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Abstract. The Clark model for the turbulent stress tensor in large-eddy simulation is investigated from 
a theoretical and computational point of view. In order to be applicable to compressible turbulent 
flows, the Clark model has been reformulated. Actual large-eddy simulation of a weakly compressible, 
turbulent, temporal mixing layer shows that the eddy-viscosity part of the original Clark model gives 
rise to an excessive dissipation of energy in the transitional regime. On the other hand, the model gives 
rise to instabilities if the eddy-viscosity part is omitted and only the "gradient" part is retained. A linear 
stability analysis of the Burgers equation supplemented with the Clark model is performed in order to 
clarify the nature of the instability. It is shown that the growth-rate of the instability is infinite in the 
inviscid limit and that sufficient (eddy-)viscosity can stabilize the model. A model which avoids both the 
excessive dissipation of the original Clark model as well as the instability of the "gradient" part, is 
obtained when the dynamic procedure is applied to the Clark model. Large-eddy simulation using this 
new dynamic Clark model is found to yield satisfactory results when compared with a filtered direct 
numerical simulation. Compared with the standard dynamic eddy-viscosity model, the dynamic Clark 
model yields more accurate predictions, whereas compared with the dynamic mixed model the new 
model provides equal accuracy at a lower computational effort. 

1. Introduction 

Large-eddy simulation (LES) is a promising technique to simulate turbulent flows (Rogallo and Moin, 

1984). In LES only the large scales are explicitly solved and for this purpose the Navier-Stokes equations 

are filtered. The filtering introduces new terms, the so-called subgrid terms representing the effect of the 

small scales, which have to be modeled in order to close the filtered equations. A number of subgrid models 

for the most important subgrid term, the turbulent stress tensor, exist. Using an eddy-viscosity hypothesis is 

the most common procedure to model this tensor and the Smagorinsky model is the best-known example 

(Smagorinsky, 1963). Recently, a dynamic formulation of this model has been proposed (Germano, 1992), in 

which the model coefficient is dynamically adjusted to the local structure of the flow. This procedure 

considerably improves the performance of the eddy-viscosity model in transitional and inhomogeneous 

flows (Germano et  al., 1991). However, the eddy-viscosity concept is not the only strategy which has been 
followed to model the turbulent stress tensor, Alternative formulations are provided by, e.g., the similarity 

model (Bardina et  al., 1984) and the Clark model (Clark et  al., 1979). An increasing amount of research is 
directed toward the use of the similarity idea in LES. The validity of this idea has been investigated using 
experimental data (Liu et  al., 1994). Furthermore, LES has been conducted using the mixed model, in which 

the similarity model is supplemented with the Smagorinsky eddy-viscosity (Erlebacher et  al., 1992). The 
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dynamical formulation of the mixed model has also been adopted (Zang et al., 1993; Vreman et al., 1994b) 
and improvement over the standard dynamic eddy-viscosity model was observed. Compared with other 
subgrid models the dynamic mixed model produces good results, but a simulation using this model is quite 
expensive, because many explicit filtering operations are needed in each time step. 

The model developed by Clark et al. (1979), which is the subject of this paper, has received less attention 
than the similarity model, although a priori tests of this model yield correlations which are at least as good 
as those of the similarity model (Clark et al., 1979; Vreman et al., 1993). The Clark model consists of two 
parts; the first part, which is based on Taylor expansions of the velocity field, contains inner products of 
velocity gradients and is called the "gradient" model, and the other part is the Smagorinsky eddy-viscosity 
model. Furthermore, the model satisfies several basic requirements, such as Galilean invariance (Speziale, 
1985) and realizability (Vreman et al., 1994a). However, actual simulations using the Clark model are rarely 
found in the literature. One of the examples is the work of Love (1980) on the one-dimensional Burgers 
equation. In the present paper we present results of LES with the Clark model for the temporal mixing layer 
at low Mach number. First, in Section 2 we demonstrate that the derivation of the Clark model for the 
turbulent stress tensor in incompressible flow can be extended to compressible flow. Next, in Section 3 
results of LES with the original Clark model show that the model is too dissipative in the transitional 
regime. However, if the eddy-viscosity part of the model, which is responsible for the excessive dissipation, is 
omitted, the simulation becomes unstable. An analysis of the nature of this instability for the one- 
dimensional Burgers equation is presented in Section 4, which shows that the instability can be removed if 
a sufficient amount of dissipation is added. For this reason the dynamic Clark model is formulated in 
Section 5, which overcomes the problems of both excessive dissipation and instability. Finally, in Section 6 
we summarize our conclusions. 

2. Closure of the Filtered Equations with the Clark Model 

We first present the filtered Navier-Stokes equations for a compressible flow and then demonstrate how the 
Clark model can be derived for the turbulent stress tensor using Taylor expansions. 

The partial differential equations which govern a compressible flow are the Navier-Stokes equations, 
representing conservation of mass, momentum, and energy. In the LES of turbulent flows these equations 
are filtered in order to reduce the amount of scales to be solved. The filter operation extracts the large scale 
part f from a flow variable f as follows: 

= fn Ga(x - Y)f(Y) dy. y(x) (1) 

Here f2 is the flow domain and A denotes the "filter width" associated with the kernel Ga. We adopt a filter 
width which does not depend on the postion vector x and, consequently, the filter operation is a convolution 
and commutes with spatial derivatives (Rogallo and Moin, 1984). For compressible flows, Favre (1983) has 
introduced a related filter operation, 

f = P_f, (2) 
P 

where p denotes the fluid density. The filtered Navier-Stokes equations can be written in the following form 

(Vreman et al., 1994c): 

~tf + 0j(p~7~) = 0, (3) 

(4) 

0tk + 0j((~ + p)Sfl - 3j(6ifii) + ?j~j = R, (5) 

where the symbols ~t and 0j denote the partial differentia/ operators ~?/& and O/?xj, respectively. 
Furthermore, the summation convention for repeated indices is used. The independent variables t and xj 
represent time and the spatial coordinates, respectively. 
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Concerning the flow variables, the Favre-filtered velocity is denoted by ~, while t5 is the filtered density 
and/5 is the filtered pressure. Moreover, ~ is the total energy density of the filtered variables 

/5 1 
= + ~ fififi~. (6) 

7- -1  

The viscous stress tensor based on filtered variables, 6-i j, is defined as 

~-~J = T e  #(~) si~(~) with Sz~(~) = (Ofii + 3fij - -~2 (3i~3kUk),- (7) 

where cSz~ is the Kronecker delta and #(T) is the dynamic viscosity, expressed by Sutherland's law for 
air, 

/~(~) = ~3/2 1 _ + C (8) 

T+ C 

with C = 0.4. In addition ~t represents the heat-flux vector based on filtered variables, given by 

#(T) g2T. (9) 
glj= (7 - 1 )RePrM~ 

The Favre-filtered temperature 7"is related to the filtered density and the filtered pressure by the ideal gas 
law 

~F = 7M 2 P. (10) 

These equations have been made dimensionless by introducing a reference length LR, velocity UR, density 
PR, temperature TR, and viscosity/1R. In addition 7, the ratio of the specific heats C e and Cv, and the 
Prandtl number Pr are given the values 7 = 1.4 and Pr = 1. The values of the Reynolds number 

Re = p R U R L R / t l  R and the reference Mach number M R = U R / ~ g T R ,  where Rg is the universal gas constant, 
are given below. 

In this description the left-hand sides of (3)-(5) are expressed in the filtered variables 15, fir, and/5. The 
right-hand sides of the filtered equations contain the so-called subgrid terms. The subgrid term in the 
momentum equation (4) contains the turbulent stress tensor, defined as 

p 'c i j  = p u i u  j p u i P U j  = 15(~-ibtj - -  Ui~lj). (11) 

The effects of the subgrid terms in the energy equation (5) are negligible for the weakly compressible mixing 
layer considered in this paper (Vreman et al., 1994c). Terms created by nonlinearities in the viscous stress 
tensor can also be neglected. 

In the following we derive the Clark model for 15zi~ using Taylor expansions of the filtered velocity. Our 
procedure is slightly different from the procedure followed by Clark et al. (1979), since we do not apply the 
expansions to the Leonard, cross, and Reynolds components separately, but to the turbulent stress itself. 
Furthermore, we present the formulation for the compressible turbulent stress tensor, thus generalizing the 
derivation by Clark et al. The same technique can also be applied in the construction of models for other 
subgrid terms, for example, the pressure-velocity or pressure dilation subgrid term (Vreman et al., 1994c). 
The filter that we use is the top-hat filter, which is defined by its kernel: 

1 if l Yi[ < ( i= 1,2,3), 
Ga(y) = A*A2A3 2- (12) 

0 otherwise, 

where A~ is the filter width in the/-direction and A = (AtA2A3) */3. Filters commonly used in LES are the 
top-hat, the Gaussian, and the spectral cut-off filter. Vreman et al. (1994a) argue that from the viewpoint of 
realizability the Clark model should be used in conjunction with positive filters, e.g., the top-hat or 
Gaussian filter. In this work we have selected the top-hat filter, since it is more attractive than the Gaussian 
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filter with respect to computational cost. For the top-hat filter f is defined as 

l ~A3/2 ~A2/2 f &/2 
- f ( x  + y) dy. (13) 

The function f ( x  + y) is expanded as a Taylor series around x, and after evaluation of the integral we obtain 

f = f + ~  2 2 Ak0kf + O(A4). (14) 

The same formula holds for Gaussian filters (Love, 1980). We use this formula to rewrite the turbulent stress 
tensor: 

pu~pui 

p 'Qj  = p u i u  j fi  

= + ~ Ak G (pu~uj) p u i u  j 1 2 2 

(pui 1 2 2 1 2 2 + ~ Ak Qk (pu~)) + ~ G G (pu~))(puj + O(a4 ) 

i 2 bl = ~zXkp(Gu~)( G ~) + O(~X4), 

where we used the relation 

1 1 
1 2 2 

P + T g A k ~ k P  P 

1 2 2 
p q- ~ k k 3 k P  

(15) 

u, = ~, + O(A2). (19) 

Substituting expressions (18) and (19) into (15) yields 

~,s = ~ A~P(G~)(a~)+  O(a% (20) 

The first term on the right-hand side is referred to as the "gradient" model. Observe that this expansion is 
mathematically correct provided the variables can be differentiated sufficiently often. However, for rapidly 
fluctuating variables, the O(A 4) term may not be small and hence simply omitting the rest-term can be 
inaccurate. Clark et  al. have inserted the Smagorinsky eddy-viscosity model for this rest-term, which finally 

yields the original Clark model: 

1 A 2 -  ~ ~ 
PZij = ~ kP(~kU')(OkUj) --  C~A2plS(f i)[Sq(u),  (21) 

where [S(ti)]2 = ½S~(fi) and the model coefficient C s = 0.17, a value suggested by Clark et  al. (1979) and 
Schumann (1991). Equations (18) and (19) show that the Smagorinsky model is O(A2), whereas according to 
(20) a model for the rest-term is preferred to be O(A4). At present, however, no satisfactory O(A 4) model is 
available, therefore we consider the Smagorinsky model, which is of the order O(A2), for the rest-term. 

The Clark et al. model has been called "mathematically indefensible" by Love (1980) (compare the work 
by Rogallo and Moin (1984)), since Clark et  al. used Taylor expansions of the subgrid-scale velocity field 
u~ = u~ - ~i~, which is not smoothly varying over lengths of O(A). The derivation in this paper is different from 

~ PUi 

Ui ~ ~ z -  
P 

1 2 2 
= pu~ + ~A~G(pui)  + O(A4 ) 

1 2 2 
P + ~-~ Ak~?kP 

1 A 2~2_ 1 2 = ul + ~X=k ~k ul + ~ p  Ak (3kP)(~?kUi) + O(A4) • (17) 

We observe that for both the bar and Favre filter, unfiltered and filtered variables differ by a term of the 
order O(A2): 

p = ~ + o(zx2), (18) 

1 2 2 
24p2 Ak~kP + O(A4). (16) 

The next step is to express (15) into filtered variables. Using (16), the Favre-filtered velocity can be 

written as 
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the derivation by Clark et al., since we do not use Taylor expansions of the subgrid-scale velocity field u'i, but 
Taylor expansions of the unfiltered variables p and u i. However, like the subgrid-scale quantities the 
unfiltered variables are not smoothly varying over lengths of O(A) either. This point does not imply that the 
expansion is mathematically incorrect (assuming that derivatives exist), although the higher-order terms 
may not be small compared with the terms retained. An alternative procedure is to use Taylor expansions of 
f i l tered variables only, which vary more smoothly over lengths of O(A). This can be achieved by considering 
not the turbulent stress itself, but the similarity model for the turbulent stress (Vreman et aI., 1994d): 

- s i r e  
P'CiJ = ~ i ~ l j  __ p u  i p u j  (22) ? ' 

which is the definition of the turbulent stress in compressible flow applied to f i l tered variables. For 
incompressible flows this model reduces to the sum of the Leonard term and Bardina's similarity model for 
the cross-term (Bardina et al., 1984). By analogy to (15) the tensor given in (22) can be rewritten as 

- s i m  1 2 -  ~ ~ 

PZij  - -  7 2  AkP(OkUi)(CqkUj) q- O(A~) • (23) 

In this derivation only Taylor expansions of the f i l tered quantities fi and Oi are employed, whereas in (15) 
Taylor expansions of unfiltered variables are used. The expressions in (20) and (23) are identical, but the 
O(A 4) term in the latter case will in general be smaller. From this point of view the Smagorinsky 
eddy-viscosity in the Clark model accounts not only for the relatively small O(A 4) term in (23), but also for 
the discrepancy between the similarity model - sire pzii and the turbulent stress pzi~. 

3. Shortcomings of the Clark Model in Actual LES 

In this section we present results of LES of the temporal mixing layer using the Clark subgrid model. The 
results are compared with the results of a filtered direct numerical simulation (DNS). We first discuss the 
DNS, in which the unfiltered Navier-Stokes equations are solved. 

In order to simulate a three-dimensional temporal mixing layer we solve the flow equations in a cubic 
!L  !Lq [0,L]. Periodic boundary conditions are imposed in the x 1- and x 3- geometry [0,L] x [ - 2  , 2 ~ X 

direction, while in the x2-direction the boundaries are free slip walls, i.e., the normal velocity and the normal 
derivatives of the density, pressure, and tangential velocities are zero. The basic initial velocity profile is the 
hyperbolic tangent profile u --= tanh x 2. The initial temperature profile is obtained from the Busemann- 
Crocco law (Ragab and Wu, 1989) and the initial pressure distribution is uniform. The reference length L R is 
half the initial vorticity thickness, while the reference density, velocity, temperature, and dynamic viscosity 
are the initial upper stream values. As in other simulations of the three-dimensional mixing layer (Moser 
and Rogers, 1993; Comte et al., 1992), the length L of the domain is set to four times the wavelength of the 
most unstable mode according to linear stability theory. We superimpose a three-dimensional large 
amplitude perturbation on the mean profile, as described by Sandham and Reynolds (1991). The amplitudes 
of the disturbances are 0.05 for the two-dimensional and 0.15 for the oblique instability waves. In this paper 
we do not study compressibility effects, so a low convective Mach number M~ :- 0.2 is used (Vreman et al., 

1994c), while Re = 50, following Comte et al. (1992). 
The DNS database has been obtained by solving the Navier-Stokes equations, without any subgrid 

model, on a fine grid with 1923 cells. The numerical method employs a second-order accurate four-stage 
Runge-Kutta  method for marching in time (Vreman et al., 1992), whereas the spatial derivatives are 
discretized using a fourth-order scheme for the convective and a second-order scheme for the viscous terms 
(Vreman et al., 1994c). A higher-order scheme for the marching in time is not required, since the trunctation 
errors introduced by the discretization of the time derivatives are considerably smaller than the truncation 
errors introduced by the spatial discretizations. Visualization of the DNS demonstrates the roll-up of the 
fundamental instability and successive pairings. Four rollers with mainly negative spanwise voriticity are 
observed at t = 20. After the first pairing (t = 40) the flow has become highly three-dimensional. Another 
pairing (t = 80) yields a single roller in which the flow exhibits a complex structure, with many regions of 
positive spanwise vorticity (Vreman et al., 1993). This structure is an effect of the transition to turbulence 
which has been triggered by the pairing process at t = 40 (Moser and Rogers, 1993). The simulations are 
stopped at t = 100, since the single roller at t = 80 cannot undergo another pairing. The accuracy of the 
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Figure 1. Results of LES with the Clark model (solid), the filtered DNS (circles), and LES without a subgrid-model (dashed-dotted). 
The evolution of the total kinetic energy (a) and the evolution of the momentum thickness (b) are shown. 

simulation was found to be satisfactory. First, the linear growth rates of the dominant instability modes 

were captured within 1%. Furthermore, in a simulation on a coarser grid (1283 cells) the results for the 

kinetic energy and momentum thickness were identical within plotting accuracy, whereas deviations in 

local quantities (e.g., slices through the vorticity field in the turbulent regime) were small. 

The LES presented in this section have been performed on a grid with 323 cells, which is considerably 

coarser than the DNS grid, and a filter width A -- L/16 is used. Thus the filter width A equals twice the grid 

spacing of the coarse grid, which is an optimal choice (Vreman et al., 1994d). The simulation is performed 
with the same numerical method as the DNS. In order to compare the LES and DNS results the DNS 

results are filtered on the fine grid. Next, the filtered data is easily obtained on the coarse grid through 

restriction of the filtered fine-grid data. This procedure in particular provides the initial conditions of the 

LES. 

Figure 1 shows the total kinetic energy E and the momentum thickness d calculated from the LES with 

the Clark model. The quantities E and d are defined as 

= ( ½fiOfi~ dx, (24) E 
,/a 

f L/2 
d =  ( f i ) ( 1 - ( O l ) ) ( l  + ( ~ l ) ) d x  2, 

J -  L[2 
(25) 

where ( - )  denotes averaging over the homogeneous x 1- and x3-directions. The curves corresponding to the 

filtered fine-grid DNS and LES without incorporating a subgrid model ("coarse-grid DNS") have been 
included in Figure 1. Comparison with the fine-grid DNS results indicates that the behavior of the subgrid 
model is poor; LES without a subgrid model is better than LES with the Clark model. More specifically, the 

subgrid model is too dissipative: the decay of the total kinetic energy and the growth of the momentum 
thickness in the initial stages are too large. This behavior is caused by the Smagorinsky part of the Clark 

model. Indeed, the pure Smagorinsky model also exhibits an excessive dissipation in the transitional regime 
(Piomelli et al., 1990: Vreman et al., 1994d). 

Since the Clark model is too dissipative in the transitional regime, we also perform a simulation using the 
gradient model, i.e., omitting the eddy-viscosity part in the Clark model. Figure 2 shows the evolution of the 

total kinetic energy of an LES with this subgrid model. The behavior in the transitional regime is more 
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Figure 2. The evolution of the total kinetic energy for LES with 
the gradient model (solid), the filtered DNS (circles), and LES 
without a subgrid-model (dashed-dotted). 
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accurate than LES without a subgrid model. However, the simulation becomes unstable, which is 
illustrated by the strong increase of the total kinetic energy after t = 70. The reason for this instability 
cannot simply be that the grid is too coarse, because the coarse-grid DNS which employs the same grid 
remains stable. Furthermore, similar to findings for the similarity model (22) (Vreman et al., 1994d), the 
gradient model can dissipate energy, since until t = 70 the decay of energy is stronger than in the coarse-grid 
DNS. In a priori tests the gradient model gives correlations which are as high or even higher than those of 
the similarity model (Vreman et aI., 1993). However, a posteriori tests show that although both models are 
able to dissipate energy, the gradient model causes stability problems, whereas the similarity model gives 
a stable simulation with acceptable results (Vreman et al., 1994d). 

Summarizing we have the following shortcomings of the Clark model: if the eddy-viscosity in incorpor- 
ated, it is excessively dissipative in the transitional regime, whereas without the eddy-viscosity the LES is 
unstable. In the next section we analyze the nature of this instability for a one-dimensional model problem. 
Then in Section 5 a new version of the Clark model is presented, resulting in a simulation which is both 
stable and considerably more accurate than the original Clark model. 

4. Instabilities in the Burgers Equation Using the Gradient Subgrid Model 

It is well known that the Burgers equation is a simple model that describes flow phenomena which are in 
several respects qualitatively similar to Navier-Stokes flows. Since the Burgers equation is a one- 
dimensional scalar equation, mathematical analysis is often possible. The equation has been the subject of 
several studies of LES (Love, 1980; Humi, 1990). In this section we examine the Burgers equation 
supplemented with the one-dimensional version of the gradient part of the Clark model. The linear stability 
of a sinusoidal profile is investigated, in order to gain some understanding of the instability of the gradient 
model encountered in the previous section. The connection between linear and nonlinear stability is 
known for Navier-Stokes flows and has been formulated in the following way (Henningson and Reddy, 
1994). If a flow is linearly unstable, then it is nonlinearly unstable to arbitrarily small initial dis- 
turbances. On the other hand, if a flow is linearly stable, then it is nonlinearly stable, provided the 
initial disturbance is sufficiently small. Linear analysis thus provides information on the nonlinear 
equation. 

The Burgers equation with the gradient subgrid model is written as 

0tu + ½ 0x(u 2) - V~2x u = - ½ t/8~(0xu) 2 + f ( x ) ,  (26) 

where ~?t and 8 x denote the time and spatial derivative, respectively, u is the one-dimensional velocity, and 



316 B. Vreman, B. Geurts, and H. Kuerten 

v is the viscosity. The left-hand side of this equation contains all terms in the standard Burgers equation. The 
right-hand side represents the gradient model with parameter t /=  ½ A 2 plus a forcing term f. 

The following analysis shows that smooth solutions of (26) can be extremely sensitive to small 
perturbations, leading to severe instabilities• In particular, we consider the linear stability of a 2re-periodic 
stationary solution, U(x ,  t) = sin(x), on the domain [0, 2rc] with periodic boundary conditions• The forcing 
function f is determined by the requirment that U is a solution of(26). We notice that no forcing is needed to 
ensure that U is an exact solution for the inviscid case with r/= 1. We substitute a superposition of U and 
a perturbation v, 

u(x,  t) = U(x )  + v(x,  t), (27) 

into (26) and linearize around U, omitting higher-order terms in v: 

0~v + (1 - t/) sin(x)~xv + (v + t/~v) cos(x) = w?~v. (28) 

We use the following Fourier expansion for v: 

V =  ~ o:k(t)e ikx, (29) 
k = - c o  

where i is the imaginary unit with i 2 = - 1. After substitution of this series into (28) and ordering of terms, 
we obtain an infinitie system of ordinary differential equations for the Fourier coefficients ak: 

~k = ½ k( t lk  - rl - 1)c~k-1 - k2vc~k + ½ k(rlk + rl + 1)c~k + 1, (30) 

where k is a number in 2. 
The instability encountered in the previous section concerns the gradient model, in which no eddy- 

viscosity is adopted, while the molecular viscosity is relatively small. Therefore, to understand the nature of 
this instability for the Burgers equation, we first analyse system (30) assuming v = 0. Instead of the infinite 
system, we consider a sequence of finite-dimensional systems, 

~ = M~z~, (31) 

where z n is a vector containing the 2n + 1 Fourier coefficients a ~ . . . a , ,  and M, is a (2n + 1) x (2n + 1) 
tridiagonal matrix: 

with 

Z n =- 

m 

~ - n  

0~_ 1 

o~ o 

0:1 

. O ~ n  

M n  ~ -  

• 0 In 

r n  • • 

• • • 

1" 2 

l 2 

0 11 

0 0 0 

11 0 

12 

F 2 

• • • 

• , I "  n 

1 n 0 

(32) 

lk = ½k(t lk  - rl - 1), (33) 

r k = ½(k -  1)(t/k + 1). (34) 

The eigenvalues ofA n determine the stablity of the problem• The system is unstable if the maximum of the 
real parts of the eigenvalues is positive. 

In the following we consider the asymptotic behavior for large values of n of the maximum of the real 
parts of the eigenvalues of Mn. We denote the eigenvalues of M n by 2~, whereas J~m,x represents an eigenvalue 
with 

12maxl = maxl211. (35) 
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The proof of the following three properties is given in the Appendix: 

1. If 2 is an eigenvalues, then - 2 is an eigenvalue. (36) 

2. 12m~ ~1 ~ ~/n2' (37) 

3. ]Im(2max)] ~ n-- 1. (38) 

The first point implies that/~max c a n  be chosen such that Re(2m,~) > 0. Hence, the combination of these three 
properties yields the asymptotic behavior of the maximum of the real parts of the eigenvalues: 

Re(2max) ,-~ r/n 2. (39) 

Thus we have shown that the inviscid system is linearly unstable and that the largest real part of the 
eigenvalues is asymptotically proportional to n z, where n is the number of Fourier modes taken into 

account. 
It should be observed that the instability is severe, since the system is not only unstable, but the growth 

rate of the instability is infinitely large as n ~ oo. The instability is fully due to the incorporation of the 
gradient model, since all eigenvalues of the matrix M, are purely imaginary in case the inviscid Burgers 
equation without subgrid model is considered (t/= 0). In numerical simulations the instability will grow 
with a finite speed, since then the number of Fourier modes is limited by the finite grid. Moreover, 
expression (39) illustrates that grid refinement (with t/kept constant), which corresponds to a larger n, will 
not stabilize the system, but only enhance the instability. In order to investigate whether three-dimensional 
simulations show features similar to this one-dimensional behavior, we have refined the grid of the unstable 
323 LES in the previous section to 643 cells, using the same value for A. Hence, whereas A = 2h in the 
simulation on the 323 grid, A = 4h in the 643 LES, where h is the grid spacing. The 643 LES with the gradient 
model collapsed at t = 21, which is about a quarter of the collapse time of the corresponding 323-LES 
model. However, if the filter width A is reduced simultaneously when the grid is refined, i.e., A/h is kept 
constant, the instability is not necessarily enhanced. This is illustated by a simulation on the 643 grid using 
the gradient model with A = 2h. This simulation collapsed at approximately the same time as the 323 LES 
using A = 2h. In fact the growth rate of the instability of the one-dimensional problem can be expressed in 
A and the grid spacing h: ~n 2 ,-~ (A/h) 2. Consequently, the instability is not enhanced if the ratio between 
A and h is kept constant. 

Finally, we consider the more complicated case v ~ 0. The linear system in (30) now gives rise to matrices 
M, which have a negative principal diagonal. It is known that for every fixed value of n there exists an 
eigenvalue arbitrarily close to the eigenvalue of the inviscid system (2max) if v is sufficiently small (Chatelin, 
1993 (Lemma 4.3.1)). Hence for small values ofv the viscous system for finite n is still linearly unstable. The 
matrix M, is strictly diagonally dominant if 

v > t7 + 1, (40) 

while all rows except n and n + 2 are already diagonally dominant if v > r/. If the matrix is diagonally 
dominant, the real parts of all eigenvalues are negative and, consequently, the system is stable. This 
indicates that stability can be achieved by a sufficiently large viscosity, which does not depend on n, but only 
on t/. Thus, we conclude that if the gradient model is supplemented with an adequate eddy-viscosity the 
instability will be removed. The original Clark model, which indeed contains enough eddy-viscosity to 
avoid instabilities, is too dissipative. In the next section an adequate eddy-viscosity formulation which 
stabilizes the gradient model, while not being too dissipative, is presented for three-dimensional LES. 

5. The Dynamic Clark Model 

In the previous sections we have encountered two problems caused by the Clark model. If the Smagorinsky 
eddy-viscosity is incorporated, the model is too dissipative. However, if the eddy-viscosity part is omitted, 
the simulation becomes unstable. The analysis in the previous section indicated that this instability is 
caused by the model, not by the numerical method, and can be overcome by sufficient dissipation. In this 
section it is shown that the dynamic procedure is able to solve both problems. 



318 B. Vreman, B. Geurts, and H. Kuerten 

In order to overcome the excessive dissipation of the Smagorinsky model in laminar regimes the dynamic 
eddy-viscosity model has been developed by Germano (Germano, 1992) and has subsequently been applied 
to a number of flows (Moin and Jimenez, 1993). This model adopts Smagorinsky's eddy-viscosity 
formulation, but the square of the Smagorinsky constant is replaced by a coefficient which is dynamically 
obtained and depends on the local structure of the flow. Apart from the grid-filter level ("F-level"), denoted 
by the bar filter, Germano introduced a test filter (at the "G-level'), which is denoted by the hat (:) and 
corresponds to a filter width 2A. The consecutive application of these two filters, resulting in, e.g., ~, defines 
a filter on the "FG-level," with which a filter width ~cA can be associated. For top-hat filters the optimum 

value for ~c equals ~ (Vreman et  al., 1994b). Next we consider Germano's identity, which reads 

f iTij  - fizi~ ~. = L u. (41) 

The right-hand side of (41) can be explicitly calculated from the variables on the F-level: 

- - - -  r 

where (.)^ indicates that the hat filter is applied to the expression between the brackets. This notation is 
used in conjunction with the identically defnied notation (:) for convenience in the exposure. The terms on 
the left-hand side of the Germano identity are the turbulent stress on the FG-level, 

f iTij  = puiu  ~ pulpui_.. , (43) 
P 

and the turbulent stress on the F-level filtered with the test filter, respectively. The terms on the left-hand 
side cannot be calculated from the variables on the F-level. 

In order to obtain a dynamic eddy-viscosity model, Germano substituted the Smagorinsky eddy- 
viscosity model into identity (41). Similarly, a dynamic mixed model has been formulated, which employs 
the mixed model by Bardina et  al. as the base model (Zang et  al., 1993; Vreman et  al., 1994b). In the 
following we formulate the dynamic Clark model, 

~v,j  = ~ A 2 f iSk~ ,8~ j  - C c A  2 fi l S(~) l S~/~), (44) 

which resembles (21), with the model constant C 2 replaced by a model coefficient C o which is allowed to be 
a function of space and time. In order to obtain an expression for Cc, the subgrid model (equation (44)) is 
substituted into the Germano identity, which means that expressions for Tq and "c u are obtained by 
formulating the subgrid model in FG-filtered quantities and F-filtered quantities, respectively. Denoting the 
Favre-filtered velocity on the FG-level by 

pu¢ 
v~ = ~ - ,  (45)  

P 

the Clark model on the FG-level reads 

f i T  u = ~ (~cAk)E fiSkV flkVj --  Cc(~cA)2fil S(v)[ Su(v), (46) 

where[S(v)l / z 2 = ~Su(v ). Substitution of (44) and (46) into the Germano identity (41) yields 

H i j  4- C c M i j  = Lij ,  (47) 

where H u and M u are terms related to the gradient and eddy-viscosity part of the Clark model, respectively: 

--  Ak,OSkUi~kUj) , (48) 

M u = - f i(~cA)2[S(v)lSu(v) + (pA2 l S (u )  lSu(fi)) ~. (49) 

To obtain the expression for M~j we have neglected variations of C c on the scale of the test-filter width. 
Since, (47) represents a system of five equations for the single unknown C c, a least-squares approach (Lilly, 
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1992) is followed to calculate this coefficient, 

C c - (Mi~(L'J - Hi  J))  (50) 
( Mi jMi j  } 

In order to prevent numerical instability, caused by negative values of C o the numerator and denominator 
in (50) are averaged over the homogeneous directions, which is expressed by the symbol ( '}. In the 
simulations reported here the coefficient C c in the dynamic Clark model is artificially set to zero at locations 
where the right-hand side of (50) returns negative values. It has, however, been checked that simulations in 
which negative values of C c are allowed give rise to negligible differences. 

This subgrid model satisfies the requirements following from the analysis in the previous section, if the 
coefficient C c is sufficiently large. If on a given grid the model is stable, it is expected to remain stable after 
grid refinement. Indeed, the magnitude of the eddy-viscosity part of the dynamic Clark model, CcA2/) I S(u) I , 
varies only slightly with the mesh size when keeping A constant. Hence, this model enables a separation of 
numerical errors from modeling errors. 

We compare results of the dynamic Clark model with the dynamic eddy-viscosity model (Germano, 
1992) and the dynamic mixed model (Zang et aI., 1993; Vreman et al., 1994b). The dynamic eddy-viscosity 
model employs the Smagorinsky model as the base model, and the dynamic model coefficient is obtained 
using (47) with the tensor Hij equal to zero. The dynamic mixed model employs the mixed model by Bardina 
et al. as the base model; in that case the tensor Hi~ in (47) is replaced by a tensor using the similarity model on 
different levels (Vreman et al., 1994b). With respect to computational efficiency the dynamic Clark model 
does not require much more work than the dynamic eddy-viscosity model, unlike the dynamic mixed 
model. The derivatives of the filtered velocity needed for the gradient part are already calculated in order to 
obtain the strain rate at different filter levels. The extra work needed is mainly due to the six filtering 
operations in (48) indicated by (-) A. The calculation of Hij for the dynamic mixed model, however, contains 
considerably more filtering operations, required for the evaluation of the similarity model at different 
filtering levels. Consequently, the computational cost for the dynamic mixed model is considerably higher 
than for the dynamic eddy-viscosity and dynamic Clark model. 

Figure 3 shows results of LES for the three dynamic models, using the same grid and filter as described in 
Section 3. Three quantities are compared: the evolution of the total kinetic energy E and the momentum 
thickness d, and the profile of the turbulent kinetic energy k, which is defined as 

k ( x 2 )  1 - - 2 =~( (u , - (u , ) )  ). (51)  

The k-profile is calculated at t = 70, which is well beyond the starting point of the mixing transition process, 
but just before the final pairing has been accomplished. The time t -- 70 is rather arbitrary; it could equally 
well be t = 60 or t = 80, without altering the conclusions. All three models shows an improvement over the 
coarse-grid simulation without any subgrid model, indicating that in all three cases subgrid modeling 
makes sense. Furthermore, the results for the dynamic Clark and dynamic mixed model are much closer to 
the filtered DNS results than the results of the dynamic eddy-viscosity model, in particular for the evolution 
of the total kinetic energy and the momentum thickness. 

Figure 4 shows the evolutions of the value of the dynamic model coefficient for the three dynamic 
models. As can be inferred from (50) the model coefficient is a function of time and the normal direction x 2 
only. The results in Figure 4 show C c averaged over the x2-direction. The ,dynamic eddy viscosity model 
gives rise to higher values for the model coefficient than the other two models. The reason is that the 
nonedddy viscosity parts of the dynamic Clark and dynamic mixed model already provide some dissipation 
and thus reduce the role of the eddy-viscosity part. Furthermore, it is observed that the similarity part in the 
dynamic mixed model is more dissipative than the gradient part in the dynamic Clark model, since the 
model coefficient is lower in the first case. 

Hence, the dynamic Clark and dynamic mixed model lead to comparable simulation results, which are 
considerably more accurate than can be obtained with the dynamic eddy-viscosity model. Moreover, the 
dynamic procedure applied to the Clark model solves the problems encountered in Section 3. Firstly, the 
dynamic Clark model provides proper dissipation, thus avoiding the excessive dissipation of the original 
Clark model. On the other hand, the dissipation in the dynamic Clark model is sufficient to overcome the 
stability problem of the gradient model. We have verified that LES with the dynamic Clark model is also 
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Figure 3. Results of LES with the dynamic Clark model (solid), the dynamic eddy-viscosity model (dashed), the dynamic mixed model 
(dotted), the filtered DNS (circles), and LES without a subgrid-model (dashed-dotted). The evolution of the total kinetic energy (a), the 
evolution of the momentum thickness (b), and the profile of the turbulent kinetic energy at t = 70 (c) are shown. 

s table  at  o ther  grids, bo th  for A = 4h keeping  A cons tant ,  and  for bo th  A and h taken  smal ler  and  re ta in ing 

A -- 2h. These  f indings are  in agreement  with the analysis  in Sect ion 4. 

6. C o n c l u s i o n s  

In  this p a p e r  we have inves t iga ted  the C la rk  subgr id-sca le  model ,  which is the sum of the g rad ien t  model ,  

based  on Tay lo r  expansions ,  and  the S m a g o r i n s k y  eddy-v iscos i ty  model .  W e  have ex tended  the formal  

de r iva t ion  of  the incompress ib le  C la rk  m o d e l  to be able  to  use the mode l  in compress ib le  flow s imula t ions  

as well. In  LES of  the weak ly  compress ib le  mix ing  layer,  the C la rk  mode l  is too  diss ipat ive when the 
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Figure 4. The averaged model coefficient for LES with the dy- 
namic Clark model (solid), the dynamic eddy-viscosity model 
(dashed), and the dynamic mixed model (dotted). 
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eddy-viscosity part is incorporated. However, the model destabilizes the simulation if the eddy-viscosity 
part is omitted. In order to analyse the gradient part of the Clark model and to clarify the nature of the 
instability, the one-dimensional Burgers equation supplemented with the gradient model has been 
considered. A linear stability analysis of a sinusoidal profile of the modified Burgers equation has been 
performed. In the limit of vanishing viscosity, the maximum of the positive real parts of the eigenvalues has 
been shown to be proportional to the square of the number of modes, if a finite number of modes is taken 
into account. This shows that the instability becomes more severe, if the resolution is increased. For an 
infinite number of modes, the growth-rate of the instability is infinitely large. These analytical results for the 
one-dimensional case are similar to the behavior of the instability observed[ in three-dimensional simula- 
tions with the gradient model. Furthermore, the one-dimensional analysis indicates that a sufficient amount 
of viscosity is able to solve the stability problem. For these reasons we have introduced the dynamic Clark 
model, which is the sum of the gradient model and a dynamic eddy-viscosity model. Simulations using this 
new model show that the dissipation is sufficient to prevent the instability encountered in simulations 
employing the pure gradient model. On the other hand the dynamic Clark model avoids the excessive 
dissipation in the transitional regime observed in simulations using the original Clark model. 

The results obtained with the dynamic Clark model are reasonably accurate as comparison with filtered 
DNS results indicates. Furthermore, the dynamic Clark model has been compared with the standard 
dynamic eddy-viscosity model and the recently developed dynamic mixed model. Compared with the 
dynamic eddy-viscosity model, the dynamic Clark model gives more accurate predictions. Compared with 
the recently developed dynamic mixed model, the results are of comparable accuracy. With respect to 
computational costs the dynamic Clark model is more efficient than the dynamic mixed model, 
since considerably less extra filtering operations are required in order to evaluate the model. We conclude 
that the dynamic Clark model has been found to give good results for the weakly compressible temporal 
mixing layer. Understanding this model will further increase if it is also investigated in LES of different 
flows. 
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Appendix 

In this appendix the p roo f  of the three statements in (36)-(38) concerning the eigenvalues of the matr ix M.  is 

given. The structure of the matr ix  Mn is such that  an eigenvalue is equal to zero or an eigenvalue of the 

following matrix: 

• . . • , . 

An = rn 1 

In- 1 0 r n 

I. 0 

(A.1) 

Consequently,  to consider the eigenvales of A n is sufficient. These eigenvalues are roots  of the characteristic 

polynomial  P.(2) of the matr ix  A.: 

P.(2) = deft.U. - A.), (a.2) 

where I .  is the n × n unity matrix• If we decompose  this determinant  with respect to the last column, we 

obtain 

PI(2) = 2, (A.3) 

P2(2) = 22 - r212, (A.4) 

Pn(2) = 2P._  1(2) -- r . I .P ._z(2  ), n > 2. (A.5) 

This recursive relation demonstra tes  that  P.(2) = 0 implies P . ( -  2) = 0. Thus if 2 is an eigenvalue, - 2 is also 

an eigenvalue and thus proper ty  (36) has been established. 

Next,  we consider the s tatement  about  the asymptot ic  behavior  of 12max I- In order  to prove this s tatement 

we formulate  a lower and upper  bound  for ]2~.ax [ which are both  asymptotical ly propor t iona l  t o  tin 2. An 

upper  bound  is obta ined when the Gershgor in  theory  is applied to A.: 

] 2 m a x ]  ~ 1._ l + r. = t/(n - 1) 2 ~ tin 2. (A.6) 

Since 12ma x I >12i] for i = 1 . . . . .  n and 2~ represents one of the n roots  of the polynomial  P.(2), the following 

relation provides a lower bond  for [2max[: 

12~.ax I _> 12122 . . .  2n] 1In = IPn(O)[ 1In. (A.7) 

The recursive relation (A.5) provides 

Pn(O) = --  r . l . P . _  2(O), (A.8) 

with 

r . l .  = ¼(n - 1)n(~/2(n 2 - n) - t / -  1) ~ ¼ ~/2(n - 1)2n 2. (a.9) 

If n is even and the coefficient I k is nonzero  for even k (r k is always nonzero), we obtain the following estimate, 

using Stirling's formula: 

I j~ . . . .  [ > IPn(O)l 1In ~ ((¼tlN)n/Z(n!)Z)l/n > ½t 1 ~ rl n2. (A.10)  

Equat ions  (A.6) and (A.10) together  yield 

12maxl ~ t ] n  2. (A.11) 

The case for odd n is more  complicated,  but  does not  need to be considered, since the behavior  for even 

n already provides sufficient informat ion about  the system. Fur thermore ,  the above argument  alters when 
I k = 0 for a certain (even) value of k. If l k = 0, the characteristic polynomial  can be written as 

P.(2) = Pk+ ~ ( 2 ) Q . - k +  1(2), (A.12) 
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where Q,-k--1(2) represents the characteristic polynomial of the tridiagonal matrix with lower diagonal 
Ik + 1 "  l, and upper diagonal r k + 1"" r .  The maximum root of (2,- k ÷ 1 can be estimated like in (A. 10) and its 

asymptotic behavior is also proportibnal to t/n 2. 
Finally, we derive an upper bound for the imaginary part of an eigenvalue 2 of A,. Denoting the 

corresponding eigenvector with y we have 

A~y = 2y. (A.13) 

The matrix A, can be split into a symmetric matrix B, and an antisymmetric matrix C,: 

with 

and 

A,  = B,  + C, (A.14) 

B. = 
b 2 1 i  , 

b~ 

Cg/--  

0 C 2 
• . . • . 

- -  C 2 

• . . • . 

- -  C n 

Cn 

0 

bk=_l i ~(rk + lk) = ½ ~k 2 - ½ ~k + ~, 

(A.15) 

(A.16) 

1 (A.17) Ck : 1 ( r  k __ /k) = 1 k 4 "  

In the following we denote the Euclidean inner product in C" by (', ') and the complex conjugate by the 
superscript *. Next, we derive the following relation between 2 and 2*: 

2(y, y) = (A,y, y) 
= (B,y, y) + (C,y, y) 

T T = (y, B. y) + (y, C. y) 
= (y, B,y) - (y, C,y) 
= (y, A,y) - 2(y, C,y) 

= 2*(y, y) - 2(y, C,y). (A.18) 

Now we can express an upper bound for the imaginary part of 2 as 

= ~ _< [lyllllyll 211C,y II <_ ]l c lisp, (A.19) IIm(2)=½12-?*1 

since II C.y II -< 11C. lisp II Y II, where the subscript sp denotes the spectral matrix norm• The spectral matrix 
r norm II C lisp is defined as the square root of the maximum of the absolute eigenvalues of the matrix C, C,, 

which is equal to the maximum absolute eigenvalue of C., since C. is antisymmetric. Finally, the following 
result is obtained using the Gershgorin theory: 

I Im(2) l < I c,_ 1 [ + [c, I = n - 1, (A.20) 

which expresses an upper bound for the imaginary parts of the eigenvalues. 
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