
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



1 

 

 

LARGE EDDY SIMULATION OF  

ISOTHERMAL TURBULENT SWIRLING JETS 

 
 

 
W.Malalasekera1,*, S.S.Ibrahim2, K.K.J.Ranga Dinesh1 and M.P.Kirkpatrick3 

 
 

1. Wolfson School of Mechanical and Manufacturing Engineering,  
Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK. 

 
2. Department of Aeronautics and Automotive Engineering,  

Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK. 
 

3. School of Aerospace, Mechanical and Mechatronic Engineering  
Building J07, Room S409, The University of Sydney  

NSW 2006 Australia 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Corresponding author, W.Malalasekera@lboro.ac.uk 
 

Submitted to Comb. Sci Tech, November 2005 



2 

 

 

LARGE EDDY SIMULATION OF ISOTHERMAL TURBULENT SWIRLING JETS 

 
W.Malalasekera1, S.S.Ibrahim2, K.K.J. Ranga Dinesh1 and M.P.Kirkpatrick3 

 
1. Wolfson School of Mechanical and Manufacturing Engineering,  

Loughborough University, Loughborough, Leicestershire, LE11 3TU UK. 
 

2. Department of Aeronautics and Automotive Engineering,  
Loughborough University, Loughborough, Leicestershire, LE11 3TU UK. 

 
3. School of Aerospace, Mechanical and Mechatronic Engineering  

Building J07, Room S409, The University of Sydney, NSW 2006 Australia. 
 
 
 
Keywords: Large eddy simulation (LES), Swirl flow, Non-reacting, Turbulence 
 
 
 
ABSTRACT 

 
Swirl stabilized flames are common in many engineering applications and modelling of such 
flames are particularly difficult due to their recirculation and vortex characteristics. Most 
classical approaches such as Reynolds averaged Navier-Stokes (RANS) models, which work 
very well in other situations, fail to perform well in high recirculation swirling flows. Large 
Eddy Simulation (LES) offers the possibility of improving calculations of such flows. This 
paper is concerned with the application of the LES technique to turbulent isothermal swirling 
flows. The aim is to improve our understanding of the flow physics and turbulence structure 
of unconfined swirling flows and examine the capability of LES to predict the formation of 
vortex breakdown in recirculation zones. In this study, a recently developed LES code has 
been applied to the prediction of isothermal swirling flows experimentally studied by Al-
Abdeli and Masri (2003). The filtered Navier-Stokes equations are closed using the 
Smagorinsky eddy viscosity model with localized dynamic procedure of Piomelli and Liu 
(1995). Advanced numerical schemes with finite volume formulation on non-uniform 
Cartesian grids are employed for discretization of the conservation equations. Three different 
test cases have been investigated here covering a range of swirl numbers and stream wise 
annular velocities. The cases considered have swirl numbers ranging from 0 to 1.59 and 
Reynolds numbers from 32400 to 59000. With suitable inflow, outflow boundary conditions 
and sufficient grid resolutions the LES calculations found to be in good agreement with 
experimental data. It has been observed that the onset of downstream recirculation and vortex 
breakdown does not depend on the attainment of high swirl number alone. It appears that the 
bubble type vortex breakdown is achieved in the flow with a lower rather than higher swirl 
number. The axial momentum of the swirling annulus plays an important role in the onset of 
vortex breakdown. The combination of lower swirl number and higher axial velocity of the 
primary annulus leads to establish the downstream central recirculation zone (VB). These 
features have been successfully reproduced by LES calculations. For all the cases considered 
here LES calculations were successful in predicting observed recirculation zones and 
generally showed reasonably good agreement with experimentally measured mean velocities, 
their rms fluctuations and Reynolds shear stresses. 
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NOMENCLATURE 

 

0C  =  Courant number 

φG   = Axial flux angular momentum 

xG   = Axial flux of linear momentum 

 r     = Radial distance from the centre 
of the jet 

S    = Swirl number 

gS    = Geometric swirl number 

><U  = Mean axial velocity 

jU   = Bulk axial velocity of fuel 

stream 

sU  =  Bulk axial velocity of primary 

(axial) air stream 
 

eU   =  Secondary co-flow axial 

velocity 
>< 'u  = RMS axial velocity 
>< ''vu  = Reynolds shear stress 
>< ''wu   = Reynolds shear stress 

><V  = Mean radial velocity 
>< 'v  = RMS radial velocity 
><W   = Mean swirling velocity 
>< 'w   = RMS swirling velocity 

ν  =  Kinematic viscosity 
∆  = Filter width 

ijτ  = Stress tensor 

Γ  = Diffusion coefficient 
ρ  =  Density 

 

 
INTRODUCTION 

 
Swirl is commonly used in many engineering applications of combustion to control essential 

characteristics of high intensity turbulent flows and to stabilise flames. Introduction of swirl 

has the capability to generate strong recirculation zones, which helps to improve the whole 

mechanism of the mixing process. Swirl can reduce the flame length by producing higher 

rates of entrainment and fast mixing particularly in the shear layer region, which improve 

flame stability, reduce emissions and as a result the burner can be minimized in size and has 

an extended life (Syred and Beér, 1974). In swirling jets and flames, sufficiently strong swirl 

will produce a maximum pressure gradient in the direction of the flow, which in turn produces 

a reversal of the flow or vortex breakdown. Depending on the degree of swirl, furnace and 

burner geometry, different recirculation patterns and vortex breakdown regimes can be 

achieved and these can be controlled by adjusting the degree of swirl to promote better 

mixing, flame stabilisation and minimise pollutant formation (Sloan et al., 1986). 

 

In the literature, different flow configurations have been experimentally investigated to study 

the formation of recirculation zones and the vortex breakdown process. Theoretical studies 

have been carried out to analyse the instabilities and onset of vortex breakdown for reacting 

and non-reacting swirling flows and it has been reported that the influence of swirl depends 

on different flow parameters such as inflow velocity profiles, Reynolds number, level of swirl 

and geometrical configuration. Many situations such as combustion related applications 

(Syred and Beér, 1974, Gupta et al., 1977, Weber et al., 1990, Masri et al., 2004), confined 



4 

pipe situations (Nathan et al. 1998, Ahmed, 1998) vortex whistles and model cyclone 

separators (Kitoh, 1991) have been studied in the literature. A number of good reviews and a 

body of literature exist on these topics ranging from vortex breakdown to instabilities of 

swirling flows (see for example Sarpkaya, 1971, Syred and Beér, 1974, Escudier and 

Zehnder, 1982, Escudier, 1988, Lucca-Negro and O’Doherty, 2001, Novak and Sarpkaya, 

2001). Numerical modelling has also been used as a tool to understand the fundamental flow 

physics of laminar and turbulent swirling flows. The numerical prediction of turbulent 

swirling flows is a challenging subject due to anisotropic turbulence structure in recirculation 

zones.  An extensive review of the modelling work on swirling flows has been reported by 

Sloan et al. (1986), which describe the difficulties and complexities associated with CFD 

approaches to swirling flow calculations. 

 

The majority of current methods to model turbulent swirling flames and practical combustion 

systems are based on Reynolds averaged Navier-Stokes (RANS) equations accompanying 

different turbulence models. The review by Slone et al. (1986) summarises many RANS type 

swirling flow calculations with different turbulence model options and concludes that the 

performance of the ε−k  model is generally not very good in the vicinity of recirculation 

zones. The review also describes various advanced turbulence model options which appear to 

show some improvements and note that swirling flows exhibits highly three-dimensional 

structures therefore steady-state axi-symmetric transport equations are incapable of 

reproducing complex swirling flows.  Weber et al. (1990) have assessed three turbulence 

models, namely, the standard two-equations eddy viscosity ε−k  model, Reynolds stress 

model (RSM) and algebraic Reynolds stress model (ASM) to simulate confined swirling 

flows. It was observed that neither the generation of turbulence nor the distribution of 

tangential momentum was correctly predicted by the ε−k  model. In contrast the Reynolds 

stress model and algebraic Reynolds stress model performance were better and produced 

reasonable agreement with experimental data for certain confined swirl cases but for certain 

other cases none of the turbulence models was able to predict the correct reverse flow when 

compared with measured data. In general RANS models are primarily suitable to calculate 

stationary flows with non-gradient transport and it is difficult to capture the unsteady nature 

of the large-scale flow structures typically found in turbulent swirling flows. Guo et al. (2001) 

have used a three-dimensional unsteady RANS approach with the ε−k  model to compute 

behaviour of unconfined swirling flows in an axisymmetric sudden expansion. The study has 

successfully predicted the processing phenomena of the swirling flow configuration 

considered in their paper but no detailed comparison of velocity or Reynolds stresses have 
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been reported to assess fine details of the simulation. However the study confirms that to 

achieve any degree of success, RANS type computations have to be transient and three-

dimensional. 

 

Large eddy simulation (LES) in contrast is a powerful and effective tool for handling large-

scale turbulent motions as the method is based on time resolved three-dimensional unsteady 

large-scale turbulent motions. In LES only the small scale eddies which have more universal 

behaviour and contain less turbulent kinetic energy are modelled. With adequate spatial and 

temporal resolution the method is capable of capturing large-scale dynamic behaviour in 

flows. Large eddy simulation technique as a tool for the simulation of swirling flow fields in 

both reacting and a non-reacting cases has emerged only in the 1990s and hence a relatively 

new field. LES has been applied to variety of swirling applications including combustion such 

as aircraft engine combustion (Di Mare et al. 2004, Kim el al. 1999), dynamics of swirling 

premixed and spray flames (Sankaran and Menon, 2002) and combustion instabilities (Wall 

and Moin, 2005). Recently the application of LES to real combustion devices has gained 

increased popularity due to its potential ability to capture detailed flow and mixing fields and 

the availability of computing power to perform large calculations. For example, the LES 

simulation of a section of the modern Pratt and Whitney gas turbine combustor by Mahesh et 

al. (2005) has shown encouraging results for the flow and mixing field.  

 

One of the main advantages of LES applications is, in swirl flows it can capture oscillatory 

motions such as pressing vortex core (PVC) seen in experiments. Pierce and Moin (1998) for 

example showed promising agreement between LES and experimental data for a low swirl 

number case and Wang et al. (2004) have shown successful comparison between LES 

predictions and experimental measurements operating under different conditions in confined 

turbulent swirling flows. More recently several LES simulations have also been carried out 

for laboratory scale bluff body stabilized flames, Raman and Pitsch, (2005), Kempf et al. 

(2006), which are not as complex as swirling flows but contain similar recirculation zones 

near the bluff body. The predicted results show very good agreement with experimental data.  

 

In this paper, the LES simulation technique has been applied to simulate a well-defined 

swirling flow configuration where reliable and accurate data are available. The configuration 

is an unconfined, non-reacting swirling flow burner. It is widely known as the Sydney swirl 

burner, experimentally investigated by Al-Abdeli and Masri (2003). For this configuration 

detailed experimental measurements are available for the flow field using the laser Doppler 
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velocimetry (LDV).  The LES simulations have been carried out using different grid 

resolutions and appropriate input and outflow boundary conditions. The calculated results are 

compared with experimental data for three different test cases ranging from no swirl to very 

high swirl. Comparisons between calculated and measured data are made for the mean 

velocities, rms fluctuations and Reynolds stresses components. The Smagorinsky (1963) eddy 

viscosity model with the localized dynamic procedure of Piomelli and Liu (1995) is used to 

model the sub-grid scale (SGS) turbulence. This is a first step in a series of calculations, 

where the focus is on the fluid dynamical aspects of the mixing process in the recirculation 

zones. The ultimate aim of this work is to model both the flow and combustion characteristics 

of this swirl burner. The predictive capability of the flow physics of non-reacting swirling 

flows is considered in this paper before attempting to include SGS combustion models to 

simulate reacting swirling flames. In the following sections details of the experimental setup 

are described, followed by description of the mathematical model and details of the numerical 

computations. The results are presented for three different cases with zero swirl, moderate 

swirl and high swirl flow configurations. 

 
EXPERIMENTAL SETUP 

 
Schematic drawing of the swirl burner used in this investigation is shown in Figure 1. The 

burner consists of a 50mm cylindrical face bluff body with 3.6mm diameter central fuel jet. 

Surrounding the cylindrical bluff body is a 60mm diameter annulus machined down to 0.2mm 

thickness at the exit plane. The centre of the jet is taken as the geometric centre-line of the 

flow where 0=r and 0=x . The burner is housed in a secondary axial (co-flow) wind tunnel 

with square cross section and 130mm sides. Swirl is introduced aerodynamically into the 

primary (axial) air stream at a distance 300mm upstream of the burner exit using tangential 

swirl ports as shown in Figure 1. An axial stream of air is also supplied through two opposed 

ports ahead of the tangential inlets. By changing the relative magnitude of the tangential and 

axial air flow rates the swirl number can be varied. Laser Doppler Velocimetry (LDV) 

technique has been used to measure the detailed characteristics of the flow field and for the 

non-reacting cases they include mean velocity, their rms fluctuations and Reynolds shear 

stresses. Further details of the experiments and data are available in Al-Abedeli and Masri 

(2003) and Masri et al. (2004). 

 
 
 
 

Swirl Number  
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The swirl number is defined as the ratio between the axial flux of the swirl momentum, φG   

( 22skgm − ), to the axial flux of the axial momentum xG  ( 22skgm − ) multiplied by a 

characteristic length R )m( . Here we take the radius of the swirl annulus as the characteristic 

radius. The swirl number is given by: 

 

∫

∫
==

R

R

x rdrUR

drUWr

RG

G
S

0

2

0

2

φ  (1) 

where U  (m/s)  and W (m/s)  are the mean axial and tangential velocities, respectively, at the 

exit plane of the swirl generator. Four independent parameters are used to describe the swirl 

flow conditions in this experimental burner configuration. These parameters are, the bulk 

axial velocity of fuel stream, jU , bulk axial and tangential velocities of the primary (air) 

stream, sU  and sW  respectively and the mean co-flow velocity of the secondary (air) stream 

in the wind tunnel, eU . The later stream is necessary to provide well-defined outer boundary 

conditions. The Reynolds number of the swirl annulus air stream is defined in terms of the 

primary (bulk) axial velocity ( )sU , radius of the burner annulus )( sr  and the kinematic 

viscosity of air ν  such that νsss rU=Re . In the experimental measurements a quantitative 

representation of the swirl intensity has been introduced by using the geometric swirl number 

( gS ), which is expressed as the ratio of integrated (bulk) tangential velocity to primary axial 

air velocities ( ss UW ). It is found that the actual swirl number, S  defined by eq. (1) is 

linearly proportional to the geometric swirl number gS  (Al-Abdeli, 2003). The following three 

cases summarised in Table 1 are considered in our simulations. The control parameters shown 

in Table 1 and case numbers have been obtained from Al-Abdeli and Masri (2003). 

 

Flow case 
 

(m/s)sU  (m/s)sW  (m/s)jU  (m/s)eU gS  
sRe  

N21S000 
 

21.1 0 61 20 0 41900 

N29S054 
 

29.7 16 66 20 0.54 59000 

N16S159 
 

16.3 25.9 66 20 1.59 32400 

 
Table 1: Physical flow parameters used in the study 
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MATHEMATICAL MODELING 

 
The Governing Equations 

In LES the large-scale energy containing flow are resolved numerically while the small, 

unresolved scales and their interactions with the large scales are modelled. The grid-filtering 

operator known as the spatial filter is applied to decompose the resolved and sub-grid scales 

in the computational domain. The application of a spatial filter G  to a function f  is defined 

as  

 ∫
Ω

′∆′−′= xdxxxGxfxf ))(,()()(  (2) 

where ∆  is the characteristic width of the filter and x  is the position vector in a Cartesian 

coordinate system. Commonly used filters are Fourier, Gaussian and box filters. A box filter 

naturally fits into the finite volume formulation and here we apply a box filter of width  

 ( ) 3/1
2 zyx ∆∆∆=∆  (3) 

to the equations. Where ,x∆  y∆  and z∆  refer to the width of the finite volume cell in three 

coordinate directions. Applying the spatial box filter to incompressible Navier-Stokes 

equations, we obtain the filtered continuity and momentum equations for the large-scale 

motion as follows. 

 

Conservation of mass 

 0=
∂
∂

j

j

x

u
  (4) 

Conservation of momentum 

 
j

ij

j

ij

ij

jii

xx

S

x

P

x

uu

t

u

∂
∂

+
∂

∂
+

∂
∂

−=
∂

∂
+

∂
∂ )()2(1)( τν

ρ
 (5) 

Where the strain rate tensor, ⎟
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The last term of equation (5) represents the sub-grid scale (SGS) contribution to the 

momentum and it is known as the SGS stress tensor. Hence subsequent modelling is required 

for ( )jijiij uuuu −=τ  to close the system of equations.  
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SGS Turbulence Modelling 

The Smagorinsky (1963) eddy viscosity model is used here to model the SGS stress tensor 

( )jijiij uuuu −=τ  such that 

 
1

2
3

ijij ij kk sgs Sτ δ τ ν− = −  (6) 

Here the eddy viscosity sgsν  is a function of the filter size and strain rate 

 
2

sgs s
C Sν = ∆   (7) 

where 
s

C  is a Smagorinsky (1963) model parameter and 2

1

)2(|| ijij SSS = . 

 

The localized dynamic procedure of Piomelli and Liu (1995) has been used to calculate the 

model parameter 
s

C , which appears in equation (7).  

 
COMPUTATIONAL DETAILS 

 
Numerical Discretisation: 

The large eddy simulation code PUFFIN originally developed by Kirkpatrick (2002) is used 

to perform all calculations presented here. The equations are discretised in space by using a 

finite volume formulation on a non-uniform, staggered, Cartesian grid. A second order central 

difference approximation is used for all terms in the momentum equations and pressure 

correction equation.  The solution is advanced in time by using the fractional step method. 

First the momentum equations are integrated using a third order hybrid Adam-Bashforth/ 

Adam-Moulton scheme to give an approximate solution for the velocity field. Then the mass 

conservation is enforced through a pressure correction step in which the approximate velocity 

field is projected onto a subspace of divergence free velocity fields. The pressure correction 

method of Van Kan (1986) and Bell et al. (1989) is used in the present calculations.  Gresho 

(1990) has shown analytically that this method is second order accurate in time. The time step 

is varied to ensure that the Courant number iio xtuC ∆∆= remain approximately constant. 

Where ix∆  is the cell width, t∆  is the time step and iu  is the velocity components in the 
i

x  

direction. The solution is advanced with a time stepping corresponding to Courant number in 

the range of =oC 0.3 to 0.6. Further details of the second order time stepping schemes and 

fractional step method used here can be found in Kirkpatrick (2003a, b). 

 

The equations, discretised as described above, are solved using a linear equation solver. Here 

a Bi-Conjugate Gradient Stabilized (BiCGStab) solver with a Modified Strongly Implicit 
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(MSI) preconditioner is used. The momentum residual error is typically of the order 510−  per 

time step and the mass conservation error is of the order of 810− .  

 

 

 

Boundary conditions: 

Correct representation of the inflow profiles and turbulence levels is an important issue for 

successful simulation of swirling flows. This has been widely discussed in the recent 

Turbulent Non-premixed Flames workshop (TNF8, 2006) and there is a general agreement 

that correct mean and fluctuations at the inlet is required for large eddy simulations to 

produce accurate results. There are several methods available to introduce turbulent inlet 

boundary conditions. In this study mean velocity distributions for the fuel and air annulus are 

specified using power law velocity profiles. This approach has been previously used by Masri 

et al. (2000) in their two-dimensional, axisymmetric, pdf computation of combustion in this 

burner configuration.  

 

In the fuel jet, 0>=<V , 0>=<W , and the mean axial velocity is specified by a power law 

of the form 

 

7/1

1218.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−>=<
δ
y

UU j  (8) 

where jU  is the bulk velocity, y  is the radial distance from the jet centre line and 

jR01.1=δ , jR  is the fuel jet radius (1.8 mm). The factor 1.01 is included in the expression 

for δ  to ensure that velocity gradients are finite at the walls. The same equation (eqn. 9) is 

used for the swirling air stream with jU  replaced by bulk axial velocity sU  and bulk 

tangential velocity sW  and y  being the radial distance from the centre of the annulus and 

01.1=δ  times half width of the annulus. For the secondary air stream the measured velocity 

eU  is specified and 0>=>=<< WV . Following the approach of Masri et al. (2000) 

fluctuations are added to the mean velocity profiles such that the inflow has the correct 

turbulence kinetic energy levels obtained in the experimental data.  

 

Statistics: 

The time averaged mean velocity components and their mean fluctuating values in the axial, 

radial and azimuthal directions are obtained by time averaging the transient flow variables 

obtained from LES results, i.e. 
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                                       2

1 1

1 1
, ( )

t tN N
n n

rms

n nt tN N
φ φ φ φ φ

= =

< >= = − < >∑ ∑   (9) 

Where  
t

N  represents the number of samples. To remove the non-physical artefacts of the 

initialisation, the simulation should evolve for a sufficiently long time before gathering any 

statistical results. This allows the flow field to fully develop and initial transients to exit the 

computational domain. The samples are only taken after the flow filed has fully developed. In 

this study to obtain statistically stationary results, time averaging of the primitive variables 

was performed after 12 flow-through-times ( )τ , which is defined here as the time for a fluid 

element to propagate through the computational domain, i.e. L Uτ = , L and U are axial 

length of the computational domain and inlet bulk axial velocity respectively. Two non-

consecutive sampling periods yielded similar results indicating that the statistics were 

sufficiently converged.  

 

The calculations were performed on a Pentium 4, personal computer with 4GB RAM and 

3GHz processor running under Linux operating system. A typical run takes 10-17 days 

depending on the inlet parameters and the number of flow passes. Table 2 summarise typical 

run times in days for each case considered. 

 
Flow case Grid Type 

x
N  yN  

z
N  Time (ms) Cost days 

N21S000 Grid1 100 100 100 150 10 
N29S054 Grid1 100 100 100 150 12 
N16S159 Grid1 100 100 100 200 14 
N16S159 Grid2 120 120 100 300 17 

 
Table 2: Computational parameters used in the study. ,

x y
N N and 

z
N are the number of nodes 

in the x, y and z directions respectively.  

 
 
Grid Dependency Tests: 

The computational domain used in the present calculation was 130x130x250 mm. Two grids 

were employed to conduct a grid sensitivity analysis of LES. Grid 1 consisted of 

100 100 100× ×  cells in x , y  and z directions respectively giving a total of one million grid 

points. A second grid, Grid 2 that is finer than Grid 1 was used with a total of 1.44 million 

grid points and consisted of 120 120 100× × cells in x , y  and z directions respectively. The 

axial resolution was kept the same for both grids due to computer resource limitations. For 

Grid 1, grid lines in x  and y  directions used an expansion ratio of ( ) ( 1) 1.08xy x i x iγ = ∆ ∆ − =  
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and an expansion ratio of 07.1=zγ  was used in the z-direction. The expansion ratio for Grid 

2 was 1.06xyγ =  in the x- and y-directions and 07.1=zγ in the z-direction. 

 

The case N16S159 with a swirl number of 1.59, which has the highest swirl number among 

the cases considered in this study was used as the test case for grid sensitivity analysis. It is 

not possible to define classical grid independence with implicit filtering when filter width 

directly affected by the grid (Kempf et al., 2006). However a refined grid can minimize both 

numerical and modelling errors through better resolution. LES results obtained here using the 

above two grids are compared with experimental measurements in Figure 2 where the mean 

axial velocity and its rms fluctuations at two different axial locations are shown. Solid lines 

represent the Grid 1 results (1 million points), dashed lines represent the Grid 2 results (1.44 

million grid points) and symbols represent experimental measurements. The comparisons 

between the experimental measurements and computed mean axial velocity and its rms 

fluctuations at / 0.136,0.2x D =  are very good close to the burner axis and in good qualitative 

agreement at 1/ >Rr . There is only a slight difference between grid 1 and grid 2 predictions 

in the mean axial velocity plots, in the outer shear layer of the bluff body stabilized 

recirculation zone. Overall, including other data (not presented here) it was observed that both 

grids give very similar results for mean, rms and Reynolds stresses for the case N16S159 and 

hence we have used grid 1 with 1 million grid points for all our LES simulations to keep the 

computational cost at an economical level, (see Table 2) allowing to compute all the non-

reacting cases in this flame series. 

 
 
RESULTS AND DISCUSSION 

 
In this section the comparison of the LES computations and experimental measurements is 

discussed for three different test cases namely N21S000, N29S054 and N16S159 (as 

described in Table 1).  

 

The predictive capability of the flow physics and structure of non-reacting swirling flows over 

a wide range of swirl numbers is essential to enable combustion models to simulate the 

swirling flames. This is because in reacting flows, the interaction between turbulence and 

chemistry becomes significant due to the existence of complex dynamical flow structure 

induced by swirl. Especially, introduction of swirl is intrinsically associated with the 

phenomenon of vortex breakdown (Lucca 2001), which adds another dimension to the 
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complexity of the problem. The systematic validation of computation is therefore necessary to 

have a full understanding of the complex transient behaviour of swirling motion. 

 

In the configuration considered here adequate swirl can induce two types of recirculation 

zones. One is known as the torroidal shaped recirculation zone, which stagnates above an 

obstruction such as a bluff body, placed in axial flows. Other recirculation zones, which can 

be formed further downstream, are attributed to vortex breakdown (Al-Abdeli and Masri 

2003). The formation of a stagnation point or a region of reversed flow is essential to generate 

this kind of recirculation zones in a swirling flow. 

 

Experimental results show that for the swirl test cases considered here the mean flow field 

exhibits one or more recirculation zones depending not only on the swirl number, but also on 

the Reynolds number of the primary annulus. The appearance of recirculation zones is very 

much a fluid dynamic feature, which depends on local flow parameters and vortex 

breakdown. The strength of which determine the level of turbulence. Successful prediction for 

such flow, therefore, depends on correct representation of the turbulent flow field and 

associated regions of swirl flows. These features represent a good challenge for the LES 

technique.  

 

Results obtained using the LES model, explained above, have been compared with the  

corresponding experimental data for all three cases. The comparisons are presented and 

discussed in the following sections. For all presented results, except the steam-line plots, the 

axial position x  is normalized by the diameter of the bluff body 50=D  mm and the radial 

position r  is normalized by the radius of the bluff body 25=R  mm the radial position. 

 
Flow field and characteristic features of the non-swirling case (N21S000) 

Figure 3 shows the streamlines generated from the mean velocity field in the central 

x z− plane of the non-swirl case (N21S00). The mean streamlines show a two-zone 

flow/turbulence structure. A typical torroidal shape recirculation zone is formed due to the 

sudden expansion at the bluff body wall. The central jet velocity is dominating the wake: 

there is no stagnation point located along the centreline. No lateral spread being imposed onto 

the central jet by the recirculation zone. The schematic streamlines of the two counter-rotating 

vortices associated with the central jet and co-flow can be seen in Figure 3. It can, also, be 

seen that the co-flow driven vortex is wider than the central jet affected vortex. Although both 

central jet and co-flow velocity are operating, the external airflow principally manages the 
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recirculation zone structure. The stream line pattern also shows the formation of a neck zone 

above the recirculation zone. Two shear layers are observed, first between the central jet and 

the inner vortex and the second is formed between the outer edge of the outer-vortex and the 

co-flow.  

 

Figures 4 shows the computed radial profiles of time averaged mean axial velocity compared 

with experimental data at different positions along the burner axis. The calculated mean axial 

velocity at / {0.074,0.2,0.4}x D∈  shows minor under prediction at the centreline as a result 

of an early break up of the central jet.  Despite this small discrepancy, the predictions for the 

mean axial velocity are in good agreement with experimental measurements. The existence of 

negative mean axial velocity indicates the flow reversal, which generates the bluff body 

stabilized recirculation zone. It can be seen that the length of the bluff body wake is 

completely captured by the simulation. The recirculation zone is mainly created due to the 

deceleration of the axial velocity by the sudden expansion at the bluff body wall. It can be 

noted that the recirculation zone extends up to / 0.8x D =  in the axial direction. This can be 

seen where the mean axial velocity exhibits some negative values at 8.0/ =Dx  and becomes 

completely positive at the measurement location 4.1/ =Dx  and remain positive after that for 

all down stream axial locations. 

 

Figure 5 shows comparisons between calculated and measured values for the mean radial 

velocity component. Some notable discrepancies are evident at near burner locations. 

However, at 074.0/ =Dx , correct trend is obtained with a slight over-prediction for the peak 

value. Some differences between calculated and measured results are observed at 2.0/ =Dx  

where experimental data show an unusual abrupt reversal of the radial velocity magnitude, 

which is not captured by the LES model. Data taken in an equivalent bluff body configuration 

(Dally et al. 1998) in which similar non-swirling experiments were conducted does not show 

such a discontinuity in radial velocity. This could be due to experimental difficulties in 

measuring radial velocities very near the exit of the swirl annulus. The predicted profile at this 

location captures the experimental data up to 0.1/ =Rr  reasonably well. Further downstream 

the radial velocity is under predicted between the regions / 0.2 1.0r R = −  at locations 

/ {0.4,0.6}x D∈ . It can be seen that despite the upstream discrepancies, the agreement 

between predictions and experiments are good at most downstream axial locations. It is worth 

noting that the magnitude of the radial component is small compared to the axial velocity 

values hence the discrepancies are relatively small. 
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Calculated results for the  rms fluctuations of axial, u′< > , and radial, v′< > , velocity 

components  are compared and presented in Figures 6 and 7. In agreement with the observed 

wake properties, results show high rms values for both axial and radial fluctuations in regions 

where the central jet is constrained by the recirculating flow. At most upstream locations the 

comparisons for the axial rms velocity are good (Figure 6). Sharp changes and peak values 

have been correctly predicted and calculations show good agreement up to .8.0/ =Dx  

Further downstream the predicted profiles of >′< u  show slight over-predictions. 

Comparison of rms radial velocity shown in Figure 7 shows some discrepancies with 

experimental data. However, rms of radial velocities are slightly over predicted between the 

region / 0.5 1.0r R = − at the first five axial locations. Further down stream, the comparison 

shows slight over predictions. Given that absolute magnitudes of rms velocities are difficult to 

calculate, the model’s overall ability to predict the peak in rms velocities and their trend 

appears to be good. 

 

Comparisons of predicted and measured Reynolds shear stresses >′′< vu  for this case are 

shown in Figure 8. The LES model found to capture the peaks and the changes of the stresses 

inside the recirculation region reasonably well. Although some under predictions can be seen 

in region between / 0.0 0.7r R = − at the axial location / {1.4,2.0,2.5}x D∈ . The predictions, 

however, produced better agreement with the experimental data in the near burner region.  

 

In general, the LES model described in this paper, has been successful in predicting key flow 

features of the N21S000 case. The overall agreement for this case between measurements and 

calculations for mean velocities, rms fluctuations and Reynolds shear stress is seen to be 

good.  

 

Flow field and characteristic features of the medium-swirl case (N29S054):  

Here, the results for the medium swirl case, a swirl number of 54.0=S  are presented and 

discussed in terms of comparison between the model predictions and experimental 

measurements.  

 

The streamlines generated from the mean velocity field of the medium swirl case are shown 

in Figure 9. Recirculation patterns seen in this case are different to the patterns seen in Figure 

3. Non-swirl flows stabilized on this burner have a single recirculation zone. With the 

addition of swirl, the flow field can exhibit more complex flow patterns involving the 

formation of a second recirculation zone (Al-Abdeli and Masri 2003). This is evident in 
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Figure 9. In the upstream recirculation zone, two counter rotating vortices similar to the non-

swirl case and another small vortex on top of the bluff body wall can be seen. Here the near 

burner flow features are completely different to the non-swirl case as the flow is now affected 

by the primary axial and swirling velocities. The size of eddies inside the upstream 

recirculation zone are relatively smaller than those formed in the non-swirl case.  As seen in 

Figure 9, the swirl induced downstream recirculation zone stagnates near the central axis 

away from the burner surface at about mmx 70= . This centreline recirculation zone, which 

appears well away from the burner exit, is called the vortex breakdown (VB) bubble. It is 

interesting to note that present LES simulation has captured both types of recirculation zones 

and further comparison of mean data shown in figures and described below confirm the 

success of LES simulations in predicting recirculation and vortex breakdown. 

 

Figure 10 shows the measured and computed mean axial velocity at different downstream 

positions. A positive to negative change in mean axial velocity indicates the development of 

recirculation regions. It can be seen that the first recirculation zone develops above the bluff 

body and stagnates at about 4.0/ =Dx  from the burner exit plane and second the second 

recirculation zone develops further downstream. 

 

As mention in the introduction, swirl is often used in combustors to increase chemical and 

thermal mixing rates and for flame stability. At sufficiently high level of swirl, the Vortex-

Breakdown (VB) phenomenon is known to occur (Sarpkaya, 1971). VB is characterised by a 

flow reversal along the centreline and is a result of an adverse pressure gradient induced by 

the highly swirling flow. This is due to force imbalance between outward expulsions of fluid 

and the axial momentum (Escudier, 1988). The existence of second recirculation zone is 

called the vortex breakdown (VB) and in this case occurs at about / 1.8x D = .  As can be seen 

in Figure 10, the centreline velocity rapidly decays with increasing distance downstream. Data 

shows that between 1.1 / 2.1x D< < , the centreline velocity become negative and the flow 

stagnate creating the bubble type VB zone at about 8.1/ =Dx . Present LES predictions have 

correctly reproduced this phenomena except that the predicted centreline velocity shows 

slight under-predictions at 4.0/ =Dx . Further downstream of the VB zone predictions show 

the correct trend but agreement is not as good as the near burner region. Overall it could be 

said that LES results for axial velocity predictions capture the correct changes in the flow 

field, recirculation and VB phenomena. The success of LES to predict the swirl flow features 

including VB phenomenon is very encouraging. 
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The mean radial velocities are shown in Figure 11. Profiles at upstream locations capture the 

correct trend and sharp changes and the comparisons with data are reasonably good, 

especially the peaks at / {0.136,0.2}x D∈  have been correctly predicted. LES correctly 

predict the trend at 4.0/ =Dx and 0.6 but in the inner-region under-predicts peak values of 

radial velocity. Further downstream at / {1.4,2.0,2.5}x D∈  radial velocity is over predicted. 

However, data shows that at / {2.0,2.5}x D∈  the experimental mean radial velocity is about 

5 /m s−  at the centreline. This means the flow has been constantly tilted towards one direction 

and there has been considerable asymmetry. The LES predictions, presented here, have been 

axi-symmetrically averaged in the calculation of mean values therefore a non zero value for 

the mean radial velocity is not expected at the centre line. The predictions therefore show zero 

radial velocity at the centre line at these locations (which is the correct mean). There are some 

concerns over experimental data for mean radial velocity at some axial positions, 

/ {1.4,2.0,2.5}x D∈ .  

 

Comparison of predicted and measured swirl velocity ><W  is shown in Figure 12. The 

agreement is generally good. Predictions compares well at locations 

/ {0.136,0.2,0.4,1.4}x D∈  capturing the sharp changes and peak values. At locations 

/ {0.6,0.8}x D∈  the trend is correctly predicted but the peak values are under predicted. 

Further downstream calculations show slight over predictions with increasing radial distance 

but overall agreement is reasonably good. 

 

Figures 13-15 show comparison of measured and computed rms fluctuations of axial, radial 

and swirling velocities. Figure 13 shows the rms of axial velocity, >′< u . In general 

agreement between the LES predictions and experiments are good. However, the centre line 

values of >′< u  show under predictions at all locations. The agreement for rms radial 

velocity (Figure 14) and rms swirling velocity (Figure 15) are also generally encouraging at 

all axial locations. The rms radial velocity is slightly over predicted at the outer shear layer of 

the upstream recirculation zone at / {0.136,0.2}x D∈ . The same behaviour is observed for the 

rms swirling velocity as well (figure 15). Magnitudes and distribution of >′< u , >′< v  and 

>′< w  show significant anisotropy of turbulence inside the upstream and downstream 

recirculation zones and LES computations have been successful in predicting the trends as 

well as profiles. While the mean velocities are quite low inside the vortex bubble, the root 

mean square (rms) fluctuations remain relatively high in comparison. This is especially true 

along the boundary of the vortex bubble. In combustion systems, high level of turbulence 
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causes an increase in local turbulent flame speed, which dramatically effect to shorten the 

flame length. Figures 16 and 17 show Reynolds stresses >′′< vu  and >′′< wu . Given the 

complexity of the flow LES predicted Reynolds stresses show good agreement, particularly 

the calculations seems to capture the sharp changes in Reynolds stresses reasonably well. 

 

For this case, the overall LES predictions are in reasonably good agreement with the 

experimental data and the vortex breakdown found to be well predicted. 

 

 
Flow field and characteristic features of the high-swirl case (N16S159): 

This is the highest swirl number case )59.1( =gS  of these experiments and perceived to be 

the most difficult case to predict. The tangential velocity components at inlet are high in this 

case (see Table 1) and resultant turbulence anisotropy is considerably high.  

 

The streamlines corresponding to the mean velocity field taken from LES predictions is 

shown in Figure 18. In comparison to Figures 3 and 9 the recirculation patterns are now 

completely different. The high swirl causes the flow to spread radially outwards creating a 

long stagnation zone, which extends down the centreline up to about 90x mm=  from the 

burner exist plane. In this recirculation zone three different vortices are formed at the axial 

distance of 20=x , 30 and 80 mm corresponding to radial distances of 10,20r mm= . By 

comparing Figures 9 and 18, it is interesting to note how the swirl velocity change results in a 

contrasting difference in flow behaviour. This has also been observed experimentally, and the 

LES model predictions found to correctly reproduced the flow features as described below. 

 

The axial spread of the recirculation zone, in this high swirl number case 

N16S159 )59.1( =gS ,  is much longer than that found in the other two cases.  The size of the 

two vortices formed near to the bluff body is different as well. Two counter rotating vertices 

can be seen and swirling velocity of the primary annulus play a major role in generating these 

vortices above the bluff body. However, this case (N16S159) shows that using high swirl 

number alone is insufficient for the criterion of the downstream recirculation pattern, which 

appeared in the medium swirl case.  Unlike N29S054 case, the N16S159 case has no 

downstream recirculation or vortex breakdown despite having a large swirl number. The 

prediction shows the occurrence of small vortex further downstream at about mmx 80= , 

which has been observed in the experiments (Al-Abdeli and Masri 2003). The central jet 

decays faster than other two cases (non-swirl and medium swirl) and the values of the 
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centreline velocity is almost zero at 80x mm= . It is worth noting here that N29S054, which 

showed a downstream recirculation of some size, had the highest value of primary annulus 

axial velocity compared to the highest swirl number case (N16S159) which does not show a 

downstream re-circulation zone. 

 

Figure 19 shows the mean axial velocity profiles at different axial locations. Although the 

centre line value is over-predicted at 6.0/ =Dx  in general the comparison for the mean axial 

velocity is very good at all downstream axial locations.  In this case, the mean axial velocity 

along the centreline does not reach negative values. In comparison to the other two cases, the 

decrease in axial velocity in the inner part (radial direction) results in an increase in axial 

velocity in the outer part of the flow. At / {1.4,2.0,2.5}x D∈ axial velocity component is 

much smaller than the upstream values. This occurs as a result of the high spreading rate of 

momentum which is an important property in swirling flows. In comparison to other cases 

experimental data show that decrease in axial momentum and spreading is more prominent in 

this case. LES has correctly reproduced this behaviour.  

 

The comparison of the mean radial velocity is shown in Figure 20. Radial velocity which is 

small in magnitude shows some notable under predictions at 6.0/ =Dx  and 8.0/ =Dx . 

Figure 21 shows the comparisons for mean swirling velocity. Calculations shows the correct 

trend but do not the reproduce the peak values present in the outer shear layer at 

/ {0.2,0.4}x D∈ . The radial spread of the swirling velocity is slightly over-predicted in the 

region / 0.5 1.0r R = −  at the axial locations }8.0,6.0{/ ∈dx . The overall agreement appears 

to be reasonable for the mean swirling velocity for this highest swirl number, complex flow 

field. 

 

Figure 22 shows the comparison of axial velocity fluctuations (rms). The predictions are in 

good agreement with experimental measurements. Shown in Figure 23 are comparisons for 

radial velocity fluctuations. The radial velocity fluctuation are slightly over predicted at 

/ 0.2( / 1.2)x D r R= =  and under predicted at / 0.6( / 0.5)x D r R= = . These discrepancies 

may be linked to under-predictions of mean radial velocity seen in Figure 20. The overall 

comparison for the rms radial velocity is better than mean radial velocity comparisons. Figure 

24, shows the comparison of the swirling velocity fluctuations.  Minor under predictions can 

be seen  at the last three axial locations, / {1.4,2.0,2.5}x D∈ . However, results from the LES 

model found to capture the peaks and the trend reasonably well in the near burner region. 
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Figures 25 and 26 show the comparisons for Reynolds stresses >′′< vu  and >′′< wu . LES 

calculations show highly varying profiles of Reynolds stresses along the radial direction for 

both stresses. Near burner predictions are reasonably good except at the centre line. Further 

down stream experimental data do not show the degree of variation seen in the predictions. 

However, overall magnitudes of the predicted Reynolds stresses agree with the experimental 

values. The variations in predictions could be due to the high swirl number and the 

complexity of the turbulence flow field. Measurement of >′′< wu  stress also shows 

considerable degree of highly varying nature up to .8.0/ =Dx  Reynolds stresses are harder to 

compute accurately and depends on predictive successes of other velocity components. Since 

this is a highly swirling case, the flow field consists of a number of high shear regions. Given 

the complexity of the flow it is encouraging to find that the LES model produces reasonably 

good predictions for the Reynolds stresses..  

 

In all three cases, considered in this study, it can be concluded that the LES modelling 

technique is able to predict all important flow features reasonably well. In particular, the 

model, has successfully predicted the mean velocity components, their fluctuations and the 

flow features such as bubble type vortex break down as observed in the experiments. With 

this success in predicting isothermal cases, considered in this study, it is the authors  intention 

to extend this work to reacting cases in this burner configuration where data is available for 

species concentrations, temperature and other important parameters such as mixture fraction 

and mixture fraction variance. That will be the next phase of this work.  

 
 
CONCLUSIONS 

In this paper, Large Eddy Simulations have been carried out for isothermal swirling flows 

based on the Sydney swirl burner experimentally investigated by Al-Abdeli and Masri (2003). 

A set of detailed experimental data including mean velocities, rms fluctuations and Reynolds 

stress components are available for validation. Three different test cases have been modelled 

under various flow conditions. The simulations show that with appropriate inflow, outflow 

boundary conditions and sufficient grid resolution LES successfully simulated the 

experimentally observed structure and topology of the swirling flow fields and agree well 

with measured mean velocity, rms fluctuations and the Reynolds shear stresses.  

 

In the non-swirling case turbulence is mostly generated in the shear layer near sudden 

expansion at the bluff body wall.  In the swirling flows turbulence is not only generated in the 

shear layer near the sudden expansion, but also in the vortex breakdown (VB) bubble. It is 
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found that the centre-line axial flow recirculates or break down (bubble type vortex 

breakdown) is achieved in the flow with a moderate swirl number (N29S054), rather than the 

high swirl number (N16S159). However, it is evident from the results that the axial 

momentum (or Reynolds number) of the swirling annulus plays a major role in determining 

the onset of vortex breakdown. The combination of low swirl number and higher primary 

axial velocity seen to cause the vortex breakdown. Experimentally observed features of vortex 

breakdown and flow structures at different operating conditions were successfully reproduced 

by the present large eddy simulations indicating that LES is capable of predicting VB 

phenomena which occurs only at certain conditions. 

 

The simulations have been able to capture the fast decay of turbulence in swirling flows due 

to the fast transport of turbulent kinetic energy towards radial direction as a result of the high 

centrifugal force induced by swirling motion and this helps to reproduce the important 

recirculation zones seen in experimental results. The results of this study show that LES 

seems to be more suitable for such complex flows. To fully appreciate the present effort, the 

results presented here have been compared with those presented at the Turbulent Non-

Premixed Flames (TNF8) workshop (2006) and the results presented in this paper were seen 

to be very good compared with results obtained by other international groups working in this 

series of flames. 

 

While, a considerable amount of work has been carried out here (dynamics of isothermal 

swirling flow field), some efforts are still required to improve the accuracy, applicability and 

efficiency of the LES technique to the field of turbulent combustion. The computational effort 

required to accomplish the present simulations was reasonably moderate, confirming that LES 

has a great potential in engineering applications. With further advancement of computer 

hardware and software technologies LES could be more useful for general engineering flow 

applications.  
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FIGURE CAPTIONS 

 
Figure 1: Schematic drawing of the Sydney swirl burner  (adapted from Al-Abdeli and Masri, 
2003). 
 
Figure 2: LES predicted time averaged mean and rms fluctuations at 4.0/ =Dx  using 
different grid resolutions for case N16S159. Dotted lines represent the Grid 1 results (coarser 
grid), dashed lines represent the Grid 2 results (finer grid), and symbols represent 
experimental measurements. 
 
Figure 3: Streamlines generated from the mean velocity field of the non-swirl case (N21S00) 
obtained from LES calculation. 
 
Figure 4: Comparison of mean axial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 5: Comparison of mean radial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 6: Comparison of rms of axial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 

 
Figure 7: Comparison of rms of radial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
 
Figure 8: Comparison of Reynolds shear stress >′′< vu . Lines represent LES results, and 
symbols represent experimental measurements. 
 
Figure 9: Streamlines generated from the mean velocity field of the moderate swirl case 
(N29S054) obtained from LES calculation 
 
Figure 10: Comparison of mean axial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 11: Comparison of mean radial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 12: Comparison of mean swirl velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 13: Comparison of rms of axial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 

 
Figure 14: Comparison of rms of radial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
 
Figure 15: Comparison of rms of swirl velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
 
Figure 16: Comparison of Reynolds shear stress >′′< vu . Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 17: Comparison of Reynolds shear stress >′′< wu . Lines represent LES results, and 
symbols represent experimental measurements. 
 
Figure 18: Streamlines generated from the mean velocity field of the high swirl case 
(N16S159) obtained from LES calculation 
 
Figure 19: Comparison of mean axial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 20: Comparison of mean radial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 21: Comparison of mean swirl velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 22: Comparison of rms of axial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 

 
Figure 23: Comparison of rms of radial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
 
Figure 24: Comparison of rms of swirl velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
 
Figure 25: Comparison of Reynolds shear stress >′′< vu . Lines represent LES results, and 
symbols represent experimental measurements. 
 

Figure 26: Comparison of Reynolds shear stress >′′< wu . Lines represent LES results, and 
symbols represent experimental measurements. 
  



27 

 

 
Figure 1: Schematic drawing of the Sydney swirl burner  (adapted from Al-Abdeli and Masri, 

2003). 
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Figure 2: LES predicted time averaged mean and rms fluctuations of axial velocity at 
/ 0.136,0.2x D =  using different grid resolutions for case N16S159. Solid lines represent the 

Grid 1 results (1 million grid points), dashed lines represent the Grid 2 results (1.44 million 
grid points), and symbols represent experimental measurements. 
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Figure 4: Comparison of mean axial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 5: Comparison of mean radial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 6: Comparison of rms of axial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 7: Comparison of rms of radial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 8: Comparison of Reynolds shear stress >′′< vu . Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 9: Streamlines generated from the mean velocity field of the moderate swirl case 
(N29S054) obtained from LES calculation. 
 



36 

 

<
U

>
(m

/s
)

0 0.5 1 1.5

0

20

40

60

80
x/D=0.136

0 0.5 1 1.5

0

20

40

60

80
x/D=0.2

<
U

>
(m

/s
)

0 0.5 1 1.5
-10

0

10

20

30

40
x/D=0.4

0 0.5 1 1.5
-10

0

10

20

30

40
x/D=0.6

<
U

>
(m

/s
)

0 0.5 1 1.5
-10

0

10

20

30

40
x/D=0.8

0 0.5 1 1.5
-10

0

10

20

30

40
x/D=1.4

r/R

<
U

>
(m

/s
)

0 0.5 1 1.5
-10

0

10

20

30

40
x/D=2.0

r/R
0 0.5 1 1.5

-10

0

10

20

30

40
x/D=2.5

 
Figure 10: Comparison of mean axial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 11: Comparison of mean radial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 12: Comparison of mean swirl velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 13: Comparison of rms of axial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 14: Comparison of rms of radial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 15: Comparison of rms of swirl velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 16: Comparison of Reynolds shear stress >′′< vu . Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 17: Comparison of Reynolds shear stress >′′< wu . Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 18: Streamlines generated from the mean velocity field of the high swirl case 
(N16S159) obtained from LES calculation. 
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Figure 19: Comparison of mean axial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 20: Comparison of mean radial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 21: Comparison of mean swirl velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 22: Comparison of rms of axial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 23: Comparison of rms of radial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 24: Comparison of rms of swirl velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
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Figure 25: Comparison of Reynolds shear stress >′′< vu . Lines represent LES results, and 
symbols represent experimental measurements. 
 



52 

 

<
u

'w
'
>

(m
/s

)

0 0.5 1 1.5
-40

-20

0

20

40
x/D=0.136

2
2

0 0.5 1 1.5
-40

-20

0

20

40
x/D=0.2

<
u

'w
'>

(m
/s

)

0 0.5 1 1.5
-40

-20

0

20

40
x/D=0.4

2
2

0 0.5 1 1.5
-40

-20

0

20

40
x/D=0.6

<
u

'w
'>

(m
/s

)

0 0.5 1 1.5
-40

-20

0

20

40
x/D=0.8

2
2

0 0.5 1 1.5
-40

-20

0

20

40
x/D=1.4

r/R

<
u

'w
'>

(m
/s

)

0 0.5 1 1.5
-40

-20

0

20

40
x/D=2.0

2
2

r/R
0 0.5 1 1.5

-40

-20

0

20

40
x/D=2.5

 
Figure 26: Comparison of Reynolds shear stress >′′< wu . Lines represent LES results, and 
symbols represent experimental measurements. 
 
 


