
J. Fluid Mech. (2010), vol. 665, pp. 238–273. c© Cambridge University Press 2010

doi:10.1017/S0022112010003927

Large-eddy simulation of the compressible
flow past a wavy cylinder

CHANG-YUE XU, LI -WEI CHEN AND XI -YUN LU†

Department of Modern Mechanics, University of Science and Technology of China,
Hefei, Anhui 230026, China

(Received 8 January 2010; revised 18 July 2010; accepted 19 July 2010;

first published online 22 October 2010)

Numerical investigation of the compressible flow past a wavy cylinder was carried
out using large-eddy simulation for a free-stream Mach number M∞ =0.75 and
a Reynolds number based on the mean diameter Re = 2 × 105. The flow past a
corresponding circular cylinder was also calculated for comparison and validation
against experimental data. Various fundamental mechanisms dictating the intricate
flow phenomena, including drag reduction and fluctuating force suppression, shock
and shocklet elimination, and three-dimensional separation and separated shear-layer
instability, have been studied systematically. Because of the passive control of the flow
over a wavy cylinder, the mean drag coefficient of the wavy cylinder is less than that
of the circular cylinder with a drag reduction up to 26 %, and the fluctuating force
coefficients are significantly suppressed to be nearly zero. The vortical structures near
the base region of the wavy cylinder are much less vigorous than those of the circular
cylinder. The three-dimensional shear-layer shed from the wavy cylinder is more
stable than that from the circular cylinder. The vortex roll up of the shear layer from
the wavy cylinder is delayed to a further downstream location, leading to a higher-
base-pressure distribution. The spanwise pressure gradient and the baroclinic effect
play an important role in generating an oblique vortical perturbation at the separated
shear layer, which may moderate the increase of the fluctuations at the shear layer
and reduce the growth rate of the shear layer. The analysis of the convective Mach
number indicates that the instability processes in the shear-layer evolution are derived
from oblique modes and bi-dimensional instability modes and their competition. The
two-layer structures of the shear layer are captured using the instantaneous Lamb
vector divergence, and the underlying dynamical processes associated with the drag
reduction are clarified. Moreover, some phenomena relevant to the compressible effect,
such as shock waves, shocklets and shock/turbulence interaction, are analysed. It is
found that the shocks and shocklets which exist in the circular cylinder flow are
eliminated for the wavy cylinder flow and the wavy surface provides an effective way
of shock control. As the shock/turbulence interaction is avoided, a significant drop
of the turbulent fluctuations around the wavy cylinder occurs. The results obtained in
this study provide physical insight into the understanding of the mechanisms relevant
to the passive control of the compressible flow past a wavy surface.
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1. Introduction

Owing to the obvious importance in a wide range of fundamental studies and
applications, a significant effort has been made in recent decades to study the control of
flow over a bluff body, typically a canonical geometry circular cylinder. Comprehensive
reviews on this subject have been given in the literature (e.g. Oertel & Affiliation 1990;
Williamson & Govardhan 2004; Choi, Jeon & Kim 2008), where significant progress
has been achieved for the incompressible flow past a bluff body. Moreover, the control
of the compressible flow in the transonic regime over a bluff body is responsible for
some important issues related to the coupled shearing and compressing processes, such
as compressible turbulent flow-separation control, shock control, shock/turbulence
interaction and acoustics (e.g. Peake & Crighton 2000; Stanewsky 2001; Bushnell
2004). However, the physical mechanisms dictating the characteristics of compressible
flow control are still unclear and are of great interest for further detailed studies.

Extensive work has been conducted on the control of flow over a bluff body
in recent decades. Recently, Choi et al. (2008) classified control methods for bluff-
body flows as boundary-layer controls and direct-wake modifications, depending on
whether the control delays separation by modifying the boundary layer or changes
directly the wake characteristics. In direct-wake-control methods, two groups were
classified in terms of two-dimensional (2D) or three-dimensional (3D) disturbances
in the spanwise direction of a bluff body (Choi et al. 2008). One group was called
‘2D forcing’, such as the disturbances with a splitter plate (Anderson & Szewczyk
1997; Ozono 1999; Hwang, Yang & Sun 2003), tabs (Thombi, Daisuke & Yoshiaki
2002) and base bleed (Delaunay & Kaiktsis 2001; Yao & Sandham 2002; Arcas &
Redekopp 2004). The other group was named ‘3D forcing’, such as the disturbances
with a wavy trailing edge (Thombazis & Bearman 1997; Cai, Chng & Tsai 2008) and
a wavy surface of cylinder (e.g. Lee & Nguyen 2007; Lam & Lin 2008, 2009).

Using the ‘3D forcing’ direct-wake control, some work has been performed for flow
over a wavy cylinder whose diameter varied sinusoidally along its spanwise direction.
Ahmed & Bays-Muchmore (1992) and Ahmed, Khan & Bays-Muchmore (1993)
investigated experimentally the pressure field and flow patterns over a wavy cylinder.
Lam et al. (2004a) and Lam, Wang & So (2004b) performed experiments to deal
with the drag reduction and the relevant flow-induced vibration for different wavy
cylinders. Zhang, Dai & Lee (2005) used the particle-image-velocimetry technique to
investigate the flow structures in the near wake of a wavy cylinder and demonstrated
well-organized streamwise vortices in the spanwise direction. Lee & Nguyen (2007)
measured the forces on wavy cylinders with different geometric parameters and found
the maximum drag reduction of up to 22 % relative to the corresponding circular
cylinder. Recently, Lam & Lin (2008, 2009) also studied numerically the turbulent
and laminar flow over wavy cylinders. These studies revealed that the wavy surface
can lead to the formation of a 3D shear layer, which is more stable than the 2D
shear layer. Moreover, we need to indicate that all these previous investigations are
only to deal with the incompressible flow over a wavy cylinder. To our knowledge,
however, the relevant study for the compressible flow past a wavy cylinder has never
been performed.

Initially, the compressible flow in the transonic regime over a circular cylinder, which
is a prototype of a wavy cylinder, is introduced in order to understand its underlying
complex flow phenomena, such as shock/turbulent-boundary-layer interaction,
shock/wake interaction and compressible boundary layer instability. Experiments
on the transonic flow past a circular cylinder have been performed by Macha (1977),
Murthy & Rose (1978) and Rodriguez (1984) for the Reynolds number about 105.
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They mainly focused on the drag-force measurements and flow visualizations.
Murthy & Rose (1978) used buried wire gauges to measure skin friction and vortex-
shedding frequency. Moreover, the 2D compressible Navier–Stokes equations were
numerically solved using a finite-volume method to investigate the unsteady forces
and flow structures for transonic flow past a circular cylinder (Miserda & Leal 2006).
Recently, the effect of Mach number on transonic flow past a circular cylinder has
been studied numerically (Xu, Chen & Lu 2009a). They mainly discussed several
salient features, including shock/turbulent-boundary-layer interaction, formation of
a local supersonic zone (LSZ) and shocklet in the wake, and evolution of a turbulent
shear layer. Thus, compared with the incompressible flow control, an effective
control of the compressible flow past a bluff body is responsible for additional flow
features relevant to the compressible effect, such as shock wave and shock/turbulence
interaction.

The development of a 3D free-shear-layer shed from a wavy cylinder plays an
important role in the drag reduction and fluctuating lift suppression (e.g. Lam &
Lin 2008, 2009). For the compressible flow past the cylinder, the shearing and
compressing processes should be coupled to affect the shear-layer evolution. A
direct effect of the compressibility is related to the convective Mach number, Mc

(Bogdanoff 1983; Papamoschou & Roshko 1988). According to experiments (e.g.
Gruber, Messersmith & Dutton 1993; Barre, Quine & Dussauge 1994; Clemens &
Mungal 1995) and direct numerical simulations (e.g. Sandham & Reynolds 1991;
Sarkar 1995; Vreman, Sandham & Luo 1996; Pantano & Sarkar 2002), it was
found that the normalized pressure–strain term decreases with increasing Mc and the
consequence of the compressibility effect involves a decay of the turbulence production
term in the Reynolds-stresses transport equation. Moreover, when Mc < 0.6, the
instability process is bi-dimensional with spanwise correlated structures originating
from the Kelvin–Helmholtz instability. When 0.6 <Mc < 1, oblique wave modes
compete with bi-dimensional instability modes. Further, when Mc > 1, the instability
waves are 3D and the growth rate of the most amplified mode is greatly reduced
(Simon et al. 2007). The separation process over a wavy cylinder will generate a 3D
compressible shear layer, leading to the occurrence of instability modes coupled with
complex interactions. This particular geometrical configuration results in a significant
modification of the whole flow field compared with the circular cylinder case, which
may be associated with some features of the compressible flow control that need to
be studied.

The turbulent-boundary-layer separation and the relevant vortical structures of
a bluff cylinder play an important role in overall flow behaviours. Characterizing
dynamical processes in flow evolution is still one of the fundamental challenges
in fluid mechanics. Usually, the dynamical processes are analysed by the proper
orthogonal decomposition (Lumley 1967; Berkooz, Holmes & Lumley 1993) and
stochastic estimation (Adrian & Moin 1988) methods, and vortical structures are
often discussed relative to the importance of vortices (e.g. Robinson 1991; Jeong &
Hussain 1995; Chakraborty, Balachandar & Adrian 2005). Moreover, the Lamb
vector acts as a vortex force and its character plays an important role in establishing
the nature of the flow (Truesdell 1954; Wu, Lu & Zhuang 2007). The Lamb vector
divergence is associated with the momentum transport in the flow field (Wu et al. 2007)
and appears as an acoustic source term in Lighthill’s wave equation (Lighthill 1952;
Howe 1975). Recently, the mathematical properties and physical interpretations of the
Lamb vector divergence that substantiate its kinematical and dynamical significance
have been analysed by Hamman, Klewicki & Kirby (2008). They found that the
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Lamb vector divergence may provide a rigorous methodology for the study of what
are generically referred to as coherent structures or motions. The distribution of the
Lamb vector divergence is also related to the forces on a body and can be used
to clarify the underlying dynamical processes which are associated with the drag
reduction.

In this paper, a large-eddy simulation (LES) technique, which has provided a
powerful tool for studying the dynamics of turbulent flows, is utilized to investigate
the compressible flow past a wavy cylinder and a corresponding circular cylinder.
The purpose is to achieve an improved understanding of some of the fundamental
phenomena in this flow, including drag reduction and fluctuating force suppression,
shock and shocklet elimination, 3D separation and separated shear-layer instability
and flow structures. Special attention is given to the effects of the wavy surface on
the features of the compressible flow control.

This paper is organized as follows. The mathematical formulation and numerical
methods are presented in § 2. The computational overview and validation are described
in § 3. Detailed results are then given in § 4 and the concluding remarks in § 5.

2. Mathematical formulation and numerical methods

2.1. Filtered governing equations

Large-eddy simulations are implemented in this study for turbulence closure, in which
large-scale motions are explicitly computed and eddies with scales smaller than the
grid or filter size are modelled to represent the effects of unresolved motions on
resolved scales. The 3D Favre-filtered conservation equations of mass, momentum
and energy are employed. To non-dimensionalize the equations, we use the free-
stream variables including the density, ρ∞, temperature, T∞, free-stream velocity, U∞,
and the mean diameter of the wavy cylinder as characteristic quantities. Then, the
non-dimensional equations can be expressed as (Lu et al. 2005)

∂ρ̄

∂t
+

∂(ρ̄ũi)

∂xi

= 0, (2.1)

∂ρ̄ũi

∂t
+

∂(ρ̄ũi ũj )

∂xj

= −
∂p̄

∂xi

+
∂
(
τ̃ij − τ SGS

ij + DSGS
ij

)

∂xj

, (2.2)

∂ρ̄Ẽ

∂t
+

∂[(ρ̄Ẽ + p̄)ũi]

∂xi

=
∂

∂xi

(
−q̃i + ũj τ̃ij + JSGS

i + σ SGS
i − QSGS

i − H SGS
i

)
, (2.3)

where an overbar denotes the spatial filter and a tilde the Favre filter, i.e. f̃ = ρf /ρ̄.
The variables ρ, ui , p and E represent the density, velocity component, pressure and
specific total energy, respectively. The diffusive fluxes are given by

τ̃ij = 2µ̃S̃ ij − 2
3
µ̃δij S̃kk , (2.4)

q̃i = −
µ̃Cp

Pr

∂T̃

∂xi

, (2.5)

where µ is the molecular viscosity, Cp is the constant-pressure specific heat, Pr is the
Prandtl number and Sij represents the strain-rate tensor defined as Sij = (∂ui/∂xj +
∂uj/∂xi)/2. The perfect gas relationship and the Sutherland law for the molecular
viscosity coefficient, µ, are employed.
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The subgrid closure terms in (2.2) and (2.3) are defined as

τ SGS
ij = ρ̄(ũiuj − ũi ũj ), (2.6)

DSGS
ij = (τ̄ij − τ̃ij ), (2.7)

JSGS
i = − 1

2
ρ̄( ˜uiukuk − ũi ũkuk), (2.8)

QSGS
i = (q̄i − q̃i), (2.9)

H SGS
i = Cp(ρ̄ũiT − ρ̄ũi T̃ ), (2.10)

σ SGS
i = (ujτij − ũj τ̃ij ). (2.11)

These terms arise from the unresolved scales and need to be modelled in terms of the
resolved scales. Because the filter scale of LES falls in the inertial subrange of the
turbulent-kinetic-energy (TKE) spectrum, the modelling of subgrid terms is relatively
universal in comparison with that of the simulation of the Reynolds-averaged Navier–
Stokes equations.

2.2. Subgrid-scale models

The introduction of the dynamic model proposed by Germano et al. (1991) has
spurred significant progress in the subgrid-scale (SGS) modelling of non-equilibrium
flows. Among the various SGS turbulence models, such as the mixed model (Fureby
1996) and the two-parameter mixed model (Salvetti & Banerjee 1995), the dynamic
SGS model for turbulence closure offers the best trade-off between accuracy and cost
(Desjardin & Frankel 1998). In the present study, the dynamic Smagorinsky model for
compressible flows proposed by Moin et al. (1991) is employed. The anisotropic part
of the SGS stresses (2.6) is treated by using the Smagorinsky model (Smagorinsky
1963), while the isotropic part τ SGS

kk is modelled with a formulation proposed by
Yoshizawa (1986)

τ SGS
ij − 1

3
δij τ

SGS
kk = −2CR∆̄2ρ̄|S̃|

(
S̃ ij − 1

3
δij S̃kk

)
= CRαij , (2.12)

τ SGS
kk = 2CI ∆̄

2ρ̄|S̃|2 = CIα, (2.13)

where αij = −2∆̄2ρ̄|S̃|(S̃ ij − (1/3)δij S̃kk ), α = 2∆̄2ρ̄|S̃|2 and |S̃| =(2S̃ ij S̃ ij )
1/2. CR and CI

are the model coefficients and are determined dynamically during the calculation.
The model utilizes the information about resolved scales at the grid-filter level and
at a coarser test-filter level with ∆̂> ∆̄. The least-squares method proposed by Lilly
(1992) is then implemented to obtain the two coefficients

CR =
〈LijMij 〉

〈MklMkl 〉
−

1

3

〈LmmMnn〉

〈MklMkl 〉
, (2.14)

CI =
〈Lkk 〉

〈β − α̂〉
. (2.15)

The brackets 〈 · 〉 denote local smoothing, which is used to circumvent the numerical
instability originating from the dynamic calculation of the eddy-viscosity model
coefficients (Germano et al. 1991; Moin et al. 1991). A local volume-weighted average
with around 27 points is employed for the local smoothing (Fureby 1996; Desjardin &
Frankel 1998). Additional clipping based on the entropy-limit condition of the form
µ + µT � 0 is implemented to limit the extent of backscattering in the calculation
(e.g. Lu et al. 2005), where µT is the SGS turbulent viscosity. In the present study,
the fraction of grid points requiring additional clipping is less than 1%. The forms



Large-eddy simulation of the compressible flow past a wavy cylinder 243

of Lij , Mij and β are

Lij = ¯̂ρũi ũj − ˆ̄ρ ˜̃ui
˜̃uj , (2.16)

Mij = βij − α̂ij ; βij = −2∆̂2 ˆ̄ρ| ˜̃S|
(

˜̃S ij − 1
3
δij

˜̃Skk

)
; β = 2∆̂2 ˆ̄ρ| ˜̃S|2, (2.17)

where the hat represents the test-filtered variable. A Favre-filtered variable at the

test-filter level is defined as ˜̃f = ρ̂f / ˆ̄ρ.
The subgrid energy flux term is

H SGS
i = Cp(ρ̄ũiT − ρ̄ũi T̃ ) = −

µtCp

Pr t

∂T̃

∂xj

, (2.18)

where µt = ρ̄CR∆̄2|S̃|. Similarly, the turbulent Prandtl number Pr t is determined as

Pr t =
CR〈KjKj 〉

〈NiKi〉
, (2.19)

where

Ni = ̂̄ρũi T̃ − ˆ̄ρ ˜̃ui
˜̃T ; Ki = ∆̄2

̂
ρ̄

∣∣∣∣S̃
∂T̃

∂xi

∣∣∣∣ − ∆̂2 ˆ̄ρ| ˜̃S|
∂ ˜̃T

∂xi

. (2.20)

The SGS turbulent diffusion term is reasonably modelled as JSGS
i = ũjτ

SGS
ij (Knight

et al. 1998). The treatments of the viscous stress term, DSGS
ij , and the heat flux term,

QSGS
i , have been analysed by Piomelli (1999). The SGS viscous diffusion term σ SGS

i is
neglected because of its small contribution in the energy equation (Martin, Piomelli &
Candler 1999).

2.3. Numerical procedure

The governing equations are numerically solved by a finite-volume method. The
convective terms are discretized by a second-order central/upwind hybrid scheme
for shock-capturing and the viscous terms by a fourth-order central difference (Lu
et al. 2005; Wang et al. 2007; Chen, Xu & Lu 2010a). The temporal integration is
performed using an implicit approximate-factorization method with sub-iterations to
ensure the second-order accuracy (Simon et al. 2007).

To capture the discontinuity caused by a shock wave, a second-order upwind
scheme with the Roe’s flux-difference splitting is introduced into the inviscid flux. The
spatial discretization has been constructed explicitly to be shock capturing with the
upwind scheme and to revert to a central stencil with low numerical dissipation in
turbulent flow regions away from shock. A binary sensor function Φi+1/2 at cell face
i + 1/2 is used for the detection of shocks; Φi+1/2 is determined by the pressure and
density curvature criteria proposed by Hill, Pantano & Pullin (2006)

αi+1/2
p = max

(
αi

p, αi+1
p

)
, αi+1/2

ρ = max
(
αi

ρ, α
i+1
ρ

)
(2.21)

and

αi
p =

∣∣∣∣
pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1

∣∣∣∣, αi
ρ =

∣∣∣∣
ρi+1 − 2ρi + ρi−1

ρi+1 + 2ρi + ρi−1

∣∣∣∣, (2.22)

where αi
p and αi

ρ represent the pressure and density relative curvatures at the cell

centre, respectively. When αi+1/2
p >c1 and αi+1/2

ρ >c2, Φi+1/2 is 1; but zero, otherwise.
The 3D version of this detection is used in the simulations. Similar to the treatment
(Hill et al. 2006), the values of c1 and c2 that proved to give the best results are
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Figure 1. Schematic diagram of a wavy cylinder.

chosen as 0.01 (Chen et al. 2010a). Based on this detection, the Roe’s second-order
upwind flux only operates at the cells in the vicinity of a shock wave.

To assess the use of the numerical schemes for LES of turbulent flow, the
instantaneous region of upwind flux was examined and the fraction of grid points
occupied by the upwind flux is much less than 1 % during the calculations. Moreover,
an analysis of the SGS and numerical kinetic energy dissipation has been performed
by Ducros et al. (1999) for the LES of the shock/turbulence interaction using a
second-order finite-volume scheme. Similar to this analysis, we have identified that
the numerical dissipation mainly occurs in the upwind scheme region and the SGS
dissipation is the dominant one away from the upwind scheme region. The ratio
of the total numerical energy dissipation and the total SGS energy dissipation in
the flow field is less than 1 %, consistent with the fraction of grid points occupied
by the upwind flux. Furthermore, to justify the use of the numerical method for
the present LES, additional analysis based on some quantities, such as the resolved
energy spectrum and turbulent fluctuations, will be discussed in the following section.

In this study, the initial and boundary conditions are presented as follows. The
initial condition is set as the free-stream quantities. The far-field boundary conditions
are treated by local one-dimensional Riemann-invariants, which were designed by
Thomas & Salas (1986) for studying transonic flow over a body and were extensively
examined and found to be reliable for transonic flows over lifting aerofoils and
wings (e.g. Hafez & Wahba 2007). No-slip and adiabatic conditions are applied on
the cylinder surface. A periodic condition is used in the spanwise direction of the
cylinder.

3. Computational overview and validation

3.1. Computational overview

As shown in figure 1, the diameter of the wavy cylinder varies sinusoidally along its
spanwise direction. The geometry of the wavy cylinders is described by

Dy = D + 2A cos

(
2πy

λ

)
, (3.1)

where Dy denotes the local diameter of the wavy cylinder and varies in the spanwise
direction y and A and λ represent the amplitude and wavelength of the wavy surface,
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respectively. The mean diameter D is defined by

D =
Dmin + Dmax

2
, (3.2)

where Dmin and Dmax represent the minimum and maximum local diameter of the
wavy cylinder and are called ‘node’ and ‘saddle’, respectively. The ‘middle’ is also
defined at the midpoint position between nodal and saddle planes. The diameter of
the middle cross-section is equal to the mean diameter D.

The parameters used in this study are selected based on some typical experiments
for the incompressible flow over a wavy cylinder (e.g. Lam et al. 2004a ,b) and for
the compressible flow over a circular cylinder (Macha 1977; Murthy & Rose 1978;
Rodriguez 1984). The amplitude, A, and wavelength, λ, of the wavy cylinder in figure 1
are chosen as 0.1D and 2D, respectively, consistent with an effective flow control
for mean drag and fluctuating lift reduction (Lam et al. 2004a). For comparison and
code validation against experimental data, the compressible flow past a corresponding
circular cylinder is also investigated here. Some experiments on the transonic flow past
a circular cylinder (Macha 1977; Murthy & Rose 1978; Rodriguez 1984) have been
performed for the parameters, such as the free-stream Mach number M∞ = 0.75 and
the Reynolds number Re =1.7 × 105 − 3.4 × 105 (Rodriguez 1984). Here, we choose
the free-stream Mach number as 0.75 and the Reynolds number based on the mean
diameter of the wavy cylinder as 2 × 105.

The grids are of O-type with a far-field boundary at 50D away from the cylinder in
the (x, z) plane, which is large enough to ensure a reliable treatment of the far-field
boundary condition, and grid stretching is employed to increase the grid resolutions
near the surface and in the wake region, ensuring that there are at least 40 nodes in the
vorticity thickness over the surface in the attached boundary-layer region. An ortho-
gonal grid distribution in the meridian plane is obtained by a conformal mapping tech-
nique. For the corresponding circular cylinder, the spanwise grid is divided uniformly.
The spanwise length is chosen as twice the wavelength of the wavy cylinder (i.e. 4D).
To justify the choice of this length, the two-point correlations are calculated in terms
of the formulation (Pirozzoli, Grasso & Gatski 2004). Figure 2 shows the two-point
correlations Rαα(ry) in the spanwise direction (i.e. y-direction), where α represents the
fluctuations of any one of the velocity components ũi (or ũ, ṽ and w̃). The correlations
decay towards zero which means that the two-point correlations are sufficiently
decorrelated over a distance 2D, thus ensuring that the computational domain in the
spanwise direction is sufficiently wide not to inhibit the turbulence dynamics.

To assess the effects of grid resolution and time step on the calculated results,
three typical cases with different grid resolutions and time steps as well as the
relevant main characteristics are listed in table 1. Detailed comparisons of the
calculated results using different computational conditions will be given in § 3.2.
Moreover, the present code is equipped with a multi-block domain decomposition
feature to facilitate parallel processing in a distributed computing environment. The
present computational domain is divided into 32 subdomains for parallel processing.
The computed time elapsed is at least 400D/U∞ to obtain statistically meaningful
turbulence properties in the temporal average operation.

Based on the time-dependent resolved density, ρ̄, pressure, p̄, temperature, T̃ and
velocity, ũi , several averaging operations will be needed. To clearly present the post-
process, some symbols used in this paper are introduced as follows: 〈 〉 means the
average in time (after careful elimination of the transient part of their time-dependent
variations) as well as in spatial phase along the spanwise direction for the wavy
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Case Grid U∞
t/D Wavy Circular EXP-1 EXP-2 EXP-3

1 257 × 257 × 61 0.006 1.167 1.572
〈CD〉t 2 385 × 385 × 81 0.004 1.162 1.568 1.618 1.5 1.5–1.6

3 513 × 513 × 121 0.002 1.162 1.568

1 257 × 257 × 61 0.006 0.011 0.250
CLrms 2 385 × 385 × 81 0.004 0.012 0.254 0.253 – –

3 513 × 513 × 121 0.002 0.012 0.254

1 257 × 257 × 61 0.006 0.165 0.180
St 2 385 × 385 × 81 0.004 0.170 0.190 0.2 0.18 –

3 513 × 513 × 121 0.002 0.170 0.190

Table 1. Comparison of the calculated results with experimental data for a circular cylinder
and validation of the results with different grid resolutions and time steps, i.e. cases 1–3.
Here, EXP-1 represents the experimental data from Rodriguez (1984) for M∞ = 0.75 and
Re = 1.7 × 105–3.4 × 105, EXP-2 from Murthy & Rose (1978) for M∞ = 0.8 and Re = 1.66 × 105

and EXP-3 from Macha (1977) for M∞ = 0.8 and Re = 105–106.
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Figure 2. Distributions of the two-point correlations of the wavy cylinder flow at two
positions at z/D = 0 and (a) x/D = 0.7 and (b) x/D = 2.0.

cylinder or in the spanwise direction for the circular cylinder, and {φ} = 〈ρ̄φ〉/〈ρ̄〉
with a variable φ. Then, their fluctuations are obtained as (Garnier, Sagaut & Deville
2002) ρ ′ = ρ̄ − 〈ρ̄〉, p′ = p̄ − 〈p̄〉, T ′′ = T̃ − {T̃ } and u′′

i = ũi − {ũi}, respectively.

3.2. Validation

To validate the present simulation, we first consider the compressible flow over a
circular cylinder and compare numerical results and experimental data (Macha 1977;
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Figure 3. Comparison of the calculated results with experimental data for a circular cylinder
and validation of the results with different grid resolutions and time steps (i.e. cases 1–3)
given in table 1: (a) mean wall pressure 〈pw〉 with the experimental data (Rodriguez 1984),
(b) skin friction coefficient 〈|Cf |〉 with the experimental data (Murthy & Rose 1978) and
(c) root-mean-square (r.m.s.) value of pressure fluctuation p′

rms with the experimental data
(Rodriguez 1984). Here, θ increases from the front point of the cylinder in the clockwise
direction.

Murthy & Rose 1978; Rodriguez 1984) in terms of the mean pressure, pressure
fluctuation and skin friction on the cylinder.

Figure 3 shows the distributions of mean wall pressure 〈pw〉, friction coefficient
〈Cf 〉 and pressure fluctuation p′

rms on the circular cylinder and their comparisons with
the experimental data (Murthy & Rose 1978; Rodriguez 1984). Moreover, validation
of the results predicted by different grid resolutions and time steps (i.e. cases 1–3)
listed in table 1 is also performed. It is exhibited that the results for cases 2 and 3
compare favourably with the experimental data.
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Figure 4. Resolved energy spectrum at a location behind the wavy cylinder.

Even though experimental data on the compressible flow over a wavy cylinder
are not available yet, assessments of the effect of grid resolution and time step
on the calculated solutions are performed. The distributions of mean wall pressure,
〈pw〉, friction coefficient, 〈Cf 〉, and pressure fluctuation, p′

rms , on the wavy cylinder
at the saddle, middle and nodal positions are shown in figure 3. The time-average
drag coefficient, 〈CD〉t , lift fluctuation, CLrms , and Strouhal number are also given
in table 1. We have identified that the results for cases 2 and 3 collapse together,
indicating a reasonable convergence for the grid resolution and time step. To make
the prediction accurate, the results given below were calculated using the parameters
in case 3, i.e. the grid number 513 × 513 × 121 in the radial, azimuthal and spanwise
direction, respectively, and time step 0.002D/U∞.

On the other hand, the resolved energy spectrum obtained using the parameters in
case 3 is shown in figure 4. The resolved scales seem to reach an inertial subrange,
reasonably close to St−5/3 scaling (Kawai & Fujii 2005). The spatial spectrum can be
approximately obtained using Taylor’s hypothesis which is limited to homogeneous
turbulence with small turbulence intensity (Pope 2000). The illustrated slope indicates
that the present calculation can reliably capture the turbulence spectrum. Moreover,
the resolved energy spectra obtained by the present numerical method were also
examined in some previous investigations (e.g. Wang et al. 2007; Chen et al. 2010a).

Further, the present numerical strategy has already been applied with success to
a wide range of turbulent flows such as the compressible turbulent swirling flows
injected into a coaxial dump chamber (Lu et al. 2005), transonic flows over a circular
cylinder (Xu et al. 2009a; Xu, Chen & Lu 2009b) and past an aerofoil (Chen et al.
2010a) and supersonic flow past a hemispherical nose with an opposing jet (Chen,
Xu & Lu 2010b). We have carefully examined the physical model and numerical
approach used in this study and have verified that the calculated results are reliable.

4. Results and discussion

4.1. Force behaviours

4.1.1. Reduction of mean and fluctuating force

The features of the forces exerted on a wavy cylinder are an important issue related
to the control of flow over a bluff body (e.g. Oertel & Affiliation 1990; Choi et al.
2008). Figures 5(a) and 5(b) show the time-dependent lift and drag coefficients CL and
CD on the wavy and circular cylinder, respectively. It is seen that obvious reduction of
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Figure 5. Time-dependent lift and drag coefficients on the wavy cylinder (a) and circular
cylinder (b) as well as the phase-space plot of the force components (c).

mean drag and fluctuating lift on the wavy cylinder occurs with respect to the ones on
the circular cylinder. To clearly compare the time-dependent forces on the cylinders,
the phase-space plots of the force components (CL, CD) are shown in figure 5(c). The
diagram of force components on the wavy cylinder is limited to only a local region,
indicating that the force fluctuation is significantly suppressed.

Usually, the force fluctuation on a cylinder is associated with the vortex shedding
in the wake (e.g. Oertel & Affiliation 1990; Owen & Bearman 2001). To identify the
frequency of vortex shedding, the power spectral densities of the time-dependent lift
coefficient of the wavy and circular cylinder are shown in figure 6. The characteristic
Strouhal number is defined as St = f D/U∞ with f being the frequency. As exhibited in
figure 6 for the circular cylinder, the primary frequency corresponding to the highest
peak is approximately 0.19, consistent with experimental data in the range 0.18–
0.2 (Murthy & Rose 1978; Rodriguez 1984). The spectral peaks for the wavy cylinder
are relatively weak, indicating an almost complete suppression of flow unsteadiness.
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To assess quantitatively the reduction of mean drag and fluctuating lift, table 1
shows the time-average drag coefficient 〈CD〉t , the root-mean-square (r.m.s.) value of
lift fluctuation CLrms and the Strouhal number as well as their comparisons with
some typical experimental data. We firstly compare with the values of 〈CD〉t of the
two cylinders and note that the 〈CD〉t of the wavy cylinder is less than that of the
circular cylinder with a drag reduction up to 26 %. Then, compared with the values
of CLrms , it is reasonably identified that the fluctuating force on the wavy cylinder is
significantly suppressed.

The characteristics of the reduction of mean and fluctuating forces for the
incompressible flow past wavy cylinders have been well studied experimentally and
numerically (e.g. Lam et al. 2004a ,b; Lee & Nguyen 2007; Lam & Lin 2008, 2009).
An effective drag reduction about 20 % is obtained with optimal wavelength and
amplitude of a wavy cylinder (Lam et al. 2004a). Even though the wavelength and
amplitude calculated in this study may not correspond to the optimal values, the
drag reduction is around 26 % given in table 1. The compressible flow past a wavy
cylinder can reduce drag more effectively in comparison with the incompressible flow.
Therefore, the mechanisms underlying the compressible flow are of great interest for
detailed studies. We can foresee that some mechanisms may be similar to those for
the incompressible flow past a wavy cylinder, such as the 3D effect on the shear-
layer instability, and others could be associated with the compressible effects, such as
suppression of shock/turbulence interaction. Thus, we will mainly pay attention to
the relevant mechanisms in this complex flow.

4.1.2. Pressure and friction on the surface

The forces on the cylinder are contributed by the pressure and viscous shear stress,
respectively. To understand their connections to the reduction of mean and fluctuating
forces on the wavy cylinder, figure 3 shows the mean pressure and its fluctuation as well
as friction on the cylinder surface. As shown in figure 3(a), the pressure distributions
at the nodal, middle and saddle locations nearly collapse together, especially in the
base range of the cylinder with a nearly unchanged value, and are obviously higher
than that of the corresponding circular cylinder. As the Reynolds number considered
here is O(105), the pressure force plays a dominant role in the total forces on the
cylinder. Thus, we can learn that the higher base pressure is mainly responsible for
the drag reduction.

As shown in figure 3(b), the skin friction mainly exists in the attached flow region
over the surface, drops quickly before the mean separation location, and approaches
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very small values in the base region of the cylinder. The peak value of skin friction
at the saddle location is obviously higher than the one at the nodal location. This
behaviour is related to the flow phenomenon that the spanwise flow is from the nodal
plane towards the saddle plane on both sides of the wavy cylinder before the flow
separation, which will be discussed in detail in § 4.3. We have carefully examined the
total skin friction on the wavy cylinder which is somewhat less than that on the
circular cylinder, related to the fact that the mean separation on the wavy cylinder is
earlier than that on the circular cylinder. Further, it is reasonably identified that the
contribution on the drag reduction due to the skin friction effect is negligibly small
relative to the pressure force effect.

Based on the above analysis, the forces on the cylinder are mainly associated with the
pressure distribution. Thus, the pressure fluctuation on the surface (i.e. p′

rms ) is shown
in figure 3(c). In the attached flow region, the pressure fluctuation nearly vanishes.
The peak value occurs around the mean separation location, which is related to the
fluctuating displacement of instantaneous separation (Batham 1973; Shvets 1983).
The pressure fluctuation obviously exists in the base region of the cylinder. From the
distributions of p′

rms in figure 3(c), it is identified that the pressure fluctuation on the
wavy cylinder is significantly suppressed in the base region, resulting in a reduction
of CLrms on the wavy cylinder listed in table 1.

4.1.3. Analysis of drag decomposition

The forces exerted on a body for viscous compressible flow around it depend
strongly on the dynamic processes, such as shearing and compressing ones. To
understand the mechanisms underlying the compressible flow past the cylinders, the
force expression based on derivative-moment transformations (Wu, Ma & Zhou
2006; Wu et al. 2007) is used to analyse the drag-force contributions. Let Vf be a 3D
compressible fluid domain surrounding a rigid and stationary body, B , and bounded
externally by an arbitrary control surface, Σ , then the force formulation in terms of
the resolved variables is expressed as (Wu et al. 2006)

F = −
1

2

∫

Vf

x × ∇ ×

(
ρ̄

∂ ũ

∂t

)
dV −

∫

Vf

(
ρ̄ω̃ × ũ −

1

2
(ũ · ũ)∇ρ̄

)
dV

−
1

2

∫

∂Vf

x ×

[
n ×

(
ρ̄ω̃ × ũ −

1

2
(ũ · ũ)∇ρ̄

)]
dS + FΣ + FA, (4.1)

where ω̃ = ∇ × ũ is the vorticity, x denotes the spatial vector and ∂Vf = ∂B + Σ is the
surrounding boundary of Vf with ∂B being the body surface. The boundary integral
in (4.1)

FΣ = −
1

2

∫

Σ

x × [n × (∇ × µ̃ω̃)] dS +

∫

Σ

µ̃ω̃ × n dS, (4.2)

is the contribution to the force of the flow structures on the finite control surface Σ ,
which is a pure viscous effect.

We imposed a periodic condition in the spanwise direction in the present calculation,
so that only a finite length of the cylinder lies in the computational domain. Vf is a
doubly connected domain, and both the control surface and body surface are open
surfaces. Then an additional term due to the open control surface in (4.1) is expressed
as (Wu et al. 2006)

FA =
1

2

∫

∂B

x × (p̄dx − 2µ̃ω̃ × dx) + 2

∫

∂B

µ̃ũ × dx. (4.3)
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As a check, when Σ shrinks to coincide with ∂B so that all volume integrals over
Vf disappear, (4.1) degenerates to the boundary vorticity flux (BVF) based force
expression for an open body surface (Wu et al. 2007).

According to the analysis of force decomposition (Wu et al. 2006), the terms in
(4.1), i.e. −(ũ · ũ)∇ρ̄/2 and ρ̄ω̃ × ũ, are related to the compressing effect and the vortex
force, respectively. Then, the force components corresponding to the two terms are
given as

FC =

∫

Vf

1

2
(ũ · ũ)∇ρ̄ dV +

1

2

∫

∂Vf

x × n ×

(
1

2
(ũ · ũ)∇ρ̄

)
dS, (4.4)

FV = −

∫

Vf

(ρ̄ω̃ × ũ) dV −
1

2

∫

∂Vf

x × [n × (ρ̄ω̃ × ũ)] dS. (4.5)

Here we use (4.1) to analyse the drag reduction because of the compressing and
shearing processes. The boundary integral (4.2) is calculated. Since this term is a pure
viscous effect, its value is negligibly small when the control surface Σ is chosen as
over 40D away from the cylinder in the cross-section plane, which is used to calculate
other terms in (4.1). The term due to the open control surface (4.3) contributes
approximately half the total drag force for high-Reynolds-number flow, consistent
with the result for viscous flow over a circular cylinder (Wu et al. 2007).

Further, we mainly discuss the drag contributions related to the compressing effect
and the vortex force. The mean values of drag coefficient using (4.4) are obtained as
approximately 0.35 and 0.45 for the wavy and circular cylinder, respectively; the drag
reduction due to the compressing effect is around 22 %. Similarly, the drag coefficient
values due to the vortex force (4.5) are 0.24 and 0.34 for the wavy and circular
cylinder, and the corresponding drag reduction is approximately 29 %. Then, we may
learn that the drag reduction due to the shearing process prevails over that due to the
compressing process in this flow. The underlying mechanisms will be discussed below.
Moreover, compared with the mean values obtained by (4.4) and (4.5) for the wavy
cylinder or the circular cylinder, it is found that the contribution of the compressing
effect is higher than that of the vortex force. This finding was also confirmed for
transonic flow around a circular cylinder or a sphere (Chang & Lei 1996).

4.2. Flow structures and turbulent fluctuations

4.2.1. Boundary vorticity flux and vortical structures

For this compressible flow past the cylinder, the shearing and compressing processes
should be coupled to affect the overall flow characteristics. Thus, the mechanisms
relevant to the control of flow past a wavy cylinder are also associated with the two
processes and will be analysed from the body surface to the flow field based on both
the processes.

A quantitative understanding of the connection of the two processes on the cylinder
surface is of fundamental significance and may improve our capabilities for flow
analysis and control. The BVF represents an on-surface dynamic process which
causes the formation of vortical structures and is also related to the local compressing
process, but itself is not a flow structure (e.g. Wu et al. 2006, 2007). As the BVF is
always of O(1) even if Re ≫ 1, the o(1) viscous terms are often neglected at large Re

to focus on the key physics (Wu et al. 2006). Thus, for the present flow with a higher
Re, the BVF can be approximately expressed as

σ =
µ̃

ρ̄

∂ω̃

∂n
≃

1

ρ̄
n × ∇p̄, (4.6)
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Figure 7. Distributions of the mean spanwise BVF (a) and vorticity (b).

where n represents the inward normal unit vector on a solid wall. Lighthill (1963)
was the first to interpret (4.6) as the measure of vorticity creation and emphasized
the role of tangent pressure gradient. Thus, we can learn that the BVF is in turn
dominated by the tangent pressure gradient, which measures the local dynamics of
the compressing process (Wu et al. 2006). Once that tangent pressure gradient is
formed on the surface, it becomes a cause of new vorticity, which measures the local
dynamics of the shearing process.

After we examine the σ components, it is identified that the spanwise BVF is
dominant. The distributions of mean spanwise BVF and vorticity components are
shown in figures 7(a) and 7(b), respectively. The BVF occurs obviously in the attached
flow region and drops quickly at the mean flow separation location. Moreover, in the
attached flow region, the higher BVF at the saddle position corresponds reasonably
well to the larger vorticity, consistent with the larger skin friction in figure 3(b). Similar
behaviour is also identified at the nodal position. The peak value of BVF on the
circular cylinder is somewhat larger than the one on the wavy cylinder at the middle
position, which is associated with the tangent pressure gradient (4.6) induced by the
formation of a shock wave over the circular cylinder discussed below. In addition,
we also calculated the right-hand side of (4.6) and confirmed that its profile (not
shown here) collapses with the BVF.

The vortical structures in the near wake are closely associated with the dynamic
characteristics on a body (Wu et al. 2007) and flow control over a bluff body (Choi
et al. 2008). To exhibit the coherent structures in the flow field, figure 8 shows
instantaneous snapshots of the flow field depicted by isosurface of the Q criterion
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Figure 8. Vortical structures by isosurface of the Q-criterion (Q =1): (a) wavy cylinder and
(b) circular cylinder.

(Jeong & Hussain 1995)

Q = − 1
2
(‖S‖2 − ‖Ω‖2), (4.7)

where S and Ω denote the strain and the rotation tensor, respectively. A positive
value of Q presents the regions in which the rotation exceeds the strain. It must
be recalled that the criterion (4.7) is only applied to the resolved scales obtained by
LES and that the vortical structures could be different if the whole flow field was
considered (Simon et al. 2007). Based on careful comparison of the structures behind
the cylinders in figure 8, some prominent differences of the vortical structures in the
near wake are identified. The vortical structures near the base region of the wavy
cylinder are significantly less vigorous than those of the circular cylinder. The vortex
roll up of the separated shear layer from the wavy cylinder is delayed to a downstream
position, while this phenomenon occurs in the initial stage of the shear-layer shed
from the circular cylinder.

To clearly demonstrate the vortex structures in the near wake, figure 9 shows the
isocontours of mean vorticity magnitude 〈|ω̃|〉, for clarity, in the cross-section planes.
It is observed that the near wake structures behind the wavy cylinder have been
modified significantly compared with the circular cylinder flow. From the patterns
behind the wavy cylinder, the separated free shear layers are relatively more stable
and then roll up into vortices in the further downstream positions, leading to a
reduction of the suction near the base region of the wavy cylinder. This feature is
reasonably related to the higher-base-pressure distribution in figure 3(a). Moreover,
the mechanisms of the more stable shear-layers shed from the wavy cylinder are of
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(a)

(c) (d )

(b)

Figure 9. The isocontours of mean vorticity magnitude in the cross-section planes: (a) saddle,
(b) middle, (c) nodal plane of wavy cylinder and (d) mid-spanwise plane of circular cylinder.

importance in understanding the flow characteristics and will be discussed further
in § 4.3.

4.2.2. Shock waves and shocklets and their elimination around the wavy cylinder

For transonic flow past a circular cylinder, there exist an array of intricate
phenomena, e.g. moving shock waves, LSZs and shocklets, and shock/turbulent flow
interaction (Xu et al. 2009a). To assess the passive control of the compressible flow
past a wavy cylinder, the existence of these phenomena relevant to the compressible
effect is further discussed for the wavy and circular cylinders, which will be of
help in understanding the mechanisms of the drag reduction and fluctuating force
suppression.

The instantaneous isocontours of local Mach number, Ml , and velocity divergence
or dilatation are shown in figures 10 and 11 in the cross-section planes, respectively.
Firstly we take an overview on the flow phenomena around the cylinders. For the
circular cylinder flow, as exhibited in figure 10(d ), the moving shock waves are formed
over the cylinder and in the near wake, resulting in complex shock/boundary layer
interaction and shock/wake interaction (Xu et al. 2009a ,b). These flow phenomena are
consistent with the experimental observations (Rodriguez 1984; Thombi et al. 2002).
As expected, strong negative dilatation related to the shock occurs in figure 11(d ).
Moreover, the LSZs are intermittently generated in the near wake of the circular
cylinder and are associated with the local eddies. The shocklets may also occur in
accordance with the stronger LSZs and will be further analysed below.

Correspondingly, after we carefully examine the flow field around the wavy cylinder
shown in figure 10(a–c), the shocks and shocklets are not detected. The weaker
LSZs are intermittently formed only in the outside region of the separated shear
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Figure 10. Instantaneous isocontours of local Mach number, Ml , in the cross-section planes:
(a) saddle, (b) middle, (c) nodal plane of wavy cylinder and (d) mid-spanwise plane of circular
cylinder; the 3D shocklet surface structure is plotted in the inset. Here, solid lines denote
Ml > 1 and dashed lines Ml < 1.

layers. The elimination of shocks and shocklets around the wavy cylinder plays
an important role in the compressible flow control by avoiding the shock-induced
pressure drag (Bushnell 2004) and suppressing the force fluctuation. Moreover, shock
wave control possesses both fundamental and application importance (e.g. Stanewsky
2001). Following the present findings, the wavy surface may also provide an effective
way of shock control, say an airfoil with small amplitude wavy surface for transonic
buffet control.

Further, it is identified that the local Mach number in the near wake of the wavy
cylinder is even as low as O(10−2) in figure 10(a–c). This lower-velocity region is
closely related to the more stable shear layers. From figure 11(a–c), a flow-expansion
effect with positive dilatation exists along the shear layers from the saddle and middle
position. In contrast, a flow-compression effect occurs along the shear layer from the
nodal position and is associated with the flow phenomenon that the spanwise flow is
from the saddle plane towards the nodal plane on both sides of the wavy cylinder
after the flow separation discussed in § 4.3.

From the preceding description of the moving shock wave on the circular
cylinder, it is important to exhibit the relevant intricate flow phenomena including
shock/boundary layer interaction and shock-induced flow separation. Figure 12 shows
the time development of flow structures using the isocontours of ∂p̄/∂x (Simon et al.
2007) in the mid-spanwise plane of the circular cylinder. Here, we pay attention to
the flow evolution over the upper surface. A shock wave is formed on the surface
because of upstream-propagating compression waves from the base region. This shock
wave moves upstream, while increasing its strength and induces the boundary layer
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Figure 11. Visualizations of instantaneous velocity divergence in the cross-section planes:
(a) saddle, (b) middle, (c) nodal plane of wavy cylinder and (d) mid-spanwise plane of circular
cylinder. Here, bright shades represents negative values and dark shades positive ones.

separation. Then, the shock wave weakens and quickly disappears. This phenomenon
is repeated alternately between the upper and lower surfaces of the circular cylinder.
Based on our recent work on the transonic flow past a circular-arc airfoil (Chen
et al. 2010a), the shock/boundary layer interaction enhances turbulent fluctuations
and stimulates the separated shear layer to become more unstable. In contrast, when
the formation of the shock wave is suppressed over the wavy cylinder, it is of help
in avoiding shock-induced wave drag and keeping more stable evolution of the shear
layers.

We next turn to the existence of shocklets in the near wake of the circular cylinder, as
shown in figures 10(d ) and 11(d ). Usually, the shocklets are associated with turbulent
eddies. Lee, Lele & Moin (1991) used the term ‘eddy shocklets’ to describe shocks
produced by the fluctuating fields of the turbulent eddies. Here, it is interesting to
examine the physical structure of shocklets. The region with strong negative dilatation
is referred to as a shocklet (e.g. Vreman, Kuerten & Geurts 1995; Freund, Lele & Moin
2000). Additionally, utilizing the locus of the zero crossing of ∇2ρ̄ is also considered
to determine the precise shocklet location (Samtaney, Pulin & Kosović 2001). By
means of the approach described in detail by Freund et al. (2000), we have identified
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Figure 12. Shock wave motion over the circular cylinder depicted by ∂p/∂x in the
mid-spanwise plane with the same time increment. Here, solid lines denote positive values
and dashed lines negative ones.

the 3D shocklet surface structure, as typically shown in the inset of figure 10(d ),
and have confirmed that the change of the flow state across the shocklet satisfies
the Rankine–Hugoniot conditions. After examining the shocklet surface structures
at different instants and locations, the extracted shocklets exhibit basically a curved
dish-like structure. Similarly, the shocklets show a curved ribbon-like structure in
decaying compressible, isotropic turbulence (Freund et al. 2000).

The interaction between the shocklets and turbulence is mutual. The presence of the
shocklets in the wake can induce a high level of turbulent fluctuations. The acoustic
mode is also prevalent in this region, which is in accordance with the existence of the
shocklets (Loginov, Adams & Zheltovodov 2006). As the shocklets in the near wake
of the wavy cylinder are eliminated, we can reasonably predict that the turbulent
fluctuations may be reduced which will be discussed below.

4.2.3. Turbulent fluctuations and their suppression behind the wavy cylinder

Turbulent fluctuations around a body are associated with the fluctuating forces
exerted on it (Wu et al. 2007). To characterize the turbulent fluctuations around the
cylinder, the isocontours of the mean TKE, i.e. 〈k〉 = 〈ρ̄u′′

i u
′′
i 〉/2, are shown in figure 13

in the cross-section planes. It is obviously seen that the TKE is negligibly small in
the near wake of the wavy cylinder. This feature results in lower fluctuating surface
pressure (Nakamura & Igarashi 2008).
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are plotted for validation and the legend of lines is same as the one in figure 3(a).

Further, the profiles of 〈k〉 and the turbulent production term (i.e. P =
−〈ρ̄u′′

i u
′′
j 〉{ũi},j ) along the symmetry line of the cylinder wake are shown in

figures 14(a) and 14(b), respectively. From the distributions behind the wavy cylinder,
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〈k〉 is nearly zero in the range of approximately x/D < 1.5, increases gradually, and
reaches a maximum in the range of around x/D = 4.5. Moreover, the location of
the 〈k〉 peak in the nodal plane occurs earlier and its value is higher than the ones
in the saddle and middle planes. Thus, the separated shear layers from the nodal
position may become unstable earlier to roll up into mature vortices, consistent
with the vorticity patterns in figure 9. Correspondingly, 〈k〉 reaches its maximum at
x/D = 1.6 approximately and then decreases gradually behind the circular cylinder.
Furthermore, as shown in figure 3, the convergence check based on the forces on the
cylinder surface has been performed. The profiles of 〈k〉 calculated by different grid
resolutions and time steps are also shown in figure 14(a) for the convergence check.
It is seen that the results for cases 2 and 3 approach each other, indicating that the
turbulent fluctuations can be reliably predicted by the grid resolution and time step
used in this study.

The turbulent production term is a typical one in the transport equation of TKE.
As shown in figure 14(b), the production term behind the wavy cylinder is nearly
zero in the range of x/D < 3 approximately and exists obviously in x/D > 3. It means
that the turbulent production is significantly suppressed in the near wake. We have
examined other terms in the transport equation of TKE (not shown here) and have
identified that they are obviously small behind the wavy cylinder. Further, the negative
production distribution behind the circular cylinder is related to the recirculation flow
induced by the large-scale vortices. Then, the production term becomes positive and
reaches its maximum at approximately x/D = 1.7, reasonably corresponding to the
location of the 〈k〉 peak.

To understand the characteristics related to the suppression of turbulent fluctuations
behind the wavy cylinder, we may alternatively analyse the underlying reasons for
the generation of higher-level turbulent fluctuations behind the circular cylinder. As
shown in figure 12, the moving shock on the cylinder surface induces the boundary-
layer separation and stimulates the separated shear layer to become more unstable
(Chen et al. 2010a). Then, the vortex roll up of the shear layer quickly happens
to form the large-scale vortices near the cylinder, as shown in figure 9(d ). We
have examined a typical term (ω̃ · ∇)ũ in the transport equation of vorticity, which is
related to the mechanism of tilt and stretch of vorticity (Chorin 1994), and have found
that a clear distribution (not shown here) occurs in the near wake of the circular
cylinder, resulting in the fluctuating fields of turbulent eddies. On the other hand, as
shown in figure 10(a), the existence of shocklets can stimulate turbulent fluctuations
because of their mutual interaction. Moreover, the shock wave/wake interaction also
enhances the turbulent fluctuations (Chen et al. 2010a). In contrast, as the shocks and
shocklets are eliminated around the wavy cylinder, these circumstances that existed in
the circular cylinder are avoided, resulting in a significant suppression of the turbulent
fluctuations behind the wavy cylinder.

4.3. The three-dimensional separation and shear-layer evolution

4.3.1. The three-dimensional separation on the wavy cylinder

From the preceding analysis of the flow-field structures and flow characteristics, it is
reasonably well understood that the 3D compressible shear-layer development plays
an important role in the flow control relevant to the drag reduction and fluctuating
force suppression. In order to understand the mechanisms of flow control, we further
analyse the 3D separation on the wavy cylinder.

Figure 15 shows the mean separation location on the wavy cylinder surface,
corresponding to the resolved skin friction stress vanishing. It is observed that
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Figure 16. The isocontours of mean spanwise velocity component in the meridian planes:
(a) θ = 65.6◦ and (b) θ =77.3◦. Here, solid lines denote positive values and dashed lines negative
values, and the arrows represent the local flow direction.

the separation happens earliest at the saddle position. For comparison, the mean
separation location on the circular cylinder is also predicted and shown in figure 15.
The separation from the wavy cylinder is earlier than that from the circular cylinder,
consistent with the experimental findings for the incompressible flow past a wavy
cylinder (Lam et al. 2004a ,b; Zhang et al. 2005). The wave-like separation location
is likely to result in the 3D shear layers which have an important influence on the
evolution of the turbulent wake behind the wavy cylinder.

To exhibit the local flow behaviour near the wavy surface, the isocontours of mean
spanwise velocity component are shown in figure 16 in the meridian planes at θ = 65.6◦

and 77.3◦, corresponding to the plane before and after the separation, respectively. It
is seen that the spanwise flow is from the nodal plane towards the saddle plane on
both sides of the wavy cylinder at θ = 65.6◦ and reverses its direction at θ = 77.3◦. It
means that the spanwise pressure gradient is formed along the wavy surface, resulting
in a cause or on-surface root of new vorticity generation in the azimuthal direction
from (4.6). Thus, the corresponding vorticity component is generated and is of help in
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Figure 17. Instantaneous snapshot of the spanwise component of the baroclinic term in the
transport equation of vorticity: (a) wavy cylinder and (b) circular cylinder.

the formation of an oblique vortex-shedding mode which may moderate the increase
of the amplitude of fluctuation at the shear layer (Prasad & Williamson 1997).

The 3D separation behaviour is associated with the local vorticity dynamics. We
have thus examined the terms in the transport equation of vorticity and have noticed
that the baroclinic term (∇ρ̄ × ∇p̄)/ρ̄2 mainly occurs at the separated shear layers
because of the coupled shearing and compressing processes. Figure 17 shows an
instantaneous snapshot of the spanwise component of the baroclinic term, which is a
dominant component. The oblique and nearly parallel distributions appear over the
wavy and circular cylinders, respectively. The oblique distribution tends to generate
the oblique vortical perturbation to the separated shear layer, which is of help in its
more stable development.

4.3.2. Characteristics of the separated shear-layer evolution

As the 3D separation occurs on the wavy cylinder, the characteristics of the
separated shear-layer evolution are reasonably related to the mechanisms of the flow
control. For the purpose of better understanding the shear-layer evolution, figure 18
shows the topological structure of the shear layer in the near wake in terms of the
location of peak shear-stress magnitude (Simon et al. 2007). It is seen that the 3D
shear layer is formed behind the wavy cylinder. Moreover, figure 19(a) shows the
locations of the shear layer in the nodal, middle and saddle planes. The transverse
location of the shear layer decreases smoothly in the nodal plane and increases in
the saddle plane; it means that the wake width shrinking and expanding occur in
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the near wake of the wavy cylinder, consistent with the topological structure shown
in figure 18. It is interesting to note that from figure 19(a) the transverse location is
nearly equal to 0.65 approximately at x =0.95 marked by Pi (i = 1–3) in figure 18.

To exhibit the organization of the Reynolds-stress distribution at the shear layer, a
shear-stress angle, ψ , is analysed as performed by Herrin & Dutton (1995) and
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Figure 20. Evolution of vorticity thickness (a) and convective Mach number (b) along the
mean shear layers in the saddle, middle and nodal planes of the wavy cylinder and mid-spanwise
plane of the circular cylinder.

is defined as ψ = arctan(w′′/u′′), where u′′ and w′′ represent the instantaneous
streamwise and transverse velocity fluctuations which are determined through the
sampled flow fields. To identify the orientation of the large scale, energy-containing
eddies, a quadrant decomposition analysis (Wallace, Eckelmann & Brodkey 1972;
Willmarth & Lu 1972; Lu & Willmarth 1973) is used. Based on the definition of
ψ , ψ < 0 corresponds to the second and fourth quadrants, while ψ > 0 to the first
and third quadrants. Note that ψ = 0 represents a purely streamwise fluctuation. The
quadrant analysis can be clearly expressed by the probability density function (PDF)
of shear-stress angle, ψ . Figure 19(b) shows the PDF of ψ at the positions P1, P2

and P3 marked in figure 18, corresponding to the nodal, saddle and middle plane. A
strong orientation of the shear stress is related to the peak of N/NT , where N/NT

represents the normalized number of samples. From figure 19(b), it is identified that
the strong orientation is around −10.3◦ at P1 and 7.3◦ at P2, consistent with the
wake-width shrinking and expanding in the near wake, while the strong orientation
is around 0◦ at P3, where the streamwise fluctuation is dominant.

The mean feature of the separated shear layer is investigated to understand the
shear-layer growth with its evolution. Consequently, it is reasonable to use the vorticity
thickness δω(x) and it can be expressed as (Simon et al. 2007)

δω(x) =

Ũ

(∂〈ũ(x, z)〉/∂z)max

, (4.8)

where 
Ũ represents the resolved velocity difference magnitude across the shear layer.
Figure 20(a) shows the evolution of δω along the mean shear layers shed from the
cylinders. For comparison, we first pay attention to the shear-layer growth from the
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circular cylinder. The growth rate dδω/dx is around 0.25 in the region of x/D < 0.5
approximately, which is associated with the initial part of the shear layer just after
separation and agrees well with the value for the compressible mixing layer past
an axisymmetric trailing edge (Simon et al. 2007). Then, the growth rate dδω/dx

increases quickly reaching a value equal to around 0.8 in the region of 0.5 <x/D < 1
and becomes smaller on moving downstream. The large growth rate corresponding
to high spreading rate leads to the existence of shock/wake interaction, as typically
shown in figures 10(d ) and 11(d ), which results in high turbulence levels (Deck &
Thorigny 2007; Xu et al. 2009a). Further, we analyse the shear-layer growth from
the wavy cylinder. As shown in figure 20(a), the growth rates dδω/dx in the nodal,
middle and saddle planes are nearly the same and are equal to around 0.15 in the
region extending to x/D = 2.5 approximately. This growth rate even is less than the
one at the initial region of the shear layer from the circular cylinder, indicating that
instabilities of the free shear shed from the wavy cylinder develop quite slowly. It
means that the 3D free shear layer from the wavy cylinder is more stable than that
from the circular cylinder. Furthermore, the separated shear layer and its evolution are
usually associated with transition mechanisms (e.g. Zdravkovich 1997; Mani, Moin &
Wang 2009). As the growth rate of the shear layers shed from the wavy cylinder is
relatively small, the effects of pre-separation transition on post-separation turbulence
are weak. However, as moving shocks are formed over the circular cylinder, the
shock/turbulence interaction plays a dominant role in the formation and evolution
of the shear layer separated from the cylinder.

The shear-layer growth rate in this compressible flow is also affected by the
compressibility effect, which can be reasonably well described by the convective Mach
number, Mc (Bogdanoff 1983; Vreman et al. 1996; Freund et al. 2000; Pantano &
Sarkar 2002). Usually, when Mc < 0.6, the instability process is mainly related to
the bi-dimensional one with spanwise rolling eddies originating from the Kelvin–
Helmholtz instability. When 0.6 <Mc < 1, oblique modes are amplified and compete
with bi-dimensional instability modes (e.g. Sandham, Yao & Lawal 2003; Simon et al.
2007). Following the estimation of Mc proposed by Simon et al. (2007), figure 20(b)
shows the profiles of Mc along the mean shear layers. Mc varies smoothly and lies
in the range of approximately 0.65–0.8 for the wavy cylinder, while Mc increases to
around 0.9 and decreases quickly for the circular cylinder. According to the range
of Mc, the instability processes for the separated shear-layer evolution are derived
from the competition between the oblique modes and bi-dimensional instability
modes.

To understand the instability development of the shear layer, turbulent fluctuations
are further analysed. Figure 21 shows the profiles of the local peak Reynolds stresses
{u′′

i u
′′
j }/U 2

∞ (Herrin & Dutton 1997; Simon et al. 2007). For the shear-layer shed
from the wavy cylinder, the values of the streamwise and transverse normal stresses
and their shear stress remain small and increase very slowly, consistent with the low
growth rate shown in figure 20(a). It means that the free shear layer is more stable.
In contrast, the turbulent stresses or fluctuations are relatively large for the shear
layer from the circular cylinder. Based on the analysis of the transport equations
of Reynolds-stress components (not shown here), it is reasonably identified that the
streamwise normal stress decreases and transfers to other components, resulting in the
increase of the transverse normal stress and the shear stress in figure 21. Moreover,
we have examined the production term in the transport equation of TKE and have
noticed that the production term for the wavy cylinder is much less than the one
for the circular cylinder. The turbulent stresses or fluctuations at the shear-layer
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shed from the wavy cylinder are significantly suppressed, leading to the more stable
development of the free shear layer.

4.3.3. Dynamics of the shear-layer evolution

To reveal the dynamical processes of the shear-layers shed from the cylinders, we
further discuss the behaviours of the Lamb vector divergence, which is associated
with the momentum transport in the flow field (Wu et al. 2006). It is reasonable
to use the Lamb vector divergence to describe the dynamical mechanisms by which
adjacent high- and low-momentum fluid motions interact to effect a time rate of
change of momentum (Hamman et al. 2008). The mechanisms related to the Lamb
vector divergence play an important role in the evolution of the shear layer separated
from the cylinder.
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Figure 22 shows the instantaneous distributions of the Lamb vector divergence
in the cross-section planes, corresponding to the instant in figures 10 and 11. For
the wavy cylinder flow, two-layer structures with signs opposite to that of the Lamb
vector divergence at the separated shear layer are observed. According to the analysis
on the Lamb vector divergence (Hamman et al. 2008), both the negative and positive
values represent vorticity bearing motions and straining motions, respectively. As a
result, the dynamical processes in the two layers include that the interaction between
the strong strain rate region and strong vorticity region may exchange momentum.
The Lamb vector divergence reasonably well captures the temporal evolution of high-
and low-momentum fluid flow, which is closely associated with the mechanisms that
drive turbulent shear-layer evolution and lead to low turbulent fluctuations shown in
figure 21. In addition, from the distributions of the Lamb vector divergence behind
the circular cylinder, it is obviously identified that there exist complex structures and
dynamical processes.

Based on theoretical analysis by Hamman et al. (2008), the distribution of the Lamb
vector divergence is also related to the forces on a body. They investigated the flow
around an oscillating circular cylinder for flow control and noticed that decreasing
the area over which regions of positive and negative Lamb vector divergence interact
leads to drag reduction. As shown in figure 22, the interaction area of positive and
negative Lamb vector divergence mainly lies in the regions of shear-layers shed from
the wavy cylinder. Compared with the area involving strong interaction behind the
circular cylinder, it is qualitatively obtained that the interaction area behind the wavy
cylinder is obviously decreased, resulting in the drag reduction in table 1.

The Lamb vector divergence appears as an acoustic source term in Lighthill’s
wave equation (Lighthill 1952; Howe 1975). Thus, the acoustic character is mainly
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determined by turbulent shear-layer evolution near the cylinders in figure 22,
consistent with the previous flow-noise prediction on turbulent boundary layers
(Wang & Moin 2000; Wang, Freund & Lele 2006). Moreover, the distributions of
the Lamb vector divergence apparently exhibit large magnitude behind the circular
cylinder, compared with those behind the wavy cylinder. Therefore, it is reasonable
to predict that the wavy cylinder may also play an effective role in acoustic control
by suppressing the acoustic source term in Lighthill’s wave equation.

5. Concluding remarks

Numerical investigation of the compressible flow past a wavy cylinder was carried
out by means of an LES technique for a free-stream Mach number M∞ = 0.75 and
a Reynolds number based on the mean diameter Re = 2 × 105. For comparison, the
compressible flow past a corresponding circular cylinder was also calculated. Various
fundamental mechanisms dictating the intricate flow phenomena, including drag
reduction and fluctuating force suppression, shock waves and shocklets elimination,
3D separation and separated shear-layer instability, and flow-field structures, were
examined systematically and are summarized briefly as follows.

The behaviour of the forces exerted on the cylinder is an important issue associated
with the control of flow over a bluff body. As a result, the mean drag coefficient
of the wavy cylinder is less than that of a corresponding circular cylinder with a
drag reduction up to 26 %. Based on the analysis of drag decomposition, we have
identified that the drag reduction due to the shearing process prevails over that
due to the compressing process in this flow. The fluctuating lift coefficient is greatly
suppressed to be nearly zero. As the Reynolds number considered is O(105), the
pressure force plays a dominant role in the total forces on the cylinder. We have
found that a higher base pressure of the wavy cylinder is mainly responsible for the
drag reduction. Moreover, the pressure fluctuation on the wavy cylinder is significantly
suppressed in the base region, resulting in the fluctuating force reduction.

For the compressible flow past the cylinders, the shearing and compressing processes
should be coupled to affect the overall flow characteristics and are related to the
mechanisms of the flow control. The BVF represents an on-surface dynamic process
which causes the formation of vortical structures, and is in turn dominated by the
tangent pressure gradient which measures the local dynamics of the compressing
process. The BVF on the cylinders occurs obviously in the attached flow region and
drops quickly at flow separation. It is found that the positive BVF peak on the
wavy cylinder at the middle position is attenuated clearly, compared with that on the
circular cylinder, because of the suppression of shock formation for the wavy cylinder
flow. Moreover, the vortical structures in the near wake are closely associated with the
dynamics on a body and flow control over a bluff body. Some prominent differences
of the vortical structures behind the wavy and circular cylinders are identified. The
vortical structures near the base region of the wavy cylinder are significantly less
vigorous than those of the circular cylinder. The 3D shear-layer shed from the wavy
cylinder is more stable than that from the circular cylinder. The vortex roll up of
the shear layer separated from the wavy cylinder is delayed to a further downstream
position, leading to a reduction of the suction near the base of the cylinder or a
higher-base-pressure distribution.

To assess the passive control of the compressible flow past a wavy cylinder, some
intricate phenomena relevant to the compressible effect, such as moving shock waves,
LSZs and shocklets and shock/turbulence interaction, have been studied. For the
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circular cylinder flow, the moving shock waves are formed over the cylinder and in the
near wake, resulting in complex shock/boundary layer and shock/wake interaction,
consistent with the experimental observations (Rodriguez 1984; Thombi et al. 2002).
Meanwhile, the existence of shocklets accompanied by the stronger LSZ is detected in
the near wake and can induce the high level of turbulent fluctuations. The extracted
shocklets are shown to exhibit basically a curved dish-like structure for the first time.
In contrast, the shocks and shocklets are not detected for the wavy cylinder flow. As a
result, the shock-induced pressure drag is avoided. The elimination of shock waves and
shocklets around the wavy cylinder plays an important role in the compressible flow
control and results in a significant suppression of the turbulent fluctuations behind the
wavy cylinder which is related to the lower fluctuating surface pressure (Nakamura &
Igarashi 2008). In addition, the wavy surface may provide an effective way of
shock control, say an airfoil with small amplitude wavy surface for transonic buffet
control.

Characteristics of the 3D separation and shear-layer evolution are investigated to
understand the mechanisms of flow control. As the 3D separation depends on the
local dynamics, it is found that the spanwise pressure gradient and the baroclinic
term in the transport equation of vorticity play an important role in generating the
oblique vortical perturbation to the separated shear layer, which may moderate the
increase of the amplitude of fluctuation of the shear layer (Prasad & Williamson
1997) and is of help in its more stable development. Further, based on the analysis
of the convective Mach number, it is identified that the instability processes in the
separated shear-layer evolution are derived from the competition between the oblique
modes and bi-dimensional instability modes. Compared with the circular cylinder
flow, the shear-layer growth rate in the wavy cylinder flow becomes smaller and the
turbulent fluctuation becomes weaker. Moreover, the dynamical processes of the flow
evolution are discussed in terms of the instantaneous Lamb vector divergence. The
Lamb vector divergence reasonably well captures the temporal evolution of high-
and low-momentum fluid flow with two-layer structures in the separated shear layer.
Because of the passive control of the compressible flow past a wavy cylinder, the
Lamb vector divergence becomes weakened, which can reasonably be associated with
the drag reduction and the suppression of the acoustic source term in Lighthill’s wave
equation for acoustic control.
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