE
is nearly uniform through most of the canopy depth for both arrays (fig.14). The fractions
of MKE, DKE and TKE for the two arrays are very similar below z = hm; energy is
partitioned roughly in the same proportions. Above the canopy, the TKE fraction over
the random array is roughly twice as large as that over the regular array - again, an
indication of the significantly rougher surface conditions caused by the non-uniform block
heights.

3.4. Generality of turbulence statistics within the canopy region

Coceal et al. (2007a) attempted to identify three flow regimes in the (staggered) uniform
array of cubes, which were described as a constricted region (R1), a front-recirculation
region (R2) and a building wake region (R3) (see Figure 2). Each of these has the same
horizontal extent as that of an individual cube. More, but smaller, regions could of course

19



0

0.5

1

1.5

2

-2 0 2 4 6

Averaged Um/uτ at region R3

0

0.5

1

1.5

2

-2 0 2 4 6

Averaged Um/uτ at region R2

0

0.5

1

1.5

2

-2 0 2 4 6

Averaged Um/uτ at region R1

Z
/h

m

0

0.5

1

1.5

2

0 1 2 3 4

Averaged TKE/uτ
2
 at region R3

0

0.5

1

1.5

2

0 1 2 3 4

Averaged TKE/uτ
2
 at region R2

0

0.5

1

1.5

2

0 1 2 3 4

Averaged TKE/uτ
2
 at region R1

Z
/h

m

(a) (b) (c)

(d) (e) (f)

Figure 15. Locally spatially averaged Um and TKE profiles over the region in a repeating unit. Solid lines
are the ensemble averaged profiles over the 16 corresponding regions.

have been chosen, but the hope was that these three were small enough to allow a general
characterisation of the flow within each, without being so large that quite independent flow
characteristics could be identified within one or more of them. In the repeating unit of the
random array, there are sixteen of each of these regions but, not surprisingly, the present
results show that the flow statistics (e.g. Um, TKE) within one region differ significantly
from those in another region having the same identity (R1, R2 or R3), because of the
different block topology surrounding them. Even if the turbulence statistics were averaged
horizontally over the whole local region the scatter between the sixteen regions is very
evident, as shown in Figure 15. Particularly for the R1 and R3 regions (figs.15a & c), the
flow is clearly strongly influenced by the local blocks. For R2 the rather better overall
convergence of the sixteen profiles might indicate that in this region the flow is generally
less influenced by the local blocks, which is perhaps not unexpected, given that the nearest
block is always downstream of this region.

The convergence of the sixteen Um profiles is noticeably better than that in fig. 15c
if the vertical coordinate is normalised by the block height immediately in front of the
region. This implies that the mean flow in this region is most strongly influenced by the
block immediately upstream. The sixteen TKE profiles are also then more similar in form
than those in fig.15f. When, in addition, the TKE is normalised by its value integrated
from z/hi = 0 to 1 even better convergence of the sixteen profiles was found (not shown),
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Figure 16. Averaged Um and TKE over sixteen R1 regions at the spanwise centre line in a repeating unit.

but the magnitude of the TKE was more sensitive (than that of the mean velocity) both
to the height of the block in front of the region and to the upstream conditions.

It is also of note that Um and the TKE at the spanwise centre line in one R1 region
could differ dramatically from those in another R1 region. The heights of the blocks on both
sides of the R1 region highly influence the form and magnitude of the spanwise profiles of
Um and TKE. Figure 16 shows spanwise Um and TKE profiles at five heights, averaged over
the sixteen R1 regions on the spanwise centre line; these have an approximately similar
form to those of the uniform array of cubes (Coceal et al., 2007a).

Overall, the results discussed above suggest that it is not possible to identify individ-
ually just a few typical regimes for the random array of staggered blocks, as Coceal et al.

(2007a) did for the uniform array. So a natural question is to ask whether local conditions
within a single region (which we continue to define by a horizontal area equal to the cube
plan area) can be determined largely by knowledge of the heights of the nearest blocks.
To answer this, we investigate the relation between the mean streamwise velocity or TKE
(e.g. at the centre of region R1 at z = 0.25hm) and the local topology, i.e. the block
heights. Assume for the moment that the mean streamwise velocity and the TKE at the
marked station (z = 0.25hm) between blocks 1 and 2 (see Figure 17) follow, respectively,

Um

uτ
=

1

hm
(c1h1 + c2h2 + c3h3 + ... + c8h8) + const1, (5)
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and
TKE

u2
τ

=
1

hm
(d1h1 + d2h2 + d3h3 + ... + d8h8) + const2, (6)

where h1, h2, h3, ...h8 are the heights of the nearest eight blocks, as indicated in Figure
17, and c1, c2, c3, ...c8, const1, d1, d2, d3, ...d8 and const2 are coefficients to be obtained by
using a least square (LS) regression.

A part of one repeating unit was processed to obtain the coefficients, and the remaining
part of the unit was then examined to see whether (5) and (6) would yield reasonable
values of the two parameters. Arbitrarily, three rows of blocks (12 points) were used for
the regression and the remaining one row (4 points) for the validation of the prediction
obtained by using the resulting nine fitted coefficients. As a typical test case, rows 2, 3 and
4 in one repeating unit were processed and row 1 was used for validation. Figure 17 shows
the fitted (rows 2, 3 & 4) and predicted (row 1) Um and TKE against the original LES
data. The same coefficients were also used to predict the Um and TKE for the uniform
array of staggered cubes, i.e. the triangles in fig. 17. Table I shows the coefficients (5) and
(6) obtained from the fitting process.

Table I. Comparison of similarity coefficients in the surface layer

c1 c2 c3 c4 c5 c6 c7 c8 const1

-0.054 0.798 0.798 0.080 0.017 0.080 -0.044 -0.044 0.035

d1 d2 d3 d4 d5 d6 d7 d8 const2

-0.403 0.504 0.504 0.143 0.265 0.143 -0.037 -0.037 0.317

Figure 17 suggests that the mean flow and the TKE are indeed strongly influenced
by the local geometry of the canopy but the scatter might suggest that the flow is also
influenced by the more remote flow conditions, as discussed in §3.1. It is speculated that
such a method could also be applied for region R2 and R3, but it is not clear whether the
process would allow useful information to be gleaned for real urban situations. Whilst this
could be an interesting avenue for further work, the results discussed above suggest that
complete generalisation of the approach of Coceal et al. (2007) – identifying a usefully
small number of ‘typical’ flow regions within any canopy – may not be very helpful, or
even possible.

3.5. Further turbulence characterisation

An additional indicator often used to help understand the character of a turbulent flow is
the anisotropy tensor defined by

bij = uiuj/ukuk − δ/3

and its second and third invariants, II = −bi,jbji and III = bijbjkbki, which were originally
defined by Lumley (1978). Figure 18a shows an anisotropy invariant map (AIM), in which
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-II indicates the degree of anisotropy (it would be zero for genuinely isotropic turbulence)
and III represents the nature of the anisotropy. All possible states of turbulence occur
in the so called Lumley triangle, of which only some segments are visible in Figure 18a.
The turbulence along the upper straight line is in the 2-D state. Choi & Lumley (2001)
identified that turbulence on the left-curved boundary is ‘pancake’-turbulence with one
component of the turbulent kinetic energy being much smaller than the other two; on the
right-curved boundary is ‘cigar-shaped’ turbulence with one component of the turbulent
kinetic energy being significantly greater than the other two. Data are shown (in the
canopy region only) for the three locations at the centre of each of the regions previously
discussed; so, for example, the P1 data refer to points along the vertical line through the
centre of R1 (fig.2). Each data point is an average across all 64 possible positions within
the entire computational domain.

All the data fall into a very small area in the vicinity of the origin, which is more
or less the same as found for flow over the uniform array by Castro et al. (2006), but
differs significantly from near-surface data in smooth-wall boundary layers or within the
two-dimensional canopy region formed by transverse bars, studied by Smalley (2002),
which both have rather larger -II/III combinations. This indicates that the turbulence
within and immediately above staggered arrays is more isotropic than in the corresponding
region of a smooth-wall boundary layers or a two-dimensional canopy. Most of the curves
within the canopy layer are nearly parallel and are closer to the right boundary than
to the left boundary of the Lumley triangle, which indicates that one component of the
turbulent kinetic energy is generally rather larger than the other two within the canopy
layer. Another major feature is that all the roughness sublayer data above the CR (not
shown in fig.19 for clarity) collapse near the point (-II=0.038, III=0.001). This is very
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Figure 18. (a), AIM for locations P1, P2 and P3 within the canopy layer (CR). P1, P2 and P3, centre
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P3 in the surface layer. The solid and dash lines respectively refer to the top of the highest block and the
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different from the behaviour over the uniform array, where the experimental data of Castro
et al. (2006) indicate that, for example, along P1 III ranges between zero and about 0.0035
in the RSL. So it seems that in the region just above the random array the turbulence
structure is much more uniform.

The function F = 27III + 9II + 1 (Lumley, 1978) provides a single parameter for
distinguishing how remote is the turbulence from being fully isotropic (F = 1) or in a
2-D state (F = 0). Figure 18b shows the anisotropy function for P1, P2 and P3 within
and immediately above the canopy. The solid line is the mean of the P1, P2 and P3
profiles. Again, each profile was obtained by averaging profiles at all sixty-four of the
available stations. Note that in a smooth-wall boundary layer F remains below about 0.6
for z/δ < 0.5 (see, for example, Erm & Joubert, 1991). Within the roughness sublayer,
above the canopy layer, the differences between the profiles at P1, P2 and P3 are hardly
discernible, which again differs from the uniform array results, where F varied 0.6 and 0.8
(Castro et al., 2006). In the canopy region, however, the variations are larger and are very
similar to those found for the uniform array. The minimum F occurs at P1 just below
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the top of the canopy layer and is about 0.6 – a little greater than for the uniform array.
This is because the shear layer around z = hm is wider and weaker than in the uniform
array, as noted earlier. The maximum F occurs between z = 0.3hm and z = 0.5hm and is
somewhat larger at P2 and P3 than at P1.

Finally, defining ruw = − < u′w′ > /(urmswrms) as the shear stress correlation
coefficient, as usual, Figure 19 shows the spatially averaged mean and the r.m.s. of ruw for
flow over the random array. In the region immediately above the canopy the correlation
coefficient is approximately 0.4, which is close to the experimental value (0.38-0.39) found
by CC. However, it is significantly higher than the correlation coefficient in the surface
layer over a uniform array (as also previously noted by CC) – by some 9% – which indicates
an increased ‘turbulence efficiency’ in the generation of shear stress. Within the canopy
the correlation coefficient increases roughly linearly from about 0.1 to 0.47 at z = 1.4hm,
suggesting an increasing importance of turbulence production.

4. Conclusions

There are a number of major conclusions arising from the data presented and discussed
above. Firstly, it has been shown that the flow within the canopy region generated by
random height blocks (buildings, in the urban context) is significantly more complex than
it is in the case of uniform height blocks. Although spatially averaged means and spatial
standard deviations from these means are quite similar in the two kinds of arrays, there
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are many features of the flow over the random roughness which are rather different from
those in the flow over uniform roughness. It would not always be possible to deduce
these features on the basis of what is known about flow over isolated elements. Secondly,
the tallest elements have been found to generate disproportionate contributions to the
surface drag and to, for example, turbulence kinetic energy above the average element
height. Nonetheless, in the region just above the random array, turbulence structure is
significantly more uniform than it is above a uniform array. Thirdly, it would appear to
be difficult to generalise the approach of Coceal et al.(2007) by identifying a relatively
small number of basic flow regions, whose characteristics could be estimated on the basis
of the topology of the surrounding blocks, and thence characterise the whole domain. The
results suggest that the canopy flow local to any individual block can be significantly
influenced by relatively remote blocks. It is perhaps unlikely that the approach proposed
here could be helpfully exploited for real, urban situations. This highlights the importance
of undertaking simulations of entire domains, either by laboratory experiment or numer-
ical computation, if useful information is to be obtained for specific, full-scale situations.
Finally, it is emphasised that numerical computations can provide such information; our
results show reasonable agreement with experimental data, for quantities which can actu-
ally be measured. In view of the inherent unsteadiness in these flows we believe that Large
Eddy Simulation techniques provide an appropriate approach.
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